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Abstract

This paper examines output feedback control of wireless networked control systems where there are separate
links between the sensor-to-controller and controller-to-actuator. The proposed triggering events only rely on local
information so that the transmissions from the sensor and controller subsystems are not necessarily synchronized.
This represents an advance over recent work in event-triggered output feedback control where transmission from the
controller subsystem was tightly coupled to the receipt of event-triggered sensor data. The paper presents an upper
bound on the optimal cost attained by the closed-loop system. Simulation results demonstrate that transmissions
between sensors and controller subsystems are not tightly synchronized. These results are also consistent with derived
upper bounds on overall system cost.

Keywords: Weakly coupled triggering events, Event triggering, Output feedback control, Wireless networked
control systems

1. Introduction

Large-scale wireless networked control systems (WNCS) are invaluable in many civil and military applications
for monitoring and controlling in complex environment. An important issue for large-scale WNCS concerns energy
efficiency. Sensor nodes need to operate on an extremely frugal energy budget, since they are battery driven and
since battery replacement is not an option for large-scale WNCS with thousands of physically embedded nodes. To
conserve power, it is important to manage wireless communication as such communication is a major source of power
consumption [1]. There has been a great deal of prior work seeking to conserve power [2, 3] through energy efficient
networking protocols. Another way of conserving power, however, is to make the application power aware, and
attempt to minimize the application’s use of the communication network, while still maintaining a desired level of
control system performance. One recent method for realizing this goal is known as event-triggered sampling.

Event triggering can be seen as a communication protocol where information is transmitted only if some event
occurs. In particular, information is transmitted when a measure of data ’novelty’ exceeds a specified threshold. In
contrast to more commonly used periodic transmission schemes, event-triggering tends to generate traffic patterns that
are sporadic in nature. Prior experimental results has demonstrated that event-triggering can use fewer communication
resources than periodic transmission schemes having comparable performance levels [4, 5, 6, 7, 8]. The reason for this

IWe acknowledge the partial financial support of the National Science Foundation (ECCS-0925229)
Email address: lli3,lemmon@nd.edu (Lichun Li and Michael Lemmon)



/ Procedia Computer Science 00 (2011) 1–10 2

 

Figure 1: Structure of the event triggered output feedback control systems

more efficient use of communication resources is that event-triggering makes use of on-line information in making
transmission decisions. This method, therefore, can adapt its usage of the communication to channel to the importance
of the data it must transmit.

Most prior work in the event triggering literature discusses state feedback control and state estimation. This work
has traditionally assumed a single feedback link in the system. It has only been very recently that researchers have
turned to study event-triggered output feedback control where there are separate communication channels from sensor
to controller and controller to actuator. These recent papers on event-triggered output feedback control have assumed
that only part of the control loop was closed over wireless network [9, 10, 11], or they have assumed that transmissions
from sensor-tocontroller and controller-to-actuator were strongly synchronized (the transmission in one link triggered
the transmission in the other link) [12]. Neither of these frameworks is suitable for large-scale WNCS. The direct
connection between controller and plant prohibits the long distance monitoring and control when the plants are in
hazardous environments. Frameworks with strongly coupled transmissions have the same problem when the number
of sensors is large.

This paper designs local event-triggers for a wireless networked control system in which there are separate com-
munication links from sensor-to-controller and controller-to-actuator. The event-triggers attempt to be optimal in the
sense that the triggering sets of the sensor-to-controller link minimize the mean square estimation error discounted
by communication cost and the triggering sets of the controller-to-actuator link are designed to minimize the mean
square cost of the estimated system state discounted by the communication cost in that link. The sum of these two
separate optimization problems provide an upper bound on the optimal mean square performance of the entire system.
The events generated by this approach are only weakly coupled, rather than strongly coupled as seen in [12]. The
results in this paper serve as a foundation for large-scale event-triggered output feedback control that will be studied
in future papers.

