
Event-Triggered Optimization

Michael Lemmon, University of Notre Dame

October 6, 2009

This section introduces an event-triggered distributed algorithm that solves network utility maximization (NUM)
problems in large-scale networked systems [18, 17]. Existing distributed algorithms for the NUM problem are
gradient-based schemes whose convergence to the optimal point provided the communication between subsystems
is sufficiently frequent. Analytic bounds on the communication interval required to ensure convergence tend to be
inversely proportional to certain measures of network complexity such as network diameter and connectivity. As a
result, the total message passing complexity in such algorithms can be very great. The event-triggered algorithm pre-
sented in this section appears to reduce the message passingcomplexity by nearly two-orders of magnitude. Moreover,
experimental results indicate that this complexity isscale-free with regard to network diameter and connectivity.

Related Work: Many problems in networked systems can be formulated as optimization problems. This includes
estimation [13] [14] [5], source localization [13], data gathering [2] [1], routing [9], control [16], resource allocation
[12] [21] in sensor networks, resource allocation in wireless communication networks [20] [3], congestion control
in wired communication networks [6] [8], and optimal power dispatch [7] in electrical power grid. The consensus
problem [10] can also be viewed as a distributed optimization problem where the objective function is the total state
mismatch between neighboring agents. In all of these problems, we find subsystems communicating with each other
in order to collaboratively solve a network optimization problem.

Early distributed algorithms that solve such network optimization problems include the center-free distributed
algorithms [4] and distributed asynchronous gradient-based algorithms [15]. These early algorithms suggest that if the
communication between adjacent subsystems is sufficientlyfrequent, then the state of the network will asymptotically
converge to the optimal point. Later developments in such distributed algorithms may be found in the networking
community. Most of these later algorithms focus on solving the Network Utility Maximization (NUM) problem.
The NUM problem maximizes a global separable measure of network system performance subject to linear inequality
constraints that are directly related to throughput constraints. This problem originates in congestion control for Internet
traffic[6] [8]. The NUM problem, however, has a general form and many problems in other areas can be recast as a
NUM problem with little or no variation. As a matter of fact, all of the aforementioned problems can be reformulated
as NUM problems.

Among the existing algorithms [6] [8] [19] [11] solving the NUM problem, the dual decomposition approach
proposed by Low et al. [8] is the most widely used. Low et al. showed that their dual decomposition algorithm was
convergent for a step-size that was inversely proportionalto two important measures of network size: the maximum
path lengthL and the maximum number of neighborsS.

So as these two measures get large, the step size required to ensure convergence becomes extremely small. Step
size, of course, determines the number of computations required for the algorithm’s convergence. Under dual decom-
position, system agents exchange information at each iteration, so that step size,|gamma, also determines the message
passing complexity of the algorithm. Therefore if we use the”stabilizing” step size, dual decomposition algorithms
will have a message passing complexity that quickly scales to unreasonable levels as we increase the network size,L,
or increase the neighborhoood sizeS. In particular, it was shown in [8] that the dual-decomposition is convergent if
the step size satisfies

0 < γ < γ∗ =
−2max(i,xi) ∇2Ui(xi)

LS

whereL is the maximum number of links any user uses,S is the maximum number of users any link has, andUi(xi)
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is the utility useri receives for transmitting at ratexi. For many networked systems this type of message passing
complexity may be unacceptable. This is particularly true for systems communicating over a wireless network. In
such networked systems, the energy required for communication can be significantly greater than the energy required
to perform computation. As a result, it would be beneficial ifwe can somehow separate communication and com-
putation in these distributed algorithms. This could reduce the message passing complexity of distributed algorithms
such as dual decomposition. This section shows how event-triggering can be used to realize the separation between
communication and computation in a primal algorithm solving the NUM problem.

NUM Problem: The NUM problem consists a network ofN users andM links. LetS = {1, . . . ,N} denote the set
of users andL = {1, . . . ,M} denote the set of links. Each user generates a flow with a specified data rate. Each flow
may traverse several links (which together constitute a route) before reaching its destination. The set of links that are
used by useri ∈ S will be denoted asLi and the set of users that are using linkj ∈ L will be denoted asS j. The
NUM problem takes the form

maximize: U(x) = ∑i∈S Ui(xi)
subject to: Ax ≤ c, x ≥ 0

(1)

wherex =
[

x1 · · · xN
]T

andxi ∈ ℜ is useri’s data rate.A ∈ ℜM×N is the routing matrix mapping users onto
links andc ∈ ℜ is a vector of link capacities. Thejith component,A ji, is 1 if useri’s flow traverses linkj and is zero
otherwise. Thejth row of Ax represents the total data rates going through linkj. This rate cannot exceed the link’s
capacityc j. The cost functionU : ℜN → ℜ is the sum of the userutility functions,Ui : ℜ → ℜ, for i = 1, . . . ,N. These
utility functions represent the reward,Ui(xi), (i.e. quality-of-service) that useri receives by transmitting at ratexi.

