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Abstract

Wireless networked control systems have limited bandwidth, which means that each transmitted

packet has a finite number of bits, and always arrives at its destination with non-negligible delay.

This paper derives a bound on an event-triggered system’s stabilizing ”instantaneous” bit-rate when the

sampled signal is dynamically quantized. This instantaneous bit-rate is a time-varying function whose

average value can be made small by requiring the instantaneous bit-rate get smaller as the system

state approaches the origin. We refer to this property as efficient attentiveness. This paper provides

sufficient conditions guaranteeing the instantaneous bit-rate’s efficient attentiveness. Our numerical

example illustrates the results, and indicates a tradeoff between inter-sampling interval and instantaneous

bit-rate.

Index Terms

event-triggering, efficient attentiveness, dynamic quantization, stabilizing bit-rate.

I. INTRODUCTION

Wireless sensor-actuator networks are networked control systems whose actuators/controllers

and sensors communicate over a wireless communication network. These communication net-

works are digital networks with finite capacity. This means that transmitted packets consist of

a finite number of bits and always arrive at their destination with a non-negligible delay. The
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resulting quantization error and message latency has a negative impact on overall closed-loop

system performance [1] and hence must be considered when designing any wireless sensor-

actuator network.

Event triggering is a recent approach to sampled-data control in which sampled feedback

measurements are transported over the feedback channel in a sporadic manner. In event-triggered

systems, the system state is sampled and transmitted back to the actuator or controller when the

difference between the current state and the last transmitted state exceeds a specified threshold. It

has been experimentally demonstrated [2]–[8] that event-triggered system can greatly reduce the

average rate at which the control system accesses the feedback channel over periodically-sampled

systems with comparable performance levels.

While event-triggered systems have the potential to reduce the inter-sampling rate, they can

also increase that rate if improperly designed. The following example illustrates this issue.

Consider a cubic system

ẋ = x3 + u; x(0) = x0

where u = −3x̂3
k for t ∈ [s,sk+1) where sk is the kth consecutive sampling instant and x̂k =

x(sk). Let us now consider two different event-triggers. The trigger E1 generates a sampling

instant sk+1 when |x(t)− x̂k| = 0.5|x(t)| and the second trigger E2 generates a sampling instant

when |x(t)−x̂k| = 0.5|x4(t)|. For both event-triggers we find the system is locally asymptotically

stable for all |x0| ≤ 1. But if one examines the inter-sampling intervals for these systems in

Figure 1, it should be apparent that the inter-sampling intervals generated by trigger E1 get

longer as the system approaches its equilibrium. On the other hand, the trigger E2 results in a

sequence of inter-sampling times that get shorter as the system approaches the origin.

Since the above example focuses on regulation about the origin, one would clearly want the

inter-sampling interval to be longest when the system is close to the origin. The ”interesting”

feedback information that mandates use of the feedback channel should occur when the system

is perturbed away from the origin, not when the system is resting in the neighborhood of the

origin. This ”desired” behavior is exhibited by event-trigger E1, but as shown in Figure 1, the

opposite trend is exhibited by event-trigger E2. Event trigger E1 is said to be efficiently attentive

because the control system is more efficient in its use of the channel when the system state is

close to the origin.

April 5, 2013 DRAFT



3

0 1 2 3 4 5
0

0.5

1

1.5

2
in

te
r−

sa
m

pl
in

g 
in

te
rv

al
:s

time:s

 

 
E

1

0 1 2 3 4 5
0.04

0.06

0.08

0.1

0.12

in
te

r−
sa

m
pl

in
g 

in
te

rv
al

:s

time:s

 

 
E

2

Fig. 1. Inter-sampling intervals for two different types of event-triggers

One reason why there has been such great interest in the inter-sampling interval is that it

can be taken as a measure of channel usage. Much of this prior work, however, [4], [9]–[11]

has ignored delays or quantization errors. For this reason, results bounding the inter-sampling

interval only provide a partial picture of an event-triggered system’s network usage. Recent

work has begun to consider constant bounded delays [12]–[15], but this paper shows that delays

preserving input-to-state stability (ISS) are state-dependent, thereby suggesting that the ”bit-

rates” required to support event-triggered systems are time-varying. If, in fact, one can assure

that these ”instantaneous” bit-rates are efficiently attentive, then one reduces the average bit rate

over systems using constant bounded delays. The main results in this paper establish sufficient

conditions for an event-triggered system’s instantaneous bit-rate to be efficiently attentive. We

then provide simulation examples to illustrate the value of these results. In the examples, we also

see a tradeoff between the inter-sampling interval and the instantaneous bit-rate. This tradeoff

indicates that we should not only focus on lengthening the inter-sampling interval, but also need

to guarantee the channel bandwidth satisfies the required instantaneous bit-rate.

This paper is an extended version of our prior work in [16]–[18], and is organized as follows.

Section II and III gives the mathematical preliminaries and problem statement. Section IV

discusses how to design the triggering event and the quantization map in event-triggered systems.

