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Sampled Data Control System

Channel - Lossy with finite bit-rate
Decoder - zero-order hold
Plant/Controller - stable under perfect state feedback

Encoder - quantizes and samples system state

Plant and
Controller

Channel

EncoderDecoder

x(t)

xk
xk

x(t)

• {sk}∞k=0 = sampling instants

• Plant/Controller state, x(t) satisfies

ẋ(t) = f(x(t), u(t), w(t)); x(0) = x0

• Sampled and Quantized state, x̂k =
Q(x(sk))

• Reconstructed state x̂(t) = x̂k for t ∈
[sk, sk+1).

Minimum Information for Stabilization?
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Dynamically Quantized Feedback

Necessary and sufficient bit rate for asymptotic stability

Discrete-time Linear System with one sample delay
- state is periodically sampled with quantization[1,2]

Uncertainty sets
at time instant k

Uncertainty sets
at time instant k+1

R ≥ R =

n∑

i=1

max(0, log2 |λi|)
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Emulation Method

Select Sampling Instants to guarantee that the
sporadically sampled system is also ISS.

“Emulation Method” for Sampled System Design
- design controller, K, that leaves “continuously” sampled
   system input-to-state stable (ISS)[3].

There exist functions β ∈ KL and γ ∈ K such that

|z(t)| < max{β(|z0|, t), γ(|e|L∞)

e ∈ L∞ and z(·) : R+ → Rn satisfies

ż(t) = f(z(t),K(z(t) + e(t))

β(|z0|,t)

γ(|w|
∞
)

|z(t)|
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Event-Triggered Feedback[4]

State is sporadically sampled with no quantization

ξ(|x(t)|)

|e(t)|

s0 s1 s2 s3

Since the ”continuously” sampled system is ISS,
there exists a positive definite function V (·) :
Rn → R+ and functions α, γ ∈ K such that

∂V

∂x
f(x,K(x+ e)) ≤ −α(|x|) + γ(|e|)

Select sampling instants, {sk}∞k=0

so that for all time, t,

|e(t)| ≤ γ−1 ((1− σ)α(|x(t)|)) ≡ ξ(|x(t)|)

where 0 < σ < 1
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Resource Utilization in Event-Triggered Systems

Prior work has suggested that event-triggered systems
have lower resource utilization than comparable
periodically sampled systems[5,6,7,8].

0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0

10

8
7
6
5
4
3
2
1

9

V R 
/ V

L

Mean Sample Period (T)

a=1

a=0

a=-1

[Astrom 02]

0 2 4 6 8 10−5

0

5
x 10−3

Er
ro

r [
ra

d/
s]

0 2 4 6 8 10−5

0

5
x 10−3

Er
ro

r [
ra

d/
s]

0 1 2 3 4 5 6 7 8 9 10
0

5e3

1e4

Time [s]

# 
sa

m
pl

es

Time−driven PID

event−driven PID

Time−driven PID
Event−driven PID

[Sandee 2006]

But this may not always be the case.
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Zeno Sampling and Efficient Attentiveness[9,10]

• Consider the following system

ẋ(t) = f(x(t)) + u(t) with u(t) = −2f(x̂k)

where
sublinear superlinear

f(x) = sgn(x)
√

|x| f(x) = x3

• Given sampling instant sk, the next sam-
pling instant sk+1 is the first time when the
state leaves

Ωk =
{
x ∈ Rn : (x̂k − x)2 ≤ |x|2 ≡ θ(|x|)

}
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,
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Dynamic Quantization versus Event-Triggering

Similarities
- both attempt to reduce “information” over channel.
- quantization in “time” versus “space.
- both discretize a continuous-time control system

Differences 
- Single sample delay (Q) versus small delay (ET)
- Utilization measured by bit rate versus inter-sampling time
- Dynamic quantizers achieve minimum stabilizing bit rate,
   but lower resource utilization not  guaranteed for
   event-triggered systems

Objectives:
- Unification quantization and event-triggering
- Design Event-triggers to control resource utilization
  by ensuring efficient attentiveness
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Quantized Event-Triggered Networked System[11,12]

• Sampling Instants, {sk}∞k=0, and Arrival Instants {ak}∞k=0.

• State Equation is ẋ(t) = f(x(t), k(x̂k))
where x̂k is the quantized state and t ∈ [ak, ak+1).

• Quantized state, x̂k, satisfies |x(sk)− x̂k| < E(|x(sk)|)
where E ∈ K is the Quantization Error.