2. Problem Statement

Consider a controllable and observable linear discrete time process, whose control loop is closed over the network.
A block diagram of the closed loop system is shown in Figure 1. This closed loop system consists of four components:
a plant subsystem, a sensor subsystem, a controller subsystem and an actuator subsystem.

The plant subsystem consists of two parts: a plant and a sensor. The plant is a controllable and observable linear
discrete time process whose state x : Z+ → R (Z+ indicates nonnegative integer set) satisfies the difference equation

x(k) = Ax(k − 1) + Bua(k − 1) + w(k − 1),
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for k = 1, 2, · · · , where A ∈ Rn×n, B ∈ Rn×m, ua(k − 1) ∈ Rm is the actual control input applied into the plant which
will be further explained when the actuator subsystem is introduced, and w ∈ Rn is a zero mean white Gaussian noise
process with variance W. The initial state x(0) is assumed to be a Gaussian random variable with mean µ0 and variance
Π0. The sensor generates a measurement y : Z+ → Rp which is an output with noise. The sensor measurement at
time k is

y(k) = Cx(k) + v(k),

for k ∈ Z+, where C ∈ Rp×n, and v : Z+ → Rp is another zero mean white Gaussian noise process with variance
V . Notice that w, v and x(0) are independent from each other. The corrupted measurement is fed into the sensor
subsystem that decides when to transmit information to the controller subsystem.

The sensor subsystem shown in the right upper corner of Figure 1 consists of a Kalman filter, a local observer
and an event detector. Let Y(k) = {y(0), y(1), · · · , y(k)} denote the measurement information available at step k.
The Kalman filter generates a state estimate xKF : Z+ → Rn that minimizes the weighted mean square estimation
error (MSEE) E

[
‖x(k) − xKF(k)‖2Z | Y(k)

]
at each step conditioned on all of the sensor information received up to and

including step k, where Z ≥ 0 is a symmetric weighing matrix and ‖θ‖2Z = θT Zθ. Let PZ be the square root of Z (i.e.
Z = PT

Z PZ). For the process under study the filter equation is

xKF(k) = AxKF(k − 1) + LP−1
Z L (y(k) −CAxKF(k − 1)) ,

where L = P−1
Z L, L = AXC

T
(CXC

T
+ V)−1, and X satisfies the discrete linear Riccati equation

AXA
T
− X − AXC

T
(CXC

T
+ V)−1CXA

T
+ W = 0,

where A = PZ AP−1
Z , C = CP−1

Z , W = PZ AP−1
Z . The steady state estimation error eKF(k) = x(k) − xKF(k) is a Gaussian

random variable with zero mean and weighted variance E(eKFZeT
KF) = Q = (I − LC)X.

Let {τ`s}
∞
`=1 denote a sequence of increasing times (τ`s ∈ [0,+∞]) when information is transmitted from the sensor

to the controller subsystem. We require that τ`s is forward progressing, i.e. for any k ≥ 0, there always exists a
` such that τ`s ≥ k. Let X(k) =

{
xKF(τ1

s), xKF(τ2
s), · · · , xKF(τ`(k)

s )
}

denote the filter estimates that are transmitted to

the controller subsystem by step k where `(k) = max
{
` : τ`s ≤ k

}
. We can think of this as the ’information set’

available to the controller subsystem at time k. The local observer generates an a posteriori estimate xRO : Z+ → Rn

of the process state that minimizes the weighted MSEE, E
[
‖x(k) − xRO(k)‖2Z | X(k)

]
, at time k conditioned on the

information received up to and including time k. The a priori estimate of the local observer, x−RO : Z+ → Rn,
minimizes E

[
‖x(k) − x−RO(k)‖2Z | X(k − 1)

]
, the weighted MSEE at time k conditioned on the information received up

to and including step k − 1. These estimates take the form

x−RO(k) =AxRO(k − 1) (1)

xRO(k) =

{
x−RO(k), if e−KF,RO(k) ∈ S s;
xKF(k), otherwise ,

(2)

where e−KF,RO(k) = xKF(k) − xRO(k), S s ⊆ Rn is the triggering set in sensor subsystem, and x−RO(0) = µ0.
The event detector in sensor subsystem detects the a priori gap e−KF,RO(k) and compares the gap with the triggering

set S s. If the gap is inside the triggering set S s, then no data is transmitted. Otherwise, the state estimate of Kalman
filter xKF(k) is sent to the controller subsystem.

