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EVENT TRIGGERED STATE ESTIMATION AND OUTPUT FEEDBACK IN

CYBER-PHYSICAL SYSTEMS

Abstract

by

Lichun Li

Event triggered approaches to control and estimation have the sensor transmit

processed information when a measure of information ’novelty’ exceeds a thresh-

old. Prior work has empirically demonstrated that event triggered systems may

have significantly longer average sampling intervals than comparably performing

periodically triggered systems. There are, however, few results that analytically

characterize the tradeoff that event triggering introduces between communication

usage and system performance. This proposal studies the tradeoff in event trig-

gered state estimation and output feedback control problems in cyber-physical

systems with finite or infinite horizon. We first re-examine event triggered state

estimation problems with finite horizon in [17, 36] whose solutions characterize

the optimal triggering events that minimize the mean square estimation error

over a finite horizon subject to a hard constraint on the number of transmission

times. Because the optimal solution is difficult to calculate, this proposal presents

an approximate solution with a computational complexity that is polynomial in

state-space dimension and horizon length. The same idea is extended to the event

triggered output feedback control problem with finite horizon. After that, this

proposal discusses event triggered state estimation problems with infinite horizon
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is discussed [52]. This work also determines the optimal triggering event that min-

imizes the mean square estimation error discounted by communication price. We

derive a suboptimal solution which extends the work in [11] to unstable systems,

and guarantees a specified least average sampling period. This approach is, then,

applied to a nonlinear 3 degree-of-freedom helicopter, and achieves better perfor-

mance than periodic transmission with the same average sampling period. All the

previous work serves as the foundation of our future research topics: decoupled

event triggered output feedback control, event triggered output feedback systems

with delays and dropouts and distributed event triggered state estimation in large

scale systems.
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CHAPTER 1

INTRODUCTION

The term cyber-physical systems (CPS) refers to the tight conjoining of, and

coordination between computational and physical resources [19]. Embedded com-

puters and networks monitor and control the physical processes, usually with

feedback loops where physical processes affect computations and vice versa. The

application of CPS arguably have the potential to dwarf the 20th century IT rev-

olution [20]. Our world will benefit considerably from the research advances of

CPS in high confidence medical devices and systems, traffic control and safety, en-

vironmental control, power systems, networked building control systems, financial

systems, and so on.

The positive impact of CPS in any area above could be enormous. CPS re-

search, however, is still in its infancy [8]. Professional and institutional barriers

have resulted in narrowly defined, discipline-specific research. Research is parti-

tioned into isolated subdisciplines such as sensors, communication and networking,

control theory, soft engineering and computer science. Systems are designed and

analyzed using a variety of modeling formalisms and tools. Each modeling for-

malism and tool only highlights certain features and disregards others to make

analysis tractable. While this method may suffice to support a component-based

’divide and conquer’ approach, it neglects the potential benefits of the co-design

of CPS and poses a serious problem of verifying overall safety of systems.
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Networked control, one of the important topics in CPS, also has the same

problem when taking the component-based ’divide and conquer’ approach. With

this approach, one may restrict oneself to the periodic communication protocol.

To reduce the impact of network delay and packet dropout to physical systems,

one may need either a shorter sampling period which will result in higher com-

munication usage, or a more aggressive controller which generally would be less

robust. But if we break the barrier between disciplines of control and communi-

cation, and release ourselves from the periodic communication protocol, we are

able to preserve the performance of the physical system without increasing the

communication usage or reducing the system’s robustness. One method for the

co-design of both controller (physical part) and communication protocol (cyber

part) is called ’event triggering’.

Event triggering is a communication protocol with which information is trans-

mitted only if some event occurs. In particular, the event is always designed as

a measure of data ’novelty’ exceeding a threshold. There has been numerous ex-

perimental results to support the assertion that event triggering achieves better

system performance than periodically triggered systems using the same communi-

cation resources [1–3, 6, 7, 12, 15, 21, 26–29, 34, 35, 39–51]. But little substantive

work analytically investigates the tradeoff between system performance and com-

munication usage. Our purpose is to analytically examine the tradeoff between

system performance and communication usage for event triggered state estimation

and observer based output feedback control in CPS.

One of the interesting questions about the tradeoff is what the best system

performance is for given communication limitation. This question was first an-

swered in [16–18, 33, 36–38] for event triggered state estimation problem over a
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finite horizon. In the finite horizon case, the communication limitation is limited

transmission times during the finite horizon, and the system performance is mean

square estimation error (MMSE) of a remote observer. It could be seen as an opti-

mal control problem, and dynamic programming was used to solve it. However, it

was found that the optimal triggering event could only be calculated numerically,

and the computational complexity grew exponentially with respect to the state

dimension. This was also the main reason that the prior work only confined their

attention to scalar systems. This restriction to scalar systems is of limited use in

developing real-life applications of event-triggered systems. A major challenge to

be addressed by the research community therefore lies in finding practical ways of

extending this analytical framework to multi-dimensional systems.

A computationally effective suboptimal triggering event is then presented in

Chapter 2, which is also the main results in [24]. In this work, since the optimal

triggering set is not convex, we use the union of several ellipsoids to approximate

the optimal triggering set. The computational complexity of the suboptimal trig-

gering event is only cubic with respect to the state dimension, and it is shown

from simulation results that the suboptimal triggering set approximates the op-

timal triggering set very well. We extend the same idea to the output feedback

control problem with finite horizon in [22], which will be introduced in Chapter 3.

All the results above are for finite horizon cases. For infinite horizon cases,

the event triggered state estimation problem is addressed in this proposal. The

main difference between finite and infinite horizon cases is how the communication

limitation is expressed. In infinite horizon, the communication limitation, such as

average sampling period, average transmission frequency and so on, is reflected

by a parameter called communication price. The communication limitation in

3



infinite horizon can be seen as a ’soft’ requirement, because even though higher

communication price reflects fewer communication resources, we still don’t know

exactly what the average sampling period or average transmission frequency is.

[52] discussed the optimal triggering event to minimize the MMSE discounted

by the communication price, but the optimal triggering event was computationally

complex. A simpler suboptimal approach was proposed in [11] which was able

to bound the difference between the performance achieved by the optimal and

suboptimal triggering event for stable systems. Since the proposed optimization

metric is explicitly discounted by the cost of transmission, it implicitly considers

the tradeoff between the performance and the sampling period. That tradeoff,

however, was never made explicit in the earlier papers.

Chapter 4 re-examines the problem in [52] using a suboptimal solution similar

to that proposed in [11], and extends the earlier work in [11] to unstable sys-

tems. Our main results are the design of quadratic suboptimal triggering events

that guarantee the required least average sampling period and explicit lower and

upper bounds on discounted MSEE [23]. This event triggered state estimator is

applied to a highly nonlinear 3 degree-of-freedom helicopter in Chapter 5. The

experimental results shows that the event triggered state estimator in Chapter

4 can achieve better performance than the periodically triggered state estimator

with the same average sampling period.

There are three research objectives in the future:

1. Decoupled optimal triggering events for output feedback systems with in-

finite horizon. In these output feedback systems, the whole control loop,

which is from sensor to controller and from controller to actuator, is closed

over a communication network. Our objective is to design decoupled trig-
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gering events for both sensor and controller such that the mean square state

of the plant is minimized. By ’decoupled’, we mean the transmission of one

link doesn’t trigger the transmission of the other and both the sensor and

the controller can decide when to transmit data by their local information.

This decoupled event triggered output feedback systems have never been

talked about in the prior work, which considers that either only one part

of the control loop is closed over a communication network, or the trigger-

ing events in the sensor and the controller are coupled. The main difficulty

to get the decoupled triggering events lies on how to make the information

of controller decoupled with the decision of sensor. Once the decoupling

is done, the triggering events in both sensor and controller can be derived

using the same way in our earlier work in Chapter 4.

2. Decoupled event triggered output feedback systems with delays and dropout-

s. The impact of delays and dropouts to event triggered state feedback sys-

tems has already been analyzed in [31, 46–48], but the impact of time delays

and packet dropouts to the event triggered output feedback systems has n-

ever been studied. This work will study this impact to the event triggered

output feedback systems based on user datagram protocol.

3. Distributed event triggered state estimation problem in large scale systems.

Recently, there has been great interest in large scale systems, such as power

systems, transportation systems and so on. So we would like to extend our

work in Chapter 4 to large scale systems. In these large scale systems, there

is a data center collecting information from a lot of sensors and making

an estimate of the state. Each sensor may only detect a part of the state.

Our objective is to design a distributed triggering event for each sensor such

5



that the mean square estimation error in the data center is minimized. By

’distributed’, we mean the triggering event of each sensor only relies on

local information. The prior work considering event triggering method in

large scale systems mainly studied multi-agent systems without data centers

[12, 13, 25, 43, 46–48, 51]. Compared with the multi-agent systems, our

structure is more efficient in communication and closer to the practical large

systems such as smart transmission grid [10].

We will further discuss how to fulfill these objectives in Chapter 6.
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CHAPTER 2

OPTIMAL AND SUBOPTIMAL TRIGGERING SETS OF STATE

ESTIMATION PROBLEM WITH FINITE HORIZON

This chapter considers an estimation problem in which a sensor sporadically

transmits information to a remote observer. An event triggered approach is used

to trigger the transmission of information from the sensor to the remote observer.

The event trigger is chosen to minimize the mean square estimation error at the

remote observer subject to a constraint on how frequently the information can be

transmitted. This problem was recently studied by M. Rabi et al. [36–38] and O.

Imer et al. [16–18] where the observed process was a scalar linear system over a

finite time interval. This paper relaxes the prior assumption of zero mean initial

condition and no measurement noise and extends those earlier results to vector

cases and derives a much more computational effective suboptimal threshold which

approximates the optimal one very well in our simulations.

2.1 Problem Statement

The event triggering problem in this chapter assumes that a sensor is observing

a linear discrete time process over a finite horizon of length M + 1. The process

state x : {0, 1, · · · ,M} → Rn satisfies the difference equation

x(k) = Ax(k − 1) + w(k)

7



Figure 2.1. Structure of event triggered networked state estimator

for k ∈ {1, 2, · · · ,M} where A is a real n × n matrix, w : {1, 2, · · · ,M} → Rn

is a zero mean white noise process with variance W . The initial state, x(0), is

assumed to be a Gaussian random variable with mean µ0 and variance Π0. The

sensor generates a measurement y : {0, 1, · · · ,M} → Rm that is a corrupted

output. The sensor measurement at time k is

y(k) = Cx(k) + v(k)

for k ∈ {0, 1, · · · ,M} and where v : {0, 1, · · · ,M} → Rm is another zero mean

white noise process with variance V that is uncorrelated with the process noise

w. The process and sensor blocks are shown on the left hand side of Figure 2.1.

In this figure, the output of the sensor feeds into a sensor subsystem that decides

when to transmit information to a remote observer.

The sensor subsystem consists of three components: an event detector, a

Kalman filter, and a local observer. The event detector decides when to trans-

mit information at b ∈ {0, 1, · · · ,M + 1} time instants to the remote observer.

So b represents the total number of transmissions that the sensor is allowed to

make to the remote observer. We let the τ 0 = ∅ indicate that that there is no

8



transmission at the beginning, and {τ ℓ}bℓ=1 denote a sequence of increasing times

(τ ℓ ∈ {0, 1, · · · ,M}) when information is transmitted from the sensor to the re-

mote observer. The decision to transmit is based on estimates that are generated

by the Kalman filter and local observer.

Let Y(k) = {y(0), y(1), · · · , y(k)} denote the measurement information avail-

able at time k. TheKalman filter generates a state estimate xKF : {0, 1, · · · ,M} →

Rn that minimizes the mean square estimation error E [∥x(k)− xKF (k)∥22 | Y(k)]

at each time step conditioned on all of the sensor information received up to and

including time k. These estimates, of course, can be computed using the Kalman

filter. For the process under study the filter equations are

xKF (k) = AxKF (k − 1) + L(k) (y(k)− CAxKF (k − 1)) (2.1)

for k ∈ {1, 2, · · · ,M}. Let eKF (k) = x(k) − xKF (k) be the filtered state error,

and the variance of eKF (k), P (k), satisfies

P (k) = AP (k − 1)AT +W − L(k)C
(
AP (k − 1)AT +W

)
, (2.2)

where

L(k) =
(
AP (k − 1)AT +W

)
CT
(
C
(
AP (k − 1)AT +W

)
CT + V

)−1
.

The initial condition are

xKF (0) = µ0 +Π0C
T (CΠ0C

T + V )−1 (y(k)− Cµ0)

P (0) = Π0 − Π0C
T
(
CΠ0C

T + V
)−1

CΠ0.

9



The event detector uses the Kalman filter’s state estimate, xKF , and another

estimate generated by a local observer to decide when to transmit the filtered s-

tate xKF to the remote observer. Given a set of transmission times {τ ℓ}b̄ℓ=1, let

X (k) =
{
xKF (τ

1), xKF (τ
2), . . . , xKF (τ

ℓ(k))
}
denote the filter estimates that were

transmitted to the remote observer by time k where ℓ(k) = max
{
ℓ : τ ℓ ≤ k

}
. We

can think of this as the ”information set” available to the remote observer at time

k. The remote observer generates a posteriori estimate xRO : {0, 1, · · · ,M} → Rn

of the process state that minimizes the MSEE, E
[
∥x(k)− xRO(k)∥22 | X (k)

]
, at

time k conditioned on the information received up to and including time k. The

a priori estimate of the remote observer, x−
RO : {0, 1, · · · ,M} → Rn, minimizes

E
[
∥x(k)− xRO(k)∥22 | X (k − 1)

]
, the MSEE at time k conditioned on the infor-

mation received up to and including time k − 1. These estimates take the form

x−
RO(k) = E(x(k)|X (k − 1)) = AxRO(k − 1) (2.3)

xRO(k) =

 xKF (k), if transmitting at step k;

x−
RO(k), otherwise.

(2.4)

where x−
RO(0) = µ0. The event-detection strategy that is used to select the trans-

mission times τ l is based on observing the a priori gap, e−KF,RO(k) = xKF (k) −

x−
RO(k) between the filter’s estimate xKF and the remote observer’s a priori esti-

mate x−
RO. Note that even though the gap is a function of the remote observer’s

estimate, this signal will be available to the sensor. This is because the sensor has

access to all of the information, X (k), that it sent to the remote observer. As a

result, the sensor can use another local observer to construct a copy of x−
RO that

can be locally accessed by the event detector to compute the gap. This local ob-

server is shown as part of the sensor subsystem in Figure 2.1. The event detector’s

10



Figure 2.2. Collection of triggering sets and order of calculating value
function with M=4, b=2

decision to transmit is triggered when the estimate’s gap e−KF,RO(k) goes out of a

time varying triggering set S
b(k)
k where k ∈ {0, 1, · · · ,M} and b(k) is the number

of transmissions that are remaining at step k.

For later convenience, the following notational conventions are used through-

out this paper. Sb
r(k) = {Smax{0,b−k+r}

k , ..., S
min{b,M+1−k}
k } are the triggering sets

that may be used at step k when b transmissions remaining at step r ≤ k, and

Sb
r = {Sb

r(r), · · · ,Sb
r(M)}. For example, suppose at step 1 there are 2 trans-

missions remaining, then at step 1 only S2
1 (1) = {S2

1} may be used as trigger-

ing set, at step 2, S2
1 (2) = {S2

2 , S
1
2} may be used as triggering sets and so on,

which are contained by the dashed line in Figure 2.2 and S2
1 is contained in the

solid line. Let eKF,RO(k) = xKF (k) − xRO(k). I−(k) = {e−KF,RO(k), b(k)} and

I(k) = {eKF,RO(k), b(k+1)} are ordered pairs denoting the a priori and posteriori

information sets at k respectively.

Let eRO(k) = x(k)−xRO(k) be the remote state estimation error, and the cost

11



function is defined as

J b
M(Sb

0) = E

(
M∑
k=0

∥eRO(k)∥22

)
.

The expectation is taken over {eRO(k)}Mk=0. Our objective is to find the optimal

triggering sets Sb
0 to minimize the cost function:

J b∗
M = min

Sb
0

J b
M(Sb

0) (2.5)

2.2 Optimal Triggering Sets

The problem in Equation (2.5) can be treated as an optimal control problem of

a stochastic process. In our case, the controllable variables are the triggering sets

Sb
0, rather than some ”control signal”. So it can also be solved using stochastic

dynamic programming. After analyzing the properties of optimal triggering set,

we find that its computational complexity is exponential with respect to state

dimension. So a suboptimal triggering set is derived, which yields to a cubic

computational complexity with respect to the state dimension.

The value function is defined in Equation (2.6). It’s very similar with how it’s

defined in stochastic dynamic programming. Because of the Markov property of

the information sets {I−(k), I(k)}Mk=0 (shown in Lemma A.0.2), the expectation is

only taken based on the current a priori information set.

h(ζ, b; r) = min
Sb
r

E

(
M∑
k=r

∥eRO(k)∥22|I−r = (ζ, b)

)
(2.6)

We notice that J b∗
M = E(h(e−KF,RO(0), b; r)).

In Theorem 2.2.1, we show that the value function (2.6) satisfies a backward
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recursive equation. The proof is given in the Appendix.