A specific example of a NUM problem is shown in figure 1. This figure shows a linear network consisting ofM = 5
links with N = 3 users. User 1 route includes links 1-4, user 2’s route includes links 2-3, and user 3’s route uses link
3-5. Assuming each link has a capacity limit of 1, the throughput constraint therefore becomes,
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Figure 1: Example of NUM Problem

The solution to the NUM problem maximizes the summed utilityseen by all users in the network as a function of
the users’ transmission rates. These rates must clearly be non-negative. Moreover, ifUi(x) = αi log(x) whereαi is a
positive constant, then it can be shown that all the user rates in the optimal solution must be positive. In other words,
the optimal solution does not result in certain users from being denied access to the network, thereby assuring that all
users have ”fair” access to network resources.

Augmented Lagrangian Algorithm: While early algorithms used methods based on the dual to the problem in
equation (1), this section examines an primalaugmented Lagrangian method. In particular, we introduce a slack
variables ∈ ℜM and replace the link constraints (c j −aT

j x ≥ 0 for all j ∈ L ) by the following equality constraint

aT
j x− c j + s j = 0, s j ≥ 0, for all j ∈ L
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Theaugmented cost then becomes

L(x,s;λ ,w) = − ∑
i∈S

Ui(xi)+ ∑
j∈L

λ j(a
T
j x− c j + s j)+

1
2 ∑

j∈L

1
w j

(aT
j − c j + s j)

2

Here a penalty parameterw j is associated with each link constraint andw = [w1, . . . ,wM] is the vector of penalty
parameters. Supposeλ ∗

j is the Lagrange multiplier associated with linkj’s constraint,c j − aT
j x ≥ 0. Thenλ j is an

estimate ofλ ∗
j with λ = [λ1, . . . ,λM]. The vectoraT

j =
[

A j1, · · · ,A jN
]

is the jth row of the routing matrixA.

L(x,s;λ ,w) is a continuous function ofx ands for fixed λ andw. It was shown that

min
x≥0,s≥0

L(x,s;λ ,w) = min
x≥0

min
s≥0

L(x,s;λ ,w) = min
x≥0

Lp(x;λ ,w)

where we define theaugmented Lagragian function associated with the NUM problem as

Lp(x;λ ,w) = − ∑
i∈S

Ui(xi)+ ∑
j∈L

ψ j(x;λ ,w)

where

ψ j(x;λ ,w) =

{

− 1
2w jλ 2

j if c j −aT
j x−w jλ j ≥ 0

λ j(aT
j x− c j)+ 1

2w j
(aT

j x− c j)
2 otherwise

The primal algorithm based on the augmented Lagrangian method solves the NUM problem by approximately
minimizing Lp(x;λ [k],w[k]) for sequences{w[k]}∞

k=0 and{λ [k]}∞
k=0. Let x∗[k] denote the approximate minimizer for

Lp(x;λ [k],w[k]). It has been shown that for appropriately chosen sequences{w[k]}∞
k=0 and{λ [k]}∞

k=0, the sequence of
approximate minimizers,{x∗k}∞

k=0 converges to the optimal point of the NUM problem. The appropriate choices for
these sequences is that for allj ∈L , that{w j[k]}∞

k=0 is monotone decreasing to zero and that{λ j[k]}∞
k=0 is a sequence

of Lagrange multiplier estimates where

λ j[k +1] = max

{

0,λ j[k]+
1

w j[k]

(

aT
j x∗[k]− c j

)

}

A primal algorithm based on the augmented Lagangian method was developed that converges to the exact mini-
mizer of the NUM problem. In many scenarios, however, it may suffice to obtain an approximate minimizer which
can be obtained by consider the problem of minimizingLp(x;λ ,w) for a fixedλ andw. In particular, ifλ j = 0 andw j

is sufficiently small, the minimizer ofLp(x;λ ,w) will be a good approximation to the solution of the original NUM
problem. In this regard thebasic primal algorithm can be stated as follows

1. Initialization: Select any initial user ratex0 > 0. Setλ j = 0 and select a sufficiently smallw j > 0 for all j ∈L .

2. Recursive Loop: Minimize Lp(x;λ ,w) by letting

x[k +1] = max{0,x[k]− γ
∂Lp

∂x
(x[k];λ ,w) (2)

for k = 0, . . . ,∞.