The controller subsystem which is in the right lower part of Figure 1 has three components: a remote observer,
a controller and an event detector in controller subsystem. The remote observer has the same behavior as the local
observer, and produces an a posteriori state estimate xRO(k) which is fed into the controller. The controller generates
a control input uc(k) = KxRO(k), where K is the controller gain. Notice that this control input is not the actual control
input fed into the plant.

Let’s define an increasing and forward progressing time sequence {τ j
c}
∞
j=1, where τ j

c is the jth time when the control
input is sent to the actuator subsystem from the controller subsystem. The event detector in the controller subsystem
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transmits the current control input uc(k) to the actuator subsystem when [xRO(k) ua(k)]T lies outside of a triggering set
S c. Once the current control input is sent to the actuator, an acknowledgement is transmitted to the sensor subsystem
to let it know that the control input has been updated. When the sensor subsystem receives the acknowledgement, it
uses the xRO(k) generated by the local observer to obtain the new control input to the actuator subsystem.

The actuator subsystem has two parts: a zero order hold and an actuator. Let ua(k) denote the actual control input
applied to the plant. When uc(τ j

c) is transmitted, the actuator subsystem updates ua(k) to be uc(τ j
c), and holds this value

until the next transmission occurs. ua(k), therefore, takes the form

ua(k) = uc(τ j
c),∀k ∈ [τ j

c, τ
j+1
c ).

The average cost is defined as

J(S s, S c) = lim
N→∞

1
N

N−1∑
k=0

E (c(x(k), S s, S c)) ,

where the cost function c is

c(x(k), S s, S c) = ‖x(k)‖2Z + λs1(eKF,LO(k) < S s) + λc1
([

xRO(k)
ua(k)

]
< S c

)
,

where λs and λc are the communication prices for transmissions over the sensor-to-controller link and controller-to-
actuator link, respectively. 1(·) is the characteristic function.

Our objective is to design the triggering sets S s and S c to minimize the average cost J(S s, S c), i.e.

J∗ = min
S s,S c

J(S s, S c).

3. Main Results

The main result in this section derives event-triggers for the sensor and controller subsystem. The novel feature of
these event triggers is that they are weakly coupled in the sense that transmissions over the sensor-to-controller link
do not necessarily trigger transmissions over the controller-to-actuator link. By breaking the strong coupling between
the two channels, we provide a path for extending event-triggered control to wireless networked systems involved in
remote telerobotic systems.

The derivation of these weakly coupled triggering events is done by decomposing the average cost J(S s, S c) into
two parts. The first part is only a function of the sensor subsystem and represents the cost introduced by remote
state estimation. The second part relies on information from the controller subsystem and the statistics of the state
estimates generated by the sensor subsystem. This second part, therefore, represents the controller cost conditioned
on the event-triggers for the sensor-subsystem. It is the conditioning on the sensor-subsystem in this second term that
weakly couples the events generated by the sensor and controller subsystems.

The following lemma formally states the decomposition of the total system cost J(S s, S c) that will be used later
to derive the triggering events.

