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1. Project introduction
This project introduces an approach that utilizes federated
learning(McMahan et al., 2023) to decide the equitable allo-
cation of development grants to city communities with the
aim of enhancing the quality of life for all city residents. His-
torical practices sometimes overlook awarding such grants
to communities that are disadvantaged with respect to a
sensitive social attribute such as racial or ethnic makeup.
This project proposes a Machine Learning (ML) method
that small cities can use to optimize the communal benefit
reaped from these development grant while simultaneously
adjusting how ”fair” the grant decisions were with respect
to sensitive community attributes.

Fairness and bias are important considerations when allo-
cating resources (Deutsch, 1975) (Rawls & Kelly, 2001).
Within a city some communities are classified as socially dis-
advantaged with respect to a sensitive community attribute.
As an example, a community with a large proportion of
elderly residents may be seen as “disadvantaged” with re-
spect to the sensitive attribute of “age”. Fairness in this
project means that any community resident has an equal
opportunity to receive the allocated resources, regardless
of whether they belong to an advantaged or disadvantaged
group. In statistical terms, this concept can be formalized
as statistical parity (Mehrabi et al., 2022), which is defined
as: the probability that an advantaged individual benefits
from allocated resources is equal to the probability that a
disadvantaged individual benefits from allocated resources.
Formally, we can write this as

Pr {y = 1 | s = 1} = Pr {y = 1 | s = 0} (1)

where y = 1 denotes that the individual receives re-
sources and s = 1/0 indicates the individual is advan-
taged/disadvantaged. While the global policy is to decide
the allocations that maximize the communal benefit, we also
want to ensure that our allocations are ”fair” with respect to
the sensitive attribute.

Our proposed method develops a fair policy using a feder-
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ated learning framework, wherein each local community
trains a local generative model that generates samples with
the same distribution as that of the community. These gen-
erative models are then sent to a global decision maker who
determines how to allocate community improvement grants
in a manner that maximizes the communal (global) benefit
of these grants. The benefits of developing a global policy in
a federated manner (Konečnỳ et al., 2016) (Mothukuri et al.,
2021) are 1) it reduces the communication costs needed to
support distributed decision making since the local genera-
tive models are much smaller than the local raw datasets and
2) it preserves differential privacy because raw data from
residents is held privately within the community.

This project’s results demonstrate that by selecting a fair-
ness parameter, we can make decisions that trade off the
communal benefit of all grants (measured by the aggregate
mismatch between community need and allocated grant
money) against the global fairness of those decisions as
measured by the notion of statistical parity described above.
The city, therefore, creates a policy that accommodates its
specific needs regarding ”fairness” and ”communal good”
by tuning the fairness parameter. This indicates that our pro-
posed approach is able to work with cities to establish the
best policy that addresses the unique needs of their citizens.

2. Proposed method
As we describe in section 1, the use of direct financial grants
to individual communities provides a practical approach to
enhancing the quality of life for residents with low incomes.
These grants can provide direct assistance to residents or
be used for community improvement projects that address
the unique needs of that community’s residents. The fed-
erated learning approach (as shown in Figure 1) has each
community train a local model for its residents’ needs and
then transmits those models to the global decision maker
(city planner). The city planner then uses these models to
generate ”fake” residents whose attributes are used to decide
how to distribute a fixed budget of grant dollars to individ-
ual communities in a manner that maximizes some chosen
measure of the global ”communal” good.

The proposed work can be divided into the following three
tasks:



Fair Federated Learning For Deciding Community Improvement Grants

Figure 1. The Federated Learning framework

2.1. Training model for residential income level

This project uses the UCI Adult dataset(Dua & Graff, 2017)
to develop a model that predicts an individual’s income
level based on their profile attributes such as age, work
class, and education level. The model is a deep sequen-
tial neural network, trained using standard backpropagation
techniques. The model inputs are tensors whose elements
are 8 categorical one-hot encoded attributes (e.g., education
level, occupation, marital status, race) and 6 numerical at-
tributes like age and final weight. The model’s output is a
value within the range of [0, 1] that represents the likelihood
that the individual has an income level greater than a fixed
threshold.

This project used the UCI Adult dataset to generate local
datasets for simulating the attributes of smaller communities.
In particular, we partitioned the UCI dataset into 8 datasets
where each dataset represented a different community with
varying racial makeup and income profiles.