Theorem 2.2.1. The value function (2.6) satisfies the backward recursive equa-

tion:

h(ζ, b; r) = min {hnt(ζ, b, r), ht(ζ, b, r)} , (2.7)

where

hnt(ζ, b, r) = tr
(
P (r)

)
+ ∥ζ∥22 + E

(
h(e−KF,RO(r + 1), b; r + 1)|I(r) = (ζ, b)

)
is the cost without transmitting at step r and

ht(ζ, b, r) = tr
(
P (r)

)
+ E

(
h(e−KF,RO(r + 1), b− 1; r + 1)|I(r) = (0, b− 1)

)
is the cost with transmitting at step r. Notice that ht(ζ, b, r) is independent of ζ.

The initial conditions for the value function are

h(ζ, 0; r) = ζTΛ0
r,1ζ + c0r,1 (2.8)

h(ζ, b;M + 1− b) = ρbM+1−b, (2.9)

where

Λ0
r,1 =

M∑
k=r

(AT )k−rAk−r,

c0r,1 =
M∑
k=r

(
k∑

j=r+1

tr
(
R(j − 1)L(j)T (AT )k−jAk−jL(j)

)
+ tr(P (k))

)
;

ρbM+1−b = tr

(
M∑

k=M+1−b

P (k)

)
,

13



with R(j) = CAP (j)ATCT + CWCT + V . The optimal triggering set

Sb∗
r = {ζ : hnt(ζ, b, r) ≤ ht(ζ, b, r)}, (2.10)

with S0∗
r = Rn for all r = 0, · · · ,M and Sb∗

M+1−b = ∅ for all b = 1, · · · , b.

What should be apparent in examining Equation (2.7) is that the optimal cost

at time step r is based on the choice between the costs of transmitting or not

transmitting at step r. The actual values that those two costs take is conditioned

on the value e−KF,RO(r) = ζ, the a priori gap taken at time step r. This means

we can use the choice in Equation (2.7) to identify two mutually disjoint sets; the

trigger set Sb∗
r and its complement. If e−KF,RO is not in the set Sb∗

r , then we trigger

a transmission otherwise the sensor decides not to transmit its information.

Equation (2.7) is a backward recursion that recurses over two sets of indices;

the time steps, r, and the remaining transmissions b. The value function, h(ζ, b; r),

at time step r with b remaining transmissions is computed from h(ζ, b; r+ 1) and

h(ζ, b− 1; r+1), the value functions at time step r+1 with b and b− 1 remaining

transmissions respectively. The initial conditions given in Equation (2.8) and (2.9)

are the value functions when there is no remaining transmission and when there

is a transmission at each step.

We can picture the recursion as shown in Figure 2.2 . This picture plots the

indices (b, r) and identifies the initial conditions and the order of computation.

The blue dots in the graph show the initial value functions given in Equation (2.8)

and (2.9). The arrows show the computational dependencies in the recursion.

According to Theorem 2.2.1, some properties of value function and optimal

triggering sets are stated below, and their proofs are shown in the Appendix.
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Corollary 2.2.2. With b and r fixed, the value function h(ζ, b; r) is symmetric

about the origin and nondecreasing with respect to ∥ζ∥2 in the same direction, i.e.

h(ζ, b; r) = h(−ζ, b; r);

h(α1d, b; r) ≥ h(α2d, b; r),∀α1 ≥ α2 ≥ 0, d ∈ Rn

Corollary 2.2.3. Given any direction d ∈ Rn, the optimal triggering set Sb∗
r lying

in this direction is in the form of [−θbr(d), θ
b
r(d)].

Since there’s no closed form for the value functions and optimal triggering sets,

they can only be calculated numerically. We will explain the process of computing

the optimal triggering sets and their computational complexity below.

First of all, there are (M +1− b)b optimal triggering sets to be calculated. As

mentioned above, let b ∈ {1, 2, · · · , b} indicate the remaining transmissions. It is

easy to find that only at step b− b, b− b, · · · ,M +1− b, there may be b remaining

transmissions. Except the initial condition at stepM+1−b, there are stillM+1−b

optimal triggering sets needs to be calculated for every b ∈ {1, 2, · · · , b}. So we

can conclude that there are (M +1− b)b optimal triggering sets to be calculated.

Then, each of these optimal triggering sets can be computed using Corollary

2.2.2 and 2.2.3. According to to Corollary 2.2.2 and 2.2.3, to calculate each of

these optimal triggering sets, we first define some directions in Rn, and then find

the threshold in each direction using bisection method. After that, the value

function is evaluated at several points in each direction, since the value function

is necessary to calculate the triggering sets at one step forward.

To define directions in Rn, polar coordinate is used. A state x ∈ Rn will be

expressed as [ϕ1, · · · , ϕn−1, γ] in polar coordinate, where ϕi ∈ [0, π] is the ith angle

and γ ≥ 0 is the length of x. We assign each angle c1 values, evenly distributed
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from 0 to π. One direction is decided when one of the c1 values is chosen for each

angle. So there are cn−1
1 direction.

For each direction, the threshold in this direction is found by bisection method.

Let’s assume that we are searching for the threshold in direction d at step k with

b remaining transmissions. ht(ζ, b, k), the cost with transmission, is calculated

first. Notice that ht(ζ, b, k) is a constant. Here we indicate it as ht(b, k). Then we

use bisection method to search for the threshold θbk(d) satisfying hnt(θ
b
k(d), b, k) =

ht(b, k). Assume there are c2 candidate thresholds in every direction. In the worst

case, hnt needs to be evaluated logc22 times. Each evaluation involves c3(mn +

2n) multiplications, where c3 is the number of random variables in Monte-Carlo

method which is used to calculate the expectation in hnt. So in the worst case,

logc22 c3(mn+2n) multiplications are needed to calculate the threshold in direction

d at step k with b remaining transmissions.

After the threshold in a direction is computed, we still need to compute the

value function along this direction, so the value function at current step can be

used to calculate the optimal triggering sets at one step forward. When ζ is

beyond the threshold, the value function , ht(b, k), is already known. When ζ

is within the threshold, the value function is calculated at c4 points along this

direction. For each calculation, there are c3(mn+2n) multiplications, where c3 is

as mentioned above. So the value function in direction d at step k with b remaining

transmissions can be calculated with c4c3(mn+ 2n) multiplications.

Therefore, we will need (M+1−b)bcn−1
1 (logc22 +c4)c3(mn+2n) multiplications

in all to obtain the optimal triggering sets for all steps with all possible remaining

transmissions, which is exponential with respect to the state dimension n.

16



2.3 Suboptimal Triggering Sets

Because the computational complexity of optimal triggering sets is an expo-

nential function of the state dimension, we turn to the suboptimal triggering sets

whose computational complexity is only cubic in the state dimension.

Theorem 2.3.1. The value function (2.6) is upper bounded by

h̄(ζ, b; r) = min{h̄nt(ζ, b, r), h̄t(ζ, b, r)},

where

h̄nt(ζ, b, r) = min
j=1,··· ,lbr

{ζTΛb
r,jζ + cbr,j}, for b ̸= 0 (2.11)

h̄t(ζ, b, r) = ρbr. (2.12)

Λb
r,j,c

b
r,j and ρbr can be calculate backward recursively as

Λb
r,j =

 ATΛb
r+1,jA+ I, j < M + 1− b− r;

I, j = M + 1− b− r,

cbr,j =

 δbr+1,j + tr(P (r)), j < M + 1− b− r;

ρbr+1 + tr(P (r)), j = M + 1− b− r,

ρbr =

 tr(P (r)) + δb−1
r+1,1, if b = 1;

tr(P (r)) + min{δb−1
r+1,1, · · · , δb−1

r+1,lbr
, ρb−1

r+1}, otherwise.

where δbr+1,j = tr(R(r)L(r + 1)TΛb
r+1,jL(r + 1)) + cbr+1,j and lbr = M + 1 − b − r.

The initial conditions for h̄nt and h̄t are described by equations (2.8) and (2.9)
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respectively. The suboptimal triggering sets

Sb+
r = {ζ : h̄nt(ζ, b, r) ≤ h̄t(ζ, b, r)}

with S0+
r = Rn for all r = 0, · · · ,M and Sb+

M+1−b = ∅ for all b = 1, · · · , b.

The value function’s upper bound and the suboptimal triggering set are derived

mainly from the fact that

E(min{hnt(ζ, b, r), ht(ζ, b, r)}) ≤ min{E(hnt(ζ, b, r)), E(ht(ζ, b, r))}.

The main difficulty in calculating the value function efficiently is the expectation

part of hnt and ht in Theorem 2.2.1. With the fact mentioned above, we are able

to derive an upper bound of the value function which is in closed form and much

easier to calculate than the value function.

The suboptimal triggering set is the union of the ellipses ζTΛb
r,jζ + cbr,j ≤ ρbr

for j = 1, · · · ,M + 1 − b − r. What we do in Theorem 2.3.1 can also be seen as

using a set of ellipses to approximate the optimal triggering sets.

Given r and b, to calculate the suboptimal triggering set, we need M + 1 −

b − r quadratic forms in h̄nt(ζ, b; r), and M − b − r of them need to do matrix

multiplication. To calculate Λb
r,j and cbr,j, 2n

3 andmn2+m2n scalar multiplications

are needed. So the computational complexity of computing calculating all h̄nt in

Sb+
0 is 1

2
(M + 1− b)(M − b)b(2n3 +mn2 +m2n). Since h̄t is only a constant, the

computational complexity of all h̄t is (M+1−b)b(mn2+m2n). Compared with the

exponential computational complexity of optimal triggering set, the computation

of suboptimal triggering sets is much more efficient.
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2.4 Simulation Results

In this section, the optimal triggering sets, suboptimal triggering sets, and

periodic transmission are used in a two dimensional example. The mean square

estimation errors of the three strategies are compared.

Consider the system

x(k) =

 0 −1

1
√
2

x(k − 1) + w(k)

y(k) =

[
1 1

]
x(k) + v(k). (2.13)

The mean and variance of initial condition are

 1

0

 and I(identity matrix)

respectively. The variance of w and v are

 1 2

2 5

 and 1 respectively. The

terminal step M = 4 and b = 1. According to Theorem 2.2.1 and Theorem 2.3.1,

we first calculate the value functions and their upper bounds, and then compare

the optimal triggering set with the suboptimal one.

Figure 2.3 gives the cross-section plots of value functions and their upper

bounds on the left side. The red and white line are the value function and its

upper bound respectively. We can see that the difference between them is small,

especially at the points where hnt and ht are equal. These points are very im-

portant, because they form the edge of the optimal triggering set. The right side

is the optimal and suboptimal triggering sets. We can see that the union of the

ellipses which is the suboptimal triggering set fits the optimal triggering set very

well.
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suboptimal triggering sets
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Figure 2.4. MSEEs of optimal, suboptimal and periodic triggered
transmissions
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Now, we vary the number of transmissions from 1 to 4, and calculate the op-

timal and suboptimal triggering sets. We’ll use them and the periodic triggering

to trigger transmission respectively and compare the mean square estimation er-

rors of the three strategies. The results are shown in Figure 2.4. The x-axis is

the allowed number of transmissions, and y-axis is the mean square estimation

error. First, we notice that the mean square estimation error provided by the

optimal triggering sets (blue star) matches the analyzed minimum mean square

estimation error (red square). we can also see that the suboptimal triggering sets

(black cross) give almost the same mean square estimation error as the optimal

triggering sets (blue star), and the mean square estimation error of optimal and

suboptimal triggering sets are both no greater than the mean square estimation

error given by the periodic transmission (green circle).

2.5 Summary

This chapter first provides the minimum mean square estimation error and

the optimal triggering events given limited transmissions over a finite horizon for

a event triggered state estimator. This work recovers and extends the earlier

results in [16–18, 33, 36–38] to vector cases. However, the computation of the

optimal triggering sets is found to be very expensive, which is the main reason

that prevents the earlier work from exploring the vector cases. This chapter then

derives suboptimal triggering sets which is in closed form and much easier to

compute. In the example, the suboptimal triggering sets approximate the optimal

ones very well, and have similar behavior with the optimal triggering sets. Based

on the same method of the event triggered state estimator with finite horizon

discussed in this chapter, we will closed the control loop and discuss the event
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triggered output feedback control problem in the next chapter.
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CHAPTER 3

OPTIMAL AND SUBOPTIMAL TRIGGERING SETS OF OUTPUT

FEEDBACK PROBLEM WITH FINITE HORIZON

In chapter 2, we talked about the optimal triggering sets for state estimation

problem with finite horizon. Because the calculation of optimal triggering sets is

exponential with respect to the state dimension, suboptimal triggering sets are de-

rived which are more computationally effective. This chapter will first answer the

question about what the best performance is given limited transmissions in event

triggered output feedback systems. The computation of the optimal triggering

sets, however, is still complex as we mentioned in the event triggered state esti-

mation problem. Based on the same method in state estimation problem, a union

of several sets in quadratic forms is used to approximate the optimal triggering

sets. This suboptimal triggering set is shown, in our example, to approximate the

optimal triggering sets very well.

3.1 Problem Statement

Consider a linear discrete time process over a finite horizon of length M + 1,

during which only b̄ ∈ {0, 1, · · · ,M + 1} transmissions are allowed. A block

diagram of the closed loop system is shown in Figure 3.1. This closed loop system

consists of a discrete time linear plant which generates a measurement sequence, a
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sensor subsystem which processes the measurement sequence and decide when to

transmit the processed data and an actuator subsystem which uses the information

sent by the sensor subsystem to compute the control signal.

Figure 3.1. Event triggered output feedback Control System

The plant satisfies the difference equation below

x(k + 1) = Ax(k) +Bu(k) + w(k),

y(k) = Cx(k) + v(k)

for k ∈ [0, 1, . . . ,M ] where A is a n× n real matrix, B is a n× p real matrix, u is
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the control input, and w : [0, 1, . . . ,M ] → Rn is a zero mean white noise process

with covariance matrix W . The initial state, x0, is a Gaussian random variable

with mean µ0 and variance Π0. y(k) is the sensor measurement at time k. C

is a real m × n matrix and v : [0, 1, . . . ,M ] → Rm is another zero mean white

noise process with variance V . w,v and x0 are uncorrelated with each other. We

assume that (A,B,C) is controllable and observable. The sensor outputs are fed

into a sensor subsystem that decides when to transmit information to the actuator

subsystem

The sensor subsystem consists of three components:, a Kalman filter, a local

observer, and an event detector. Let Y(k) = {y(0), y(1), . . . , y(k)} denote the sen-

sor information available at time k. The Kalman filter generates a state estimate

xKF that minimizes the mean square estimation error E [∥x(k)− xKF (k)∥22 |Y(k)]

at each time step conditioned on all of the sensor information received up to and

including time k. These estimates are computed using a Kalman filter. The filter

equations for the system are,

xKF (k) = E [x(k) |Y(k)] = x−
KF (k) + L(k)(y(k)− Cx−

KF (k))

x−
KF (k) = AxKF (k − 1) +Bu(k − 1)

P (k) = E
[
eKF (k)e

T
KF (k) |Y(k)

]
= AP (k − 1)AT +W − L(k)C(AP (k − 1)AT +W )

for k = 1, 2, . . . ,M where L(k) is the Kalman filter gain and eKF (k) = x(k) −

xKF (k) is the estimation error at the Kalman filter. The initial condition xKF (0)

is the first posteriori update based on y(0) and P (0) is the covariance of this initial

estimate.
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Because the sensor subsystem has access to the information received by actu-

ator subsystem, the local observer can duplicate the state estimate, xRO, made

by the remote observe in the actuator subsystem. The behavior of the local and

remote observers will be explained later in the description of the actuator subsys-

tem.

The event detector observes the filtered state, xKF (k) and the gap between

filtered state and the remote estimated state, e−KF,RO(k) = xKF (k) − x−
RO(k).

If the vector

 xKF (k)

e−KF,RO(k)

 lies outside the specified triggering set Sb
k, where b

is the remaining transmission times, the filtered state xKF (k) will be transmit-

ted to the actuator subsystem. Given a set of transmission times {τ ℓ}bℓ=1, let

X(k) =
{
xKF (τ

1), xKF (τ
2), . . . , xKF (τ

ℓ(k))
}
denote the filter estimates that were

transmitted to the remote observer by time k where ℓ(k) = max{ℓ : τ ℓ ≤ k}.

This is the information set available to the remote observer at time k.

The actuator subsystem consists of two components; a remote observer and

a controller gain. The remote observer uses the received information to com-

pute a posteriori estimate xRO of the process state that minimizes the MSEE,

E
[
∥x(k)− xRO(k)∥22 |X(k)

]
, at time k conditioned on the information received

up to and including time k. The a priori estimate of the remote observer, x−
RO :

[0, 1, . . . ,M ] → Rn, minimizes E
[
∥x(k)− xRO(k)∥22 |X(k − 1)

]
, the MSEE at time

k conditioned on the information received up to and including time k − 1. These
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estimates take the form

x−
RO(k) =E

[
x(k) |X(k − 1)

]
= AxRO(k − 1) +Bu(k − 1) (3.1)

xRO(k) =E
[
x(k) |X(k)

]
=

 x−
RO(k) if no transmission at step k

xKF (k) if transmission occurs at step k
(3.2)

where x−
RO(0) = µ0. This estimate is then used to compute the control, u(k) =

KxRO(k), for k = 0, 1, . . . ,M where K is some real p× n matrix.