Lemma 3.1. Let eRO(k) = x(k) − xRO(k). The average cost J(S s, S c) may be written as

J(S s, S c) = Js(S s) + Jc(S c, S s),

where

Js(S s) = lim
M→∞

1
M

M−1∑
k=0

E
[
eRO(k)‖2Z + λs1(eKF,LO(k) < S s)

]
Jc(S c, S s) = lim

M→∞

1
M

M−1∑
k=0

E
[
‖xRO(k)‖2Z + λc1

([
xRO(k)
ua(k)

]
< S c

) ∣∣∣∣∣∣ S s

]
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Remark 3.2. The second cost Jc is conditioned on the sensor’s triggering set, S s, because the expectation taken in Jc

must be computed with respect to the probability distribution of the state estimate, xRO(k). As this random variable’s
distribution is a function of the sensor subsystem’s triggering set, we see that the expectation in Jc must also be
conditioned on S s, thereby weakly coupling the cost of the controller subsystem to the cost of the sensor subsystem.

Proof. The key step in separating J into the two costs Js and Jc relies on the fact that xRO(k) and eRO(k) are uncorre-
lated. This is shown in Lemma Appendix A.1. Realizing x(k) = xRO(k) + eRO(k) together with the fact that xRO(k) and
eRO(k) are uncorrelated, J(S s, S c) can be rewritten as

J(S s, S c) = lim
M→∞

1
M

M−1∑
k=0

E
(
‖eRO(k)‖2Z + ‖xRO(k)‖2Z + λs1(eKF,LO(k)) + λc1

([
xRO(k)
ua(k)

]
< S c

))
= J(S s) + J(S c, S s),

Since both Js and Jc rely on S s, the S s which minimizes Js doesn’t necessarily minimizes J. We can see, however
that the minimum cost J∗ is bounded above by

J∗ ≤ J(S †s , S
†
c) = J†s + J†c (S †s ) (3)

where S †s is the optimal sensor triggering set that minimizes Js(S s). The sensor cost achieved by S †s is J†s = min
S s

Js(S s).

In a similar way we can see S †c as the controller’s event-triggering strategy that minimizes the controller cost Jc(S c, S
†
s )

assuming the sensor is the optimal event-trigger S †s . In this case the controller’s cost becomes J†c = min
S c

Jc(S c, S †s ).

The problem of search for the optimal triggering sets can now be obtained by solving two coupled optimization
problems. The first optimization problem seeks the sensor triggering set, S †s , that minimizes Js(S s). The second
optimization problem seeks an optimal triggering set, S c that minimizes the cost Jc(S c, S

†
s ). The next two subsections

present methods for solving these two optimization problems.

3.1. The optimal and suboptimal triggering sets in sensor subsystem
This subsection first characterizes the optimal triggering set minimizing the estimation cost Js. Determining the

optimal triggering set from this characterization has high computational complexity both in terms of terms of compu-
tation time and space (memory). We therefore present a suboptimal triggering set whose computational complexity
is more tractable and upper bound the cost achieved with this suboptimal trigger. The results presented in this section
were originally described in [13], so we only review the main results below.

Lemma 3.3. If there exists a bounded function hs : Rn → R and a finite number J′s such that

J′s + hs(e−KF,RO(k)) = Gs

(
hs(e−KF,RO(k))

)
(4)

where

Gs (hs(θ)) = min
S s

{
E(hs(e−KF,RO(k + 1))|eKF,RO(k) = θ) + cs(θ, S s)

}
,

then the optimal average cost of remote state estimation is

J†s = J′s, (5)

and the optimal triggering set in sensor subsystem

S †s =
{
θ : E(hs(e−KF,RO(k + 1))|eKF,RO(k) = θ) + ‖θ‖2Z ≤ λs + E(hs(e−KF,RO(k + 1))|eKF,RO(k) = 0)

}
. (6)

To compute S †s , we need to compute the function hs which satisfies Equation (4). This equation can only be solved
numerically, which means that the function hs can only be expressed in a numerical way, and we need a large table
to store the function hs. Computation and storage of such a large table will be impractical for many applications. We
therefore introduce a suboptimal triggering set for sensor subsystem whose computational complexity is tractable and
cost can be bounded.
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Lemma 3.4. Given a quadratic triggering set