Section V provides the acceptable delay preserving ISS, and Section VI presents sufficient

conditions for efficiently attentive bit-rates. Numerical example and conclusion are given in

Section VII and VIII, respectively.
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II. NOTATION AND INPUT-TO-STATE STABILITY

A. Notation

Throughout this paper, the n dimensional real space will be denoted as Rn and the set of

non-negative reals will be denoted as R+. The infinity (supremum) norm of a vector x ∈ Rn

will be denoted as ∥x∥. The L-infinity norm of a function x(·) : R+ → Rn is defined as

∥x∥L∞ = ess supt≥0 ∥x(t)∥. This function is said to be essentially bounded if ∥x∥L∞ < ∞ and

the linear space of all essentially bounded real-valued functions will be denoted as L∞. A subset

Ω ⊂ Rn is said to be compact if it is closed and bounded.

A function α(·) : R+ → R+ is class K if it is continuous, strictly increasing and α(0) = 0. It

is said to be of K∞, if α(s) → ∞ as s → ∞. A function β : R+ × R+ → R+ is class KL if

β(·, t) is class K for each fixed t ≥ 0 and β(r, t) decreases to 0 as t → ∞ for each fixed r ≥ 0.

Lemma II.1. Let g : [0, σ] → R+ be a continuous, positive definite function satisfying lims→0 <

∞. There must exist continuous, positive definite, increasing functions h and h defined on [0, σ]

such that

h(s) ≤ g(s) ≤ h(s), ∀s ∈ [0, σ],

lim
s→0

g(s) = lim
s→0

h(s) = lim
s→0

h(s).

Proof: See Lemma 4.3 in [19].

Let Ω be a compact subset of Rn. We say f(·) : Ω → Rn is locally Lipschitz on Ω if for any

x, y ∈ Ω, there exists a constant L ≥ 0 such that

∥f(x)− f(y)∥ ≤ L∥x− y∥

B. Input-to-state stability

Consider a system whose state trajectory x(·) : R+ → Rn satisfies the initial value problem,

ẋ(t) = f(x(t), w(t)), x(0) = x0 (1)

where w(·) : [0,∞) → Rm is an essentially bounded signal. Let x = 0 be an equilibrium point

for (1) with w(t) ≡ 0, and Υ ⊂ Rn be a domain containing x = 0. Let V : Υ → R be a
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Fig. 2. Event-triggered control system with quantization

continuously differentiable function such that

α(∥x∥) ≤ V ≤ α(∥x∥), (2)

∂V

∂x
f(x,w) ≤ −α(∥x∥) + γ(∥w∥), (3)

for all (x,w) ∈ Υ×Rm, where α, α are class K∞ functions, and α, γ are class K functions, then

the system (1) is input-to-state stable (ISS). The function V is called ISS-Lyapunov function.

III. PROBLEM STATEMENT

The system under study is a wireless networked event-triggered control system with quanti-

zation shown in Figure 2.

Consider the following plant whose state satisfies the following differential equation.

ẋ(t) = f(x(t), u(t), w(t)), x(0) = x0 (4)

where f : Rn × Rm × Rq → Rn is locally Lipschitz in all three variables with f(0, 0, 0) = 0.

The disturbance w(·) : R+ → Rq is an L∞ disturbance with ∥w∥L∞ = w̄. The control signal

u(·) : R+ → Rm is generated by the controller in figure 2.

The system state, x(t), at time t is measured by the event detector which triggers the trans-

mission once upon the violation of an event E. Formally, event E(·) : Rn → {true, false} maps

the current state onto either ”TRUE” or ”FALSE”. The kth transmission time sk satisfies

sk = min{t : E(x(t)) is false and t > sk−1}, (5)
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and the inter-sampling interval τk is defined as τk = sk+1 − sk. Let xk indicate the system state

x(sk) at sk. Once the event detector decides to transmit, the quantizer converts this continuous

valued state xk into Nk bit representation x̂k with quantization error to be ∆k = |x̂k − x(sk)|.

Notice that both Nk and ∆k can be time varying and state dependent. The quantized state x̂k is,

then, transmitted to the controller with delay dk. The instantaneous bit-rate rk is, then, defined

as rk =
Nk

dk
, and the arrival time ak of the kth transmission, then, satisfies ak = sk + dk. We say

that the transmission and arrival sequences are admissible if sk < ak ≤ sk+1 for k = 0, 1, . . . ,∞.

Upon the arrival of the kth quantized state, x̂k, at the controller, a control input is computed

and then held until the next quantized state is received. In other words, the control signal takes

the form

u(t) = uk = K(x̂k) (6)

for t ∈ [ak, ak+1). The function K(·) : Rn → Rm is locally Lipschitz, and satisfies K(0) = 0.

