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Abstract This paper examines event triggered output feedback control where
there are separate links between the sensor-to-controller and controller-to-
actuator. The proposed triggering events only rely on local information so that
the transmissions from the sensor and controller subsystems are not necessarily
synchronized. This represents an advance over recent work in event-triggered
output feedback control where transmission from the controller subsystem
was tightly coupled to the receipt of event-triggered sensor data. The paper
presents an upper bound on the optimal cost attained by the closed-loop sys-
tem. Simulation results demonstrate that transmissions between sensors and
controller subsystems are not tightly synchronized. These results are also con-
sistent with derived upper bounds on overall system cost.

Keywords Weakly coupled transmissions · Event triggering · Output
feedback control

1 Introduction

Event triggering can be seen as a communication protocol where information is
transmitted only if some event occurs. In particular, information is transmitted
when a measure of data ’novelty’ exceeds a specified threshold. In contrast to
more commonly used periodic transmission schemes, event-triggering tends
to generate traffic patterns that are sporadic in nature. Prior experimental
results have demonstrated that event-triggering can use fewer communication
resources than periodic transmission schemes with comparable performance
levels [10,3,9,2,7]. The reason for this more efficient use of communication
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resources is that event-triggering makes use of on-line information in making
transmission decisions. This method, therefore, can adapt its usage of the
communication channel to the importance of the data it must transmit.

Most prior work in the event triggering literature discusses state feedback
control and state estimation. This work has traditionally assumed a single
feedback link in the system. It has only been very recently that researchers
have turned to study event-triggered output feedback control where there are
separate communication channels from sensor-to-controller and controller-to-
actuator. If we design triggering events for both communication channels, an
interesting question to ask is how these two triggering events are coupled with
each other.

Some of the work in event triggered output feedback systems hid this ques-
tion by assuming that only part of the control loop was closed over communica-
tion channel, i.e. either sensor-to-controller link or controller-to-actuator link
is connected directly [4,11,8]. Another work [1] assumed very strong coupling
between the triggering rules of sensor-to-controller and controller-to-actuator
links. They required that the transmission in one link triggered the transmis-
sion in the other link, so the transmissions of the two communication channels
are synchronized.

This synchronization is not necessary. This paper proposes weakly coupled
event-triggers. We attempt to find the optimal event-triggers which minimize
the mean square cost of the system state discounted by the communication cost
in both links. The optimal event-trigger in the sensor-to-controller link which
minimizes the mean square state estimation error discounted by the commu-
nication cost in sensor-to-controller link is given first. With this optimal event
trigger in the sensor-to-controller link, we then derive the optimal event-trigger
in the controller-to-actuator link which minimizes the mean square state esti-
mate discounted by the communication cost in the controller-to-actuator link.
It turns out that the optimal cost of the output feedback control system is
bounded from above by the sum of the optimal costs of the state estimation
problem and the state feedback problem. Because the optimal event-triggers
are very difficult to calculate, quadratic event triggers and upper bounds on
the costs are derived.

This paper is an extended version of our paper [5,6], and is organized as the
following. Section 2 and 3 introduce mathematical preliminaries and problem
setup, respectively. The main results are in section 4, 5 and 6. Section 7 gives
the simulation results to demonstrate our main theorems in section 4, 5 and
6. Conclusion can be found in section 8.

2 Preliminaries

Let Rn be the n dimensional real space, and Z
+ indicate the set including all

non-negative integers.
A sequence {τ l}∞l=0 is forward progressing if for any k ≥ 0, there always

exists an l ∈ Z
+ such that τ l ≥ k.
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Fig. 1 Structure of the event triggered output feedback control systems

3 Problem Statement

A block diagram of the closed loop system is shown in Figure 1. This closed
loop system consists of four components: a plant subsystem, a sensor subsys-
tem, a controller subsystem and an actuator subsystem.

The plant subsystem consists of two parts: a plant and a sensor, satisfying
the following difference equation

x(k) = Ax(k − 1) +Bua(k − 1) + w(k − 1),

y(k) = Cx(k) + v(k),

for k = 1, 2, · · · , where x : Z+ → R
n is the system state, the initial state x(0)

is a Gaussian random variable with mean µ0 and variance Π0, y : Z+ → R
p

is a corrupted output with additive white Gaussian noise. Matrix A, B and C
are in R

n×n, Rn×m and R
p×n, respectively. Besides, (A,B,C) is controllable

and observable. ua(k−1) ∈ R
m is the actual control input applied to the plant

which will be further explained when the actuator subsystem is introduced. w
and v are independent zero mean white Gaussian noise processes with variance
W and V , taking values in R

n and R
p, respectively. The corrupted measure-

ment y, then, is fed into the sensor subsystem which decides when to transmit
information to the controller subsystem.

