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Many of the results for event-triggered control of embedslesiems can be extended to networked control systems.
A networked control system or NCS is a set of controllers toatrdinate their actions over a communication network.
For NCS, event-triggering is used to decide whemaasmit or broadcast the system state to a local controller’s neigh-
bors. Using events to trigger communication actually pttegia much stronger motivation for event-triggered control
The reason for this is that in many cases, the energy or cestiased with the transmission of a bit of information
is much more than the energy associated with using that leibtimpute the control law. Event-triggering, therefore,
provides a realistic way of reducing traffic congestion imoounication networks used by NCS. The objective of
this section is to show how the earlier results from eveggtred control of embedded systems can be extended to
networked control systems. The NCS architecture undeystufirst discussed and then we derive event-triggered
triggers that assure input-to-state stability of the NCSimthe case of embedded systems, the NCS implementation
introduces a number of so-calledtwork artifacts that complicate the analysis of the idealized model. Theseark
models include delays in the transmission of informatiowal as dropped information packets. An important issue
that should be addressed in the study of such systems is ftectrthat such network artifacts have on the overall
performance of the NCS.

While there is a great deal of literature [1] [2] [4][5] [9] @mining networked control systems, there is relatively
little work pertaining to event-triggered NCS. Most of tlesults in this section are drawn from [7] and [6]. Related
work will be found in [3].

Model of Networ ked Control System: Let's first describe a model of a networked control system@EBNConsider a
distributed NCS containinly agents. Figure 1 provides a graphic illustration of an NCth #iree agents. Each agent
consists of ghysical component and ayber component. The physical components are interconnecteuoamsy

the solid lines in the figure. The cyber components are atsodonnected through a communication network whose
links are shown by the dashed lines in the figure.
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Figure 1: Model of Event-Triggered Networked Control Syste



This system may be more formally characterized using gitagretic notation. In particular, let” ={1,2,--- N}
denote the set of agents. A gragip = (.1, Ecp) represents the physical coupling between the agefitsienotes the
vertices of the graph arfet, C 4" x 4 denotes the set of edges in the graph. In this case an(gdyés in Ecp if the
dynamics of agenj’s physical component are directly driven by agésiocal state. The grap¥cm = (-#",Ecm) is
models the interconnections between the cyber-componéttie agents. As beforg” denotes the vertices (nodes)
of the graph andm C .4 x 4 represents the edges of the graph.

In this section, the graphs for the physical and cyber imt@nections need not be the same. This requires us to
define a number of special neighborhoods in the graph. licpéat, we let

e Z,={jeN|(],i) € Een} represents those agents whose cyber-components can §amdation to agent's
cyber-component.

e U ={jeA|(i,]j) € Ecm} denotes those agents whose cyber-components can redereation from agent
i's cyber-component.

e D= {je./|(j,i) € Ecp} represents those agents whose physical components ylieigtt the dynamics of
agent’s physical component.

e S={je4|(i,]) € Ecp} denotes those agents whose physical components areylitseén by the physical
component of agerit

For any sef C .4, we let|Z| denote the number of elements in that set and wE etz U {i}.

The physical component of ageris characterized by bbcal state x; : 0 — 0" wherex; satisfies the differential
equation

Xi(t) = filxg(t),ui(t),wi(t))
X(to) = X

wherexs, = {xj}jegi are the local states of agerdg neighbors that are physically connected to it. The system

dynamics are characterized by the functfpnO"Pil x 0™ x O — O™ is continuous and locally Lipschitz satisfying
fi(0,0,0) = 0. u; : 0 — O™ is a control input generated by the cyber-component of tleaandw; : 0 — 0 is an
external disturbance.