As has been done in [4], this paper assumes that K is chosen so the system

ẋ(t) = f(x(t), K(x(t) + e(t)), w(t)), (7)

is locally input-to-state stable with respect to the signals e, w ∈ L∞. This means, of course, that

there exists a function V (·) : Υ → R+ satisfying

α(∥x∥) ≤ V ≤ α(∥x∥) (8)

∂V

∂x
f(x,w) ≤ −α(∥x∥) + γ1(∥e∥) + γ2(∥w∥), (9)

for all x ∈ Υ where Υ ⊆ Rn is a domain containing the origin, α, α, α, γ1 and γ2 are class K

functions.

Our objective is to design the event detector and the quantizer such that the system defined

in (4), (5) and (6) is ISS and efficiently attentive.

Definition III.1. The system defined in (4), (5) and (6) is said to be efficiently attentive if

there exists a continuous, positive definite function h(s1, s2) satisfying lims→0 h(s1, s2) > 0 and

decreasing with respect to both variables, and a continuous, positive definite function h̄(s1, s2)

satisfying lims→0 h̄(s1, s2) < ∞ and increasing with respect to both variables such that

• the inter-sampling interval τk is bounded from below by h(∥x̂k−1∥, ∥x̂k∥), i.e.

τk ≥ h(∥x̂k−1∥, ∥x̂k∥). (10)
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• the instantaneous bit-rate rk is bounded from above by h̄(∥x̂k−1∥, ∥x̂k∥), i.e.

rk ≤ h̄(∥x̂k−1∥, ∥x̂k∥). (11)

Remark III.2. The bounds on τk and rk depend on both x̂k−1 and x̂k, because x̂k is transmitted

with some delay, and both x̂k−1 and x̂k are used to produce control input and hence influence

the system dynamic during intervals [sk, ak) and [ak, sk+1], respectively.

Remark III.3. The requirement (10) on τk indicates how often the event-triggered control system

uses communication resources. Once requirement (10) is satisfied, the event-triggered control

system will use the communication less frequently as the system state get closer to the origin.

Remark III.4. The requirement (11) on rk indicates how much communication resources (i.e.

bandwidth) is used by the event-triggered control system in each transmission. Equation (11)

requires the event-triggered control system uses fewer communication resources as the system

state gets closer to the origin.

To guarantee ISS and efficient attentiveness, we first provide the event detector and quantizer

guaranteeing ISS assuming there is no delay, then study the acceptable delay based on the

designed event detector and quantizer, and finally give the sufficient condition of efficient

attentiveness.

IV. EVENT DETECTOR AND QUANTIZER GUARANTEEING ISS WITHOUT DELAY.

Let us first look at the dynamic behavior of the closed loop system. Let ek(t) = x(t)− x̂k be

the gap between the current state and the kth quantized state. From equation (8) and (9), it is

easy to get the following lemma.

Lemma IV.1. Given the event-triggered system in (4-5) whose controller (6) satisfies is locally

ISS and satisfies (8-9). If for all t ∈ [ak, ak+1) and all k = 0, 1, · · · ,∞,

∥ek(t)∥ ≤ ξ(∥x(t)∥, w̄) = γ−1
1 (cα(∥x(t)∥) + γ3(w̄)), (12)

where c ∈ (0, 1) and γ3 is a K function, then the system is locally ISS.

Proof: Apply equation (12) into equation (9), we have

∂V

∂x
f(x,w) ≤ −(1− c)α(∥x∥) + γ2(w̄) + γ3(w̄),∀t ≥ 0.
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Since c ∈ (0, 1) and γ2(w̄) + γ3(w̄) is a class K function of w̄, the system is ISS.

Suppose that ξ(s, w̄) in (12) is locally Lipschitz for all s ∈ Υ with the Lipschitz constant Lξ.

Let

ξ(s, w̄) =
1

Lξ + 1
ξ(s, w̄). (13)

It can be shown that

Corollary IV.2. Given the event-triggered system in (4-5) whose controller (6) satisfies is locally

ISS and satisfies (8-9). If ∥ek(t)∥ ≤ ξ
k
= ξ(∥x̂k∥, w̄) in (13) , for all t ∈ [ak, ak+1) and all

k = 0, 1, · · · ,∞, then the event-triggered system is ISS.

Proof:

∥ek(t)∥ ≤ 1

Lξ + 1
ξ(∥x̂k∥, w̄)

≤ 1

Lξ + 1
ξ(∥x(t)∥+ ∥ek(t)∥, w̄).

≤ 1

Lξ + 1
ξ(∥x(t)∥, w̄) + Lξ

Lξ + 1
∥ek(t)∥

⇒ ∥ek(t)∥ ≤ ξ(∥x(t)∥, w̄)

According to lemma IV.1, the above equation implies the system is ISS.