S s = {e−KF,RO(k) : ‖e−KF,RO(k)‖2Hs
≤ λs − ζs}, (7)

where the n × n matrix Hs ≥ 0 satisfies the Lyapunov inequality

AT HsA
1 + δ2

s
− Hs +

Z
1 + δ2

s
≤ 0,

for some δ2
s ≥ 0, and

ζs =
δ2

sλs + tr(HsR)
1 + δ2

s
,

where R = P−1
Z L(CAQAT CT + CWCT + V)LT (P−1

Z )T , then

Js(S s) ≤ J s(S s) = min{tr(HsR) + ζs, λs} (8)

Remark 3.5. For any A and Z ≥ 0, there always exists an Hs > 0 and a δ2
s ≥ 0 such that the Lyapunov inequality (3.4)

holds. We should notice that the greatest singular value of A, σ(A), is always greater than or equal to the absolute
value of any eigenvalue of A. So if we set δ2

s to be the value such that σ(A) ≤
√

1 + δ2
s , then A/

√
1 + δ2

s is always
stable, and there always exists Hs ≥ 0 such that (3.4) holds for any semi-positive definite matrix Z.

3.2. Optimal and suboptimal triggering sets in controller subsystem
This subsection first studies the optimal triggering set for the controller subsystem and the corresponding minimum

average cost of control. As was found in the preceding subsection, direct computation of the optimal triggering set is
complex. We therefore introduce a suboptimal event-trigger and bound the performance obtained using this trigger.

Since minimizing Jc(S c, S s) with respect to S c is a discrete time average optimal control problem, the method
in [14] can be applied to our problem. So we have the lemma below to state the optimal triggering set and cost in
controller subsystem.

Lemma 3.6. Given S †s , if there exists a bounded function hc : Rn × Rm → R, and a bounded function J′c : Sn → R
(Sn indicates the collection of all subsets of Rn) such that

J′c(S †s ) + hc(xRO(k), ua(k − 1)) = min
S c
{E[hc(xRO(k + 1), ua(k))|xRO(k), ua(k − 1), S c] + Cc(xRO(k), ua(k − 1), S c)} , (9)

then

J†c (S †s ) = J′c(S †s ), (10)

and the optimal triggering set in controller subsystem is

S †c =

{[
θ
η

]
: E

[
hc

([
xRO(k + 1)

ua(k)

])∣∣∣∣∣∣
[

xRO(k)
ua(k − 1)

]
=

[
θ
η

]]
≤ E

[
hc

([
xRO(k + 1)

ua(k)

])∣∣∣∣∣∣
[

xRO(k)
ua(k − 1)

]
=

[
θ

Kθ

]]
+ λc

}
To determine the optimal triggering set in controller subsystem S †c , one must find the function, hc, which satisfies

Equation (9). This equation would be numerically solved to obtain a concrete representation for the function of hc and
hence the controller’s event-trigger, S †c . Due to its concrete representation, the event-trigger would require a great deal
of memory to store. We therefore introduce a suboptimal triggering set for the controller subsystem which is easy to
computer and store. The next lemma describes this suboptimal triggering set and provides an upper bound on its cost.

Lemma 3.7. Let S s in Equation (7) be the triggering set in sensor subsystem, Au =

[
A B
0 I

]
, Ac =

[
A + BK 0

K 0

]
,

Za =

[
Z 0
0 0

]
, and Hs = PT

HsPHs. Given a quadratic triggering set of controller subsystem

S c =


[

xRO(k)
ua(k − 1)

]
:

∥∥∥∥∥∥
[

xRO(k)
ua(k − 1)

]∥∥∥∥∥∥2

Hc

+ ζc ≤ ‖xRO(k)‖2Z + λc

 , (11)
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where Hc ≥ Za and controller gain K satisfy

AT
u HcAu + (1 + δ2

c)(Za − Hc) ≤0, (12)

AT
c HcAc + (1 − ρ2

c)(Za − Hc) ≤0, (13)

for some constant δ2
c ≥ 0 and 0 ≤ ρ2

c ≤ 1, and

ζc =
δ2

c + ρ2
c − 1

δ2
c + ρ2

c
λc, (14)

the optimal controller cost is bounded from above by

Jc(S s, S c) ≤ Jc(S c, S s) =
δ2

c

δ2
c + ρ2

c
λc + σ((PT

Hs)
−1Hc,luP−1

Hs)(λs − ζs), (15)

where σ(·) indicates the greatest singular value, and Hc,lu is the left upper n × n sub-matrix of Hc.