2.2. Federated Learning that generates community’s
data distribution

In this section, we employ Generative Adversarial Networks
(GAN)(Goodfellow et al., 2014) to generate the race and
income distribution for each community. The resulting gen-
erators will be sent to the global decision maker to determine
a global policy for grant allocation. By using a GAN, we can
generate random samples from the same distribution that
generated each local community’s dataset. This approach
addresses the problems associated with ensuring the statisti-
cal sampling of communities is independent and identically
distributed. So the samples generated by the GAN represent
a ”generic” resident whose attributes have the same proba-
bility distribution of the GAN’s training data. This ensures
that a particular ”real” resident’s information cannot be in-

ferred from the generative distribution, thereby protecting
the ”real” individual’s privacy.

2.3. Fair global policy for deciding neighborhood
improvement grant

In this part, the global decision maker receives the genera-
tors from all communities and makes decisions regarding
the allocation of grants to different communities based on
the generative race and income distribution of each commu-
nity. The global policy wants to determine the allocation for
each community that meets the aggregate financial needs
of the community’s low-income individuals. City planners,
however, also , want to ensure fairness with respect to a
sensitive community attribute that causes a community be
classified as disadvantaged. In this project, the sensitive
attribute is race.

Let us first see how to model a city’s decision making pro-
cess. We let n = [n0, n1, · · · , n7] denote the need vector
of communities whose element i is the grant required by
community i to enhance the quality of life for its residents.
F denotes the total grant dollars that the government has
to allocate. A global policy p = [p0, p1, · · · , p7] is a vector
whose element i represents the percentage of total grant
dollars allocated to community i, thus the funding that com-
munity i receives from the city’s government is piF . We
define the baseline policy, p∗, as the policy that solves the
following optimization problem:

min
p

L(p) =
1

8

7∑
i=0

(piF − ni)
2 (2)

where the L(p) is the mean square error between between
community’s financial need and the grant dollars allocated
to that community by the government. Our plan is to retune
the baseline policy, with respect to a fairness parameter, λ
to obtain a policy pλ whose decisions toward disadvantaged
communities are measurably ”more fair” than the baseline
policy p∗

This project views ”fairness” though the lens of distributive
justice (Deutsch, 1975), (Rawls & Kelly, 2001). Distributive
justice is a social science concept referring to the perceived
fairness of a decision that allocates resources to a group of
people with differing attributes. That allocation decision is
seen as just or fair if any individual has an equal opportunity
of receiving the allocated resources regardless of whether
that individual belongs to an advantaged or disadvantaged
community. In this project, ”opportunity of receiving the
allocated resources” corresponds to the probability that an
individual can benefit from the grant allocated to his or her
community. We use race as the sensitive attribute and a
community is classified as socially disadvantaged if their
majority is non-white. Otherwise, it is a socially advantaged
community. This project, therefore, interprets ”fairness” as
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”distributive justice”

Distributive justice can be expressed as a statistical condi-
tion. In particular, we say an allocation policy is fair if it
satisfies the notion of statistical parity(Mehrabi et al., 2022)
given in equation (1). In this equation y = 1 means the in-
dividual benefits from the grant, s = 1 means the individual
is socially advantaged (white), s = 0 means the individual
is socially disadvantaged (non-white).

In general, the equation 1 will not be satisfied, but we can
quantify how close the policy, p, is to achieving statistical
parity through the risk difference function:

R[p] = Pr {y = 1 under p | s = 1}
−Pr {y = 1 under p | s = 0} (3)

The risk difference function in our case can be estimated by:

R̂[p] =

∣∣∣∣∑n
i=1 pdiF∑n
i=1 |Ddi|

∣∣∣∣−
∣∣∣∣∣
∑m

j=1 pajF∑m
j=1 |Daj |

∣∣∣∣∣
In this formula, pdi represents the percentage of the grant al-
located to disadvantaged community i, and F represents the
total grant dollars. Thus,

∑n
i=1 pdiF represents the grant

dollars allocated to disadvantaged communities. |Ddi| rep-
resents the number of people in disadvantaged community
i, and

∑n
i=1 |Ddi| represents the total number of people

in disadvantaged communities. Likewise, paj represents
the percentage of the grant dollars allocated to advantaged
community j and

∑m
j=1 pajF represents the total grant

dollars allocated to advantaged communities. |Daj | rep-
resents the number of people in advantaged community j,
and

∑m
j=1 |Daj | represents the total number of people in

advantaged communities.