Now, let us choose our event-trigger as

E : ∥ek(t)∥ < θk = θ(∥x̂k∥, w̄) = ρθξ(∥x̂k∥, w̄), (14)

where ρθ ∈ (0, 1) is a given constant. Let ∆k be the quantization error at the kth transmission

time. To make sure the inter-sampling interval is strictly positive, we need to guarantee ∆k < θk,

so ∆k is chosen as

∆k = ρ∆θ(|∥x̂k−1∥ − θk−1|, w̄), (15)

where ρ∆ ∈ (0, 1) is a given constant. The proof of the following Lemma IV.3 shows that (15)

implies ∆k < θk. We assume that the controller knows the event-trigger and the quantization

error. So, when the controller receives the kth packet, it knows that the state x satisfies ∥x −

x̂k−1∥ = θk−1. The set {x : ∥x−x̂k−1∥ = θk−1} is then uniformly quantized such that ∥x−x̂k∥ ≤
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Fig. 3. A typical trajectory of ∥ek(t)∥

∆k, and the number of bits Nk transmitted at sk satisfies

Nk = ⌈log2 2n⌉+

⌈
log2

⌈
θk−1

∆k

⌉n−1
⌉
. (16)

Lemma IV.3. Suppose there is no delay. The system defined in (4-6) with the event-trigger and

quantization error defined as (14) and (15) is ISS.

Proof: From equation (12-14), we see that θ(s, w̄) is a increasing function of s. Since

∥x̂k − x̂k−1∥ = θk−1 ⇒ ∥x̂k∥ ≥ |∥x̂k−1∥ − θk−1|, we have

∥ek(sk)∥ ≤ ∆k < θ(|∥x̂k−1∥ − θk−1|, w̄) ≤ θ(∥x̂k∥, w̄) = θk.

Since ∥ek(sk+1)∥ = θk, according to the continuity of ek, ∥ek∥ < ξ
k

for all t ∈ [sk, sk+1) and

all k = 0, 1, · · · ,∞. From Corollary IV.2, the system is ISS.

V. ACCEPTABLE DELAYS PRESERVING INPUT-TO-STATE STABILITY

Corollary IV.2 indicates that bounding ek(t) during interval [ak, ak+1) is essential to preserve

the input-to-state stability of the closed loop system. A typical trajectory of ∥ek(t)∥ is shown in

Figure 3. At time sk, system state is quantized and transmitted with the initial gap ∥ek(sk)∥ ≤ ∆k.

This gap gradually increases and finally hits θk, which generates the k + 1-st sampling instant.

Before the k+1-st quantized state arrives at the controller, the gap ∥ek(t)∥ keeps increasing. To

guarantee ISS, the gap ∥ek(t)∥ should be bounded by ξ
k
.
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The gap ek(t) has the following dynamic behavior.

ėk(t) = f(x̂k + ek(t), uk, w(t)),∀t ∈ [ak, ak+1). (17)

Let Lx
k be the Lipschitz constant of f with respect to x during interval [sk, ak]. ∥f∥ is bounded

from above by

∥f(x̂k + ek(t), uk, w)∥ ≤ f̄(x̂k, uk, w̄) + Lx
k∥ek∥, (18)

where

f̄(x̂k, uk, w̄) = ∥f(x̂k, uk, 0)∥+ Lw
k w̄.

If the transmission and arrival sequences are admissible, the norm of the gap ∥ek(t)∥, then,

satisfies

d∥ek(t)∥
dt

≤ ∥ėk(t)∥ ≤ f̄(x̂k, uk−1, w̄) + Lx
k∥ek(t)∥,∀t ∈ [sk, ak).

d∥ek(t)∥
dt

≤ ∥ėk(t)∥ ≤ f̄(x̂k, uk, w̄) + Lx
k∥ek(t)∥,∀t ∈ [sk+1, ak+1).

With comparison principle, ∥ek(t)∥ satisfies

∥ek(t)∥ ≤ f̄(x̂k, uk−1, w̄)

Lx
k

(eL
x
k
(t−sk) − 1) + ∆ke

Lx
k(t−sk), ∀t ∈ [sk, ak). (19)

∥ek(t)∥ ≤ f̄(x̂k, uk, w̄)

Lx
k

(eL
x
k
(t−sk+1) − 1) + θke

Lx
k(t−sk+1),∀t ∈ [sk+1, ak+1). (20)

First, let us assume the transmission and arrival sequences are admissible. The acceptable

delay preserving ISS is given by the following lemma.

Lemma V.1. If the transmission and arrival sequences are admissible, i.e. dk ≤ τk for all

k = 0, 1, . . . ,∞, and the transmission delay dk+1 satisfies

dk+1 ≤ d̄k+1 =
1

Lx
k

ln

(
1 +

Lx
k(ξk − θk)

f̄(x̂k, uk, w̄) + Lx
kθk

)
, (21)

then the system defined in (4), (5) and (6) with the event-trigger and quantization error defined

as (14) and (15) is ISS.

Proof: We assume ak ≤ sk+1 ≤ ak+1 for all k = 0, 1, . . . ,∞.