The sensor subsystem consists of a Kalman filter, a local observer and an
event detector in the sensor subsystem. The Kalman filter generates a filtered
state xKF : Z+ → R

n that minimizes the weighted mean square estimation
error (MSEE), i.e.

xKF (k) = arg min
xKF (k)

E
[

‖x(k)− xKF (k)‖
2
Z | {y(0), y(1), · · · , y(k)}

]
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where Z ≥ 0 is a symmetric positive semi-definite weighting matrix, and
‖θ‖2Z = θTZθ. For the process under study the filter equation is

xKF (k) = AxKF (k−1)+Bua(k−1)+L [y(k)− C(AxKF (k − 1) +Bua(k − 1))] ,

where L = AXCT (CXCT + V )−1, and X satisfies the discrete linear Riccati
equation

AXAT −X −AXCT (CXCT + V )−1CXAT +W = 0.

Let Z = PT
z Pz . The steady state estimation error eKF (k) = x(k)− xKF (k) is

a Gaussian random variable with zero mean and variance

E(eKF e
T
KF ) = Q = (I − LC)X.

Let {τ ls}
∞
l=0 denote a sequence of increasing and forward progressing times

when information is transmitted from the sensor to the controller subsystem.

Let X (k) =
{

xKF (τ
1
s ), xKF (τ

2
s ), · · · , xKF (τ

l(k)
s )

}

denote the filtered state es-

timates that are transmitted to the controller subsystem by step k where
l(k) = max

{

l : τ ls ≤ k
}

. The local observer first generates an a priori estimate

of state x−
RO : Z+ → R

n that minimizes the weighted MSEE based on the in-
formation received up to step k − 1 (i.e. E

[

‖x(k)− x−
RO(k)‖

2
Z | X (k − 1)

]

),
and then generates an a posteriori estimate xRO : Z

+ → R
n that mini-

mizes the weighted MSEE based on the information received up to step k
(i.e. E

[

‖x(k)− xRO(k)‖
2
Z‖X (k)

]

). These estimates take the following form

x−
RO(k) =AxRO(k − 1) +Bua(k) (1)

xRO(k) =

{

x−
RO(k), if e

−
KF,RO(k) ∈ Ss;

xKF (k), otherwise ,
(2)

where e−KF,RO(k) = xKF (k) − x−
RO(k) is the gap between the filtered state

estimate and the a priori remote state estimate, Ss ⊆ R
n, the triggering set

in the sensor subsystem, is a compact set including the origin. x−
RO(0) = µ0.

The event detector in the sensor subsystem monitors the a priori gap
e−KF,RO(k) and compares the gap with the triggering set Ss. If the gap is inside
the triggering set Ss, then no data is transmitted. Otherwise, the filtered state
xKF (k) is sent to the controller subsystem.

The controller subsystem has three components: a remote observer, a con-
troller and an event detector in the controller subsystem. The remote observer
has the same behavior as the local observer. The a posteriori state estimate
xRO(k) is fed into the controller. The controller generates a control input

uc(k) = KxRO(k),

where K is the controller gain.
Let’s define an increasing and forward progressing time sequence {τ jc }

∞
j=1,

where τ jc is the jth time when the control input is sent to the actuator sub-
system from the controller subsystem. The event detector in the controller
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subsystem transmits the current control input uc(k) to the actuator subsys-
tem when [xRO(k) ua(k)]

T lies outside of a compact set Sc which includes the
origin. Therefore, Sc is called the triggering set in the controller subsystem.
Once the current control input is sent to the actuator, an acknowledgement is
transmitted to the sensor subsystem to let it know that the control input has
been updated. When the sensor subsystem receives the acknowledgement, it
uses xRO(k) generated by the local observer to obtain the new control input
to the actuator subsystem.

The actuator subsystem has two parts: a zero order hold and an actuator.
Let ua(k) denote the actual control input applied to the plant. When uc(τ

j
c )

is transmitted, the actuator subsystem updates ua(k) to be uc(τ
j
c ), and holds

this value until the next transmission occurs. ua(k), therefore, takes the form
of

ua(k) = uc(τ
j
c ), ∀k ∈ [τ jc , τ

j+1
c ).