The upper bound on Jc(S c, S s), Jc(S c, S s), is greater when the uncontrolled system is more unstable. It is easy to
see that Jc(S c, S s) is monotonically increasing with respect to δ2

c which can be seen as a measure of how unstable the
matrix Au is. The (n + m)× (n + m) matrix Au indicates the dynamic behavior of [xRO ua]T during the interval between
two consecutive transmissions from controller subsystem to actuator subsystem.

Jc(S c, S s) is less if the controller is more aggressive. Jc(S c, S s) is monotonically decreasing with respect to ρ2
c

which indicates how aggressive the controller is. The greater the ρ2
c is, the more aggressive the controller is. So a

more aggressive controller will provides a greater ρ2
c , and hence a less Jc(S c, S s).

The more precious the communication resource between controller and actuator subsystem is, the greater upper
bound we will have. This is easy to see from Equation (15), since higher communication price λc implies more
precious communication resource.

A larger triggering set in sensor subsystem S s results in a larger upper bound on the average cost of control. In
Section 3, we have said that Jc(S c, S s) is influenced by the triggering set in sensor subsystem S s. The second term
in Jc(S c, S s) involves all the parameters in S s, so it is the impact of S s on the upper bound on the average cost of
controller. This term σ((PT

Hs)
−1Hc,luP−1

Hs)(λs − ζs) reflects how big S s (centered about the origin) is. If S s is big, the
value of the second term of Jc(S c, S s) is great, which results in a great upper bound on the average cost of controller.

From the results in Equation (3), 3.3, and 3.6, we can give the optimal weakly coupled triggering sets in sensor
and controller subsystems, and an upper bound on the optimal cost.

Theorem 3.8. The optimal triggering set in sensor subsystem S †s defined in Lemma 3.3 minimizes Js(S s), and the
optimal triggering set in controller subsystem S †c defined in Lemma 3.6 minimizes Jc(S c, S

†
s ). The optimal cost of the

closed loop system J∗ is bounded from above by J† = J†s + J†c (S †s ), where J†s and J†c (S †s ) are described in Equation (5)
and (10), respectively.

From the analysis following Lemma 3.3 and 3.6, we know that the optimal triggering set S †s and S †c are hard to
compute and store. So suboptimal triggering sets and an upper bound on the cost of closed loop system triggered by
these triggering sets are derived, which are computationally effective and easy to store. From the results in Lemma
3.1, 3.4 and 3.7, we can have the theorem below.

Theorem 3.9. Given the triggering set in sensor subsystem S s defined in Equation (7) and the triggering set in con-
troller subsystem S c defined in Equation (11), the average cost J(S s, S c) given by the two weakly coupled triggering
sets is bounded from above by J(S s, S c) = J s(S s) + Jc(S c, S s), where Js(S s) and Jc(S c, S s) are defined in Equation
(8) and (15), respectively.

4. Simulation Results

In this section, an example is used to demonstrate Theorem 3.9. We first calculate the triggering sets S s and
S c according to Equation (7) and (11), and search for the controller gain K such that Inequality (13) is satisfied.
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Figure 2: Simulation results about average cost and transmission times

The system, then, is run with the calculated controller gain K, and the transmission is triggered with the computed
triggering sets. Next, the average cost given by simulation is compared with the upper bound given in Theorem 3.9
to demonstrate Theorem 3.9. Finally, we show the number of transmission times in sensor subsystem, the number
of transmission times in controller subsystem, and the number of times when both sensor and controller transmit
(concurrent transmission times) to illustrate that the transmission in sensor subsystem doesn’t necessarily trigger the
transmission in controller subsystem, or vice versa.