It is easy to see that during interval [ak, sk+1], ∥ek(t)∥ ≤ θk < ξ
k
.
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For interval [sk+1, ak+1), from equation (20), we have

∥ek(t)∥ ≤ ∥ek(ak+1)∥ ≤ f̄(x̂k, uk, w̄)

Lx
k

(eL
x
k
dk+1 − 1) + θke

Lx
kdk+1 ,∀t ∈ [sk+1, ak+1)

So, equation (13) is guaranteed by

f̄(x̂k, uk, w̄)

Lx
k

(eL
x
k
dk+1 − 1) + θke

Lx
kdk+1 < ξ

k
⇔ dk+1 ≤ d̄k+1

Therefore, ∥ek(t)∥ < ξ
k

holds for all t ∈ [ak, ak+1) and all k = 0, 1, . . . ,∞. According to

Corollary IV.2, the closed loop system is ISS.

Next, we would like to find an upper bound on the delay such that the transmission arrival

sequences are admissible.

Lemma V.2. If the transmission delay dk satisfies

dk ≤ Tk =
1

Lx
k

ln

(
1 +

Lx
k(θk −∆k)

f̄(x̂k, uk−1, w̄) + Lx
k∆k

)
, (22)

then the transmission arrival sequences are admissible, i.e. dk ≤ τk for all k = 0, 1, . . . ,∞.

Proof: First, we realize that d0 = 0 ≤ τ0.

Now, let us assume that dk−1 ≤ τk−1 holds, i.e. ak−1 ≤ sk. If dk > τk, then we have

ak−1 ≤ sk ≤ sk+1 < ak. For interval [sk, sk+1], from equation (19), we have

∥ek(sk+1)∥ ≤ f̄(x̂k, uk−1, w̄)

Lx
k

(eL
x
k
τk − 1) + ∆ke

Lx
kτk .

Since ∥ek(sk+1)∥ = θk, together with the equation above, we have τk ≥ Tk. From equation (22),

we further have τk ≥ dk. This contradicts the assumption dk > τk.

Therefore, dk ≤ τk for all k = 0, 1, . . . ,∞.

Corollary V.3. If dk ≤ Tk, then the inter-sampling interval τk is bounded from below by Tk, i.e.

τk ≥ Tk, (23)

where Tk is defined in (22).

Proof: The contrapositive of Lemma V.2 is

dk > τk ⇒ dk > Tk. (24)
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Assume Tk > τk. It is easy to see that

dk > Tk ⇒ dk > τk. (25)

From equation (24) and (25), we have

dk > τk ⇔ dk > Tk,

which implies τk = Tk. This contradicts the assumption Tk > τk. So, τk ≥ Tk

From Lemma V.1 and V.2, the main theorem is obtained.

Theorem V.4. If the transmission delay dk satisfies

dk ≤ Dk = min{d̄k, Tk}, (26)

where d̄k and Tk are given by (21) and (22) respectively, then the transmission and arrival

sequences are admissible and the system defined in (4-6) with the event-trigger and quantization

error defined as (14) and (15) is ISS.

Remark V.5. Theorem V.4 indicates that when transmission delays are not negligible, we should

not choose θk as large as possible to obtain as large as possible inter-sampling interval. Because

as θk gets closer and closer to ξ
k
, d̄k dominates the bound on the acceptable delay, and gets

smaller and smaller according to (21).

Remark V.6. The results in Corollary V.3 and Theorem V.4 provide a basis to study the scheduling

problem in large scale event-triggered control systems. Let us assume that there are several

control systems which share a communication channel, and there is a scheduler which schedules

the transmissions of all the control systems. Every time when a control system decides to transmit,

from the results in Corollary V.3 and Theorem V.4, it tells the scheduler that Nk bits need to

be transmitted in Dk seconds, and the next transmission time will be at least Tk seconds later.

The scheduler, then, makes use of the information from all control systems to decide whether all

transmission requirements are schedulable.

This section uses the technique that we used in [5] to derive bounds on acceptable delay and

inter-sampling interval. These results are further analyzed in the next section to explain how

efficient attentiveness is achieved.
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VI. EFFICIENT ATTENTIVENESS

This section studies the sufficient condition achieving efficient attentiveness. For the conve-

nience of the rest of this section, we first define f̄c(s) as a class K function satisfying

∥f(x̂k, K(x̂k), 0)∥ ≤ f̄c(∥x̂k∥), (27)

and we have the following corollary which is a direct result from Lemma II.1.

Corollary VI.1. If

lim
s→0

f̄c(s)

θ(s, 0)
<∞, (28)

then there exist continuous, positive definite, increasing functions h1(s), h2(s) such that lims→0 hi(s) <

∞ for i = 1, 2 and

θ(s, w̄)

∆(s, w̄)
≤ h1(s) (29)

f̄c(s) + Lw
k w̄

θ(s, w̄)
≤ h2(s). (30)

Proof: If w̄ ̸= 0, it is easy to show that

lim
s→0

θ(s, w̄)

∆(θ(s, w̄))
< ∞

lim
s→0

f̄c(s) + Lw
k w̄

θ(s, w̄)
< ∞.