For convenience, we let

Sb
r(k) =

{
S(k)max{0,b−k+r}, . . . , S(k)min{b,M+1−k}}

denote the triggering sets to be used at step k with b transmissions remaining.

We let Sb
r = {Sb

r(r), . . . ,Sb
r(M)} be the collection of all triggering sets that will

be used by the sensor subsystem after and including time step r.

We are now in a position to formally state the problem being addressed. Con-

sider the cost function

JM(Sb
0) = E

[
M∑
k=0

z(k)TZz(k)

]

where Z =

 Z11 Z12

Z21 Z22

 is a symmetric and positive semi-definite 2n by 2n

matrix and z(k) =

 x(k)

eRO(k)

 is the system state at time k, where eRO(k) =

x(k) − xRO(k), is the remote state estimation error. The objective is to find the

collection, Sb
0, of triggering-sets that minimizes the cost function. The optimal
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cost then becomes

J∗
M = min

Sb
0

JM(Sb
0)

3.2 Optimal Triggering Sets

The problem is an optimal control problem whose controls are the triggering-

sets in Sb
0, as we mentioned in state estimation problem. The difference is that

the triggering set in the output feedback system is a subset of R2n instead of a

subset of Rn in state estimation problem. The solution may be characterized using

dynamic programming techniques, and we define the problem’s value function as

h(θ, b; r) = min
Sb
r

(
M∑
k=r

z(k)TZz(k) | I−(r) = (θ, b)

)
.

For convenience, indicate

 xKF (r)

e−KF,RO(r)

 by q−(r) and

 xKF (r)

eKF,RO(r)

 by q(r).

I−(r) is the a priori information set at time step r consisting of an ordered pair

(q−(r), b) with b the remaining transmissions. The value function is defined as the

minimum cost conditioned on q−(r) = θ =

 ηn×1

ζn×1

 with b remaining transmis-

sions.

Theorem 3.2.1. The value function satisfies

h(θ, b; r) = min {hnt(θ, b, r), ht(θ, b, r)} (3.3)

where hnt is the cost function without transmitting at step r and ht is the cost

29



function if transmitting at step r. Both of them are defined as

hnt(θ, b, r) = E
[
h(q−(r + 1), b; r + 1) | I(r) = (θ, b)

]
+θTZθ + β(r) (3.4)

ht(θ, b, r) = E
[
h(q−(r + 1), b− 1; r + 1) | I(r) = (θ0, b− 1)

]
+θT0 Zθ0 + β(r) (3.5)

where I(r) is the posteriori information set with ordered pair (q(r), b). θ =

 η

ζ


and θ0 =

 η

0

 are the actual values of a posteriori random variable, q(r). The

scalar β(r) equals tr(P (r) (Z11 + Z12 + Z21 + Z22)).

This theorem indicates that the value function chooses the smaller one between

the two cost functions (3.4) and (3.5).

The preceding theorem shows that h(θ, b, r) can be computed through a re-

cursion that ranges over the indices b (number of remaining transmissions) and

r (current time). The initial conditions for this recursion occur when b = 0 or

b = M + 1 − r for all values of r. For the first case (b = 0), this corresponds to

the cost of never transmitting after time step r. The other case (b = M + 1− r)

corresponds to transmitting at every single remaining time step. In both cases,

the value function can be computed in closed form, and the expressions are given

in the Appendix.

Given these initial conditions, the value function at index (b, r) may be com-

puted from the value function at indices (b, r + 1) and (b − 1, r + 1). This com-

putational dependence on the recursion is illustrated in Figure 3.2. This Figure
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shows the indices including the the triggering set collection S2
1 . The indices for

the initial value functions are filled in. The order of computation used to compute

S2
1 is shown by the arrows.

S
2

1

Figure 3.2. Index Sets for Value Function Recursion

Corollary 3.2.2. The optimal triggering set used at time step r with b transmis-

sions remaining will be

Sb∗
r =

θ =

 η

ζ

 ∈ R2n |hnt(θ, b, r) ≤ ht(θ, b, r)

 (3.6)
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The initial triggering sets are S0∗
r = R2n and S

(M+1−r)∗
r = ∅.

The recursion used in Equation (3.4) and (3.5) may only be tractable for first

order linear systems. In this case, the triggering sets are subsets of R2n and the

bisection search from [24] may be employed to determine the triggering-sets Sb∗
r .

This is done for a specific example below. Extending this approach to multi-

dimensional systems is impractical. The approach used in [24] involves computing

the value function over a grid of points in the state space. Overall, there are

b(M+1−b) triggering sets in the collection Sb∗
0 . If each value function is evaluated

in a 2n-dimensional space over a range of [−c/2, c/2] with a granularity of ϵ, then

there are a total of
(
c
ϵ

)2n
points at which the value functions are computed. This

means the computational effort required to compute h(θ, b; r) will be on the order

of O
(
b(M + 1− b)

(
c
ϵ

)2n)
. This is exponential in the state space dimension and

generally c
ϵ
will be very large. As a result this approach is impractical for all but

scalar linear systems.

3.3 Suboptimal Triggering Sets

Since the computational complexity of the recursion in Equation (3.4) and (3.5)

will be prohibitively large, one must resort to approximation methods. One useful

approximation in [11] was developed for the infinite horizon problem considered

in [52]. This approximation used a single quadratic form to over bound the value

function. While this method works well for infinite horizon problems, it seems to

be ill-suited for finite horizon problems. In particular, recent work [24] for the

finite horizon estimation problem [17] shows that the value functions are non-

convex and are therefore poorly approximated by a single quadratic form. The

work in [24] suggested that a family of quadratic forms provide a much better way
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of approximating the value function for the estimation problem. This approach

can also be adopted for the output feedback control problem considered in this

paper.

The basic idea behind the approximations used in [24] is as follows. While

the value function, h, is inherently non-convex due to the choice in Equation 3.3,

the functions ht and hnt may be well approximated by quadratic forms. This

conjecture is based on two observations. First the initial value functions h(θ, b, r)

for b = 0 and b = M + 1 − r are quadratic and second that the recursion in

Equation (3.4) and (3.5) are nearly quadratic. It therefore seems possible that we

can bound hnt(θ, b, r) and ht(θ, b, r) from above by a family of quadratic forms.

Propsition 3.3.1. There exist Λb
r,j ∈ R2n×2n , Ψb

r ∈ Rn×n, and scalars cbr,j, d
b
r for

r ∈ [0, 1, . . . ,M ], b ∈ [0, 1, . . . , b], and j ∈ [1, 2, . . . , ρbr] such that

hnt(θ, b, r) ≤ hnt(θ, b, r) = min
j∈[1,...,ρbr]

{
θTΛb

r,jθ + cbr,j
}

(3.7)

ht(θ, b, r) ≤ ht(θ, b, r) = ηTΨb
rη + dbr, (3.8)

where ρbr is a finite integer associated with step r and remaining transmissions b.

With the upper bounds of the true value functions, hnt and ht, we can construct

a suboptimal triggering set Sb+
r of the form

Sb+
r =

{
θ ∈ R2n : hnt(θ, b, r) ≤ ht(θ, b, r)

}
(3.9)

which is an approximation of the optimal triggering sets, Sb∗
r , in Equation (3.6).

We notice that (3.4) and (3.5) add a quadratic value to the expected mini-

mum of ht and hnt. The approximation can be done by interchanging the ex-

pectation and minimization operators as hnt = θTZθ + β + E [min(ht, hnt)] ≤
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θTZθ+β+min {E[ht], E[hnt]} , where the expected values can again be represent-

ed by a family of quadratic forms. Provided the variances of the noise processes

are relatively small, this approximation can be made tight.

For convenience, we let A =

 A+BK −BK

0 A

, L(k) =
 L(k)

L(k)

, β(k) =
tr(P (k)(Z11+Z12+Z21+Z22)) and R(k) = CAP (k)ATCT +CWCT +V . It can be

easily shown by using mathematical induction and the fact that E [min(ht, hnt)] ≤

min {E[ht], E[hnt]} that

Lemma 3.3.2. Equation (3.7) and (3.8) hold, if for all b ≥ 1 and all b̄− b ≤ r ≤

M − b,

Λb
r,j =


Z + A

T
Λb

r+1,jA j = 1, . . . , ρbr+1

Z + A
T

 Ψb
r+1 0

0 0

A j = ρbr
(3.10)

cbr,j =

 cbr+1,j + β(r) + tr(Λ
b

r+1,j) j = 1, . . . , ρbr+1

dbr+1 + β(r) + tr(Ψ
b−1

r+1) j = ρbr

(3.11)

Ψb
r = Z11 + (A+BK)TΨb−1

r+1(A+BK) (3.12)

dbr = min{Λ̂b−1
r+1, Ψ̂

b−1
r+1}+ β(r) (3.13)

34



where

Λ
b

r+1,j = R(r)L
T
(r + 1)Λb

r+1,jL(r + 1)

Ψ
b−1

r+1 = R(r)LT (r + 1)Ψb
r+1L(r + 1)

Λ̂b−1
r+1 = min

j∈[1,ρb−1
r+1]

[
tr(Λ

b−1

r+1,j) + cb−1
r+1,j

]
Ψ̂b−1

r+1 = tr(Ψ
b−1

r+1) + db−1
r+1.

In this case, ρbr equals M + 1 − b − r for b ≥ 1, and 1 for b = 0. The initial

condition is the same as defined in Theorem 3.2.1.

Because the recursion used above mimics the recursions used for the original

value function, we expect these bounds to be relatively tight. Precisely how tight

these bounds are is still being quantified.

Computing the suboptimal triggering sets involves a 2n by 2n matrix-matrix

multiplication with a computational complexity O((2n)3). The computation of

hnt dominates the effort since it has the most quadratic forms to compute. One

can therefore show that the effort associated with computing the suboptimal trig-

gering set Sb+
r will be O(b(M + 1 − b)(M + 2 − b)(2n)3). This has a complexity

that is polynomial in n and quadratic in M (the length of the horizon window).

The complexity is much lower than that used in computing the value functions,

so these approximations may represent a practical way of implementing optimal

event-triggered controllers provided the approximations are tight. Preliminary

simulation results are given below to experimentally evaluate how good the ap-

proximation really is.
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3.4 Simulation Results

As stated above, we’d like to experimentally evaluate how closely the approx-

imations in Equation (3.7) and (3.8) approximate the value function computed

using the Equation (3.4) and (3.5). We’ll do this for a specific example. Because

we can only compute the exact value function for scalar systems, this example

focuses only on the scalar system.

The system under study is a scalar system where A,B,C,D = 1, W = V = 1,

µ0 = Π0 = 1, K = −0.95, M = 4 and b = 1. We consider a control problem

without a penalty on the control input, so that Z =

 1 0

0 0

. The value functions
and their bounds were computed using the recursions described in the preceding

section. The results from this comparison are shown below in Figure 3.3.

The left column of Figure 3.3 shows the value functions and their upper bounds.

While it may be difficult to see, both the value function and the upper bound are

shown in these graphs. If one looks closely along the plane where η = 0, one may

see a white line that marks the upper bound. For k = 0 and k = 1, these plots

show a small difference between h and its bound appears. For the other values

of k it is nearly impossible to see any difference. The triggering-sets are easily

identified as the boundary of the deep values in these plots. These boundaries

mark where ht and hnt are equal to each other. The triggering sets are more

clearly seen in the contour plots on the right column of Figure 3.3. The boundary

of the optimal triggering-set is marked by the asterisks. The boundary of the

suboptimal triggering sets are marked by the solid lines. These figures show that

the suboptimal and optimal triggering-sets are nearly identical with only small

variations appearing for k = 0 and k = 1.
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Figure 3.3. Value functions and optimal/suboptimal triggering sets.
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Figure 3.4. Mean square state of optimal, suboptimal and periodic
transmissions

We can evaluate the performance of the system under periodic, optimal, and

suboptimal event-triggering. In particular, let’s vary the number of allowed trans-

missions, b̄, between 1 and 4. For these values of b, we compute the optimal and

suboptimal triggering sets and then use these sets in a simulation of the system.

The results of these simulations are shown in Figure 3.4. This figure plots the

mean square state with respect to b̄, when transmission is done using the optimal,

suboptimal and periodic triggering. One can see that the suboptimal event trig-

gers performance are only slightly worse than the optimal event triggering sets,

and both of them have smaller mean square state errors than periodic trigger-

ing. Finally, we determine the actual mean square state that should have been

achieved. This value matches what was achieved using the optimal event triggers.

In this example, the complexity associated with computing and using the opti-

mal triggering sets is a thousand times greater than the complexity of the subopti-

mal triggering sets. In particular, the optimal triggering sets are characterized over
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a range of [−20, 20] with a quantization level of 0.2. This requires 4×104 points per

value function. Since there areM+1−b value functions, computing the thresholds

requires us to store 1.6 × 105 points. These points are then used in a bisection

search to determine the thresholds. This search requires ⌈2 log2(40/0.2)⌉ = 16

steps to achieve an accuracy consistent with the quantization level of 0.2, so a to-

tal of 25×105 computations are needed to determine the triggering set thresholds.

For this example there are a total of
(
40
0.2

)
2
(
M + 1− b

)
b = 1600 thresholds to

be used and checking whether a given θ lies in the triggering set or not requires

(40/0.2)2 = 400 comparisons.

In contrast, we only need 1
2
(M + 1 − b)(M + 2 − b) = 10 matrices to char-

acterize the bounds on the value functions. Determining these matrices requires

matrix-matrix multiplications on the order of (2n)3 multiplies, so the total compu-

tational cost required to determine the upper bounds is 10(2n)3 = 80 multiplies.

Evaluating the event triggering bounds, requires all 10 matrices with a computa-

tional cost of (2n)2(M + 1 − r − b) multiplies if the current event index is (r, b).

The second term represents the number of quadratic forms used in evaluating hnt.

The worst-case occurs when r = b = 0, so the worst-case computational cost is

(2n)2(M + 1) = 20 multiplies.

From the preceding discussion it is clear that the total space-complexity of

the optimal approach is on the order of 25 × 105 whereas the space-complexity

of the suboptimal approach is 10(2n)3 = 80. The cost of evaluating an event-

trigger for the optimal case is 400 whereas the suboptimal case only requires 20

multiplies. For this example, the proposed suboptimal method clearly has a much

smaller computational cost than the optimal method. Moreover, the suboptimal

thresholds work nearly as well as the optimal ones as indicated in Figure 3.4.
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3.5 Summary

This chapter first presents the minimum mean state and the optimal trigger-

ing sets of the event triggered output feedback systems with limited transmissions

over a finite horizon. Since both the minimum mean state and the optimal trig-

gering sets are not in closed forms, they can only be calculated numerically. By

a computation analysis, the computation of the optimal triggering sets is shown

to have an exponential complexity with respect to the state dimension. With the

concern about the exponential computation complexity of the optimal triggering

set with respect to the state dimension, this chapter then provide suboptimal

triggering sets which is more computationally tractable. These suboptimal trig-

gering sets, based on the same idea obtaining the suboptimal triggering sets in

event triggered state estimation, relies on using a family of quadratic forms to

characterize the value functions in the problem’s optimal dynamic program. Our

example shows that this suboptimal sets is much more computational effective

and have the similar performance as the optimal triggering sets.

Both work in Chapter 2 and 3 are for finite horizon cases. In the next chap-

ter, we will talk about the event triggered state estimation problem with limited

communication over infinite horizon.
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CHAPTER 4

OPTIMAL AND SUBOPTIMAL TRIGGERING SETS OF STATE

ESTIMATION PROBLEM WITH INFINITE HORIZON

In infinite horizon cases, the communication limitation is reflected by a con-

stant called communication price. The cost of event triggered state estimator is

defined as the average mean square estimation discounted by the communication

price. The minimum cost and the optimal triggering sets were obtained in [52].

Realizing the computation of the optimal triggering sets is difficult, Cogill et.al

provided a suboptimal solution in [11]. Their suboptimal solution could guarantee

that for stable systems, the cost of suboptimal solution won’t be greater than six

times of the minimum cost. Although we know that the higher communication

price reflects fewer communication resources, the trade of between communication

and performance was never clearly stated in earlier papers.

This chapter examines another suboptimal solution to the constrained state

estimation problem considered in [52]. The suboptimal solution is comparable to

that used by Cogill [11] for the Xu/Hespanha problem, and extends the earlier

work to unstable systems. In particular, this chapter derives a suboptimal solution

that guarantees the specified least average sampling period. The chapter also

derives upper and lower bounds on the event triggered estimator performance.

Simulation results are used to demonstrate the utility of these bounds.