The first term of the risk function,
∑n

i=1 pdiF∑n
i=1 |Ddi| , divides the

total grant allocated to disadvantaged communities by the
total population in those communities. Likewise, the second
term of the risk function,

∑m
i=1 paiF∑m
i=1 |Dai| divides the total grant

allocated to advantaged communities by the total population
in those communities.

A more fair global policy p can be obtained by solving:

min
p

Lλ(p) = L(p) + λR̂[p] (4)

In this equation λ > 0 is a fairness parameter that we se-
lect to optimally tradeoff communal benefit (i.e., the mean
square error (MSE) between the money that a community
needs and the funding that the government gives it) against
the fairness of that policy (measured by the risk difference).
In general, increasing the fairness parameter will result in
decreasing the risk difference (improving fairness) and in-
creasing the MSE value (reducing communal benefit).

3. Techniques we used in our project
In this section, we present the technique employed in our
project. In Section 2.2, our proposed framework involves
the transmission of local communities’ generative model to
the global decision maker. The generative model we used in
our project is a Generative Adversarial Network (GAN)

3.1. Generative Model

GANs: GANs (Goodfellow et al., 2014) are used to gener-
ate data from the same distribution as the training data. The
GAN (as shown by Figure.2) has two components: a genera-
tor G: Rm → Rn and a discriminator D: Rn → [0, 1], both
G and D are multi-layer neural networks. The generator
G(z) generates fake samples from a prior distribution Pz on
a noise variable z and learns a generative distribution PG

to match the real data distribution Pdata. The discriminator
D(x) is a binary logistic regression classifier whose input
is generative data and real data whose output is the proba-
bility that x is from real data distribution rather than from
generative distribution. The objective function of the GAN

Figure 2. The GAN framework

is:

min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x)]+

Ez∼pz(z)[log(1−D(G(z)))]
(5)

For a fixed generator G, the optimal discriminator D is :

D∗(x) =
pdata (x)

pdata (x) + pg(x)
(6)

When D is optimal, the objective function is:

C(G) = min
G

V (G,D∗)

= Ex∼pdata [logD∗(x)] + Ez∼pz [log (1−D∗(G(z)))]

= Ex∼pdata [logD∗(x)] + Ex∼pg [log (1−D∗(x))]

= − log(4) + 2 · JSD (pdata ∥pg)

where, JSD(p||q) = 1

2

∫ (
p log

2p

p+ q
+ q log

2q

p+ q

)
dµ

(7)

The objective function with an optimal D∗ is indeed an
estimator of the JS divergence of real data distribution and



Fair Federated Learning For Deciding Community Improvement Grants

current generative distribution. The global minimum of
C(G) is achieved when pg = pdata. At that point, C(G) =
− log 4.

Researchers (Arjovsky & Bottou, 2017) have shown that
GANs can be difficult to train when the real distribution’s
support lies on a submanifold of the data space. It is easy to
calculate that JSD (pdata ∥pg) keeps a fixed value: log2. In
this case, the gradients vanish for the generator update and
the generator will not update to match the real distribution.
This problem can be addressed using the Wasserstein GAN.

Wasserstein GANs The Wasserstein GAN (Arjovsky
et al., 2017) (WGAN) is motivated by the GAN’s issues
with the real distributions that are not continuous. In the
WGAN, instead of using the JS divergence, they use the
Wasserstein distance (W-distance) to measure the difference
between two distributions. The objective function of the
WGAN is:

min
G

max
D

Ex∼Pr [D(x)]− Ez∼p(z) [D (G(z)]

+λ E
x∼Px

[
(∥∇xD(x)∥2 − 1)

2
] (8)

The objective function of the WGAN with an optimal dis-
criminator is an estimate of the W distance between the
generative distribution Pθ and real distribution Pr:

W (Pr,Pθ) = sup
∥f∥L≤1

Ex∼Pr
[f(x)]− Ex∼Pθ

[f(x)]

There are two main reasons why the objective function of
WGAN makes sense. Firstly, the W-distance, used in the
WGAN, is a continuous and differentiable function with
respect to the generator parameters. This allows for effective
gradient-based optimization of the generator. Secondly, the
WGAN discriminator is designed to use the W-distance,
which will not collapse when the real data’s distribution lies
on a submanifold whose dimension is less than that of the
generator’s output.