According to Lemma II.1, there must exist h1 and h2 which are continuous, positive definite,

increasing and lims→0 hi(s) < ∞ for i = 1, 2 such that equation (29) and (30) hold.

If w̄ = 0, we have

lim
s→0

θ(s, 0)

∆(θ(s, 0))
= lim

s→0

θ(s, 0)

ρ∆θ(|s− θ(s, 0)|, 0)
From (12) and (13), we know that θ(s, 0) is a continuous function satisfying θ(0, 0) = 0. There

must exist a constant c such that for all s ∈ [0, c], θ(s, 0) is either greater or equal to 0.5s, or

less than 0.5s. If θ(s, 0) ≤ 0.5s, then

lim
s→0

θ(s, 0)

ρ∆θ(|s− θ(s, 0)|, 0)
≤ lim

s→0

θ(s, 0)

ρ∆θ(0.5s, 0)
< ∞.

If θ(s, 0) > 0.5s, then

lim
s→0

θ(s, 0)

ρ∆θ(|s− θ(s, 0)|, 0)
≤ lim

θ(s,0)→0

θ(s, 0)

ρ∆θ(3θ(s), 0)
<

2

3ρ∆
< ∞.

Together with (28), according to Lemma II.1, equation (29) and (30) still hold.
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A. Efficiently attentive inter-sampling interval

Now, we are ready to present a sufficient condition to achieve efficiently attentive inter-

sampling interval.

Lemma VI.2. If the assumption (28) is satisfied, then the inter-sampling interval τk is efficiently

attentive, i.e. there exists a continuous, positive definite, decreasing function h(s1, s2) such that

lims→0 h(s1, s2) > 0 and equation (10) is satisfied.

Proof: From Corollary V.3, we have τk ≥ Tk. Since ln(1 + x) ≥ x
1+x

, it is easy to show

that

Tk ≥
θk −∆k

f̄(x̂k, uk−1, w̄) + Lx
kθk

=
1−∆k/θk

f̄(x̂k, uk−1, w̄)/θk + Lx
k

.

From the proof of Lemma IV.3, we know that ∆k < ρ∆θk. We further have

τk ≥ Tk ≥
1− ρ∆

f̄(x̂k, uk−1, w̄)/θk + Lx
k

.

f̄ is locally lipschitz with respect to x̂k, so

f̄(x̂k, uk−1, w̄)

θk
≤ f̄(x̂k−1, uk−1, w̄) + Lx

k∥x̂k − x̂k−1∥
θk

≤ f̄c(∥x̂k−1∥) + Lw
k w̄ + Lx

kθk−1

∆k

≤ f̄c(∥x̂k−1∥) + Lw
k w̄

θk−1

θk−1

∆k

+ Lx
k

θk−1

∆k

According to Corollary VI.1, there must exist continuous, positive definite, and increasing

functions h1(∥x̂k−1∥) and h2(∥x̂k−1∥) such that

f̄(x̂k, uk−1, w̄)

θk
≤ h1(∥x̂k−1∥) + Lx

kh2(∥x̂k−1∥),

and hence we have

τk ≥ Tk ≥
1− c1

h1(∥x̂k−1∥) + Lx
kh2(∥x̂k−1∥) + Lx

k

.

Since h1 and h2 are increasing with respect to ∥x̂k−1∥, Lx
k is increasing with respect to ∥x̂k∥, and

h1, h2 and Lx
k are all bounded from above as x approaches 0, we say that there exists a continuous,

positive definite, decreasing function h(∥x̂k−1∥, ∥x̂k∥) such that lim∥x̂k−1∥,∥x̂k∥→0 h(∥x̂k−1∥, ∥x̂k∥) >

0, and equation (10) is satisfied.
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B. Efficiently attentive instantaneous bit-rate

Since the instantaneous bit-rate rk is defined as Nk/Dk, it is easy to see that the instantaneous

bit-rate rk is efficiently attentive if Nk is bounded from above by an increasing function, and

Dk is bounded from below by a decreasing function. Both Nk and Dk will be studied in this

subsection.

First, let us look at the number of bits Nk transmitted at step k.

Lemma VI.3. There exists a continuous, positive definite increasing function h′(∥x̂k−1∥) such

that

lim
s→0

h′(s) < ∞ (31)

Nk ≤ h′(∥x̂k−1∥). (32)

Proof: Nk satisfies

Nk = ⌈log2 2n⌉+

⌈
log2

⌈
θk−1

∆k

⌉n−1
⌉
.

According to Corollary VI.1, there exists a continuous, positive definite, increasing function

h1(∥x̂k−1∥) such that

lim
s→0

h1(s) < ∞

θk−1

∆k

≤ h1(∥x̂k−1∥).

Therefore, there must exist a continuous, positive definite increasing function h′(∥x̂k−1∥) such

that equation (31) and (32) hold.

Next, we would like to study Dk. Since Dk = min{Tk, d̄k} and Tk has be analyzed in Lemma

VI.2, only d̄k is examined here.

