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Many of the results for event-triggered control of embeddedsystems can be extended to networked control systems.
A networked control system or NCS is a set of controllers thatcoordinate their actions over a communication network.
For NCS, event-triggering is used to decide when totransmit or broadcast the system state to a local controller’s neigh-
bors. Using events to trigger communication actually provides a much stronger motivation for event-triggered control.
The reason for this is that in many cases, the energy or cost associated with the transmission of a bit of information
is much more than the energy associated with using that bit tocompute the control law. Event-triggering, therefore,
provides a realistic way of reducing traffic congestion in communication networks used by NCS. The objective of
this section is to show how the earlier results from event-triggered control of embedded systems can be extended to
networked control systems. The NCS architecture under study is first discussed and then we derive event-triggered
triggers that assure input-to-state stability of the NCS. As in the case of embedded systems, the NCS implementation
introduces a number of so-callednetwork artifacts that complicate the analysis of the idealized model. These network
models include delays in the transmission of information aswell as dropped information packets. An important issue
that should be addressed in the study of such systems is the impact that such network artifacts have on the overall
performance of the NCS.

While there is a great deal of literature [1] [2] [4][5] [9] examining networked control systems, there is relatively
little work pertaining to event-triggered NCS. Most of the results in this section are drawn from [7] and [6]. Related
work will be found in [3].

Model of Networked Control System: Let’s first describe a model of a networked control system or NCS. Consider a
distributed NCS containingN agents. Figure 1 provides a graphic illustration of an NCS with three agents. Each agent
consists of aphysical component and acyber component. The physical components are interconnected as shown by
the solid lines in the figure. The cyber components are also interconnected through a communication network whose
links are shown by the dashed lines in the figure.
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ẋ1(t) = f1(xD1
(t), u1(t), w1(t))

ẋ2(t) = f2(xD2
(t), u2(t), w2(t))

ẋ3(t) = f3(xD3
(t), u3(t), w3(t))

u1(t) = k1(x̂Z1
(t))

u2(t) = k2(x̂Z2
(t))

u3(t) = k3(x̂Z3
(t))

Figure 1: Model of Event-Triggered Networked Control Systems
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This system may be more formally characterized using graph theoretic notation. In particular, letN = {1,2, · · · ,N}
denote the set of agents. A graphGcp = (N ,Ecp) represents the physical coupling between the agents.N denotes the
vertices of the graph andEcp ⊂ N ×N denotes the set of edges in the graph. In this case an edge(i, j) is in Ecp if the
dynamics of agentj’s physical component are directly driven by agenti’s local state. The graphGcm = (N ,Ecm) is
models the interconnections between the cyber-componentsof the agents. As beforeN denotes the vertices (nodes)
of the graph andEcm ⊂ N ×N represents the edges of the graph.

In this section, the graphs for the physical and cyber interconnections need not be the same. This requires us to
define a number of special neighborhoods in the graph. In particular, we let

• Zi = { j ∈ N |( j, i) ∈ Ecm} represents those agents whose cyber-components can send information to agenti’s
cyber-component.

• Ui = { j ∈ N |(i, j) ∈ Ecm} denotes those agents whose cyber-components can receive information from agent
i’s cyber-component.

• Di =
{

j ∈ N |( j, i) ∈ Ecp
}

represents those agents whose physical components directly drive the dynamics of
agenti’s physical component.

• Si =
{

j ∈ N |(i, j) ∈ Ecp
}

denotes those agents whose physical components are directly driven by the physical
component of agenti.

For any setΣ ⊂ N , we let|Σ| denote the number of elements in that set and we letΣ = Σ∪{i}.

The physical component of agenti is characterized by alocal state xi : ℜ → ℜn wherexi satisfies the differential
equation

ẋi(t) = fi(xDi
(t),ui(t),wi(t))

xi(t0) = xi0

wherexDi
= {x j} j∈Di

are the local states of agenti’s neighbors that are physically connected to it. The system

dynamics are characterized by the functionfi : ℜn|Di|×ℜm ×ℜℓ → ℜn is continuous and locally Lipschitz satisfying
fi(0,0,0) = 0. ui : ℜ → ℜm is a control input generated by the cyber-component of the agent andwi : ℜ → ℜℓ is an
external disturbance.