41



4.1 Problem Statement

The event triggering problem assumes that a sensor is observing an observable

linear discrete time process. The process state x : Z+ → Rn satisfies the difference

equation

x(k) = Ax(k − 1) + w(k)

for k ∈ Z+ where A is a real n × n matrix, w : Z+ → Rn is a zero mean white

Gaussian noise process with variance W . The initial state, x0, is assumed to be a

Gaussian random variable with mean µ0 and variance Π0. The sensor generates a

measurement y : Z+ → Rm that is a corrupted output. The sensor measurement

at time k is

y(k) = Cx(k) + v(k)

for k ∈ Z+ and where v : Z+ → Rm is another zero mean white Gaussian noise

process with variance V that is uncorrelated with the process noise w. The process

and sensor blocks are shown on the left hand side of Figure 4.1. In this figure, the

output of the sensor feeds into a sensor subsystem that decides when to transmit

information to a remote observer. The subsystem consists of three components:

a Kalman filter, a local observer and an event detector.

Let Y(k) = {y(0), y(1), · · · , y(k)} denote the measurement information avail-

able at step k. The Kalman filter generates a state estimate xKF : Z+ → Rn that

minimizes the weighted MSEE E [∥x(k)− xKF (k)∥2Z | Y(k)] at each step condi-

tioned on all of the sensor information received up to and including step k, where

Z ≥ 0 is the weight matrix and ∥θ∥2Z = θTZθ. Let Z = P T
Z PZ . For the process
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Figure 4.1. Structure of event triggered networked state estimator

under study the filter equation is

xKF (k) = AxKF (k − 1) + P−1
Z L (y(k)− CAxKF (k − 1)) ,

where L = AXC
T
(CXC

T
+ V )−1, A = PZAP

−1
Z , C = CP−1

Z , W = PZAP
−1
Z and

X satisfies the discrete linear Riccati equation

AXA
T −X − AXC

T
(CXC

T
+ V )−1CXA

T
+W = 0.

The steady state estimation error eKF (k) = x(k)− xKF (k) is a Gaussian random

variable with zero mean and weighted variance E(eKFZe
T
KF ) = Q = (I − LC)X.

Let {τ ℓ}∞ℓ=1 denote a sequence of increasing times (τ ℓ ∈ [0,+∞]) when infor-

mation is transmitted from the sensor to the local and the remote observers. We

require that τ ℓ is forward progressing, i.e. for any k ≥ 0, there always exists a

ℓ such that τ ℓ ≥ k. Let X (k) =
{
xKF (τ

1), xKF (τ
2), . . . , xKF (τ

ℓ(k))
}
denote the

filter estimates that are transmitted to the local and the remote observers by step

k where ℓ(k) = max
{
ℓ : τ ℓ ≤ k

}
. We can think of this as the ”information set”

available to both the local observer and the remote observer at time k. The local
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observer generates a posteriori estimate xLO : Z+ → Rn of the process state that

minimizes the weighted MSEE, E
[
∥x(k)− xLO(k)∥2Z | X k

]
, at time k conditioned

on the information received up to and including time k. The a priori estimate

of the local observer, x−
LO : Z+ → Rn, minimizes E

[
∥x(k)− x−

LO(k)∥2Z | X k−1

]
,

the weighted MSEE at time k conditioned on the information received up to and

including step k − 1. These estimates take the form

x−
LO(k) =AxLO(k − 1)

xLO(k) =

 x−
LO(k), if no transmission at step k;

xKF (k), otherwise ,

where x−
LO(0) = µ0.

Let e−KF,LO(k) = xKF (k)−x−
LO(k) and S(k) ⊆ Rn be a triggering set at step k.

The event detector detects the a priori gap e−KF,LO(k) and compares the gap with

the triggering set S(k). If the gap is inside the triggering set S(k), then no data

is transmitted. Otherwise, the state estimate in Kalman filter xKF (k) is sent to

both the local and the remote observers.

The remote observer and the local observer have similar behavior. It produces

an a priori state estimate x−
RO(k) and an a posteriori state estimate xRO(k) to

minimize the weighted MSEE at step k based on the information received by

step k − 1 and by step k with weight matrix Z, respectively. Because there is

communication error, the remote observer receives the corrupted state estimate of

the Kalman filter when transmission occurs. The dynamics of the state estimate
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x−
RO(k) and xRO(k) in the remote observer are

x−
RO(k) =AxRO(k − 1) (4.1)

xRO(k) =

 x−
RO(k), if no transmission at step k;

xKF (k) + n(k), otherwise ,
(4.2)

where x−
RO(0) = µ0, n(k) is a zero mean white Gaussian noise with variance N

and independent with w and v.

The communication between the sensor and the remote observer is limited in

the sense that the communication channel can only reliably transport a limited

number of packets over the channel. This limitation on channel capacity means

that the average interval between any consecutive packets is greater than or equal

to a number Tr ≥ 1. Formally, we express it as

min{t : E(e−KF,LO(t+ τ ℓ)) /∈ S(t+ τ ℓ)} ≥ Tr, ∀ℓ ∈ Z+. (4.3)

Let S be the collection of all triggering sets. The average cost is

J({S(k)}∞k=0) = lim
M→∞

1

M

M−1∑
k=0

E
(
c(eTRO(k), S(k))

)
, (4.4)

where eRO(k) = x(k)− xRO(k) is the remote state estimation error, λ ∈ R+ is the

communication price and the cost function c : Rn × S → R+ is defined as

c(eTRO(k), S(k)) = ∥eRO(k)∥2Z + λ1e−KF,LO(k)/∈S(k), (4.5)

with 1{·} a characteristic function which is the weighted mean square estimation

error discounted by the cost of transmitting data.
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Our objective is to find the optimal triggering sets {S(k)}∞k=0 to minimize the

average cost J ({S(k)}∞k=0) subject to the communication requirement (4.3), and

the optimal cost is denoted by J∗.

4.2 The Optimal Cost and Upper and Lower Bounds on It

For the convenience of the rest of this paper, we define

e−KF,LO(k) =xKF (k)− x−
LO(k),

eKF,LO(k) =xKF (k)− xLO(k),

e−LO,RO(k) =x−
LO(k)− x−

RO(k),

eLO,RO(k) =xLO(k)− xRO(k).

The variances of these random variables are denoted by U−
KF,LO(k), UKF,LO(k),

U−
LO,RO(k) and ULO,RO(k), respectively. Note that eRO(k) = (eKF + eKF,LO +

eLO,RO)(k). Since eKF (k), eKF,LO(k) and eLO,RO(k) are uncorrelated with each

other, it can be shown that

Ja({S(k)}∞k=0) =J({S(k)}∞k=0)− tr(Q)

= lim
M→∞

1

M

M−1∑
k=0

E(ca(e
−
KF,LO(k), S(k))),
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where

ca(e
−
KF,LO(k), S(k))

=tr(ZULO,RO(k)) + λ1e−KF,LO(k)/∈S(k) + ∥eTKF,LO(k)∥2Z

=
[
∥e−KF,LO(k)∥

2
Z + tr(ZU−

LO,RO(k))
]
1e−KF,LO(k)∈S(k) + [λ+ tr(ZN)] 1e−KF,LO(k)/∈S(k).

(4.6)

So finding {S(k)}∞k=0 to minimize J({S(k)}∞k=0) in (4.4) subject to the communica-

tion requirement (4.3) is equivalent to finding {S(k)}∞k=0 to minimize Ja({S(k)}∞k=0)

with (4.3) satisfied, and the optimal cost of Ja({S(k)}∞k=0) is denoted by J∗
a . The

problem stated above is an optimal average cost problem, and a method for solving

it was given in [5].

This section states the optimal average cost and the corresponding optimal

triggering sets in Lemma 4.2.1. Then, an upper bound on the cost of any triggering

sets {S(k)}∞k=0 is given in Lemma 4.2.2. Finally, Lemma 4.2.3 presents a lower

bound on the optimal cost. The triggering sets discussed in this section can be

any subsets of Rn, and the next subsection will focus explicitly on quadratic ones.

Lemma 4.2.1. If there exist two sequences of bounded functions {Jk : Rn → R}

and {hk : Rn → R} for k = 0, 1, · · · such that

Jk+1(e
−
KF,LO(k)) + hk(e

−
KF,LO(k)) = G

(
hk+1(e

−
KF,LO(k))

)
where

G (h(θ)) =min
S(k)

{
E(h(e−KF,LO(k + 1))|eKF,LO(k) = θ) + ca(θ, S(k))

}
,
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then the optimal cost is

J∗
a = lim

N→∞

1

N

N−1∑
k=0

E(Jk+1(e
−
KF,LO(k))), (4.7)

and the optimal triggering set

S∗(k) =
{
θ : E(hk+1(e

−
KF,LO(k + 1))|eKF,LO(k) = θ) + ∥θ∥2Z + tr(ZU−

LO,RO(k))

≤ λ+ tr(ZN) + E(hk+1(e
−
KF,LO(k + 1))|eKF,LO(k) = 0)

}
. (4.8)

Proof. Given any S(k),

Jk+1(e
−
KF,LO(k)) + hk(e

−
KF,LO(k))

≤E
(
hk+1(e

−
KF,LO(k + 1))|e−KF,LO(k)

)
+ ca(e

−
KF,LO(k)).

Taking the expect action of both sides, we have

E(Jk+1(e
−
KF,LO(k)) + E

(
hk(e

−
KF,LO(k))

)
≤E(ca(e

−
KF,LO(k))) + E

(
hk+1(e

−
KF,LO(k + 1))

)
.

Then adding the inequalities from step 0 to M − 1 and taking the limit of M as

it goes to infinity, we have

lim
M→∞

1

M

M−1∑
k=0

E(Jk+1(e
−
KF,LO(k))) ≤ Ja(S(k)).

We know that the equality holds if S(k) = S∗(k), so equation (4.7) holds and the

optimal triggering set is (4.8).
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With the optimal triggering set S∗(k) described in (4.8), transmission occurs

when the average cost with transmission is less than the average cost without

transmission. Based on the current information e−KF,LO(k) and the current decision

to transmit or not, the average cost consists of two parts: the current cost and

the estimated future cost. If no transmission occurs at step k, the current cost is

∥θ∥2Z + tr(ZU−
LO,RO(k)), and the estimated future cost is

E(hk+1(e
−
KF,LO((k + 1))|eKF,LO(k) = e−KF,LO(k)).

The left side of the inequality in (4.8) is the average cost if no transmission occurs

at step k. With the same analysis as above, the right side of the inequality in (4.8)

is the average cost if transmission occurs at step k. Therefore, if e−KF,LO(k) lies

in S(k), the average cost without transmission must be less than the average cost

with transmission, and no data is transmitted. Otherwise, xKF (k) is transmitted

to both the local and the remote observers.

If the optimal strategy exists, it must be time varying, because the cost func-

tion ca is a time varying function. If there is no communication noise, i.e. N = 0,

the optimal strategy is the same as the strategy in [52] with time invariant function

hk and time invariant constant Jk.

It is difficult to calculate the optimal triggering sets {S∗(k)}∞k=0 described in

(4.8). There is, therefore, great interest in identifying computable approximations

{S(k)}∞k=0 of the optimal triggering sets . To characterize the performance of

{S(k)}∞k=0, an upper bound on the cost of {S(k)}∞k=0 and the difference between

the cost and the optimal cost should be derived. Lemma 4.2.2 and 4.2.3 derive

an upper bound on the cost of {S(k)}∞k=0 and a lower bound on the optimal cost,

respectively. These two bounds can be used to characterize the performance of
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{S(k)}∞k=0.

Lemma 4.2.2. Given the triggering set {S(k)}∞k=0, if there exists a sequence of

bounded function {fk : Rn → R} and a sequence of finite constants {Jk} such that

E
(
fk+1(e

−
KF,LO(k + 1))|e−KF,LO(k) = θ, S(k)

)
+ ca (θ, S(k)) ≤Jk+1 + fk(θ), (4.9)

for any k ∈ Z+, then

Ja({S(k)}∞k=0) ≤ lim
M→∞

1

M

M∑
k=1

Jk < ∞ (4.10)

Lemma 4.2.3. If there exists a sequence of bounded function {gk : Rn → R} and

a sequence of nonnegative constants {Jk} such that

Jk+1 + gk(e
−
KF,LO(k)) ≤ G

(
gk+1(e

−
KF,LO(k))

)
, (4.11)

for any k ∈ Z+, then

Ja({S(k)}∞k=0) ≥ J∗
a ≥ lim

M→∞

1

M

M∑
k=1

Jk ≥ 0

Proof. We can follow the same steps in the proof of Lemma 4.2.1 to get the two

lemmas above.

Lemma 4.2.2 and 4.2.3 are very similar to Lemma 4 and 5 in [11]. One of

the differences is that we allow time varying functions fk, gk and time varying

constants Jk and Jk. If there is no communication noise, then the cost function

ca becomes time invariant and all the time varying parameters fk, Jk, gk and Jk

should be time invariant, too. The other difference is that the functions fk and gk
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need to be bounded from both below and above while [11] only required that fk

was bounded from below and gk was bounded from above. It seems that we have a

more strict assumption, but in fact the property of being bounded from both below

and above is an intrinsic property of the cost function, ca ∈ [0, λ+ tr(ZU−
LO,RO)].

Since fk and gk are approximations of the cost function, they should be bounded,

too.

Lemma 4.2.2 and 4.2.3 can be used for any triggering sets {S(k)}∞k=0. The next

subsection makes use of these two lemmas, and considers the case where these sets

are defined by quadratic forms. We are interesting in quadratic sets, because they

are easy to compute.

4.3 Quadratic Sets, Their Average Period and Performance

The quadratic sets are analyzed in this section. Theorem 4.3.1 first states

how to design quadratic sets such that the communication requirement (4.3) is

satisfied, and then gives the upper bounds on the cost of the quadratic sets and

its difference from the optimal cost. Please see the appendix for the proof.

Theorem 4.3.1. Given a quadratic triggering set

S(k) = {e−KF,LO(k) : ∥e
−
KF,LO(k)∥

2
H ≤ λ+ tr(ZN)− ζ(k)}, (4.12)

where the n× n matrix H ≥ 0 satisfies the generalized Lyapunov inequality

ATHA

1 + δ2
−H +

Z

1 + δ2
≤ 0, (4.13)
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for some δ2 ≥ 0, and

ζ(k) =
δ2(λ+ tr(ZN)) + tr(ZU−

LO,RO(k)) + tr(HR)

1 + δ2
(4.14)

with

λ ≥ max
t=1,··· ,Tr−1

[
(1 + δ2)

t∑
i=1

tr(HAt−iR(AT )t−i)

−tr(ZN) + tr(ZAtR(AT )t) + tr(HR)
]
, (4.15)

and R = P−1
Z L(CAQATCT + CWCT + V )LT (P−1

Z )T , the statements below are

true.

1. the communication requirement (4.3) is satisfied;

2. Ja({S(k)}∞k=0) is bounded above by

Ja({S(k)}∞k=0) (4.16)

= lim
M→∞

1

M

M∑
k=1

E(fk(e
−
KF,LO(k))|eKF,LO(k − 1) = 0)

≤ lim
M→∞

1

M

M∑
k=1

min{tr(HR) + ζ(k), λ+ tr(ZN)}

where fk(θ) = min{∥θ∥2H + ζ(k), λ+ tr(ZN)};

3. The difference between the cost of {S(k)}∞k=0 and the optimal cost is bounded

above by

Ja({S(k)}∞k=0)− J∗
a ≤ min{D1, D2},
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where

D1 = lim
M→∞

1

M

M∑
k=1

max{ζ(k)− tr(ZU−
LO,RO(k)), 0}+ tr(Y R),

Y ≥ 0 is the matrix which has the smallest trace such that Y ≥ H − Z,

D2 =λ+ tr(ZN)− lim
M→∞

1

M

M∑
k=1

min{tr(ZU−
LO,RO(k)), λ+ tr(ZN)}.

Remark 4.3.2. For any A and Z > 0, there always exists an H > 0 and a

δ2 ≥ 0 such that the generalized Lyapunov inequality (4.13) holds. We should

notice that the greatest singular value of A, σ(A), is always greater than or equal

to the absolute value of any eigenvalue of A. So if we set δ2 to be the value such

that σ(A) ≤
√
1 + δ2, A/

√
1 + δ2 is always stable, and there always exists H ≥ 0

such that (4.13) holds for any semi-positive definite matrix Z.

According to the triggering set S(k) in (4.12), if the approximated cost of

no transmission at step k is less than the approximated cost of transmission,

transmission will not occur at step k. Put ζ(k) defined in (4.14) into the triggering

set S(k) in (4.12), and the triggering event is

∥e−KF,LO(k)∥
2
H ≤

(λ+ tr(ZN))− (tr(HR) + tr(ZU−
LO,RO(k)))

1 + δ2
,

where tr(HR)+tr(ZU−
LO,RO(k)) is an approximation of the cost of no transmission

at step k, and λ+ tr(ZN) is an approximation of the cost of transmission. If the

cost of no transmission is less, the right side of the inequality above is negative,

and the inequality never holds, which implies that transmission will not occur at

step k.
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The lower bound on communication price λ in (4.15) is calculated numerically.

Basically, the value in the bracket of (4.15) is calculated from step 1 to step Tr−1,

and λ is chosen to be the greatest one. But as Tr grows, one may want to find a

more efficient way to calculate λ. Corollary 4.3.3 gives explicit description of λ.