Lemma VI.4. If the assumption (28) is satisfied, then there exists a continuous, positive definite

decreasing function h′′(∥x̂k−1∥, ∥x̂k∥) such that

lim
s1,s2→0

h′′(s1, s2) > 0 (33)

d̄k ≥ h′′(∥x̂k−1∥, ∥x̂k∥). (34)
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Proof: Since θk = ρθξk, with the same steps in the proof of Lemma VI.2, we show that

d̄k ≥
1− ρθ

f̄(x̂k−1, uk−1, w̄)/ξk + Lx
k

,

where

f̄(x̂k−1, uk−1, w̄)

ξ
k

≤ f̄c(∥x̂k−1∥) + Lw
k w̄

θk−1

.

According to Corollary VI.1, there exist a continuous, positive definite, increasing function

h2(∥x̂k−1∥) such that

lim
s→0

h2(s) <∞,

f̄(x̂k−1, uk−1, w̄)

ξ
k

≤h2(∥x̂k−1∥).

Together with the fact that Lx
k is increasing with respect to ∥x̂k∥ and limx → 0Lx

k < ∞, we

conclude that there exists a continuous, positive definite decreasing function h′′(s1, s2) such that

equation (33) and (34) hold.

From Lemma VI.2, VI.3 and VI.4, we have the following corollary.

Corollary VI.5. If equation (28) are satisfied, the instantaneous bit-rate rk is efficiently at-

tentive, i.e. there exists a continuous, positive definite, increasing function h̄(s1, s2) such that

lims→0 h̄(s1, s2) < ∞ and equation (11) is satisfied.

C. Efficiently attentive and ISS event-triggered control system

Now, we are at the step to make a conclusion. Event triggered control systems should be

designed to achieve not only a desired system performance but also attention efficiency. To this

purpose, we have the following theorem which is easily derived from Theorem V.4, Lemma

VI.2, and Corollary VI.5.

Theorem VI.6. If the transmission delay dk is bounded from above by Dk given by (26), and the

threshold function θ satisfy equation (28), then the system defined in (4-6) with the event-trigger

and quantization error defined as (14) and (15) is input-to-state stable and efficiently attentive.

Remark VI.7. Equation (28) indicates that as the system state approaches 0, the threshold

function θ decreases more slowly than the closed loop dynamic behavior of the state trajectory.
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Therefore, when x get closer to 0, it takes more time for the gap ek(t) to hit the threshold θk

and ξ
k
, which leads to longer inter-sampling interval and acceptable delay.

VII. A CASE STUDY

This section uses an example to explain how to design an event-triggered control system to

achieve ISS and attention efficiency. After the event-triggered control system is well established,

we will try different threshold functions to study the tradeoff between the inter-sampling interval

and the instantaneous bit-rate.

Our experiment shows that the threshold function should be chosen as large as possible while

the instantaneous bit-rate is lower than the channel capacity. It is also found that the event-

triggered control system with its threshold function to be 0.6ξ can tolerate 25 times of the delay

tolerated by the system with the threshold function to be 0.99ξ, while only transmitting 2 times

as frequently as the system with the threshold function to be 0.99ξ.

A. Design of event-triggered control systems

Consider the following nonlinear dynamic system.

ẋ1 =− 2x3
1 + x3

2 + w1 (35)

ẋ2 =x3
2 + u+ w2, (36)

with x0 = [1 1]T . w is an L∞ disturbance with ∥w∥L∞ = 0.1. The control input u is chosen

such that

uk = −3x̂3
2, ∀t ∈ [ak, ak+1).

First, the input-to-state stability is studied for the dynamic system described in equation (35)

and (36). Let V = 1
4
x4
1 +

1
4
x4
2 be a Lyapunov candidate function. Its derivative satisfies

V̇ = −2x6
1 + x3

1x
3
2 − 2x6

2 + x3
1w1 + x3

2w2 + 3(3x2
2e2 − 3x2e

2
2 + e32)x

3
2,

where ei = xi(t)− x̂i(sk) for i = 1, 2. Let Ω = {x : ∥x∥ ≤ 1}.

V̇ ≤ −1.5x6
1 − 1.5x6

2 + 2w̄ + 3x3
2(3x

2
2e2 − 3x2e

2
2 + e33), ∀x ∈ Ω.

If

∥e∥ ≤ ϵ∥x∥l + w̄, for all l ≥ 1,
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we have

V̇ ≤− 1.5x6
1 − 1.5x6

2 + 2w̄ + 3(3ϵ+ 3ϵ2 + ϵ3)∥x∥6

+ 3∥x∥5w̄ − 6ϵ∥x∥5w̄ − 3∥x∥4w̄2 + 3ϵ2∥x∥5w̄ + 3ϵ∥x∥4w̄2 + ∥x∥3w̄3

≤− 1.5x6
1 − 1.5x6

2 + 3(3ϵ+ 3ϵ2 + ϵ3)∥x∥6

+ 3(w̄3 + 3|ϵ− 1|w̄2 + 3|ϵ− 1|2w̄) + 2w̄, ∀x ∈ Ω.