• Controller, K, ensures ”continuously” sampled system is ISS
with respect to the gap ek(t) = x(t)− x̂k.
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Modeling of Channel Delay and Quantization[13,14,15]

Quantization Error, E(|xk|) 
Delay = Dk = ak-sk
Inter-sampling Interval = Tk = sk+1-sk
Admissible Sampling:  sk < ak < sk+1

sk ak sk+1 ak+1sk-1 ak-1

Dk

Tk

ek-1(t)
ek(t) ek+1(t)

ga
p 

fu
nc

tio
n,

 e
j

{

E(|xk|) = quantization error

What are dynamics of gap function, ek(t) = x(t)-xk ?
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Dynamics of the Gap Function[11,12]

Since x(t) ∈ Ωk, the gap, ek(t), satisfies the
following differential inequality for t ∈ [sk , ak+1 )
d|ek|
dt

≤ |ėk(t)| ≤ |f(x̂k,K(x̂k))|+ Lk|ek(t)|, ek(sk) < E(|xk|)

This is a linear differential inequality and we can
use the comparison principle to bound the gap |ek(t) |

xk

{x : |x-xk| < ξ(|xk|)}

ξ(|xk|)

Ωk

Lipschitz on Compacts: Lk > 0 such that

|f(x(t),K(x̂k))| ≤ |f(x̂k,K(x̂k))|+ Lk|ek(t)|

for all x(t) = x̂k + ek(t) ∈ Ωk where

Ωk =
{
x ∈ Rn : |x| ≤ |x̂k|+ ξ(|x̂k|)

}

and ξ(s) = sup {r : ξ(s− r), s < r}
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Lower Bound on Inter-sampling Interval[10,11,13]

sk ak sk+1 ak+1sk-1 ak-1

Dk

Tk

ek(sk)

ga
p 

fu
nc
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n,
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j

{

E(|xk|) = quantization error

ek(sk+1)ek(ak)

• kth Gap at kth transmission time is |ek(sk)| < E(|xk|)

• kth Gap at k + 1st transmission time is

|ek(sk+1)| ≤ E(|xk|)eLkTk +
Ψ(x̂k, x̂k−1)

Lk

(
eLkTk − 1

)

where Ψ(x̂,x̂k−1) = |f(x̂k,K(x̂k))|+ 2|f(x̂k,K(x̂k−1)|
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Lower Bound on Inter-sampling Interval

sk ak sk+1 ak+1sk-1 ak-1

Dk

Tk

ek(sk)ga
p 

fu
nc
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n,

 e
j

ek(sk+1)θ(|xk|)
event-trigger

• sk+1, is the first time when |ek(t)| = θ(|x̂k|). We refer to
θ(·) : R → R as the event-triggering function.

• With |ek(sk+1)| = θ(|x̂k|), our earlier constraint becomes

Tk >
1

Lk

(
ln

(
1 +

Lkθ(|x̂k|)
Ψ(x̂k, x̂k−1)

)
− ln

(
1 +

LkE(|xk|)
Ψ(x̂k, x̂k−1)

))
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Upper Bound on Stabilizing Delay[11,13]

sk ak sk+1 ak+1sk-1 ak-1

Dk+1
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{

ek(ak+1)
θ(|xk|)
ξ(|xk|)

event-trigger

stability-threshold

• Using similar techniques, we find

|ek(ak+1)| ≤ θ(|x̂k|)eLkDk+1 +
|f(x̂k,K(x̂k))|

Lk

(
eLkDk+1 − 1

)

• Asymptotic stability requires |ek(ak+1)| ≤ ξ(|x̂k|), so the sta-
bilizing delay satisfies

Dk+1 ≤ 1

Lk

(
ln

(
1 + Lk

ξ(|x̂k|)
|f(x̂k,K(x̂k))|

)
− ln

(
1 + Lk

θ(|x̂k|)
|f(x̂k,K(x̂k))|

))
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Asymptotic Stability[11,12]

Assume that the event-triggering threshold θ satisfies

E(s) ≤ θ(s) ≤ ξ(s)

for any s ∈ R+ and assume the delay Dk < min{T k, Dk} where

T k =
1

Lk

(
ln

(
1 +

Lkθ(|x̂k|)
Ψ(x̂k, x̂k−1)

)
− ln

(
1 +

LkE(|xk|)
Ψ(x̂k, x̂k−1)

))

Dk =
1

Lk−1

(
ln

(
1 + Lk−1

ξ(|x̂k−1|)
|f(x̂k−1,K(x̂k−1))|

)

− ln

(
1 + Lk−1

θ(|x̂k−1|)
|f(x̂k−1,K(x̂k−1))|

))

Then the closed-loop quantized event-triggered system is asymp-
totically stable with an inter-sampling interval Tk which is always
bounded below by T k > 0.