Propsition 4.3.3. Let P T
HPH = H, PRP

T
R = R, P T

Z PZ = Z and PNP
T
N = N . If

λ = tr(HR)− tr(ZN)

+

 (1 + δ2)nσ2(PH)σ
2(PR)

1−σ2(Pr−1)(A)

1−σ2(A)
, if σ(A) ̸= 1;

(1 + δ2)nσ2(PH)σ
2(PR)(Pr − 1)σ2(A) otherwise,

+

 nσ(PZ)σ(PN), if σ(A) ≤ 1;

nσ(PZ)σ(PN)σ
2(Tr−1)(A), otherwise,

(4.17)

then the inequality (4.15) holds.

Proof. Equation (4.17) can be derived by finding the upper bound of the right side

of inequality (4.15). From the fact that tr(HAiR(AT )i) = tr(PHA
iPR(A

T )iP T
H) ≤

nσ2(PHA
iPR) ≤ nσ2(PH)σ

2(PR)σ
2i(A), it can be shown that (4.17) is an upper

bound on the right hand side of (4.15), and Proposition 4.3.3 is true.

4.4 Simulation Results

An example is used to demonstrate that the proposed quadratic triggering

sets can guarantee the communication requirement (4.3) and that the average

cost triggered by the quadratic sets is bounded by the upper and lower bound

derived in Theorem 4.3.1. We then compare the average cost of the quadratic sets

in this paper against the average cost of the quadratic sets used in [11].
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Let’s consider the system with A to be

 0.95 1

0 1.01

, and C to be

[
0.1 1

]
.

The variances of the system noises are W =

 0.2 0

0 0.2

, V = 0.3, and N =

 0.02 0

0 0.02

. The weight matrix Z is chosen to be an identity matrix.

Given δ to be the greatest singular value of A, we calculate the quadratic

triggering sets, and run the state estimation system with the quadratic triggering

sets. In Figure 4.2, Tsim and Jsim are the average sampling period and the average

cost of quadratic triggering set. Jup and Dup are upper bounds of the average cost

and difference from the optimal cost, respectively. In the top plot of Figure 4.2,

the x-axis is the required least average sampling period Tr, and the y-axis is

the average sampling period in our experiment. We can find that the average

sampling period Tsim (solid line) is always greater than or equal to the required

least average sampling period Tr (dashed line). In the bottom plot of Figure 4.2,

the x-axis denotes the required least average sampling period, and y-axis denotes

the average cost. It shows that the average cost Jsim (solid line) is always bounded

from below by Jup−Dup (dotted line), and bounded from above by Jup (dot-dashed

line). The simulation results confirm the statements in Theorem 4.3.1.

Comparing against the result in [11] is of interest since they also approximated

the optimal triggering set with a quadratic form. Since their results can only be ap-

plied to stable systems without communication noise, we let A be

 0.95 1

0 0.95

,
and N be 0. Because there is no result in [11] showing how λ is related with

communication requirement Tr, the comparison is made given the same communi-

cation price, λ. To derive our quadratic triggering set, we let δ2 = 1.5. Figure 4.3
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Figure 4.2. The average sampling period of the quadratic sets and the
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Figure 4.3. Comparison of the average costs of the triggering sets in this
paper and [10]

shows the average costs of both quadratic triggering sets in this paper and [11].

The x-axis is the communication price λ, and the y-axis is the average cost. The

average cost of the quadratic triggering set in this paper is indicated by the solid

line, and the average cost of the quadratic triggering set in [11] is indicated by

the dashed line. Figure 4.3 shows that these two costs are almost the same. Our

quadratic triggering set, however, can be applied to unstable linear time invariant

systems while the results in [11] can not.

4.5 Summary

The minimum average mean square estimation error discounted by communi-

cation price and the optimal triggering set has already been solved in [52]. Because

the computation of the optimal triggering set is really complex, a suboptimal solu-

tion for stable systems was proposed in [11]. The tradeoff between communication
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and the average mean square estimation error discounted by communication price,

however, was never made explicit in the earlier papers.

This chapter explicitly states the relationship between the performance of the

state estimation system and the least average sampling period when communica-

tion is triggered by quadratic events. Upper and lower bounds on the cost of the

quadratic triggering sets are derived. The simulation results agree on the theoret-

ic results, and indicates that the quadratic set in this paper is comparable with

the quadratic set used in [11] for stable systems while our triggering sets can be

applied to unstable systems.

Based on the same structure of the event triggered state estimator discussed

in this chapter, one of our future work is to close the control loop with another

networked communication link to build a decoupled event triggered output feed-

back system. The decoupled event triggered output feedback system is proposed

in Section 6.1.
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CHAPTER 5

APPLICATION OF EVENT TRIGGERED STATE ESTIMATOR WITH

INFINITE HORIZON TO QUANSER c⃝ 3DOF HELICOPTER

In this chapter, the event triggered state estimator in Chapter 4 is applied

to the highly nonlinear real time system, Quanser c⃝ 3 degree-of-freedom (3D-

OF) helicopter. The use of this highly non-linear mechanical plant contrast-

s with the linear (mainly non-mechanical) implementations of previous works.

The controller/estimator is implemented on a standard PC using the real-time

S.Ha.R.K. kernel. A detailed analysis of the performance as well as the improve-

ments achieved by the event triggered state estimator is presented.

5.1 Experimental Setup

The real time system used consists primarily of a Quanser c⃝ 3DOF helicopter

model as the main plant, an ISA MultiQ-3 board for data acquisition, two UMP-

2405 modules as power amplifiers for the helicopter DC motors and a standard

single processor PC running on a Free-DOS system. Matlab c⃝ and Simulink c⃝

are extensively used for system simulation during plant modeling and the design

of the controllers.

The 3DOF helicopter model, shown in Figure 5.1, has three main components

mounted on a table top; a main beam, a twin rotor assembly and a counterweight.

59



Figure 5.1. Schematic of the 3DOF helicopter

The system is actuated by two rotors driven each by an electric DC motor. En-

coders for position measurements are mounted in each of the three axis of the

system: elevation (ϵ(t)), pitch (ρ(t)), and travel (γ(t)).

The elevation subsystem is shown in Figure 5.2. The dotted model indicates

the initial position of 3DOF helicopter, and the solid line is the position after apply

some control input to it. Let ϵm and ϵ0 denote the measured and initial elevation,

respectively. The dynamics of the elevation subsystem can be characterize as

Jϵϵ̈m =−
√
((mlw −Mla)g)2 + ((m+M)gd)2 sin(ϵm)

+ Tcol cos(ρ)(la + d tan(ϵm + ϵ0))− cϵϵ̇m

where m is the gross counter weight at the tail, M is the gross weight at the

head, lw is the length from connecting point to the tail while la is the length from

connecting point to the head, d is the length from connecting point to the fixed
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Figure 5.2. Elevation of the 3DOF helicopter
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Figure 5.3. Pitch of the 3DOF helicopter

point, Tcol = Tf + Tb is the collective thrust generated by both front and back

motors, Jϵ is the inertia moment for elevation, and cϵϵ̇ is the drag generated by

air.

The pitch subsystem shown in Figure 5.3 has the behavior as

Jρρ̈ = Tcyclh −Mbfgd sin(ρ)− cρρ̇+ cγργ̇,

where Mbf = mb +mf is the sum mass of the two motors, lh is the length from

the center to each motor while d is the length from connecting point to the fixed

point, ρ is the angle of pitch while γ is the angle of travel, Tcyc = Tb − Tf is the

cyclic thrust generated by back and front motor, Jρ is the inertia moment of pitch,

and cρρ̇ is the drag due to the change of pitch while cγργ̇ is the drag due to the

change of travel.

The travel subsystem shown in Figure 5.4 has the dynamic behavior as

Jγ γ̈ = −laTcol sin ρ cos ϵ− cγ γ̇,
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Figure 5.4. Travel of the 3DOF helicopter

where γ is the angle of travel, Jγ is the inertia moment of travel and cγ γ̇ is the

drag due to the change of travel.

With the model of the 3DOF helicopter described above, we notice that this

is a highly nonlinear model. To apply our event triggering methods in Chapter 4

to this system, we need to linearize it first. Neglecting the non-dominant terms

and under the assumption that sin(ρ) ≈ ρ and sin(ϵm) ≈ ϵm, the model of 3DOF

helicopter can be simplified as

Jϵϵ̈m = −
√

((mlw −Mla)g)2 + ((m+M)gd)2ϵm + cϵ ˙ϵmlaTcol cos(ρ)

Jρρ̈ = −Mbfgdρ− cρρ̇+ lhTcyc

Jγ γ̈ = −cγ γ̇ − laTcol sin(ρ) cos(ϵ)
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la 0.67 m ϵ0 -0.136 rad

lh 0.177 m cϵ 0.18 kg.m2/s

lw 0.48 m cρ 0.003 kg.m2/s

d 0.04 m cγ 0.25 kg.m2/s

M 1.4611 kg cγρ 0.003 kg.m2/s

m 2 kg Jϵ 3.5 kg.m2

Mbf 0.29 kg Jρ 0.01 kg.m2

g 9.8 m/s2 Jγ 4 kg.m2

TABLE 5.1

3DOF HELICOPTER PARAMETER VALUES

Let

uϵ =Tcol cos(ρ) (5.1)

uρ =Tcyc (5.2)

uγ =Tcol sin(ρ) cos(ϵ). (5.3)

We have

Jϵϵ̈m = −
√
((mlw −Mla)g)2 + ((m+M)gd)2ϵm + cϵ ˙ϵm + lauϵ

Jρρ̈ = −Mbfgdρ+ lhuρ

Jγ γ̈ = −lauγ − cγ γ̇,

where all the system parameters can be found in Table 5.1.
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Our objective of this experiment is to set the helicopter body to a commanded

elevation (ϵc(t)) and a commanded travel rate (γ̇c(t)), and compare the system

performance of event triggered state estimator against the system performance of

periodically triggered state estimator when both of them have the same average

sampling period.

Now that the experiment is set up and the system is linearized, we will design

the event triggered and periodically triggered state estimators according to the

linearized model, and then compare their performances in our experiment.

5.2 Event and Periodically Triggered State Estimators

The event triggered state estimator in Chapter 4 is applied to the 3DOF he-

licopter assuming that there is no communication noise. Its framework is shown

in Figure 5.5. The measurements of elevation, pitch and travel subsystems are

sampled every 0.005 seconds, and then fed into the elevation, pitch and travel sen-

sor subsystem, respectively. These sensor subsystems process the measurement

and decide when to transmit the processed measurements to the corresponding

remote observers. These remote observers generate remote state estimates for the

three subsystems (elevation, pitch and travel) which, together with the command-

ing signals, are used by the controllers of elevation, pitch and travel to produce

control inputs of these subsystems. A motor input generator, then, transforms

these control inputs to the front and back motor thrusts which are fed back to the

3DOF helicopter.
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Figure 5.5. Framework of event triggered state estimator for 3DOF
helicopter
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Let’s define the states of elevation, pitch and travel subsystem as

xϵ(t) =[

∫ t

s=0

ϵm(s)ds ϵm(t) ˙ϵm(t)]
T ,

xρ(t) =[

∫ t

s=0

ρ(s)ds ρ(t) ρ̇(t)]T ,

xγ(t) =[γ(t) γ̇(t)]T ,

respectively. For each subsystem, we will build a sensor subsystem to process

measurements and decide when to transmit the processed measurements to the

corresponding remote observer. Take the elevation subsystem as an example.

The elevation sensor subsystem is designed the same as the sensor subsystem as

described in Chapter 4. There is a Kalman filter to process the elevation measure-

ments with the Kalman gain


1 0.0016

0 0.3563

0 10.7707

. The filtered state of elevation is

denoted by xϵ,KF : R → Rn. It will be transmitted to the remote observer of eleva-

tion when ∥e−ϵ,KF,LO∥2Hϵ
> λϵ− ζϵ, where e

−
ϵ,KF,LO is defined as e−KF,LO in Chapter 4

for the elevation subsystem, Hϵ, λϵ and ζϵ can be calculated the same as H, λ and

ζ in Chapter 4. The same strategy is applied to the pitch and travel sensor subsys-

tems. The filtered state of pitch subsystems xρ,KF is calculated by a Kalman filter

with the Kalman gain


1 0.0015

0 0.3177

0 8.6804

 and transmitted to the remote observers of

pitch when ∥e−ρ,KF,LO∥2Hρ
> λρ − ζρ, while The filtered state of travel subsystem

xγ,KF is calculated by a Kalman filter with the Kalman gain

 0.4083

13.8375

 and

transmitted to the remote observers of travel when ∥e−γ,KF,LO∥2Hγ
> λγ − ζγ.
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Remote observers, controllers and motor input generator compose the esti-

mator based controller subsystem. The remote observers generate remote state

estimates of elevation xϵ,RO, pitch xρ,RO and travel subsystems xγ,RO, and are built

the same as the remote observer in Chapter 4.

The subsystem controllers use the remote state estimate together with the

commanded signal of elevation, pitch and travel rate, ϵc, ρc and γ̇c, to calculate

the control inputs uϵ, uρ and uγ which are expressed formally as

uϵ(k) =

[
7 44 68

]xϵ,RO(k)−


∫ kτs
s=0

ϵc(s)ds

ϵc(kτs)

0


 ;

uρ(k) =

[
3.54 30.65 11.54

]xρ,RO(k)−


∑k

j=0 τsρc(k)

ρc(k)

0


 ;

uγ(k) =

[
14.03 22.6

]xϵ,RO(k)−

 γc(kτs)

γ̇c(kτs)


 , (5.4)

where ϵc and γ̇c are commanded elevation and travel rate given by user, and ρc,

the commanded pitch, together with the front and back thrusts is calculated by

the motor input generator.

The motor input generator calculates ρc, Tf and Tb according to Equation

(5.1), (5.2), (5.3) and the equation Tcol = Tf + Tb and Tcyc = Tb − Tf . ρc, Tf and
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Tb are explicitly expressed as

ρc(k) =
uτ (k)

Tcol(k − 1) cos(ϵRO(k)− ϵ0)
(5.5)

Tf (k) =

uϵ(k)
cos(ρRO(k))

− uρ(k)

2

Tb(k) =

uϵ(k)
cos(ρRO(k))

+ uρ(k)

2
.

where ϵRO is the estimated elevation in remote observer of elevation, the second

element of xϵ,RO and ρRO is the estimated pitch in remote observer of pitch , the

second element of xρ,RO

The outputs of the estimator based controller subsystem, Tf and Tb, are then

fed back to the helicopter to control the helicopter body to the commanded ele-

vation (ϵc(k)) and travel rate (γ̇c(k)).

The framework of periodic feedback controller is the same as the event triggered

state estimator, except that the transmission rule is set to be periodic. To be

explicit, xϵ,KF , xρ,KF and xγ,KF are transmitted every Tϵ, Tρ and Tγ seconds,

respectively.

5.3 Experimental Results

We run the system for 90 seconds using event triggered and periodic transmis-

sion methods, respectively. We’d like to compare the system performance of both

transmission methods with the same average transmission period.

We first calculate the triggering event for the event triggered state estimators

of the elevation, pitch and travel subsystems given the required least average

transmission period to be 0.5s for the elevation subsystem, 0.2s for the pitch

subsystem and 0.25s for the travel subsystem. Based on these required least
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average transmission period, the triggering events for the elevation, pitch and

travel subsystems are

∥e−ϵ,KF,LO∥
2
Hϵ

>2.9189e− 004,where Hϵ =


0.9942 0.0049 0.0000

0.0049 0.9943 0.0030

0.0000 0.0030 0.9938

,

∥e−ρ,KF,LO∥
2
Hρ

>0.0197,where Hρ =


0.9507 0.0045 0.0000

0.0045 0.9584 −0.0464

0.0000 −0.0464 0.9473

,

∥e−γ,KF,LO∥
2
Hγ

>4.9122e− 004,where Hγ =

 0.9953 0.0050

0.0050 0.9948

,
respectively. After we use this triggering event to decide the transmission time, the

resulting average transmission period for the elevation, pitch and travel subsystems

are 0.8824s, 0.2256s and 0.2970s, respectively. These average period is used as the

transmission period for the periodically triggered state estimator. The system

performances of both event triggered and periodically triggered state estimator

are shown in Figure 5.6, and the transmission intervals of periodic and event

triggered transmission are given in Figure 5.7.

There are three plots in Figure 5.6. In each plot, the x-axis indicates the time,

red line indicates the commanded signal given by users, and the green and blue

lines represent the performances of the periodically triggered and event triggered

state estimator, respectively. The top plot gives the elevation performances of

both transmission methods. Its y-axis denotes the elevation angle. We can see

that both transmission methods give almost the same elevation performance. The

second plot gives the performances of pitch given by periodic transmission and
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event triggered transmission. Its y-axis is the pitch angle. We can see that the

pitch angle given by the periodic transmission keeps oscillating with the amplitude

of about 0.15 rad when the travel rate is commanded to be a constant, while the

oscillation of pitch angle given by event triggered transmission is so small that it

can be neglected. The third plot is the performances of travel rate given by both

transmission methods. It is easy to see that event triggered transmission provides

less oscillation and less static error than the periodic transmission. Therefore,

we can conclude that with the same average transmission period, event triggered

state estimator offers better overall performance of the 3DOF helicopter than the

periodic transmission.

