Distributive Reactive Control in Coupled Microgrids

Task Objectives and Approach
simPower Model of MV Network
CERTS Microgrid Models

Reactive Control of Voltage Rise

Distributed Event-Triggered Control
of Coupled Microgrids

® Decliverables
® Schedule
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Task Objectives and Approach

Task will develop distributed methods to maximize
the exported real power by controlling reactive power.

Controls include voltage regulators, STATCOM, SVC,
and CERTS uGrid controllers

Coordination of controls will be accomplished
through distributed optimization methods.
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Simulation Mo
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CERTS Microsource Controller

Decentralized Inverter Controls (CERTS)
- provides small-signal stability

- mimic P-freq and Q-V droop control @
- interface to any DG unit
- load-shedding on frequency droop

local
controller

Peer-to-Peer Dispatch integrates into Inverter Controls

- dispatcher generates power and voltage set points
which are inputs to the CERTS inverter controller.
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Power Flow Analysis of Simulation Model
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® This scenario demonstrates a voltage rise 1ssue.
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Voltage Rise Problem

R e Distribution line impedance = Z + ;X
S Substation voltage V, 20°

) Line current =14
V,£0° Sl R Injected Power, S, = P+ jO,
Terminus voltage, EZ0

® Phasor diagram shows
how the injected power’s
impact on current flows
may result in line voltages
that exceed the 5%
regulatory constraints
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Reactive Control of Voltage Rise Problem

1L

—— Z=R+jX |——— e Total Injected Power:

oy P Sg = Pp +jQp = E1£(0 - ¢)

VOLOO =B +jO;

e We reduce voltage rise by forcing line
current to lead terminus voltage

e This strategy implies
Q. = Elsin(d — ¢) < 0.

e Voltage rise can be reduced by absorbing
reactive power at the terminus

e Reactive control mechanisms
- Static Var Compensator, VR and Ca-
pacitor banks, Q-V droop controls

GE Coupled Microgrid Project - University of Notre Dame - April 7, 2011



Voltage Rise Problem in Simulation Model

e Voltage regulation rules require

voltage to remain within 5 percent
of nominal value

e Simulation Scenario violates this

requirement with a 6% deviation
on bus 5

e To address the voltage rise 1ssue we need to absorb reactive power.
We can do this in at least two ways

O Adjust voltage setpoint of microgrid generators
o Use of Static Var Compensators (SVC)
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Addressing Voltage Rise through Microgrid Controls

e Adjusting requested microsource
voltage, E _solves the problem

e A similar result is obtained by

| connecting a SVC ((inductor bank)
consuming 76 kvar of reactive
power on bus 5
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Addressing Voltage Rise through VR/SVC Controls

e Similar result obtained using tap-changing voltage regulators and
capacitor banks.
e In this example, tap settings and capacitor bank size was
determined from a power flow analysis. Future work will introduce

automated controls
e Issue regarding interaction between legacy controls and microgrid

reactive power control.
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Distributed Reactive Control of MV Distribution Line

primary
substation

® Coordinating of reactive
control devices across entire

MYV distribution line
® Coordination accomplished load load
over a communication network 480 V 480 V

® [ntegration with existing distribution network infrastructure
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Coordinating Controls across the MV Distribution Line

e  Coordinating reactive power consumption across the entire MV
distribution line can be treated as an optimization problem that
maximizes the amount of exported real power subject to physical
limitations of the system.

minimize: Z:’zl (Ploss T #Gshed)
subject to: V<V <V
Q<Q<Q
P i PLn {_: Pl_.n

=—L.n

o The approach being proposed 1n the project involves a
distributed event-triggered optimization

e This approach was tested on a LV mesh microgrid last year.
We’ll use this earlier example to explain how the approach

works
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Peer-to-Peer Dispatching in Microgrid

Microgrid Model

e Model grid as a directed graph (V,E) where V =
{1,2,...,N} are buses and £ C V x V are tie lines.

: N : : B,

e Line (7, j) impedance is R;; + j X, P, / Load ek P

2 P 3
L
e Voltage source, 7, with phase angle 0;. @ 1 @
e Weighted Incidence A and Laplacian matrix, B | bus 2 bus 3 =
. . . 1 Load > Load
e Real power from bus i to j is Py = <~ (6: — 0;) P, P, B,

Economic Dispatch Problem

The objective is to minimize operating costs subject to power constraints.
Ci(Pg,) is the economic cost of bus i’s source generating Pg, (pu) of power.

minimize: Zi\; Ci(Pg,)
w.r.t. Pg
subject to: B = Po — Py,
Po < P < Pg
P<AO<P

microgrid operating cost

power balance
generation limits
line limits
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Event-triggered Message Passing

Distributed algorithm is expensive in message passing cost
- agents pull node/link states from neighbors on each update
- expensive In terms of communication infrastructure

- susceptible to denial of service attacks

Event-triggered Message Passing

- separate computation and communication

- agent pushes node/link state to neigbhors
when “novelty” 1n state exceeds a threshold

§b7; (t) — ggz (t) S 0; ’Zz (t) ’ message transmission

Benefits of Event-Triggering

- reduced message pasing complexity
(orders of magnitude improvement)

- sporadic transmission implies less
sensitivity to denial-of-service
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Case Study: event-triggered power dispatch in microgrids

e Communication triggered by local “events” at each source
- optimal dispatcher turned on (t = 3 sec)
- abrupt change 1n bus 2 load (t = 10 sec)
- DG2 most expensive generating unit
- power line constraint force DG2 to address load change
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Case Study: event-triggered power dispatch in microgrids

e Communication triggered by local “events” at each source

e Power dispatch with great reduction in network message passing
- message passing reduction can be by several orders of magnitude
over periodically triggered distributed optimization method

optimal
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Sporadic transmissions between agents occur in response to changes in system
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Microgrids and Distributed Energy Resources

Voltage Rise Problem

- occurs when microgrid exports power to grid

- may result in voltage rise at primary substation

- may be controlled by delivering reactive power
to microgrid

- set up as a distributed optimization problem
subject to power flow constraints

MYV distribution line
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Supporting Tasks, Deliverables, Milestones

® Supporting Tasks

O Distributed Estimation of State in MV Distribution Line

O Powerline Communication

® Deliverables

O Interim Report (9/1/2011)
O Final Report (3/15/2012)
O simPower Simulation Files (3/15/2012)

® Milestones

4/1/2011
7/1/2011
10/1/2011

1/1/2012

4/1/2012

1 coupled microgrids

11
1.2
1.3
14

algorithm development
Simulation model development A
evaluation

final report

B
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What GE can provide

® Specifications on more realistic MV distribution line
O Cable impedances, scale of loads and generation
O Specifications on GE microgrid controller
O DO management policies

O Specifications on existing control devices.

® Systems engineering perspective on smart-grid
O Business constraints

O Regulatory constraints
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