Let’s consider the system with A to be
[

0.4 0
0 1.01

]
, B to be

[
1
1

]
and C to be

[
0.1 1

]
. The variances of the

system noises are W =

[
0.2 0.1
0.1 0.2

]
, and V = 0.3. The weight matrix Z is chosen to be an identity matrix.

Given δ2
s = 1.5, λs = 3, δ2

c = 1.02 and ρc = 0.3, we can obtain the triggering set in sensor subsystem S s as below{
e−KF,RO : e−T

KF,RO

[
2.5641 0

0 4.0543

]
e−KF,RO ≤ 0.8414

}
,

the triggering set in controller subsystem S c as below
[

xRO(k)
ua(k − 1)

]
:
[

xRO(k)
ua(k − 1)

]T
 1.3315 −0.2836 −0.3512
−0.2836 3.6377 2.6808
−0.3512 2.6808 13.7606


[

xRO(k)
ua(k − 1)

]
≤ 0.9008λc

 ,
and the controller gain K = [−0.1967 − 0.3133]. The closed loop system is run for 3000 steps with different λc. We
first compare the average cost given by our simulation (J) with the upper bound given by Theorem 3.9 (Jup), and then
have a look at the transmission times in sensor subsystem, the transmission times in controller subsystems and the
concurrent transmission times.

The left hand side plot of Figure 2 shows that the average cost given by simulation (J) is always bounded from
above by the upper bound given by Theorem 3.9 (Jup). The x-axis of this plot indicates the communication price in
controller subsystem λc, and the y-axis is the average cost. we can see that for any λc, the average cost J (blue star)
is always bounded from above by the upper bound given by Theorem 3.9 (black cross), which demonstrates Theorem
3.9.

The right hand side plot of Figure 2 shows that the transmission in sensor subsystem doesn’t always trigger the
transmission in controller subsystem, or vice versa. The x-axis of this plot is the communication price in controller
λc, and the y-axis indicates the transmission times. We can see that the number of concurrent transmission times (pink
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circle) is always less or equal to both the numbers of transmission times in sensor and controller subsystems, which
indicates that the transmission in sensor subsystem doesn’t always trigger the transmission in controller subsystem, or
vice versa.

5. Conclusion and Future work

This paper presents weakly coupled triggering events in event triggered output feedback system with the whole
control loop closed over wireless network. By ’weakly coupled’, we mean that the triggering events in both sensor
and controller only use local information to decide when to transmit data, and the transmission in one link doesn’t
necessarily trigger the transmission in other link. We also show that with the triggering events and controller we
designed, the cost of the closed loop system is bounded from above, and an explicit upper bound on the cost is
obtained. Our simulation results demonstrate the proposed weakly coupled triggering events and the upper bound on
the cost of the closed loop system. This paper serves as a foundation for our future work which will study the multi
sensor systems. We are interested in how the cost increases with respect to the number of sensors, and the methods to
bound the increasing rate.

Appendix A. Proofs

Lemma Appendix A.1. xRO(k) and eRO(k) are uncorrelated with each other.

Proof. From the dynamics of the closed system, we can derive that

e−RO(k) = AeRO + w(k − 1)

eRO(k) =

{
e−RO(k), e−KF,RO ∈ S s;
eKF(k), otherwise.

From the equations above, we can see that eRO(k) is a linear combination of eKF(τ`(k)
s ), w(τ`(k)

s ), w(τ`(k)
s + 1), · · · , w(k).

From Equation (1) and (2), we can see that xRO(k) is a linear combination of xKF(τ`(k)
s ), xKF(τ`(k)−1

s ), · · · , xKF(τ1
s).