The smallerw is the more accurate our approximate solution is. The recursion shown in step 2 tries to minimize
Lp(x;λ ,w) using a gradient following method in whichγ is a sufficiently small step size. The computations shown
above can be easily distributed among users and links.

Event-Triggered NUM Algorithm: Implementing the aforementioned primal algorithm in a distributed manner re-
quires communication between users and links. An event-triggered implementation of the algorithm assumes that the
transmission of messages between users and links is triggered by some local error signal crossing a state-dependent
threshold. The main problem is to determine a threshold condition that results in message streams ensuring asymptotic
convergence to the NUM problem’s approximate solution.
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We can search for the minimizer of the LagrangianLp(x;λ ,w) using a gradient following algorithm. Assuming
that computation is ”cheap”, we realize the gradient algorithm as a continuous-time system in which

xi(t) = −
∫ t

0

(

∂Lp

∂xi
(x(τ);λ ,w)

)+

xi(τ)

dτ

=

∫ t

0

(

∂Ui(xi(τ))

∂xi
− ∑

j∈Li

µ j(τ)

)+

xi(τ)

τ (3)

for each useri ∈ S where

µ j(t) = max

{

0,λ j +
1

w j

(

∑
i∈S j

xi(t)− c j

)}

(4)

Here, given a fucntionf : ℜ+ → ℜ, its positive projection is defined as

( f (x))+
x =

{

0 if x = 0 and f (x) < 0
f (x) otherwise

The positive projection used above guarantees that the userrate,xi(t), is always non-negative along the trajectory.

Equation (3) is the continuous-time version of the discrete-time update shown in equation (2). Note that in equation
(3), useri computes its rate based only on the information from itself and the information ofµ j from those links that
are being used by useri. We can think ofµ j as thejth link’s local state. From equation (4), linkj only needs to be
able to measure the total flow that goes through itself. All ofthis information is locally available so the update of the
user rate can be done in a distributed manner.

In the above equation, this link state information is available to the user in a continuous manner. We now consider
anevent-triggered version of equation (3). Here we assume that the user accesses asampled version of the link stsate.
In particular, let’s associate a sequence ofsampling instants,{T L

j [ℓ]}∞
ℓ=0 with the jth link. The timeT L

j [ℓ] denotes the
instant when thejth link samples its link stateµ j for theℓth time and transmits that state to usersi ∈ S j. We can see
that at any timet ∈ ℜ, the sampled link state is a piecewise constant function of time in which

µ̂ j(t) = µ j(T
L
j [ℓ])

for all ℓ = 0, . . . ,∞ and anyt ∈ [T L
j [ℓ],T L

j [ℓ+1]). In this regard, the ”event-triggered” version of equation(3) takes the
form

xi(t) =
∫ T

0

(

∂Ui(xi(τ))

∂xi
− ∑

j∈Li

µ̂ j(τ)

)+

xi(τ)

dτ

for all ℓ and anyt ∈ [T L
j [ℓ],T L

j [ℓ+1]).

We can now try to establish conditions on the sampling times{T L
j [ℓ} that ensure the gradient update shown in

equation (2) is convergent. For notational convenience we let the time derivative of the user rate,xi(t), be denoted as
zi(t). Referring tozi(t) as theuser state, we can see thatzi satisfies the equation

zi(t) = ẋi(t) =

(

∂Ui(xi(t))
∂xi

− ∑
j∈Li

µ̂ j(t)

)+

xi(t)

for all i ∈ S . Now we takeLp(x;λ ,w) as a candidate Lyapunov function. The directional derivative of Lp is

L̇p(x;λ ,w) =
M

∑
i=1

∂Lp

∂xi

dxi

dt
= −

N

∑
i=1

zi

(

∂Ui(xi(t))
∂xi

−
M

∑
j=1

µ jA ji

)

≤ −
N

∑
i=1





1
2

z2
i −

1
2

(

M

∑
j=1

(µ j − µ̂ j)A ji

)2




≤ −
1
2

N

∑
i=1

z2
i +

1
2

M

∑
j=1

LS(µ j − µ̂ j)
2
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To assure thaṫLp is negative definite, we need to select the sampling times so that

M

∑
j=1

LS(µ j − µ̂ j)
2 ≤

N

∑
i=1

z2
i

This almost looks like one of the state-dependent event-triggers we used earlier in section??. Unfortunately, this
trigger cannot be implemented in a distributed manner. While the left-hand side is separable over the links, the
right-hand side is summed over the users. So the preceding analysis does not give rise to an event trigger that can
implemented locally.