The bottom plot of Figure 5.6 draws the commanded pitch signals of periodic

and event triggered transmissions. Although the commanded pitch signal is not

an aspect of the helicopter performance, it can provide us better understanding

of the behavior of the transmission intervals of pitch which will be discussed later.

The commanded pitch signal is calculated using the control input of the travel

subsystem (see Equation (5.5)), and is limited in the rang [−0.6, 0.6]. The control

input of travel depends on the remote state estimate of travel (see Equation (5.4)).

The remote state estimate of travel equals to the filtered state when transmission

in travel subsystem occurs, and the filtered state oscillates quickly because of the

noises in the travel subsystem. Therefore, the commanded pitch signal oscillates

quickly if it is in the range [−0.6, 0.6] and the transmissions of travel subsystem

occur very often. The analysis is demonstrated by the bottom plot in Figure 5.6

and the plots in bottom row of Figure 5.7. For the periodic transmission, since

the transmission of travel subsystem occurs periodically, the commanded pitch

oscillates most of the time except the time when the commanded pitch is out of
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the range [−0.6, 0.6], which is the transition period of the travel system. For event

triggered transmission, we can see that when there is no transmission in the travel

subsystem, the commanded pitch is smooth. When there is frequent transmission

of travel subsystem, the oscillation appears except the time when the commanded

pitch is out of the range [−0.6, 0.6], which is the transition period of the travel

subsystem.

Figure 5.7 shows the intervals of the periodic and event triggered transmissions.

There are six plots in this figure. The left column gives the full views of the

transmission intervals, while the right column enlarges the interval range [0, 1] of

the left column. The x-axes of all plots indicate the time, red lines indicate the

intervals of periodic transmission, and the blue stars indicate the intervals of event

triggered transmissions.

The plots in the first row are the transmission intervals of the elevation sub-

system. The elevation subsystem has the fewest transmissions during the three

subsystems, because the elevation subsystem is stable by itself and decoupled from

the other systems with local information only. Since the coupled part in eleva-

tion subsystem only involves the pitch, as long as the remote estimate of pitch

is accurate enough, the transmissions of elevation can be very few. The analysis

above is reflected in the plots of transmission intervals of elevation which are in

the first row. From t = 0s to t = 10s, there is no transmission at all because both

pitch and the pitch estimate in remote observer are 0 during the period of time.

From t = 10s to t = 60s, most of transmission intervals are greater than 1 second,

because the remote estimate of pitch is very close to the pitch signal due to the

frequent transmissions of the pitch subsystem during this period. From t = 60s to

the end, the transmissions of elevation become much more frequent than before,
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because the pitch subsystem stop transmitting, and the remote estimate of pitch

is not accurate enough any more.

The plots in the second row are the transmission intervals of the pitch subsys-

tem. We notice that during all the transmissions of the pitch subsystem, the most

frequent transmissions occur when the travel rate is commanded to be a constant,

which are the time period from t = 20s to t = 30s and the time period from

t = 40s to t = 55s. That is because the commanded pitch angle has very frequent

changes during these two time periods (See the bottom plot of Figure 5.6). If the

commanded signal changes very frequently, the system is always in the transition

process. Therefore, the pitch subsystem transmits very often during these periods.

The plots in the bottom row are the transmission intervals of the travel sub-

system. It is easy to see that the most frequent transmissions occurs at the time

periods from t = 10s to t = 20s, from t = 30s to t = 40s and from t = 55s to

t = 60s. These time periods are the transition time periods of the travel subsys-

tem. Once the travel subsystem are in the static processes, which are almost the

time periods when travel rate is commended to be a constant, the transmissions

are less often then the transmissions in the transition processes.

5.4 Summary

In this chapter, we apply the event triggered state estimator in chapter 4 to a

highly nonlinear 3DOF helicopter. The system performance of the event triggered

state estimator is compared against the system performance of a periodically trig-

gered state estimator, when both of them have the same average transmission

period. Our experimental results show that the event triggered state estimator

offers better overall performance than the periodically triggered state estimator.
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CHAPTER 6

FUTURE WORK

In this chapter, we discuss the work to be done in the future. There are three

objectives. We first consider how to construct decoupled suboptimal triggering

events to bound the mean square state discounted by the cost of transmission

in event triggered output feedback systems. In these output feedback systems,

the whole control loop, which is from sensor to controller and from controller to

actuator, is closed over network. By ’decoupled’, we mean the communication in

each link is decoupled with the other and both the sensor and the controller can

decide when to transmit data by their local information. The second objective is

to analyze the impact of data packet dropout and network delays on the event

triggered output feedback systems. The third is to design distributed suboptimal

triggering events to bound the mean square estimation error discounted by the

cost of transmission in large scale systems. In these distributed state estimation

systems, each sensor can only observe part of the state, and must decide when to

send its data to the controller only using local information.
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6.1 Decoupled Optimal Triggering Events for Output Feedback Systems with

Infinite Horizon

6.1.1 Introduction and Prior Work

This work will study the decoupled optimal triggering events to minimize the

mean square state discounted by the cost of transmission in output feedback sys-

tems. In these output feedback systems, the whole control loop, which is from

sensor to controller and from controller to actuator, is closed over the commu-

nication network. By ’decoupled’, we mean the transmission of one link doesn’t

trigger the transmission of the other and both the sensor and the controller can

decide when to transmit data using their local information. In most prior work

considering event triggered output feedback systems [9, 24, 30, 53], the controller

and the actuator are assumed to be connected directly. This assumption restricts

the controller in a neighborhood of the actuator. Another work in [14] did con-

sider when the whole control loop was networked, but the transmissions of both

the outputs of the plant and the controller were synchronized. These restrictions

are removed in our framework, which makes our work more general and easier to

be extended to the large scale distributed systems.

6.1.2 Problem Statement

Consider a controllable and observable linear discrete time process, whose con-

trol loop is closed over the network. A block diagram of the closed loop system

is shown in Figure 6.1. This closed loop system consists of a discrete time linear

plant, a sensor subsystem, a controller subsystem and an actuator.

The plant, sensor subsystem and the remote observer in the controller sub-

system are the same as described in Chapter 4 except that the communication
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Figure 6.1. Event triggered output feedback control systems

error n(k) = 0 and there is a control input ua(k). Let Ss be the triggering set in

sensor subsystem. To distinguish the triggering set in controller subsystem from

the triggering set in sensor subsystem, we use Sc to denote the triggering set in

controller subsystem.

The controller subsystem which is in the bottom part of Figure 6.1 have three

components, the remote observer as defined in Chapter 4, a controller and an

event detector in controller subsystem. The remote state estimate xRO(k) is fed

into the controller. Its output is uc(k) = KxRO(k), where K is the controller gain

such that A+BK is stable. Notice that this control input is not the actual control

input fed into the plant.

Let’s define an increasing and forward progressing time sequence {τ jc }∞j=1,

where τ jc is the jth time when the control input is sent to the actuator from the

controller. The event detector in the controller subsystem transmits the current
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control input uc(k) to the actuator when [xRO(k) uc(k) uc(τ
j(k−1)
c )]T lies outside

of a triggering set Sc, where τ
j(k)
c is the last transmission time and j(k) = max{j :

τ jc ≤ k}. Once the current control input is sent to the actuator, an acknowledge-

ment is transmitted to the sensor subsystem to let it know that the control input

has been updated. When the sensor subsystem receives the acknowledgement, it

can use xRO(k) generated in the local observer to get the new control input.

The actuator feeds the control input received from the controller subsystem to

the plant. Let ua(k) denote the actual control input applied to the plant. When

uc(τ
j
c ) is transmitted, the actuator updates ua(k) to be uc(τ

j
c ), and holds this value

until the next transmission occurs. ua(k), therefore, takes the form

ua(k) = uc(τ
j
c ),∀k ∈ [τ jc , τ

j+1
c ).

The transmissions from sensor to controller and from controller to actuator

are limited in the sense that the average sampling periods in the links from sensor

to controller and from controller to actuator are greater than or equal to Ts ≥ 1

and Tc ≥ 1 steps, respectively. We express these communication requirements as

min{t : E(e−KF,RO(t+ τ ℓs )) /∈ Ss} ≥ Ts,∀ℓ ∈ Z+, (6.1)

min{t : E




xRO(t+ τ jc )

uc(t+ τ jc )

uc(τ
j
c )


 /∈ Sc} ≥ Tc,∀j ∈ Z+, (6.2)

where e−KF,RO(k) = xKF (k)− x−
RO(k).
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The average cost is defined as

J(Ss, Sc) = lim
N→∞

1

N

N−1∑
k=0

E (c(x(k), Ss, Sc)) ,

where the cost function c is

c(x(k), Ss, Sc) = ∥x(k)∥2Z + λs1(eKF,LO(k) /∈ Ss) + λc1




xRO(t+ τ j)

uc(k)

uc(τ
j
c )

 /∈ Sc

 ,

and ∥x∥2Z = xTZx.

Our objective is to design the triggering sets Ss and Sc to minimize the average

cost J(Ss, Sc) subject to the communication requirements in (6.1) and (6.2).

6.1.3 Possible Solutions and Challenging Issues

Let eRO(k) = x(k)− xRO(k). We notice that eRO(k) and xRO(k) are uncorre-

lated. The expect value of the cost function c is

E(c(x(k), Ss, Sc)) =Js(eRO(k), Ss) + Jc(xRO(k), Sc), (6.3)

where

Js(eRO(k), Ss) =E(cs(eRO(k), Ss)), , (6.4)
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where cs(eRO(k), Ss) = ∥eRO(k)∥2Z) + λs1(eKF,RO(k) /∈ Ss and

Jc(xRO(k), Sc) =E(∥xRO(k)∥2Z) + λc1




xRO(t+ τ j)

uc(k)

uc(τ
j
c )

 /∈ Sc

 . (6.5)

From Equation (6.3), if eRO(k) doesn’t rely on Sc and xRO(k), and xRO(k) does-

n’t rely on Ss and eRO(k), then we can say that Js(eRO(k), Ss) and Jc(xRO(k), Sc)

are completely separated. However, the separation doesn’t exist, because xRO(k)

is closely related to Ss, which is shown in Equation (4.2).

The triggering event of sensor subsystem, decoupled with the triggering event

of controller subsystem, can be designed the same as the triggering event in Chap-

ter 4. From some analysis, we know that eRO(k) doesn’t rely on Sc and xRO(k).

We can also see that cs(eRO(k), Ss) shares the same form as the cost function in

Chapter 4. So the same method can be used to obtain the decoupled suboptimal

triggering event of sensor subsystem.

The decoupled triggering event of controller subsystem is more difficult to

obtain. Since xRO(k) is closely related to Ss, the next step is to see how xRO(k)

relies on Ss, and to find a way to remove the impact of Ss to xRO(k). To find the

optimal or suboptimal triggering set, we always need to calculate the expect value

of a value function h or an approximated value function f at the next step based

on the current information (see Lemma 4.2.1 and 4.2.2). Suppose the current step

is k. The remote state estimate at the next step k + 1, xRO(k + 1) depends on

not only xRO(k) but also eKF,RO(k) and Ss. So the main difficulty lies on how to

bound the expect value of the value function h or the approximated value function

f at the next step k + 1 only using xRO(k). If it can be done, then a decoupled
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triggering event of controller can be derived.

6.2 Decoupled Event Triggered Output Feedback Systems with Delays and Dropout-

s

6.2.1 Introduction and Prior Work

It’s well known that communication over networks is not always reliable. Al-

though we’ve properly designed the triggering event such that the bandwidth of

the network is not exceeded, it’s still possible to have time delays and packet

dropouts in the network. So we would like to know how delays and dropouts

influence the design of the triggering event and the performance of the output

feedback systems. There is several prior work concerning about this issue. [46–

48] discuss the impact of delays and dropouts on state feedback control systems.

In these works, the network used User Datagram Protocol (UDP). With UDP

packets, the sensor subsystem is not notified whether transmissions succeed. To

guarantee the asymptotic stability of the state feedback systems, bounds on the

delays and consecutive dropouts are obtained. [31] use the transmission Control

Protocol (TCP) to analyze the state feedback systems with delays and dropouts.

With TCP packets, an acknowledgements are sent back if transmissions succeed.

[31] considered the design of suboptimal event based controllers in the presence

of packet loss and delayed acknowledgement for linear stochastic systems. The

design objective consisted of a quadratic cost reflecting the control performance

discounted by communication price. Based on various restrictions on the control

design, optimal solutions within the corresponding class of event based controller

were derived.
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Figure 6.2. Structure of output feedback systems with delays and
dropouts

6.2.2 Problem Statement

Consider the same framework as in Section 6.1 with UDP as the communication

protocol in the whole control loop.

Since there are delays and dropouts, when sensor decides to transmit, xKF

together with a time stamp is sent to the remote observer. When remote observer

receives information, it will check the time stamp first. If this information is more

recent than the previously received information, it will accept it and update its

state estimate xRO according to the newly received state information and its time

stamp. Otherwise, the newly received information is discarded. The discarded

information can be seen as a packet dropout. Notice that by checking the time

stamp in the packet received at step k and comparing it with the current time,

remote observer can get the delay of this packet. We denote the delay of the

packet received at step k as ∆s(k). To express the behavior of the remote observer
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formally, we have

x−
RO(k) =AxRO(k − 1) + u

′

a(k − 1)

xRO(k) =


A∆s(k)xKF (k −∆s(k)) +

∑k−1
i=k−∆s(k)

Ak−1−iBu
′
a(i),

if information received by the remote observer is the latest;

x−
RO(k), otherwise,

where u
′
a(k) = uc(τ

j(k)
c ) for all k ∈ [τ

j(k)
c , τ

j(k)+1
c )

When controller decides to transmit, uc(k) together with a time stamp is trans-

mitted. When actuator receives information, it checks the time stamp first. If this

information is more recent than the previously received information, the actuator

will accept it and update the control input ua(k) to be the newly received data.

Otherwise, the newly received information is discarded. Let ∆c(k) denote the

delay of the information received at step k. ua(k) can be written as

ua(k) =

 uc(k −∆c(k)), if the actuator receives the latest information;

ua(k), otherwise.

The communication requirement, average cost and cost function are defined

the same as in Section 6.1. With the network delays and packet dropouts, our

objective is to find the optimal triggering sets Ss and Sc to minimize the average

cost subject to the communication requirements (6.1) and (6.2).

6.2.3 Problem Analysis and Challenging Issues

The expect value of the cost function is first analyzed. With delays and

dropouts, the remote state estimation error eRO(k) is correlated with the remote
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state estimate xRO(k). We can obtain an upper bound on the expect value of the

cost function by the fact that 2E(xyT ) ≤ E(xxT )+E(yyT ). The upper bound on

the expect value of the cost function is

E(c(x(k), Ss, Sc)) ≤2Js(eRO(k), Ss) + 2Jc(xRO(k), Sc),

where Js and Jc are defined as Equation (6.4) and (6.5), respectively. So if the

variances of eRO(k) and xRO(k) are bounded, then the average cost is bounded.

Next, eRO(k) is studied to find the sufficient conditions to guarantee that the

variance of eRO(k) is bounded. The behavior of eRO(k) is given below.

e−RO(k) =AeR(k − 1) +Bũa(k − 1) + w(k − 1)

eRO(k) =


A∆s(k)eKF (k −∆s(k)) +

∑k−1
i=k−∆s(k)

Ak−1−i[Bũa(i) + w(i)]

if information received by the remote observer is the latest;

e−RO(k), otherwise,

where ũ(k) = ua(k)−u
′
a(k). So as long as ∆s(k), the variance of eKF (k) and ũ(k)

are bounded, and the consecutive receiving time is finite, the variance of eRO(k)

is bounded. eKF has the dynamics of

eKF (k) = (A− LCA)eKF (k − 1) + (I − LC)w(k − 1) + (B − LCB)ũ(k − 1)− Lv(k).

So if A − LCA is stable, and ũ(k) is bounded, the variance of eKF is bounded.

Therefore, we can conclude that if A−LCA is stable, ∆s(k) and ũ(k) are bounded,

and the consecutive receiving time is finite, then the variance of eRO(k) is bounded.

Finally, we would like to see how we can guarantee that the variance of xRO(k)

is bounded. Let’s assume that the controller is properly designed such that A+BK
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is stable, ∆c(k) is finite, the triggering event is properly designed such that ũ(k)

is bounded. Are these assumptions sufficient to guarantee that the variance of

xRO(k) is bounded? The answer is no. Consider the case when A + BK has its

eigenvalues very close to the unit circle and ∆s is always very long. In this case,

the controller is not aggressive enough to counterbalance the impact of the delays,

and xRO(k) can not be bounded.

Therefore, in the closed loop system, the controller, triggering events, com-

munication bandwidth and delays are related with each other. So we need to

co-design both the controller and the triggering events such that the average cost

is minimized subject to the limited communication bandwidth while there are

finite delays in the communication networks.