The controlu; is generated by ageiis cyber-component. Since these cyber components excliafeggeation
over a digital communication network, local states aresnaitted in a discrete manner. In particular, we{lgt};”_,
denote the sequence of broadcast release times fithtagent. So thiransmitted state from agent is denoted as

%j(t) =x(rj)

fort € [rj,rj;1) andj =0,...,0. Agenti's cyber component uses the local state information redefiram all its
neighbors in the se&f; to compute the contral;. So letk; : Onlzil — Om denote thé'th agent’s local controller so that

Ui (t) = 6i(%z (1))

Following the same notational conventions as befgsedénotes the broadcast states of all neighbors of ageimbse
cyber-components send information directly to agent

I SS Event-Triggered Networked Control: We can now derive ISS event-triggers for the NCS describedeabln
particular, lete (t) = X (t) — x(t) denote the locagap between agerits current state and its last broadcast state. We
assume there exists a positive definite funciiond™ — 0 and class# functionsy, i, andB; (fori =1,...,N)
such that

V= iZ%fi(XDi’ki(XZi +€z),W) < i;(—yl(lbqu)+Lp(||a||)+;3i(||wi||)) (1)



whereez, is the gap of all agerits cyber-neighbors. This assumption means Yhestan ISS-Lyapunov function when
the the gape = 0. In view of our earlier discussion, this is sufficient to igmhat the local controllerg; leave the
original "continuously” sampled version of the networkexhtrol system input-to-state stable.

So again, we select a user parametee (0,1) and note that if the local state and gap trajectories satisfy
inequality

—ay(Ix®l)+w(let))) <0 2)

forallt € O and alli = 1,...,N, then the bound o¥ becomes

. N
V< _;(—(1— o) (I [1) + Bi(llwill)

This is, of course, a dissipative inequality which we saWieawas sufficient to show that the event-triggered NCS is
input-to-state stable with respect to the external ingut

As before in our study of the embedded event-triggered oblets, the inequality in equation (2) can be used as
the basis of a state-dependent threshold test. In pantidhkaith agent would check the validity of the following
threshold test on the gap,

w(lle®l) < av(lix®)l)

At the broadcast time‘j, the local gapg = 0. This gap then grows until it exceeds the state dependesghtbld
vi(JIxi(t)]]). The violation of that threshold triggers agétd broadcast its state again. Note that this is a "cooperativ
broadcast mechanism in that the violation of the thresheddlts in an agent sharing its local state information with
its neighbors. In other words, the success of such an etiggeted broadcast scheme relies on all agent’s agreeing to
work in the same manner.

Note that the ISS event trigger given above is onlpal function of the agent’s state. This is important, for it
means each agent is able to trigger its broadcast withoyihgetirectly on its neighbors. A key part of the prior
analysis is the assumption that there exists a ISS Lyapunwtibn that is "separable” in the sense specified by the
bounds in equation (1). Such a Lyapunov function may be cocigtd if we can identify a set & positive definite
functionsV; : 0" — O fori = 1,...,N with class#” functionsy, ni,;, andg; such that
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In this case, we can then see that by choo¥%ing ZiN:1Vh then we can easily see that
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Note that this matches the conditions in equation (1) predithe first term on the righthand side is negative definite.
This term will be negative definite if we require

v —|SuUiln >0

This condition places a restriction on the amount of cogpliatween physically interconnected physical systems. In
particular, it says that if we can appropriately bound thiggical coupling and if there exist candidate 1SS-Lyapunov
functions satisfying the bounds in equation (3), then we @arays construct a globa that is an ISS-Lyapunov

function for the entire networked system. In this case, gsoaiated ISS event-trigger is easily shown to have the

form
[y —ISubilni O
le®l < 0.\/7@'4]i [[%i(t)[| = a [ (t) ]
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which would ensure the, stability of the entire system.