The average cost is defined as

J(Ss, Sc) = lim
N→∞

1

N

N−1
∑

k=0

E (c(x(k), Ss, Sc)) ,

where the cost function

c(x(k), Ss, Sc) = ‖x(k)‖2Z + λs1(e
−
KF,RO(k) /∈ Ss) + λc1

([

xRO(k)
ua(k − 1)

]

/∈ Sc

)

,

λs and λc are the communication prices for transmissions over the sensor-to-
controller link and controller-to-actuator link, respectively. Let ω be a state-
ment, and Ω be a set of statements. 1(·) : Ω → {0, 1} is the characteristic
function defined as

1(ω) =

{

1, if statement ω is true;
0, otherwise.

Our objective is to design the triggering sets Ss and Sc which minimize
the average cost J(Ss, Sc), i.e.

J∗ = min
Ss,Sc

J(Ss, Sc).

4 State estimation cost and control cost

With the problem setup given in the last section, this section shows that the
average cost J can be expressed as the sum of the state estimation cost and
the control cost.

Let eRO(k) = x(k)−xRO(k) be the remote state estimation error. The key
point is that the remote state estimation error eRO(k) is uncorrelated from the
remote state estimate xRO(k). This property allows us to express the average
cost as the sum of the state estimation cost and the control cost.
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Lemma 1 xRO(k) and eRO(k) are uncorrelated with each other.

Proof From the dynamics of the closed system, we can derive that

e−RO(k) = AeRO + w(k − 1)

eRO(k) =

{

e−RO(k), e
−
KF,RO ∈ Ss;

eKF (k), otherwise.

Let τ
l(k)
s be the last sampling time from sensor-to-controller no later than

step k. From the equations above, we can see that eRO(k) is a linear combi-

nation of eKF (τ
l(k)
s ), w(τ

l(k)
s ), w(τ

l(k)
s + 1), · · · , w(k), i.e.

eRO(k) = α0eKF (τ
l(k)
s ) +

k
∑

j=τ
l(k)
s +1

αjw(j),

where αj are some matrices with proper dimensions.
From equation (1) and (2), we can see that xRO(k) is a linear combination

of xKF (τ
ℓ(k)
s ), xKF (τ

ℓ(k)−1
s ), · · · , xKF (τ

1
s ), i.e.

xRO(k) =

l(k)
∑

j=1

βjxKF (τ
j
s ), (3)

where βj are some matrices with proper dimensions.

Since eKF (τ
l(k)
s ), w(τ

l(k)
s + 1), · · · , w(k) is uncorrelated with xKF (τ

l′

s ) for
any l′ ≤ l(k), we can conclude that xRO(k) and eRO(k) are uncorrelated with
each other. �

Note that if the system is nonlinear or the noise processes are not Gaussian,
then the remote state estimation error and the estimate may be correlated.

Based on the uncorrelation between the remote state estimation error and
the remote state estimate, it is easy to show that the average cost is the sum
of state estimation cost and the control cost.

Theorem 1 The average cost

J(Ss, Sc) = Js(Ss, {eRO(k)}
∞
k=0) + Jc(Sc, {xRO(k)}

∞
k=0),

where

Js(Ss, {eRO(k)}
∞
k=0) = lim

M→∞

1

M

M−1
∑

k=0

E

[

‖eRO(k)‖
2
Z + λs1(e

−
KF,RO(k) /∈ Ss)

]

,

Jc(Sc, {xRO(k)}
∞
k=0) = lim

M→∞

1

M

M−1
∑

k=0

E

[

‖xRO(k)‖
2
Z + λc1

([

xRO(k)
ua(k)

]

/∈ Sc

)]

.
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Proof According to Lemma 1, the average cost J(Ss, Sc) is rewritten as

J(Ss, Sc) = lim
M→∞

1

M

M−1
∑

k=0

E

(

‖eRO(k)‖
2
Z + λs1(e

−
KF,RO(k))

+‖xRO(k)‖
2
Z + λc1

([

xRO(k)
ua(k − 1)

]

/∈ Sc

))

=Js(Ss, {eRO(k)}
∞
k=0) + Jc(Sc, {xRO(k)}

∞
k=0).

�

Js(Ss, {eRO(k)}
∞
k=0) relies on the remote state estimation error and the

communication price between sensor and controller, and hence is called the
state estimation cost. Jc(Sc, {xRO(k)}

∞
k=0) relies on the remote state estimate

and the communication price between controller and actuator, and hence is
called the control cost.