In our project, we are using the WGAN to generate the race
and income distribution, which has a joint distribution over
both continuous and discrete variables. The real distribution
lies on a submanifold immersed in the data space, while the
generator’s output is always a continuous distribution. By
using the WGAN, we can ensure that the training gradients
used to update the generator will not vanish, thereby guaran-
teeing that the distance between the generative distribution
and the real distribution will decrease over time.

4. Result and evaluation
This section has three parts: clustering data into 8 different
communities, training local WGANs to generate local data
distributions and creating a desired global allocation policy.

4.1. Clustering Data

The K-means algorithm is used to partition the dataset into
8 distinct groups, where each group corresponds to a com-
munity with different racial makeup and income profiles.

Figure 3. Clustered Data

The data clusters are visualized in Figure 3, with the income
level represented on the x-axis ranging from 0 to 1, and the
race of the samples depicted on the y-axis. This represents
the dataset that was used to solve the fair grant allocation
problem.

4.2. Training GAN to generate community level data

In this section, WGANs are trained to generate race and
income data of the local communities. In a WGAN, the
generator is a multi-output feedforward neural network with
two 2 layers, having 128, 64 dimensions respectively. Each
output of the WGAN represents one feature (race or in-
come). We apply a sigmoid activation function to numerical
feature (income) output and softmax activation function to
the categorical feature output (race). These outputs are con-
catenated together and directly feed into the discriminator.
The discriminator is a feedforward neural network with 3
hidden layers, having 64,16,8 dimensions respectively. We
train the WGAN for 3000 epochs. In each epoch, we update
discriminator using Adam with a learning rate 0.0001 and
then update the generator using Adam with a learning rate
0.0001. After finishing the training process, we just take the
argmax output and turn into a one-hot encoded output.

We evaluate the WGAN’s ability to capture the input data’s
true distribution in two different ways. The first approach is
visual, where we plot the real and generative data distribu-
tions for race and income. This is shown in Fig. 6 and from
this figure we can see that for all outputs, the generative
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and true distributions are qualitatively similar to each other.
The second way to evaluate the WGAN’s performance is to
compute the JS divergence between the real and generative
distributions for race and income. Tables 1-8 show the JS-
divergence for communities 1-8. In these tables we see JS
divergence for race is 0-0.12 and for income it is .05-.172.
These appear to be relatively small values, especially when
considered along with the distributions shown in Fig. 6.
Our experimental results thereby support the assertion that
the WGAN was able to learn a meaningful model of each
communities racial and income distribution.

feature race income
JS divergence 0.000 0.050

Table 1. The JS divergence between generative distribution and
real distributions of race and income for community0

feature race income
JS divergence 0.120 0.153

Table 2. The JS divergence between generative distribution and
real distributions of race and income for community1

feature race income
JS divergence 0.000 0.133

Table 3. The JS divergence between generative distribution and
real distributions of race and income for community2

feature race income
JS divergence 0.000 0.172

Table 4. The JS divergence between generative distribution and
real distributions of race and income for community3

feature race income
JS divergence 0.014 0.123

Table 5. The JS divergence between generative distribution and
real distributions of race and income for community4

feature race income
JS divergence 0.061 0.155

Table 6. The JS divergence between generative distribution and
real distributions of race and income for community5

feature race income
JS divergence 0.085 0.112

Table 7. The JS divergence between generative distribution and
real distributions of race and income for community6

feature race income
JS divergence 0.036 0.167

Table 8. The JS divergence between generative distribution and
real distributions of race and income for community7

4.3. Developing a global policy for deciding
neighborhood improvement grants

This section will decide how to allocate grant dollars be-
tween the communities. Assuming we have a total budget
of F dollars to improve eight communities, our objective
is to allocate funds in a way that meets the financial need
of low-income residents while being fair with respect to
race. To develop the global grant allocation policy, as we
described in section 2.3, the objective function we use is
equation (4) in section 2.3, which is:

min
p

Lλ(p) = L(p) + λR̂(p)