The ability to construct from smaller "local” candidate ISS-Lyapunov functionsrigaortant, for it allows us to
distribute the design of the ISS event-triggers. This igipalarly important in large-scale networked systems \&her
agent subsystems may be added and modified in an ad hoc mamemparticularly good example where we can
exploit this "distributed” strategy for constructing tH&S event triggers occurs when the underlying networke@ésyst
is linear. In this case, the parameters in the triggeringlitmms can be computed using linear matrix inequalitigs [8

Simulation results for this approach to event-triggeraezhidcasting are shown in figure 2. This example was taken
from [7]. It consists of several carts that are interconeéets shown through soft springs. The local state oftthe

cartisx; = [ Vi i ]T wherey; is the position of théth cart with respect to the system’s equilibrium point. Assug
soft spring coupling between the carts, we can see thatdbee atjuation for those carts with springs on both sides are

Xi(t)—g{yi }—{ 1 yi(t)z
G|y | 7w+ Kitanky a0 i) + KRtanky (1) —yi(0) +wi(t)

for allt € O. In this casek! denotes the spring constant for the spring on the right hatedaf theith cart anck?
denotes the spring constant on the left hand side of theTaetfunctionu; : 0 — O denotes the "control” applied to
the cart by its local controller.

In this example the communication network’s links mirroe thhysical interactions between the carts so that

Z = Dj. The sampled state is denoted@$)= [ ¥i(t) %yi (t) ]T whereyi(t) = yi(rj) and %fﬁ (t) =vi(rj) for all
te[rj,rj+1) andj =0,...,0. The local control is computed from these sampled measurtsnas

Ui(t) = Ki%i (t) — ki (tanhi.1(t) — (1)) — kP tanh(§i—1(t) — %i(t))

In this case, the agents at the either end of the carts usesi"nh:ﬁ/ent-trigger.'.S)Heij Ml < O.2||xi(ri]-)|\ and the interior
agents use the event trigger.30e/ (t)|| < O.2||xi(r‘j)|\. The results from this simulation are shown in figure 2.
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Figure 2: Simulation Example of Event-Triggered Networkihtrol System consisting of three coupled carts.

The top plot on the left hand side of figure 2 plots the statedtaries for all three carts. As can be seen, this
event-triggered system is asymptotically stable sinceaithts asymptotically approach their equilibrium points a
zero. The bottom plot on the left hand side of figure 2 plotstitersample time intervals that were generated by the
proposed event triggers. As can be seen, these intersampletervals vary over time in a regular manner.



References

[1] D. Carnevale, A.R. Teel, and D. Nesic. A lyapunov proofraproved maximum allowable transfer interval for
networked control system$EEE Transactions on Automatic Control, 52:892—-897, 2007.

[2] W.P.M.H. Heemels, A.R. Teel, N. van de Wouw, and D. Nesietworked control systems with communication
constraints: tradeoffs between sampling intervals, dekyd performance. submitted to the 2009 European
Control Conference (ECC), 2009.

[3] M. Mazo and P. Tabuada. On event-triggered and selfénigd control over sensor/actuator networks Pio-
ceedings of the 47th IEEE Conference on Decision and Control, Cancun, Mexico, December 2008.

[4] D. Nesic and A.R. Teel. Input-output stability propediof networked control system$EEE Transactions on
Automatic Control, 49(10):1650-1667, 2004.

[5] D. Nesic and A.R. Teel. Input-to-state stability of netked control systemsAutomatica, 40(12):2121-2128,
December 2004.

[6] X.Wang and M.D. Lemmon. Decentralized event-triggesemhdcasts over networked control systemddyhrid
Systems. computation and control, St. Louis, Missouri, USA, April 2008.

[7] X. Wang and M.D. Lemmon. Event-triggered broadcastiogpas distributed networked control systems. In
Proceedings of the American Control Conference, Seattle, Washington, USA, June 2008.

[8] X. Wang and M.D. Lemmon. Event-triggering in distribdteetworked control systems. submitted to the IEEE
Transactions on Automatic Control, February 2009.

[9] W. Zhang, MS Branicky, and SM Phillips. Stability of nedvked control systemdEEE Control Systems Maga-
zine, 21(1):84-99, 2001.