Let ϵ = 0.14, and γ(w̄) = 3(w̄3 + 3|ϵ− 1|w̄2 + 3|ϵ− 1|2w̄) + 2w̄. We have

V̇ ≤ −0.055∥x∥6 + γ(w̄).

Therefore, the system is input-to-state stable if

∥ek(t)∥ ≤ ξ(∥x(t)∥) = 0.14∥x(t)∥l + w̄, for all l ≥ 1. (37)

According to equation (13), (14) and (15), we have

θ(∥x̂k∥) = ρθ(0.12∥x̂k∥l + 0.87w̄), for some ρθ ∈ (0, 1). (38)

∆(s) = ρ∆ρθ(0.12(s− θ(s))l + 0.87w̄), for some ρ∆ ∈ (0, 1).

B. Efficient attentiveness

This subsection will design an experiment to demonstrate Theorem VI.6. According to this

theorem, if l ≤ 3, then the system is efficiently attentive. So, in this experiment, we will fix

ρθ = 0.6 and ρ∆ = 0.6, vary l = 1, 4, and run the system for 50 seconds to see how inter-sampling

interval and instantaneous bit-rate change.

When w̄ = 0, the system performance, inter-sampling interval, and instantaneous bit-rate are

shown in Figure 4. The left plots are the simulation results for l = 1. The top plot gives the

system performance, and the system is asymptotically stable. The middle plot shows the inter-

sampling interval which got longer and longer as the system state approached 0. The bottom

plot shows the instantaneous bit-rate which was smaller and smaller as the state went to 0. So,

we say the system is efficiently attentive. The right plots are the simulation results for l = 4. We

see that the system is still ISS, but the inter-sampling interval became shorter and shorter and

the instantaneous bit-rate got larger and larger as the system state went to the origin. Therefore,

when l = 4, the system is not efficiently attentive.
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Fig. 4. Performance, inter-sampling interval and instantaneous bit-rate with ρθ = ρ∆ = 0.6 and l = 1, 4 for the noise free

case.
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Fig. 5. Performance, inter-sampling interval and instantaneous bit-rate with ρθ = ρ∆ = 0.6, and l = 1, 4 for noisy case.
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Fig. 6. Performance, inter-sampling interval and instantaneous bit-rate with ρθ = 0.6, 0.99, ρ∆ = 0.6 and l = 1 for noisy

case.
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When w̄ = 0.1, the system performance, inter-sampling interval, and instantaneous bit-rate

are shown in Figure 5. Comparing the left plots (l = 1) with the right plots(l = 4), we find

that for both cases, the systems had similar system performances, inter-sampling intervals, and

instantaneous bit-rates, and both are ISS and efficiently attentive. This is because when w̄ ̸= 0,

and x is small, for both cases, the term associated with w̄ dominated the threshold and the

quantization error, and hence for both cases, the systems had similar performances, inter-sampling

intervals, and instantaneous bit-rates.

C. The inter-sampling interval and the instantaneous bit-rate

In this section, we will fix l = 1 and ρ∆ = 0.6. By varying ρθ = 0.6, 0.99, we want to explore

the tradeoff between the inter-sampling interval and the instantaneous bit-rate. The simulation

results are shown in Figure 6. The left plots are the results for ρθ = 0.6, and the right plots

are the results for ρθ = 0.99. The top plots give the system performance. we see that both of

them are ISS. The middle plots show the inter-sampling intervals. We see that the inter-sampling

interval of the system with ρθ = 0.99 is about 2 times of the inter-sampling interval of the system

with ρθ = 0.6. The bottom plots show the instantaneous bit-rates. we find that the instantaneous

bit-rate of the system with ρθ = 0.99 is about 20 times of the instantaneous bit-rate of the

system with ρθ = 0.6. This experiment showed the tradeoff between inter-sampling interval

and instantaneous bit-rate. When we increased the threshold, while the inter-sampling interval

increased, the required instantaneous bit-rate also increased. Therefore, for bandwidth limited

systems, we should not only focus on lengthening the inter-sampling interval, but also need to

guarantee the channel bandwidth satisfies the required instantaneous bit-rate.

VIII. CONCLUSION

This paper studies the input-to-state stability and efficient attentiveness for bandwidth limited

event-triggered control systems. A system is said to be efficiently attentive, if the inter-sampling

interval gets longer and the required instantaneous bit-rate gets smaller when the system state

goes to the origin. We first talk about how to design the event-trigger and the quantization

map, then provide the acceptable delay preserving ISS, and finally gives a sufficient condition

of efficient attentiveness. Our simulation results demonstrated these main results, and indicates

that for bandwidth limited systems, we should not only focus on lengthening the inter-sampling
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interval, but also need to guarantee the channel bandwidth satisfies the required instantaneous

bit-rate.
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