To develop appropriate ”local” event-triggers we consideranother sequence of times{T S
i [ℓ]}∞

ℓ=0 for each user
i ∈ S . The timeT S

i [ℓ] is theℓth time when useri transmits its user state to all linksj ∈ Li. We can therefore see that
at any timet ∈ ℜ, the sampled user rate is a piecewise constant function of time satisfying

ẑi(t) = zi(T
S

i [ℓ])

for all ℓ = 0, . . . ,∞ and anyt ∈ [T S
i [ℓ],T S

i [ℓ+1]). We can now use this sampled user state in our earlier expression for
L̇p to show that

L̇(x;λ ,w) ≤−
1
2

N

∑
i=1

[

z2
i −ρ ẑ2

i

]

−
1
2

M

∑
j=1

[

ρ ∑
i∈S j

1

L
ẑ2

i −LS(µ j − µ̂ j)
2

]

for someρ ∈ (0,1). Now we see thaṫLp is negative definite as long as we can ensure that

0 >
N

∑
i=1

[z2
i −ρ ẑ2

i ]

0 >
M

∑
j=1

[

ρ ∑
i∈S j

1

L
ẑ2

i −LS(µ j − µ̂ j)
2

]

In this case, both inequalities are separable. The first one is separable over the users and the second one is separable
over the links. We can therefore ensure these conditions aresatisfied if

z2
i −ρ ẑ2

i > 0 (5)

for eachi ∈ S . This condition can be enforced by requiring that the user transmitzi at those time instants when the
inequality is about to be violated. The other condition is satisfies if

LS(µ j − µ̂ j)
2 < ρ ∑

i∈S j

1

L
ẑ2

i (6)

for each j ∈ L . This condition can be enforced by requiring that the link transmitµ j at those time instants when
the inequality is about to be violated. The informal discussion given above therefore establishes that if we generate
user/link transmissions using the event triggers in equation (5) and (6), thenLp(x;λ ,w) indeed becomes a Lyapunov
function for this system and we can ensure that this system isconvergent to a neighborhood of the optimal solution of
the NUM problem.

Figure 2 shows the event-triggered optimization algorithmin graphical from. In this case we see the system
”network” that was used to introduce the NUM problem in figure1. In this case each link in the network has an
associated router which monitors the total data flowing through the link (∑i∈S j

xi(t)− c j). Attached to each router is
a ”price agent” that updates the link stateµ j and checks the event-trigger in equation (6) to determine whether or not
it will transmit its local link state. In a dual manner, each user that is pumping data into the network has an associated
”rate agent” that updates the user statezi(t) and checks the trigger in equation (5) to determine when to transmit to
the links. We therefore see that our algorithm has both a feedback (link to user) and feedforward path (user to link) in
which the information streams are both sporadic in nature.
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1
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∑
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xi(t) − cj









+
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−

∑
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i (t)− ρẑ2

i (t) ≤ 0

Figure 2: Diagram of the event-triggered primal algorithm

Scaling of Event-Triggered Algorithm: We compare the number of message exchanges of our event-triggered algo-
rithms against the dual decomposition algorithm. Simulation results show that event-triggered algorithms reduce the
number of message exchanges by up to two orders of magnitude when compared to dual decomposition.

In this simulation, we fixM, N, L and varyS from 7 to 26. For eachS, all algorithms were run 1500 times, and
each time a random network which satisfies the above specification is generated. The meanmK and standard deviation
σK of K are computed for eachS. mk works as our criteria for comparing the scalability of both algorithms. The left
hand plot in figure 3 plots the iteration numberK (in logarithm scale) as a function ofS for all algorithms. The circles
representmK for dual decomposition and the squares correspond to the primal algorithm.
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Figure 3: Iteration numberK as a function ofS andL for all algorithms.

For the primal algorithm, whenS increases from 7 to 26,mK does not show noticeable increase. For the primal
algorithm,mK varies between 15.1 and 21.1. For dual decomposition,mK increases from 0.3856×103 to 5.0692×103.
Our event-triggered algorithm is up to two orders of magnitude faster than the dual decomposition. We can also
see that, unlike the dual decomposition algorithm, which scales superlinearly with respect toS, the event-triggered
algorithm is scale-free.

We also simulated the algorithms as a function ofL. In particular, we variedL from 4 to 18. The right hand plot in
figure 3 plotsK (in logarithm scale) as a function ofL for all algorithms. For the primal algorithm, whenL increases
from 4 to 18,mK increases slowly. In particular,mk increases from 15.0 to 18.2. For dual decomposition,mK increases
from 0.9866×103 to 3.5001×103. Our event-triggered algorithm again is up to two orders of magnitude faster than
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the dual decomposition. We also see that our event-triggered algorithms is scale-free.
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