6.3 Distributed Event Triggered State Estimation Problem in Large Scale Sys-

tems

6.3.1 Introduction and Prior Work

This work considers large scale systems with a lot of sensors and very few actu-

ators. The whole system is observable, but for each sensor, the state is only partial

observable. It is very possible that the information or part of the information of

several sensors are the same. Data centers are built to collect information from

all sensors, and make a full estimate of the state. Another task of data center is to

assign the bandwidth to sensors such that the sensors with more important infor-

mation have more bandwidth. To save communication resource and energy, each

sensor uses event triggering to send its local information to a data center. The

triggering event in each sensor is based on local information only. Our objective

is to design this distributed triggering event for each sensor to minimize the mean
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square estimation error of the whole state discounted by the cost of transmission

while the bandwidth of each sensor is not exceeded.

This framework is different from the framework in most prior work. The prior

work discussing distributed event triggered estimation or control problems mainly

considered multi-agent systems [12, 13, 25, 43, 46–48, 51]. In these systems, every

agent could apply a control input to its subsystem. There were no data centers,

so each agent needed to gather information from its neighbors. But sometimes,

not all the useful information could be offered by neighbors, so each agent must

broadcast both local information and the information received which may be also

necessary for the other agents. Compared with the framework in the prior work,

our framework is more organized. In our system, the leader, which is the data

center, talks with every sensor, and therefore has global information. With the

global information, the data center can efficiently estimate the state of the system.

6.3.2 Problem Statement

Consider a discrete linear time invariant system with N sensors detecting its

measurements. The process state x : Z+ → Rn and the measurement of sensor i

yi : Z+ → Rmi satisfy

x(k) =Ax(k − 1) +Bu(k − 1) + w(k − 1),

yi(k) =Cix(k) + vi(k),∀i = 1, . . . , N,

for k ∈ Z+. A, B and Ci are real n× n, n× p and m× n matrices, respectively.

u : Z+ → Rp is the control input. w and vi are independent zero mean white

Gaussian random process. We assume that the measurement noise processes vi

for i = 1, . . . , N are independent with each other. The whole system is observable,

87



Figure 6.3. Distributed event trigged state estimation problem in large
scale systems

i.e.

A,


C1

...

CN


 is observable, but for each sensor, the state may be only partial

observable. A block diagram of the whole system is shown in Figure 6.3.

The output of each sensor is fed into a sensor subsystem. If one sensor can

detect the full state x, then the sensor subsystem and the corresponding remote

observer in data center are the same as in Chapter 4. Otherwise, we first derive a
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standard form of unobservable system [4] for sensor i, which is

 zi,o(k)

zi,u(k)

 =

 Ai,o 0

Ai,12 Ai,u


 zi,o(k − 1)

zi,u(k − 1)

+

 Bi,o

Bi,u

 u(k − 1) +

 wi,o(k)

wi,u(k)


yi(k) =[Ci,o 0]

 zi,o(k)

zi,u(k)

+ vi(k),

where zi,o ∈ Rni≤n is the observable mode at sensor i, and [Ai,o, Ci,o] is an observ-

able pair. The sensor subsystem then can be built the same as the one in Chapter

4 based on the dynamics

zi,o(k) =Ai,ozi,o(k − 1) +Bi,ou(k − 1) + wi,o(k − 1)

yi(k) =Ci,ozi,o(k) + vi(k). (6.6)

The sensor subsystem consists of a Kalman filter that produces zi,o,KF (k) ∈ Rni ,

and local observer that produces z̄−i,o,LO(k) ∈ Rni and an event detector which

decides when to send zi,o,KF (k) ∈ Rni to the corresponding remote observer in

data center. The remote observer in data center is also the same as in Chapter 4

based on the dynamics (6.6).

The data center has two components: remote observers as mentioned above

and a fusion center. The fusion center takes the data from the remote observer-

s, and generates a remote state estimate xRO(k) using the Bayes least square

estimator, i.e. xRO(k) = E(x(k)|z1,o,RO(k), . . . , zN,o,RO(k)).

The network between the sensors and the data center has limited bandwidth.

The data center needs to assign the bandwidth to sensors such that the more

’important’ sensors have more bandwidth.
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Our objective is to design the distributed triggering event for each sensor that

only relies on the local information to minimize average mean cost while the

bandwidth of the whole system is not exceeded, i.e.

J({Si}Ni=0) = lim
M→∞

1

M

M−1∑
k=0

E(c(x(k), xRO(k))),

where Si is the triggering event for sensor i, the cost function c is defined as

c(x(k), xRO(k)) = ∥x(k)− xRO(k)∥2Z +
N∑
i=1

λi1(transmission occurs at sensor i),

(6.7)

, λi is the communication price for the ith sensor, and 1(·) is a characteristic

function.

6.3.3 Challenging Issues

The first issue is how to deal with the coupling between sensors. Since all

the noises in the system are Gaussian and xRO is a Bayes least estimate over the

information of all remote observers, the remote state estimation error eRO(k) must

be some linear combination of the remote state estimation errors in all the remote

observers, eRO,i(k) = zi,o(k) − zi,o,RO(k) for i = 1, · · · , N . So the expect value

of the cost function involves the variance of the remote state estimation error of

each sensor and the covariance between the remote state estimation errors of two

different sensors. This covariance is the coupling between sensors. So to derive the

distributed triggering events, we need to bound the coupling between two sensors

with decoupled information of these two sensors.

The second issue is how to assign the limited bandwidth to all of the sensors.

Assume that sensor i has the bandwidth βi, the average mean cost of sensor
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i is ci(βi), and the average mean cost of the whole system is some function of

the average mean cost of each sensor, f(c1, c2, · · · , cN). Then the assignment of

bandwidth can be solved by solving the following optimal problem.

min
{βi}Ni=1

f(c1(β1), c2(β2), · · · , cN(βN))

subject to
N∑
i=1

βi ≤ β,

where β is the bandwidth of the whole system. So if we can obtain ci and f , the

bandwidth assignment can be done at least numerically.

The interesting questions are how the average mean cost increases with respect

to the number of sensors, and how we can assign the bandwidth in a recursive way

such that there won’t be too much computation effort to reassign the bandwidth

when a new sensor is added or one of the sensors is broken.
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APPENDIX A

PROOFS

In order to prove theorem 2.2.1, we still need two lemmas. The two lemmas

show some properties of e−KF,RO(r), eKF,RO(r) and eKF (r).

Lemma A.0.1. eKF (k) is independent with e−KF,RO(j) and eKF,RO(j) for any j ≤

k.

Proof. It’s easy to see that e−KF,RO(j), eKF,RO(j) and eKF (k) are Gaussian. eKF (k) =

E(x(k)|F (k)) is the Bayes least square (BLS) estimation error. A property of BLS

estimation is that estimation error is uncorrelated with any function of the mea-

surements from step 0 to step k. As we know, e−KF,RO(j) = x̄(j) − x−
RO(j) and

eKF,RO(j) = x̄(j)−xRO(j) are functions of measurements from step 0 to step j. So

as long as j ≤ k, we know eKF (k) is uncorrelated with e−KF,RO(j) and eKF,RO(j).

Since e−KF,RO(k), eKF,RO(k) and eKF (k) are Gaussian, we also know they are sta-

tistically independent. So eKF (k) is independent with e−KF,RO(j) and eKF,RO(j)

for any j ≤ k.

Lemma A.0.2. The sequence {I−(0), I(0), I−(1), I(1), ..., I(k − 1), I−(k),

I(k), ..., I(M)} is Markov.
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Proof. The dynamics of e−KF,RO(k) and eKF,RO(k) are summarized below

e−KF,RO(k) =xKF (k)− x−
RO(k)

=AeKF,RO(k − 1) + L(k)AeKF (k − 1) + L(k)(w(k) + v(k)) (A.1)

eKF,RO(k) =

 e−KF,RO(k) if e−KF,RO(k) ∈ Sb
k

0 otherwise
(A.2)

From lemma A.0.1, we know that eKF (k − 1) is independent of eKF,RO(k −

1), e−KF,RO(k−1), . . . , e−KF,RO(0). We also know that w(k) and v(k) are independent

of eKF,RO(k − 1), e−KF,RO(k − 1), . . . , e−KF,RO(0). Therefore

r(k) = L(k)AeKF,RO(k − 1) + L(k)(w(k) + v(k))

is also independent of eKF,RO(k − 1), e−KF,RO(k − 1), . . . , e−KF,RO(0). Note that the

number of transmissions

b(k + 1) =

 b(k)− 1 if e−KF,RO(k) /∈ S
b(k)
k

b(k) otherwise

with b(0) = b. So b(k + 1) is a function of b(0) and e−KF,RO(j) for j ≤ k. This

means that r(k) is also independent of b(j) for j ≤ k+1. So we can conclude r(k)

is independent of the information sets, I(k − 1), I−(k − 1), . . . , I−(0).

Consider the conditional probability density function f(I−(k) | I(k−1), I−(k−

1), I(k−2), . . . , I−(0)). From equation (A.1) and since I−(k) = (e−KF,RO(k), b(k)),

we see that

f(I−(k) | I(k − 1), I−(k − 1), . . . , I−(0))
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=f(e−KF,RO(k), b(k) | I(k − 1), I−(k − 1), . . . , I−(0))

=f(AeKF,RO(k − 1) + r(k), b(k) | I(k − 1), I−(k − 1), . . . , I−(0))

This shows that I−(k) = (AeKF (k−1)+r(k), b(k)) is a linear combination of I(k−

1) = (eKF,RO(k−1), b(k)) and u(k). We showed above that r(k) is independent of

I(k − 1), I−(k − 1), . . . , I−(0). So the conditional probability may be written as

f(I−k | I(k − 1), I−(k − 1), . . . , I−0 ) = f(I−(k) | I(k − 1))

which implies that I−(k), I(k − 1), I−(k − 1), . . . , I−0 are Markov.

A.1 Proof of Theorem 2.2.1

Proof.

h(ζ, b; r) = min
Sb
r

E

(
M∑
k=r

∥eRO(k)∥22 | I−(r) = (ζ, b)

)
= min

Sb
r

g(ζ, b, Sb
r)

where g(ζ, b, Sb
r) = min

Sb
r−Sb

r

E
(∑M

k=r ∥eRO(k)∥22|I−(r) = (ζ, b)
)
.

Now we are going to calculate g(ζ, b, Sb
r) in two cases: ζ ∈ Sb

r and ζ /∈ Sb
r .

Here, the first case is explained explicitly. Because the second case can be derived

similarly, we only give the final result.

If ζ ∈ Sb
r ,

g(ζ, b, Sb
r) = min

Sb
r(r+1),··· ,Sb

r(M)
E

(
M∑
k=r

∥eRO(k)∥22|e−KF,RO(r) = ζ ∈ Sb
r , b(r) = b)

)

Because the condition e−KF,RO(r) = ζ ∈ Sb
r , b(r) = b ⇔ eKF,RO(r) = ζ, b(r + 1) =
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b and e−KF,RO(r) = ζ, b(r) = b,

g(ζ, b, Sb
r) = min

Sb
r−Sb

r

E

(
M∑
k=r

∥eRO(k)∥22|I(r) = I−(r) = (ζ, b)

)

= min
Sb
r−Sb

r

E

(
M∑
k=r

∥eRO(k)∥22|I(r) = (ζ, b)

)
.

Since b(r+1) = b which means b transmissions remaining at step r+1, only Sb
r+1

can influence the value of the expectation.

g(ζ, b, Sb
r)

= min
Sb
r+1

E

(
M∑
k=r

∥eRO(k)∥22|I(r) = (ζ, b)

)

= tr(P (r)) + ∥ζ∥22 +min
Sb
r+1

E

(
M∑

k=r+1

∥eKF,RO(k)∥22|I(r) = (ζ, b)

)

= tr(P (r)) + ∥ζ∥22 +min
Sb
r+1

E

(
E

(
M∑

k=r+1

∥eKF,RO(k)∥22|I−r+1 =

(e−KF,RO(r + 1), b), I(r) = (ζ, b)
)
|I(r) = (ζ, b)

)
= tr(P (r)) + ∥ζ∥22 + E

(
min
Sb
r+1

E

(
M∑

k=r+1

∥eKF,RO(k)∥22|I−(r + 1) =

(e−KF,RO(r + 1), b)
)
|I(r) = (ζ, b)

)
= tr(P (r)) + ∥ζ∥22 + E

(
h(e−KF,RO(r + 1), b; r + 1)|I(r) = (ζ, b)

)
= hnt(ζ, b, r).

The fourth equality holds because the information set sequence {I−(k), I(k)}Mk=0

is Markov and e−KF,RO(r + 1) is independent with Sb
r+1.
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If ζ /∈ Sb
r , we can show that

g(ζ, b, Sb
r) =tr(P (r)) + E

(
h(e−KF,RO(r + 1), b− 1; r + 1)|I(r) = (0, b− 1)

)
=ht(ζ, b, r)

With the value in both cases, we conclude that g(ζ, b, Sb
r) = hnt1ζ∈Sb

r
+ht1ζ /∈Sb

r
,

and the value function h(ζ, b; r) = min{hnt(ζ, b, r), ht(b, r)} with Sb∗
r = {ζ :

hnt(ζ, b, r) ≤ ht(ζ, b, r)}.

There are two initial conditions for the recursive equation. One is the case

when there is no remaining transmissions, h(ζ, 0; r). The other is the case when

the number of remaining transmissions is the same as the remaining steps,h(ζ, b; r)

for b ∈ [1, b] and r = M + 1− b. Both of them can be calculated directly.

A.2 Proof of Corollary 2.2.2

Proof. The symmetric property can be established from algebraic derivation.

To prove the non-decreasing property in one direction, we can first assume it’s

not true. The conclusion based on the assumption will be there exist an observer

which can give even smaller mean estimation error than Kalman filter, which

means that the assumption we made is false and the corollary is proved.

We’ve know that Kalman filter is the optimal observer(both local and remote)

for this problem. Now let’s suppose that there exists d ∈ Rn and α1 > α2 ≥ 0,

such that

h(α1d, b; r) < h(α2d, b; r) (A.3)

The main idea of the derivation is to show that based on the supposition, the

kalman filter does not give the minimum mean square estimation.
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Inequality (A.3) indicates that

h(α1d, b; r) = hnt(α1d, b, r) < ht(α1d, b, r). (A.4)

Together with h(α2d, b; r) ≤ hnt(α2d, b, r) and (A.3), we can see that

hnt(α1d, b, r) ≤ hnt(α2d, b, r). (A.5)

Since α1 > α2 ≥ 0, from (2.2.1),

E (h(α1Ad+ L(r)δy(r), b; r + 1)) < E (h(α2Ad+ L(r)δy(r), b; r + 1))

If the local and remote observer are designed as

xKF (k) = AxKF (k − 1) + L(k)(y(k)−CAxKF (k − 1)) +
α1 − α2

α2

AeKF,RO(k − 1),

when eKF,RO(k − 1) = α2d, then

h′
nt(α2d, b, r)

= α2
2∥d∥22 + tr(P (r)) + E(h(α1Ad+ L(r)δy(r), b; r + 1))

< hnt(α1d, b; r).

From equation (A.4) and the property that ht(ζ, b, r) is independent with ζ, we

know that

h′
nt(α2d, b, r) < ht(α2d, b, r)), (A.6)

so h′(α2d, b; r) = h′
nt(α2d, b, r). From (A.5), h′(α2d, b; r) < hnt(α2d, b, r). Together

with (A.6), we conclude that h′(α2d, b; r) < h(α2d, b; r), which indicates that
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the Kalman filter is not the optimal observer in this problem. This conclusion

contradict the fact that Kalman filter can give the minimum mean square error

estimation, so the supposition is wrong.

A.3 Proof of Corollary 2.2.3

Proof. S0∗
r = R,∀r = 0, 1, ...,M , and θ0r = ∞. Sb∗

r = {0}, ∀r = M + 1− b, ...,M ,

and θbr = 0, ∀r = M + 1− b, ...,M . For the other cases,

Sb∗
r = {ζ : ζ2 + Ee−KF,RO(r+1)(h(e

−
KF,RO(r + 1), b; r + 1)|I(r) = (ζ, b)) ≤

Ee−KF,RO(r+1)(h(e
−
KF,RO(r + 1), b− 1; r + 1)|I(r) = (0, b− 1))}.

From corollary 2.2.2 we can show that the second term is a constant and the first

term is symmetric about y-axis and increasing about |ζ|. So Sb∗
r must be in the

form of [−θbr, θ
b
r].