Quantization Error Stability Threshold
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Stabilizing Bit Rate[11,12]

state trajectory

xk

{x : |x− x̂k| = θ(|x̂k|)}

{E(|xk|)
quantization

error

Nk=Number of Bits used to represent 
       sampled state xk

Assuming |x| is the sup-norm, then

Nk = �log2 2n�+ (n− 1)

⌈
log2

⌈
θ(|x̂k−1|)
E(|xk|)

⌉⌉
bits

To guarantee the asymptotic stability of the closed-loop system,
these bits must be delivered within the delay

Dk ≤ Dk ≡ 1

Lk−1

(
ln

(
1 + Lk−1

ξ(|x̂k−1|)
|f(x̂k−1,K(x̂k−1))|

)
− ln

(
1 + Lk−1

θ(|x̂k−1|
|f(x̂k−1,K(x̂k−1))|

))

A bit rate stabilizing this system must therefore be

Rk =
Nk

Dk
> Rk ≡ Lk

ln 2
(A(|x̂k|)(n− 1) +B(|x̂k|))
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Conditions for Zero Bit Rate[11]

In some cases, we can show that the stabilizing bit rate goes
to zero as the system approaches its equilibrium point.

System Equations ẋ1 = x3
1 + 2x3

2 + u

ẋ2 = −x3
1 − x3

2

Switching Condition: |ek(t)| = θ(|x̂k|) = 0.015|x̂k|
u = −2x̂3

1 − x̂3
2

Feedback Control
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Efficiently Attentive Stabilizing Bit Rates[10,12]

A bit rate is efficiently attentive if it is an increasing function 
of state 

It can be very difficult to determine the minimal stabilizing 
bit rate.  In such cases, a reasonable option is to require the
bit rate to be efficiently attentive

Assume that the delay Dk < Dk, and the event-triggering satisfies

E(s) ≤ θ(s) ≤ ξ(s)

Let φc, φu ∈ K such that |f(x,K(x))| ≤ φc(|x|) and |K(x)| ≤ φu(|x|).
If we also know that

lim
s→0

θ(s)

E(s)
< ∞, lim

s→0

φc(s)

θ(s)
< ∞, lim

s→0

φu(s)

θ(s)
< ∞

then there exists a continuous, positive definite, increasing function R(|x̂k|) such
that if the actual bit rate is greater than R, then the system is asymptotically stable.
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Simulation Example[12,18]

System Equations
This example extends prior work to essentially bounded disturbances

Controller
ẋ1 = x3

1 + 2x3
2 + u1 + w1

ẋ2 = −x3
1 − x3

2 + u2 + w2
u1 = −3x̂3

1, u2 = −3x̂3
2

Event Trigger and Quantization Map
θ1(s, w) = 0.075s1.5 + 0.05w

E1(s, w) = 0.025s1.5 + 0.017w
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Predicted bit-rates
are conservative
bound on actual
bit-rates
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Wireless Networked Control Systems[15]

Event-triggering gives rise to sporadic message streams
in wireless networked control systems.

u1 u2 u3

y1 y2 y3
y1 y3

y2

After an impulsive disturbance is applied to middle cart,
one can bound the future inter-sampling times and bit-rate
requirements of all controllers.
Can we use this information to reschedule controller transmission
to maintain both overall physical system performance while
staying within communication network’s capacity limits?
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Safety-Critical Systems

One concern with event-triggered systems is that they are ill
suited for safety-critical systems.
In the presence of disturbances, however, event-triggered 
solutions must be implemented with a  minimum sampling
frequency whose size is determined by the “disturbance”.  
With efficiently attentive systems, event frequency increases
in the presence of impulsive disturbances. 

http://www.nd.edu/~lemmon/projects/NSF-05-1518/heli-movie/
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Future Directions

Event-trigger design is based on existence of ISS controller 
(input disturbances).  This may not always be possible.  
One solution may be to extend framework to iISS controllers[16].
These results provide some guidance on the selection of
controllers, quantizers, and event-triggers.  We still need to
formalize this guidance into a design procedure.

Similarities between dynamic quantization and the quantized 
event-triggers.  When do we achieve the known necessary and
sufficient stabilizing bit rates for linear systems?

Efficiently attentive systems provide a basis for co-design of 
communication/controller in a deterministic setting. Is it possible to
extend these ideas to a stochastic setting?  One possible approach
would involve the use of stochastic ISS concepts[17].  

Relax conservativeness of bounds[19].
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