Remark 1 Both the state estimation cost and the control cost depend on the
triggering set Ss in the sensor subsystem. It is easy to see that the state esti-
mation cost Js relies on Ss. The control cost Jc also relies on Ss, because Jc
must be computed with respect to the probability distribution of the remote
state estimate, xRO(k). From equation (2), we can see that the distribution of
xRO(k) is a function of Ss, the triggering set in the sensor subsystem. There-
fore, the control cost Jc(Sc, {xRO(k)}

∞
k=0) relies on Ss, and hence is coupled

with Js(Ss, {eRO(k)}
∞
k=0). To emphasize the dependence of the state estima-

tion cost and control cost on the triggering set Ss in the sensor subsystem ,
we rewrite the state estimation cost and the control cost as

Js(Ss) = Js(Ss, {eRO(k)}
∞
k=0),

Jc(Sc, Ss) = Jc(Sc, {xRO(k)}
∞
k=0),

respectively.

Let S†
s be the optimal sensor triggering set that minimizes the state esti-

mation cost Js, and the corresponding optimal state estimation cost is J†
s . Let

S†
c be the controller’s event-triggering strategy that minimizes the controller

cost Jc assuming the sensor uses the event-trigger S†
s , and the corresponding

controller’s cost becomes J†
c (S

†
s). Since Js and Jc are coupled, we can see that

the minimum cost J∗ is bounded above by

J∗ ≤ J(S†
s , S

†
c ) = J†

s + J†
c (S

†
s). (4)

Note that S†
s and S†

c may not be the optimal triggering sets that minimize
the overall cost J . To emphasize this fact, we call S†

s and S†
c the suboptimal

triggering set in the sensor subsystem and the controller subsystem, respec-
tively. The next two sections present methods to derive the suboptimal and
quadratic triggering sets in the sensor subsystem and the controller subsystem,
respectively.
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5 The suboptimal and quadratic triggering sets in the sensor

subsystem

This section first provides the suboptimal triggering set S†
s . Determining S†

s

has high complexity both in terms of computation and space (memory). We
therefore present a Quadratic triggering set, Ss, that is an approximation
of the sub-optimal trigger, S†

s . The cost obtained by this quadratic trigger
is an upper bound on the optimal state estimation cost, J†

s . This quadratic
triggering set is more tractable in computation and space.

Before talking about the suboptimal triggering set in sensor subsystem,
let us first analyze the remote state estimation error eRO. Let eKF,RO(k) =
xKF (k)− xRO be the a posteriori gap between the filtered state estimate and
the remote state estimate. We notice that

eRO(k) = eKF (k) + eKF,RO(k), (5)

and the filtered state error eKF (k) is uncorrelated with the gap between the
filtered state estimate and the remote state estimate eKF,RO(k). This property
is stated and proved in the following lemma.

Lemma 2 The filtered state error, eKF (k), and the gap between filtered state
and the remote state estimate, eKF,RO(k), are uncorrelated.

Proof Let τ
l(k)
s be the last sampling time from sensor-to-controller no later

than step k. From equation (3), we have

eKF,RO(k) = xKF (k)−

l(k)
∑

j=1

βjxKF (τ
j
s ), (6)

where βj are some matrices with proper dimensions.

Since eKF (k) is uncorrelated with xKF (k) and xKF (τ
l′

s ) for any l′ ≤ l(k),
from equation (6), we conclude that eKF (k) is uncorrelated with eKF,RO(k).
�

From equation (5) and Lemma 2, the state estimation cost Js(Ss) takes
another form which is stated in the next lemma.

Lemma 3

Js(Ss) = tr(QZ) + Ĵs(Ss), (7)

where

Ĵs(Ss) = lim
M→∞

1

M

M−1
∑

k=0

E

[

cs(e
−
KF,RO(k), Ss)

]

,

and

cs(e
−
KF,RO(k), Ss) = ‖eKF,RO(k)‖

2
Z + λs1(e

−
KF,RO(k) /∈ Ss)

= ‖e−KF,RO(k)‖
2
Z1(e

−
KF,RO(k) ∈ Ss) + λs1(e

−
KF,RO(k) /∈ Ss).
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It is easy to see that the suboptimal triggering set S†
s that minimizes Ĵs(Ss)

also minimizes the state estimation cost Js(Ss).
Now, we are ready to analyze the suboptimal triggering set in sensor sub-

system S†
s .