Since eKF(τ`(k)
s ), w(τ`(k)

s ), w(τ`(k)
s + 1), · · · , w(k) is uncorrelated with xKF(τ`

′

s ) for any `′ ≤ `(k), we can conclude
that xRO(k) and eRO(k) are uncorrelated with each other.

Appendix A.1. Proof of Lemma 3.7

Before the proof of Lemma 3.7, we would like to state a lemma which will be used in the proof of Lemma 3.7.

Lemma Appendix A.2. Given any S c. If there exists a function f : Rn × Rm → R bounded from below and a finite
constant J

′

s such that

J
′

c + f
([

xRO(k)
ua(k − 1)

])
≥E

[
f
([

xRO(k + 1)
ua(k)

]) ∣∣∣∣∣∣
[

xRO(k)
ua(k − 1)

]
, S c

]
+ Cc

([
xRO(k)

ua(k − 1)

]
, S c

)
, (A.1)

then Jc(S c) ≤ J
′

c.

Proof. See [15].

Appendix A.1.1. Proof of Lemma 3.7
Proof. According to Lemma Appendix A.2, as long as we can find a function f bounded from below such that the
Inequality (A.1) is satisfied with J

′

c = Jc, Lemma 3.7 is true.

Let f
([

xRO(k)
ua(k − 1)

])
=

[
xRO(k)

ua(k − 1)

]T

Hc

[
xRO(k)

ua(k − 1)

]
+ ζc. We will consider two cases, and check whether the

Inequality (A.1) holds for both cases. If yes, then Lemma 3.7 is proven.
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The first case is when [
xRO(k)

ua(k − 1)

]T

Hc

[
xRO(k)

ua(k − 1)

]
+ ζc ≤ xRO(k)T ZxRO(k) + λc. (A.2)

In this case, the controller subsystem doesn’t transmit at step k. The right hand side of Inequality (A.1) can be rewritten
as

=

[
xRO(k)

ua(k − 1)

]T

AT
u HcAu

[
xRO(k)

ua(k − 1)

]
+ E(‖e−KF,RO(k + 1)‖Hc,lu )1(e−KF,RO(k + 1) < S s) + ζc +

[
xRO(k)

ua(k − 1)

]T

Za

[
xRO(k)

ua(k − 1)

]
≤

[
xRO(k)

ua(k − 1)

]T

AT
u HcAu

[
xRO(k)

ua(k − 1)

]
+ σ((PT

Hs)
−1Hc,luP−1

Hs)(λs − ζs) + ζc +

[
xRO(k)

ua(k − 1)

]T

Za

[
xRO(k)

ua(k − 1)

]
≤Jc + f

([
xRO(k)

ua(k − 1)

])
The first inequality is from Equation (7), and the second inequality is from Equation (12), (A.2) and (14).

The second case is when
[

xRO(k)
ua(k − 1)

]T

Hc

[
xRO(k)

ua(k − 1)

]
+ ζc > xRO(k)T ZxRO(k) + λc. In this case, the controller

subsystem transmit information. So the right hand side of Inequality (A.1) can be rewritten as

=

[
xRO(k)

ua(k − 1)

]T

AT
c HcAc

[
xRO(k)

ua(k − 1)

]
+ E(‖e−KF,RO(k + 1)‖Hc,lu )1(e−KF,RO(k + 1) < S s) + ζc +

[
xRO(k)

ua(k − 1)

]T

Za

[
xRO(k)

ua(k − 1)

]
+ λc

≤

[
xRO(k)

ua(k − 1)

]T

AT
c HcAc

[
xRO(k)

ua(k − 1)

]
+ σ((PT

Hs)
−1Hc,luP−1

Hs)(λs − ζs) + ζc +

[
xRO(k)

ua(k − 1)

]T

Za

[
xRO(k)

ua(k − 1)

]
+ λc

≤Jc + f
([

xRO(k)
ua(k − 1)

])
.

The first inequality is from Equation (7), and the second inequality is from Equation (13) and (14).
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