=
1

8

7∑
i=0

(piF − ni)
2

+ λ

∣∣∣∣∣
∑n

i=1 pdiF∑n
i=1 |Ddi|

−
∑m

j=1 pajF∑m
j=1 |Daj |

∣∣∣∣∣
(9)

The financial need for community i , is denoted as ni and
is given by

∑|Di|
j=1 Relu(xpl − xij). The parameter,xpl, is

a threshold that classifies residents as low-income. In this
project we set xpl = $30, 000 per year. The variable xij

denotes the j-th resident’s income in community i. The
individual financial need for resident j in community i is the
difference between xpl and xij when xpl > xij and is zero
otherwise. Thus, community i’s aggregate financial need is
given by the formula

∑|Di|
j=1 Relu(xpl − xij). As describe

in section 2.3, the first term in equation (9)’s cost function is
the squared mismatch between the allocated granted dollars,
piF and the financial need, ni, of low-income residents.
The second term in this cost function is the risk difference
(i.e., statistical parity) weighted by the fairness parameter,
λ.

We minimize the weighted cost function in equation (9) for
various values of the fairness parameter. The outcome is
shown in Figure 4, where it can be observed that increasing
the fairness parameter decreases the risk difference, thereby
indicating a more fair or ”just” allocation of grant dollars.
It is important to note, however, that this improvement in
fairness is achieved at the expense of increasing the total
squared mismatch

∑
i(piF−ni)

2 between community need
and allocated grant dollars.

In particular, the baseline policy, p∗, is obtained when we
ignore statistical parity (i.e. λ = 0) as shown by point A in
Figure 4. For the baseline policy, we see the risk difference
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is about 0.35, indicating that the probability of an individual
from an advantaged community benefiting from the grant is
35% higher than that of an individual from a disadvantaged
community. By increasing the fairness parameter λ, we will
obtain a fairer policy. One such solution is shown by point
B in Figure 4. In this case, the risk difference for point
B decreased to 0.15, implying a smaller disparity between
the probability of advantaged individuals benefiting from
the grant more than disadvantaged individuals. Policy B is
therefore considered to be fairer than Policy A, as it reduces
the bias towards the disadvantaged community. But this
gain in fairness increased the mismatched need from 5 in
policy A to 8.

Figure 4 suggests a way to quantitatively tradeoff fairness
against the unmet need. In particular, decision makers would
probably select a target risk difference level and see how
much unmet need would be left. If it is desired to reduce
that unmet need, one could increase the total grant dollar
budget, F . As shown in Fig. 5, increasing F simply shifts
the fairness/mismatch curve to the left. How much that total
budget, F , should be increased can be readily determined
from Figure 5, thereby providing a tool for budget planning
as well.

Figure 4. Policy’s mean square error vs. fairness

Figure 5. Policy’s mean square error vs. fairness as total grant
decreasing

5. Conclusion
In this project, we use the UCI Adult dataset as an example
to demonstrate that the proposed fair federated method can
develop a policy that is fairer than the baseline. By selecting
the fairness parameter, one can trade off the the MSE in un-
met community need against fairness of an allocation policy
to meet those needs. Future work will develop connections
with community leaders to better understand how this quan-
titative approach to achieving distributive justice can made
into a practical decision-making tool for civic leaders.

References
Arjovsky, M. and Bottou, L. Towards principled methods

for training generative adversarial networks, 2017.

Arjovsky, M., Chintala, S., and Bottou, L. Wasserstein gan,
2017.

Deutsch, M. Equity, equality, and need: What determines
which value will be used as the basis of distributive jus-
tice? Journal of Social Issues, 31:137–149, 1975.

Dua, D. and Graff, C. UCI machine learning repository,
2017. URL http://archive.ics.uci.edu/ml.

Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B.,
Warde-Farley, D., Ozair, S., Courville, A., and Bengio, Y.
Generative adversarial networks, 2014.
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(a) income of community0 (b) race of community0 (c) income of community1 (d) race of community1

(e) income of community2 (f) race of community2 (g) income of community3 (h) race of community3

(i) income of community4 (j) race of community4 (k) income of community5 (l) race of community5

(m) income of community6 (n) race of community6 (o) income of community7 (p) race of community7

Figure 6. The real and generative distributions of race and income for 8 communities