The controlui is generated by agenti’s cyber-component. Since these cyber components exchangeinformation
over a digital communication network, local states are transmitted in a discrete manner. In particular, we let{ri

j}
∞
j=1

denote the sequence of broadcast release times for theith agent. So thetransmitted state from agentj is denoted as

x̂ j(t) = x j(r j)

for t ∈ [r j,r j+1) and j = 0, . . . ,∞. Agent i’s cyber component uses the local state information received from all its

neighbors in the setZi to compute the controlui. So letki : ℜn|Zi| → ℜm denote thei’th agent’s local controller so that

ui(t) = gi(x̂Zi
(t))

Following the same notational conventions as before, ˆxZi
denotes the broadcast states of all neighbors of agenti whose

cyber-components send information directly to agenti.

ISS Event-Triggered Networked Control: We can now derive ISS event-triggers for the NCS described above. In
particular, letei(t) = x̂i(t)− xi(t) denote the localgap between agenti’s current state and its last broadcast state. We
assume there exists a positive definite functionV : ℜnN → ℜ and classK functionsγi, ψi, andβi (for i = 1, . . . ,N)
such that

V̇ =
N

∑
i=1

∂V
∂xi

fi(xDi
,ki(xZi + eZi),wi) ≤

N

∑
i=1

(−γi(‖xi‖)+ ψ(‖ei‖)+ βi(‖wi‖)) (1)
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whereeZi is the gap of all agenti’s cyber-neighbors. This assumption means thatV is an ISS-Lyapunov function when
the the gapei = 0. In view of our earlier discussion, this is sufficient to imply that the local controllerski leave the
original ”continuously” sampled version of the networked control system input-to-state stable.

So again, we select a user parameterσi ∈ (0,1) and note that if the local state and gap trajectories satisfythe
inequality

−σiγi(‖xi(t)‖)+ ψ(‖ei(t)‖) ≤ 0 (2)

for all t ∈ ℜ and alli = 1, . . . ,N, then the bound oṅV becomes

V̇ ≤
N

∑
i=1

(−(1−σi)γi(‖xi‖)+ βi(‖wi‖))

This is, of course, a dissipative inequality which we saw earlier was sufficient to show that the event-triggered NCS is
input-to-state stable with respect to the external inputwi.

As before in our study of the embedded event-triggered controllers, the inequality in equation (2) can be used as
the basis of a state-dependent threshold test. In particular, the ith agent would check the validity of the following
threshold test on the gap,

ψi(‖ei(t)‖) ≤ σiγi(‖xi(t)‖)

At the broadcast timeri
j, the local gap,ei = 0. This gap then grows until it exceeds the state dependent threshold

γi(‖xi(t)‖). The violation of that threshold triggers agenti to broadcast its state again. Note that this is a ”cooperative”
broadcast mechanism in that the violation of the threshold results in an agent sharing its local state information with
its neighbors. In other words, the success of such an event-triggered broadcast scheme relies on all agent’s agreeing to
work in the same manner.

Note that the ISS event trigger given above is only alocal function of the agent’s state. This is important, for it
means each agent is able to trigger its broadcast without relying directly on its neighbors. A key part of the prior
analysis is the assumption that there exists a ISS Lyapunov function that is ”separable” in the sense specified by the
bounds in equation (1). Such a Lyapunov function may be constructed if we can identify a set ofN positive definite
functionsVi : ℜn → ℜ for i = 1, . . . ,N with classK functionsγi, ηi,ψi, andβi such that

∂Vi

∂xi
fi(xDi

,ki(xZi
+ eZi

),wi) ≤−γi‖xi‖
2 + ∑

j∈DicupZi

η j‖x j‖
2 + ∑

j∈Zi

ψ j‖e j‖
2 + β 2

i ‖wi‖
2 (3)

In this case, we can then see that by choosingV = ∑N
i=1Vi, then we can easily see that