Theorem 2 If there exists a piece-wise continuous and bounded function hs :
R

n → R and a finite number J ′
s such that

J ′
s + hs(e

−
KF,RO(k)) = Gs

(

e−KF,RO(k)
)

(8)

where

Gs (θ) =min
Ss

{

E(hs(e
−
KF,RO(k + 1))|e−KF,RO(k) = θ) + cs(θ, Ss)

}

,

then the optimal average cost of remote state estimation is

J†
s = J ′

s + tr(QZ), (9)

and the suboptimal triggering set in sensor subsystem

S†
s =

{

θ : E(hs(e
−
KF,RO(k + 1))|eKF,RO(k) = θ) + ‖θ‖2Z

≤ λs + E(hs(e
−
KF,RO(k + 1))|eKF,RO(k) = 0)

}

. (10)

Proof From equation (8), we have

J ′
s + hs(e

−
KF,RO(k)) ≤ E(hs(e

−
KF,RO(k + 1))|e−KF,RO(k)) + cs(e

−
KF,RO(k), Ss).

Taking expectation of both sides, the inequality above becomes

J ′
s + E(hs(e

−
KF,RO(k))) ≤ E(hs(e

−
KF,RO(k + 1))) + E(cs(e

−
KF,RO(k), Ss)).

Adding the inequalities from step 0 to N − 1 and taking the limit of N as it
goes to infinity, we have

J ′
s ≤ Ĵs(Ss).

From Lemma 3, we have equation (9).
The equality holds when Ss = S†

s . �

It is very difficult to find a constant J ′
s and a function hs satisfying equation

(8), and hence the suboptimal triggering set described in equation (10) is hard
to find. Because of the computation complexity associated with computing
the suboptimal triggering set S†

s , we derive a quadratic sensor triggering set
that is an approximation of the sub-optimal triggering set. Moreover, an upper
bound on the cost achieved by this quadratic sensor triggering set is derived.

To find the quadratic triggering set in the sensor subsystem, we first give
the following lemma which provides a way to search for the quadratic triggering
set in the sensor subsystem and bounding its cost.
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Lemma 4 Given the triggering set Ss, if there exists a piece-wise continuous
and bounded function fs : Rn → R and a finite constant Js such that for any
k ∈ Z

+,

E

(

fs(e
−
KF,RO(k + 1))|e−KF,RO(k) = θ, Ss

)

+ cs (θ, Ss) ≤ Js + f(θ) (11)

then

Ĵs(Ss) ≤ Js (12)

Proof Using the same technique as shown in the proof of Lemma 2, we have
Lemma 4. �

Based on Lemma 4, we derive a triggering set which is in quadratic form.
Moreover, the upper bound on this quadratic triggering set is also given.

Theorem 3 Given a quadratic triggering set

Ss = {e−KF,RO(k) : ‖e
−
KF,RO(k)‖

2
Hs

≤ λs − ζs}, (13)

where the n× n matrix Hs ≥ 0 satisfies the Lyapunov inequality

ATHsA

1 + δ2s
−Hs +

Z

1 + δ2s
≤ 0, (14)

for some δ2s ≥ 0, and ζs =
δ2
s
λs+tr(HsR)

1+δ2
s

, where

R = L(CAQATCT + CWCT + V )LT ,

then Js(Ss) is bounded from above by

Js(Ss) ≤ min{tr(HsR) + ζs, λs}+ tr(QZ) (15)

Proof To find an upper bound on the cost of triggering set defined in equation
(13), we need to find a bounded function hs and a finite constant Js such that
equation (11) is satisfied. With Lemma 4 and 3, we can derive that Js(Ss) ≤
Js + tr(QZ).

Now, let’s define fs as

fs(e
−
KF,RO(k)) = min{‖e−KF,RO(k)‖

2
Hs

+ ζs, λs},

and Js as

Js = E(fk(e
−
KF,RO(k + 1))|eKF,RO(k) = 0). (16)
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In the case of ‖e−KF,RO(k)‖
2
Hs

≤ λs − ζs, no transmission occurs at step k,
so the left hand side of equation (11) satisfies the following equations.