A.4 Proof of Theorem 2.3.1

Proof. First, we can see that the initial condition of h̄t = ht satisfies equation

(2.12) and the initial condition of h̄nt = hnt satisfies equation (2.11) by assuming

that Λ0
r,j = 0 and c0r,j = ∞ for j = 2, · · · , l0r . We also assumes that ρ0r = ∞

Now assume that

h̄nt(ζ, k, r + 1) = min
j=1,··· ,M−k−r

(ζTΛk
r+1,jζ + ckr+1,j)

h̄t(ζ, k, r + 1) = ρkr+1
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are the upper bounds of hnt(ζ, k, r+1) and ht(ζ, k, r+1) for both k = b and b−1.

hnt(ζ, b, r)

≤tr(P (r)) + ζT ζ + E(h̄(ζ, b; r + 1)|I(r) = (ζ, b))

≤tr(P (r)) + ζT ζ +min{

min
j=1,··· ,M−b−r

E(e−T
KF,RO(r + 1)Λb

r+1,je
−
KF,RO(r + 1) + cbr+1,j|eKF,RO(r) = ζ), ρbr+1}

=min{ min
j=1,··· ,M−b−r

(ζT (ATΛb
r+1,jA+ I)ζ + σb

r+1 + tr(P (r)))

, ζT ζ + ρbr+1 + tr(P (r))}

=h̄nt(ζ, b, r),

and

ht(ζ, b, r)

≤tr(P (r)) + E(h̄(ζ, b− 1; r + 1)|I(r) = (0, b− 1))

≤tr(P (r)) + min{

min
j=1,··· ,M+1−b−r

E(e−T
KF,RO(r + 1)Λb−1

r+1,je
−
KF,RO(r + 1) + cb−1

r+1,j|eKF,RO(r) = 0), ρb−1
r+1}

=tr(P (r)) + min{σb−1
r+1,1, · · · , σb−1

r+1,M+1−b−r, ρ
b−1
r+1}

=

 tr(P (r)) + σb−1
r+1,1, if b = 1;

tr(P (r)) + min{σb−1
r+1,1, · · · , σb−1

r+1,ℓbr
, ρb−1

r+1}, otherwise.

=h̄t(ζ, b, r)

The forth equality holds because c0r,j = ρ0r = ∞.

Lemma A.4.1. {I−(k), I(k)}Mk=0 is Markov.

Proof. I(k) =


 xKF (k)

e−KF,RO(k)1q−(k)/∈Sbk
k

 , bk − 1
q−k /∈Sbk

k

 = f(I−(k)). So it’s easy
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to see that p(I(k)|I−(k), · · · , I−0 ) = p(I(k)|I−(k)).

I−k+1 =
(
Aq(k), bk+1

)
+
(
Lk+1r(k), 0

)
, where r(k) = CAeKF (k) + Cw(k + 1) +

v(k+1), eKF (k) = x(k)−xKF (k) is the local state estimation error. Because r(k)

is independent with I(k), I−(k), · · · , I−(0). So p(I−(k + 1)|I(k), · · · , I−(0)) =

p(I−(k + 1)|Ik).

A.5 Proof of Theorem 3.2.1

Proof. By the definition of the value function, we have

h(θ, b; r) = min
Sb
r

(hnt(θ, b, r)1θ∈Sb
r
, ht(θ, b, r)1θ/∈Sb

r
),

where

hnt(θ, b, r) = min
Sb
r−Sb

r

E(
M∑
k=r

p(k)TZp(k)|I−(r) = (θ, b))1θ∈Sb
r
,

ht(θ, b, r) = min
Sb
r−Sb

r

E(
M∑
k=r

p(k)TZp(k)|I−(r) = (θ, b))1θ/∈Sb
r
.

Consider hnt first,

hnt(θ, b, r) = min
Sb
r−Sb

r

E(
M∑
k=r

p(k)TZp(k)|I−(r) = (θ, b), θ ∈ Sb
r).

The condition is equivalent with I−(r) = I(r) = (θ, b), because θ ∈ Sb
r means no

transmission at step r. With lemma A.4.1, we can derive that

hnt(θ, b, r) = min
Sb
r−Sb

r

E(
M∑
k=r

p(k)TZp(k)|I(r) = (θ, b)).
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We can pull the cost at the rth step out of the minimum, and the remaining costs

are only related with Sb
r+1, so

hnt(θ, b, r) = θTZθ + β(r) + min
Sb
r+1

E(
M∑

k=r+1

p(k)TZp(k)|I(r) = (θ, b))

With lemma 6.1 and some mathematical deduction, we are able to show equation(3.4)

holds.

Follow the same steps, (3.5) can be shown.

Initial conditions are given for two cases: b = 0 and b + r = M + 1. For the

first case, hnt(θ, 0, r) = θTΛ0
r,1θ + c0r,1 and ht(θ, 0, r) = ηTΨ0

rη + d0r where

Λ0
r,1 =

M∑
k=r

(A
T
)k−rZA

k−r
,

c0r,1 =
M∑
k=1

(β(k) +
k−1∑
j=r

tr(R(j)L
T
(j + 1)(A

T
)k−j−1ZA

k−j−1
L(j + 1))),

Ψ0
r =0,

d0r =∞.

For the second case, ht(θ,M + 1− r, r) = ηTΨM+1−r
r η + dM+1−r

r , where

ΨM+1−r
r =

M∑
k=r

((A+BK)T )k−rZ11(A+BK)k−r,

dM+1−r
r =

M∑
k=r

(
β(k) +

k−1∑
j=r

tr(R(j)LT (j + 1)((A+BK)T )k−j−1

Z11(A+BK)k−j−1L(j + 1))
)
.
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A.6 Proof of Lemma 3.3.2

Proof. For b = 1, it’s easy to show that ht(θ, 1, r) = ηTΨ1
rη + d1r where Ψ1

r and d1r

satisfy equation (3.12) and (3.13) respectively.

With the initial condition at step M , we are able to show that at step M − 1,

hnt(θ, 1,M − 1) = θTΛ1
M−1,1θ + c1M−1,1 where Λ1

M−1,1 and c1M−1,1 satisfy equation

(3.10) and (3.11) respectively. Now suppose that for b = 1 and step r+1, equation

(3.7) holds with Λ1
r+1,j and c1r+1,j defined as (3.10) and (3.11).

hnt(θ, 1, r) = θTZθ + β(r) + E(h(q−r+1, 1, r + 1)|I(r) = (θ, 1)),

where E(h(q−r+1, 1, r + 1)|I(r) = (θ, 1))

≤ E(min{hnt(q
−
r+1, 1, r + 1), ht(q

−
r+1, 1, r + 1)}|I(r) = (θ, 1))

≤ min{E(hnt(q
−
r+1, 1, r + 1)|I(r) = (θ, 1)), E(ht(q

−
r+1, 1, r + 1)}|I(r) = (θ, 1))}

≤ min{ min
j=1,··· ,ρ1r+1

θT Λ̃1
r,jθ + c̃1r,j, θ

T Λ̃r,i1r+1+1θ + c̃1r,i1r+1+1},

where Λ̃1
r,j = Λr,j − Z and c̃1r,j = cr,j − β(r) for all j = 1, · · · , ρ1r.

By now, we’ve shown that lemma 3.3.2 is true for b = 1. Before we go to the

case of b > 1, we find that

Λb
r,j(1, 1) = Ψb

r =
M∑
k=r

((A+BK)T )k−rZ11(A+BK)k−r, (A.7)

which can be shown by mathematical induction. Λb
r,j(1, 1) means the left upper

n× n matrix of Λb
r,j.

Now, suppose lemma 3.3.2 and equation (A.7) are both true for b − 1 where

b > 1. ht(θ, b, r) = ηTZ11η+β(r)+E(h(q−r+1, 1, r)|I−(r) = (θ, b)). The expectation
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part is

≤ min
{
ηT (A+BK)TΨb−1

r+1(A+BK)η + db−1
r+1 + tr(Ψ

b−1

r+1) ,

min
j=1,··· ,ρb−1

r+1

[
ηT (A+BK)TΛb−1

r+1,j(1, 1)(A+BK)η + cb−1
r+1,j + tr(Λ

b−1

r+1,j)
]}

.

Because (3.8), the upper bound above can be simplified as

ηT (A+BK)TΨb−1
r+1(A+BK)η +min{Λ̂b−1

r+1, Ψ̂
b−1
r+1}

Therefore, ht(θ, b, r) = ηTΨb
rη + dbr, whereΨ

b
r = Z11 + (A + BK)TΨb−1

r+1(A + BK)

and dbr = min{Λ̂b−1
r+1, Ψ̂

b−1
r+1}+ β(r).

We can also show that hnt(θ, b, r) is specified as equation (3.7) and the Λ and c

are specified as (3.10) and (3.11) respectively. The proof is the same as for b = 1.

By mathematical induction, we still have equation (A.7) for b > 1.

Therefore, lemma 3.3.2 and equation (A.7) are still true for b > 1.

A.7 Proof of Theorem 4.3.1

A.7.1 Proof of Part 1)

To prove the first part, the communication requirement (4.3) needs to be

rewritten as

E(∥e−KF,LO(k)∥
2
H) ≤ λ+ tr(ZN)− ζ(k),
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for any k = τ ℓ + 1, · · · , τ ℓ + Tr − 1 and any ℓ ∈ Z+. By applying ζ(k) into the

inequality above, we can conclude that as long as

λ ≥(1 + δ2)tr(HU−
KF,LO(k)) + tr(ZU−

LO,RO(k)) + tr(HR)

− tr(ZN), ∀k = τ ℓ + 1, · · · , τ ℓ + Tr − 1,

the communication requirement (4.3) can be guaranteed. Because during the inter

sample interval, no transmission occurs, U−
KF,LO(k) and U−

LO,RO(k) is iteratively

calculated under the condition that there is no transmission from τ ℓ + 1 to τ ℓ +

Tr − 1. Let t = k − τ ℓ.

U−
KF,LO(k) =

t−1∑
i=1

At−iR(AT )t−i,

and

U−
LR,RO(k) = AtN(AT )t.

Therefore, if the inequality (4.15) holds, the communication requirement (4.3) can

be satisfied.

A.7.2 Proof of Part 2)

To prove part 2), it is sufficient to show that the inequality (4.9) holds for any

k with fk defined in Theorem 4.3.1 and

Jk = E(fk(e
−
KF,LO(k + 1))|eKF,LO(k) = 0).

In the case of ∥e−KF,LO(k)∥2H ≤ λ + tr(ZN) − ζ(k), no transmission occurs at
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step k, so the right side of the inequality (4.9)

=∥e−KF,LO(k)∥
2
Z + tr(ZU−

LO,RO(k))

+ E(fk+1(e
−
KF,LO(k + 1))|eKF,LO(k) = e−KF,LO(k))

≤∥e−KF,LO(k)∥
2
H + ∥e−KF,LO(k)∥

2
ATHA−H+Z + ζ(k + 1)

+ tr(HR) + tr(ZU−
LO,RO(k))

≤∥e−KF,LO(k)∥
2
H + δ2(λ+ tr(ZN)− ζ(k))

+ tr(HR) + tr(ZU−
LO,RO(k)) + ζ(k + 1)

=∥e−KF,LO(k)∥
2
H + ζ(k) + ζ(k + 1)

≤fk(e
−
KF,LO(k) + Jk+1.

The first equality is taken from (4.6), the second step is derived from E(min(f, g)) ≤

min(E(f), E(g)), the third step is derived from the fact that ∥e−KF,LO(k)∥2H ≤

λ+ tr(ZN)− ζ(k), and the fourth step is derived from how we define the ζ(k).

In the case of ∥e−KF,LO(k)∥2H > λ + tr(ZN) − ζ(k), transmission occurs, and

the right side of inequality (4.9)

=λ+ tr(ZN) + E(fk+1(e
−
KF,LO(k + 1))|eKF,LO(k) = 0)

≤fk(e
−
KF,LO(k)) + Jk+1

Since the inequality (4.9) holds in any condition, from Lemma 4.2.2, we know

that Ja({S(k)}∞k=0) is bounded above by Ja({S(k)}∞k=0) defined in (4.16).
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A.7.3 Proof of Part 3)

If a lower bound on the optimal cost is found, an upper bound of the difference

between the cost of quadratic sets and the optimal sets can be derived. The lower

bound on the optimal cost is given in Lemma A.7.1.

Lemma A.7.1. The optimal cost J∗
a is bounded below by

lim
N→∞

1

N

N∑
k=1

E(gk(e
−
KF,LO(k))|eKF,LO(k − 1) = 0),

where gk(θ) = min{∥θ∥2Z + tr(ZU−
LO,RO(k)), λ+ tr(ZN)}.

Proof. Let’s define

Jk+1 = E(gk+1(e
−
KF,LO(k + 1))|eKF,LO(k) = 0).

By Lemma 4.2.3, if

Jk+1(e
−
KF,LO(k)) + gk(e

−
KF,LO(k)) ≤ G

(
gk+1(e

−
KF,LO(k))

)
,

Lemma A.7.1 is true. The left side of the inequality equals

min{∥e−KF,LO(k)∥
2
Z + tr(ZU−

LO,RO(k))

+ E(gk+1(e
−
KF,LO(k + 1))|eKF,LO(k) = 0),

λ+ tr(ZN) + E(gk+1(e
−
KF,LO(k + 1))|eKF,LO(k) = 0)},
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and the right side of the inequality equals

min{∥e−KF,LO(k)∥
2
Z + tr(ZU−

LO,RO(k))

+ E(gk+1(e
−
KF,LO(k + 1))|eKF,LO(k) = e−KF,LO(k)),

λ+ tr(ZN) + E(gk+1(e
−
KF,LO(k + 1))|eKF,LO(k) = 0)}.

So as long as we can show that

E(gk+1(e
−
KF,LO(k + 1))|eKF,LO(k) = 0)

≤E(gk+1(e
−
KF,LO(k + 1))|eKF,LO(k) = e−KF,LO(k)),

the inequality (4.11) holds.

First, we realize that

gk(αd1 + β1d2) ≥ gk(αd1 + β2d2) (A.8)

if β1 ≥ |β2| and dT1Zd2 = 0 where d1 and d2 are linearly independent.

Second, we’d like to show some properties of the normal probability density

function. Let Nθ(µ,R) be the normal probability density function of random

variable θ with mean µ and variance R, and R+ denote the generalized inverse

[32] of R. We can always construct a basis of Rn, {εi}ni=1, where ε1 = Ad1,

(Ad2)
T ε2 ≥ 0, and εTj R

+εj = 0 for any i ̸= j. Let

p(θ) = Nθ(A(αd1 + β1d2), R)−Nθ(A(αd1 + β2d2), R),
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where d1, d2, α, β1, and β2 are defined in (A.8). We can show that

p(z +
β1 + β2

2
b2ε2 + ρε2) = −p(z +

β1 + β2

2
b2ε2 − ρε2), (A.9)

where zTR+ε2 = 0 , b2 = (Ad2)
T ε2 ≥ 0 and ρ ≥ 0. Let Ad2 =

n∑
i=1

biεi. To show

(A.9) is true, we first show that

p

(
z +

β1 + β2

2
b2ε2 + ρε2

)
=Nz

(
αε1 −

∑
i ̸=2

biεi − (−β1 − β2

2
+ ρ)ε2

)

−Nz

(
αε1 −

∑
i ̸=2

biεi − (
β1 − β2

2
+ ρ)ε2

)
,

and then show that

p(z +
β1 + β2

2
b2ε2 − ρε2)

=Nz

(
αε1 −

∑
i̸=2

biεi + (
β1 − β2

2
+ ρ)ε2

)

−Nz

(
αε1 −

∑
i̸=2

biεi + (−β1 − β2

2
+ ρ)ε2

)
.

Because εTj R
+εj = 0 for any i ̸= j, the equation (A.9) can be proven. Moreover,

p(z +
β1 + β2

2
b2ε2 + ρε2) ≥ 0, if ρ ≥ 0 (A.10)
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Finally, with the property of (A.9), we can show that

E(gk+1(e
−
KF,LO(k + 1))|eKF,LO(k) = θ)

− E(gk+1(e
−
KF,LO(k + 1))|eKF,LO(k) = 0)

=

∫
θi,i ̸=2

∫
θ2≥0

[
gk(
∑
i̸=2

θiεi + (θ2 +
β1 + β2

2
b2)ε2)

−gk(
∑
i ̸=2

θiεi + (−θ2 +
β1 + β2

2
b2)ε2)

]

· p(
∑
i̸=2

θiεi + (θ2 +
β1 + β2

2
b2)ε2)dθ2 · · · dθn

≥0,

where θi =
θT εi
∥εi∥ . The last inequality above is derived from the inequalities (A.8)

and (A.10).

Now that both the upper and lower bounds are given, the difference between

them can be shown to be bounded by min{D1, D2}, where D1 and D2 are defined

in Theorem 4.3.1.

First, we know from part 2) of Theorem 4.3.1 and Lemma A.7.1 that

Ja({S(k)}∞k=0)− J∗
a ≤ Ja({S(k)}∞k=0)− J∗

a

≤ lim
M→∞

1

M

M∑
k=1

E
[
(fk − gk)(e

−
KF,LO(k))|eKF,LO(k − 1) = 0

]
≤ lim

M→∞

1

M

M∑
k=1

[
E(∥e−KF,LO(k)∥

2
Y |eKF,LO(k − 1) = 0)

max{ζ(k)− tr(ZU−
LO,RO(k)), 0}

]
=tr(Y R) + lim

M→∞

1

M

M∑
k=1

max{ζ(k)− tr(ZU−
LO,RO(k)), 0}.
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The third inequality is derived by considering the four conditions which are

∥θ∥2Z + tr(ZU−
LO,RO(k)) ≶ λ+ tr(ZN)

and

∥θ∥2H + ζ(k) ≶ λ+ tr(ZN)

and realizing that H − Z ≤ Y and Y ≥ 0.

Next, noticing that

J({S(k)}∞k=0) ≤ λ+ tr(ZN)

and

J∗ ≥ min{tr(ZU−
LO,RO(k)), λ+ tr(ZN)},

J({S(k)}∞k=0)− J∗ is bounded above by D2.

Therefore, part 3) is proven.
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