V̇ ≤
N

∑
i=1



−γi‖xi‖
2 + ∑

j∈Di∪Zi

η j‖x j‖
2 + ∑

j∈Zi

ψ j‖e j‖
2 + β 2

i ‖wi‖
2





=
N

∑
i=1

(

−(γi −|Si ∪Ui|ηi)‖xi‖
2 + ψi|U i|‖ei‖

2 + β 2
i ‖wi‖

2)

Note that this matches the conditions in equation (1) provided the first term on the righthand side is negative definite.
This term will be negative definite if we require

γi −|Si ∪Ui|ηi > 0

This condition places a restriction on the amount of coupling between physically interconnected physical systems. In
particular, it says that if we can appropriately bound this physical coupling and if there exist candidate ISS-Lyapunov
functions satisfying the bounds in equation (3), then we canalways construct a globalV that is an ISS-Lyapunov
function for the entire networked system. In this case, the associated ISS event-trigger is easily shown to have the
form

‖ei(t)‖ ≤ σi

√

γi −|Si∪Di|ηi

|U i|ψi
‖xi(t)‖ =

σi

αi
‖xi(t)‖

3



which would ensure theL2 stability of the entire system.

The ability to constructV from smaller ”local” candidate ISS-Lyapunov functions is important, for it allows us to
distribute the design of the ISS event-triggers. This is particularly important in large-scale networked systems where
agent subsystems may be added and modified in an ad hoc manner.One particularly good example where we can
exploit this ”distributed” strategy for constructing the ISS event triggers occurs when the underlying networked system
is linear. In this case, the parameters in the triggering conditions can be computed using linear matrix inequalities [8].

Simulation results for this approach to event-triggered broadcasting are shown in figure 2. This example was taken
from [7]. It consists of several carts that are interconnected as shown through soft springs. The local state of theith
cart isxi =

[

yi ẏi
]T

whereyi is the position of theith cart with respect to the system’s equilibrium point. Assuming
soft spring coupling between the carts, we can see that the state equation for those carts with springs on both sides are

ẋi(t) =
d
dt

[

yi

ẏi

]

=

[

ẏi(t)
ui(t)+ k1

i tanh(yi+1(t)− yi(t))+ k2
i tanh(yi−1(t)− yi(t))+ wi(t)

]

for all t ∈ ℜ. In this casek1
i denotes the spring constant for the spring on the right hand side of theith cart andk2

i
denotes the spring constant on the left hand side of the cart.The functionui : ℜ → ℜ denotes the ”control” applied to
the cart by its local controller.

In this example the communication network’s links mirror the physical interactions between the carts so that
Zi = Di. The sampled state is denoted as ˆxi(t) =

[

ŷi(t) d
dt ŷi(t)

]T
where ˆyi(t) = yi(r j) and d

dt ŷi(t) = ẏi(r j) for all
t ∈ [r j,r j+1) and j = 0, . . . ,∞. The local control is computed from these sampled measurements as

ui(t) = Kix̂i(t)− k1
i (tanh(ŷi+1(t)− ŷi(t))− k2

i tanh(ŷi−1(t)− ŷi(t))

In this case, the agents at the either end of the carts uses theISS event-trigger 5.9‖ei
j(t)‖< 0.2‖xi(ri

j)‖ and the interior

agents use the event trigger 10.3‖e j
i (t)‖ < 0.2‖xi(ri

j)‖. The results from this simulation are shown in figure 2.

.

u1 u2 u3

y1
y2

y3

0 1 2 3 4 5 6
−0.5

0

0.5

1

0 1 2 3 4 5 6
0

0.02

0.04

Time

Time

lo
ca

l s
ta

te
s

In
te

rs
a

m
p

le
 T

im
e

s

Figure 2: Simulation Example of Event-Triggered NetworkedControl System consisting of three coupled carts.

The top plot on the left hand side of figure 2 plots the state trajectories for all three carts. As can be seen, this
event-triggered system is asymptotically stable since allpoints asymptotically approach their equilibrium points at
zero. The bottom plot on the left hand side of figure 2 plots theintersample time intervals that were generated by the
proposed event triggers. As can be seen, these intersample time intervals vary over time in a regular manner.
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