E

(

fs(e
−
KF,RO(k + 1))|e−KF,RO(k), Ss

)

+ cs

(

e−KF,RO, Ss

)

= E

(

fs(e
−
KF,RO(k + 1))|eKF,RO(k) = e−KF,RO(k)

)

+ ‖e−KF,RO‖
2
Z

≤ ‖e−KF,RO‖
2
ATHsA

+ tr(HsR) + ζs + ‖e−KF,RO‖
2
Z

≤ ‖e−KF,RO(k)‖
2
Hs

+ ‖e−KF,RO(k)‖
2
ATHsA−Hs+Z + ζs + tr(HsR)

≤ ‖e−KF,RO(k)‖
2
Hs

+ ζs + δ2s (λs − ζs) + tr(HsR)

= fs(e
−
KF,RO(k)) + ζs

≤ fk(e
−
KF,RO(k)) + Js.

The second step above makes use of the fact thatE(min(f, g)) ≤ min(E(f), E(g)),
the fourth step is derived from equation (14) and the fact that ‖e−KF,RO(k)‖

2
Hs

≤
λs − ζs, and the fifth step is derived from how we define the ζs.

In the case of ‖e−KF,RO(k)‖
2
Hs

> λs−ζs, a transmission occurs, and the left
hand side of inequality (11) satisfies

E

(

fs(e
−
KF,RO(k + 1))|e−KF,RO(k), Ss

)

+ cs

(

e−KF,RO, Ss

)

= E

(

fs(e
−
KF,RO(k + 1))|eKF,RO(k) = 0

)

+ λs

= Js + fs(e
−
KF,RO(k))

Since inequality (11) holds in any condition, from Lemma 4, we know that
Ĵs(Ss) is bounded from above by Js defined in (16), i.e.

Ĵs(Ss) ≤ Js.

From the fact that E(min(f, g)) ≤ min(E(f), E(g)), it’s easy to show that

Js ≤ min{tr(HsR) + ζs, λs}.

From Lemma 3, we have

Js(Ss) = Ĵs(Ss) + tr(QZ) ≤ min{tr(HsR) + ζs, λs}+ tr(QZ).

�

6 The suboptimal and quadratic triggering sets in the controller

subsystem

This section first studies the suboptimal triggering set for the controller sub-
system. As was found in the preceding subsection, direct computation of the
suboptimal triggering set is complex. We therefore introduce a quadratic event-
trigger and bound the performance obtained using this trigger. The theorem
below provides the suboptimal triggering set S†

c and the optimal cost J†
c .
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Theorem 4 Define Cc as

Cc (xRO(k), ua(k − 1), Sc) = ‖xRO(k)‖
2
Z + λc1

([

xRO(k)
ua(k)

]

/∈ Sc

)

.

Given S†
s , if there exists a piece-wise continuous and bounded function hc :

R
n×R

m → R, and a bounded function J ′
c : S

n → R (Sn indicates the collection
of all subsets of Rn) such that

J ′
c(S

†
s) + hc(xRO(k), ua(k − 1)) = min

Sc

{Cc(xRO(k), ua(k − 1), Sc)

+E (hc(xRO(k + 1), ua(k))|xRO(k), ua(k − 1), Sc)} , (17)

then

J†
c (S

†
s) = J ′

c(S
†
s), (18)

and the suboptimal triggering set in the controller subsystem is

S†
c =

{[

θ
η

]

: E

[

hc

([

xRO(k + 1)
ua(k)

])
∣

∣

∣

∣

[

xRO(k)
ua(k − 1)

]

=

[

θ
η

]]

≤

E

[

hc

([

xRO(k + 1)
ua(k)

])∣

∣

∣

∣

[

xRO(k)
ua(k − 1)

]

=

[

θ
Kθ

]]

+ λc

}

Proof With the same technique as shown in the proof of Theorem 2, Theorem
4 is proven. �

S†
c can only be computed numerically to obtain a concrete representation

for the controller’s event-trigger, S†
c . Due to its concrete representation, the

event-trigger would require a great deal of memory to store. We therefore
introduce a quadratic triggering set for the controller subsystem which is an
approximation of the suboptimal trigging set..

Before introducing the quadratic triggering set for the controller subsystem
and its upper bound, a lemma providing the basis for finding an upper bound
on the quadratic triggering set is given. This lemma is similar to Lemma 4, so
the detailed proof is not given here.

Lemma 5 Given any Sc, if there exists a piece-wise continuous function fc :

R
n × R

m → R bounded from below and a finite constant J
′

c such that

Cc (xRO(k), ua(k − 1), Sc) + E [fc (xRO(k + 1), ua(k)) |xRO(k), ua(k − 1) , Sc]

≤ J
′

c + fc (xRO(k), ua(k − 1)) (19)

then Jc(Sc) ≤ J
′

c.

The quadratic triggering set in the controller subsystem and its upper
bound are given in the following theorem.
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Theorem 5 Let Ss in equation (13) be the triggering set in sensor subsystem.

Au =

[

A B
0 I

]

, Ac =

[

A+BK 0
K 0

]

, Za =

[

Z 0
0 0

]

, and Hs = PT
HsPHs. Given a

quadratic triggering set of controller subsystem

Sc =

{

[

xRO(k)
ua(k − 1)

]

:

∥

∥

∥

∥

[

xRO(k)
ua(k − 1)

]
∥

∥

∥

∥

2

Hc

+ ζc ≤ ‖xRO(k)‖
2
Z + λc

}

, (20)

where Hc ≥ Za and controller gain K satisfy

AT
uHcAu + (1 + δ2c )(Za −Hc) ≤0, (21)

AT
c HcAc + (1− ρ2c)(Za −Hc) ≤0, (22)

for some constant δ2c ≥ 0 and 0 ≤ ρ2c ≤ 1, and

ζc =
δ2c + ρ2c − 1

δ2c + ρ2c
λc, (23)

the optimal controller cost is bounded from above by

Jc(Ss, Sc) ≤ Jc(Sc, Ss) =
δ2c

δ2c + ρ2c
λc + σ((PT

Hs)
−1Hc,luP

−1
Hs )(λs − ζs), (24)

where σ(·) indicates the greatest singular value, and Hc,lu is the left upper n×n
sub-matrix of Hc.

Proof According to Lemma 5, as long as we can find a function fc bounded

from below such that the inequality (19) is satisfied with J
′

c = Jc, Theorem 5
is true.

Let’s define fc as

fc (xRO(k), ua(k − 1)) =

∥

∥

∥

∥

[

xRO(k)
ua(k − 1)

]
∥

∥

∥

∥

2

Hc

+ ζc.

First, we consider the case when

∥

∥

∥

∥

[

xRO(k)
ua(k − 1)

]
∥

∥

∥

∥

2

Hc

+ ζc ≤ ‖xRO(k)‖
2
Z +λc.

In this case, the controller subsystem doesn’t transmit. The left hand side of
equation (19) satisfies

Cc (xRO(k), ua(k − 1), Sc) + E [fc (xRO(k + 1), ua(k)) |xRO(k), ua(k − 1) , Sc]

≤

[

xRO(k)
ua(k − 1)

]T

AT
uHcAu

[

xRO(k)
ua(k − 1)

]

+ σ((PT
Hs)

−1Hc,luP
−1
Hs )(λs − ζs)

+ ζc +

[

xRO(k)
ua(k − 1)

]T

Za

[

xRO(k)
ua(k − 1)

]

≤ Jc + f

([

xRO(k)
ua(k − 1)

])
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The first inequality is from equation (13), and the second inequality is from
equation (21) and (23).

The second case is when

∥

∥

∥

∥

[

xRO(k)
ua(k − 1)

]∥

∥

∥

∥

2

Hc

+ ζc > ‖xRO(k)‖
2
Z +λc. In this

case, the controller subsystem transmits information. So the left hand side of
equation (19) satisfies

Cc (xRO(k), ua(k − 1), Sc) + E [fc (xRO(k + 1), ua(k)) |xRO(k), ua(k − 1) , Sc]

≤

[

xRO(k)
ua(k − 1)

]T

AT
c HcAc

[

xRO(k)
ua(k − 1)

]

+ σ((PT
Hs)

−1Hc,luP
−1
Hs )(λs − ζs)

+ ζc +

[

xRO(k)
ua(k − 1)

]T

Za

[

xRO(k)
ua(k − 1)

]

+ λc

≤ Jc + f

([

xRO(k)
ua(k − 1)

])

.

The first inequality is from equation (13), and the second inequality is from
equation (22) and (23).

Since in both cases, equation (19) holds, we conclude that the control cost
of the quadratic triggering set Jc(Sc, Ss) is bounded from above by Jc(Sc, Ss).
�

From the results in equation (4), Theorem 2 and 4, we can give the subop-
timal weakly coupled triggering sets in sensor and controller subsystems, and
an upper bound on the optimal cost.

Theorem 6 The suboptimal triggering set in sensor subsystem S†
s defined in

Theorem 2 minimizes Js(Ss), and the suboptimal triggering set in controller
subsystem S†

c defined in Theorem 4 minimizes Jc(Sc, S
†
s). The optimal cost of

the closed loop system J∗ is bounded from above by J† = J†
s + J†

c (S
†
s), where

J†
s and J†

c (S
†
s) are described in equation (9) and (18), respectively.

From the analysis following Theorem 2 and 4, we know that the suboptimal
triggering set S†

s and S†
c are hard to compute and store. So quadratic triggering

sets and an upper bound on the cost of closed loop system triggered by these
triggering sets are derived, which are computationally effective and easy to
store. From the results in Theorem 1, 3 and 5, we have the following theorem.

Theorem 7 Given the triggering set in sensor subsystem Ss defined in equa-
tion (13) and the triggering set in controller subsystem Sc defined in equation
(20), the average cost J(Ss, Sc) given by the two weakly coupled triggering sets
is bounded from above by J(Ss, Sc) = Js(Ss) + Jc(Sc, Ss), where Js(Ss) and
Jc(Sc, Ss) are defined in equation (15) and (24), respectively.
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7 Simulation Results

In this section, an example is used to demonstrate Theorem 7. We first cal-
culate the quadratic triggering sets Ss and Sc according to equation (13) and
(20), and search for the controller gain K such that inequality (22) is satis-
fied. The system, then, is run with the calculated controller gain K, and the
transmission is triggered with the computed triggering sets. Next, the average
cost given by simulation is compared with the upper bound given in Theorem
7 to demonstrate Theorem 7. Finally, we show the number of transmission
times in sensor subsystem, the number of transmission times in controller sub-
system, and the number of times when both sensor and controller transmit
(concurrent transmission times) to illustrate that transmissions in the sensor
subsystem don’t necessarily trigger transmissions in the controller subsystem,
or vice versa.

Let’s consider the system with A to be

[

0.4 0
0 1.01

]

, B to be

[

1
1

]

and C

to be
[

0.1 1
]

. The variances of the system noises are W =

[

0.2 0.1
0.1 0.2

]

, and

V = 0.3. The weight matrix Z is chosen to be an identity matrix.
Given δ2s = 1.5, λs = 3, δ2c = 1.02 and ρc = 0.3, we can obtain the triggering

set in sensor subsystem Ss as

Ss =

{

e−KF,RO : e−T
KF,RO

[

2.5641 0
0 4.0543

]

e−KF,RO ≤ 0.8414

}

,

the triggering set in controller subsystem Sc as

Sc =







[

xRO(k)
ua(k − 1)

]

:

[

xRO(k)
ua(k − 1)

]T





1.3315 −0.2836 −0.3512
−0.2836 3.6377 2.6808
−0.3512 2.6808 13.7606





[

xRO(k)
ua(k − 1)

]

≤ 0.9008λc} ,

and the controller gain K = [−0.1967 − 0.3133]. The controller gain K must
be chosen such that equation (22) is satisfied. The closed loop system is run
for 3000 steps with λc varying from 0 to 8.

Figure 7 shows that the average cost given by simulation (J) is always
bounded from above by the upper bound given by Theorem 7 (Jup). The x-
axis of this plot indicates the communication price in controller subsystem λc,
and the y-axis is the average cost. We can see that for any λc, the average cost
J (stars) is always bounded from above by the upper bound given by Theorem
7 (crosses), which is consistent with Theorem 7.

Figure 2 shows that transmissions in the sensor subsystem don’t always
trigger the transmissions in the controller subsystem, or vice versa. The x-axis
of this plot is the communication price λc in the controller subsystem, and the
y-axis indicates the number of transmissions. We can see that the number of
concurrent transmissions(circles) is always less or equal to both the numbers
of transmission times in sensor and controller subsystems, which indicates that
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the transmission in sensor subsystem doesn’t always trigger transmissions in
the controller subsystem, or vice versa.

8 Conclusion

This paper shows how to weaken coupling between sensor events and controller
events in event triggered output feedback system. By ’weakly coupled’, we
mean that the triggering events in both sensor and controller only use local
information to decide when to transmit data, and the transmission in one link
doesn’t necessarily trigger the transmission in the other link. These results
extend earlier work in event triggered output feedback control [1] by removing
the need for strong coupling. We also show that with the triggering events
and controller we designed, the cost of the closed loop system is bounded from
above, and an explicit upper bound on the cost is obtained. Our simulation
results demonstrate the proposed weakly coupled triggering events and the
upper bound on the cost of the closed loop system.
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