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This section introduces an event-triggered distributgdrthm that solves network utility maximization (NUM)
problems in large-scale networked systems [18, 17]. Hgstistributed algorithms for the NUM problem are
gradient-based schemes whose convergence to the optimndlppovided the communication between subsystems
is sufficiently frequent. Analytic bounds on the communmatnterval required to ensure convergence tend to be
inversely proportional to certain measures of network dewity such as network diameter and connectivity. As a
result, the total message passing complexity in such dlgos can be very great. The event-triggered algorithm pre-
sented in this section appears to reduce the message pessiptexity by nearly two-orders of magnitude. Moreover,
experimental results indicate that this complexitgdale-free with regard to network diameter and connectivity.

Related Work: Many problems in networked systems can be formulated asn@aiion problems. This includes
estimation [13] [14] [5], source localization [13], datatigaring [2] [1], routing [9], control [16], resource allatian

[12] [21] in sensor networks, resource allocation in wissleommunication networks [20] [3], congestion control
in wired communication networks [6] [8], and optimal poweésphtch [7] in electrical power grid. The consensus
problem [10] can also be viewed as a distributed optimirgtimblem where the objective function is the total state
mismatch between neighboring agents. In all of these pnadleve find subsystems communicating with each other
in order to collaboratively solve a network optimizatiomplem.

Early distributed algorithms that solve such network optation problems include the center-free distributed
algorithms [4] and distributed asynchronous gradienetadgorithms [15]. These early algorithms suggest thagif t
communication between adjacent subsystems is sufficifetiyient, then the state of the network will asymptotically
converge to the optimal point. Later developments in suskriluted algorithms may be found in the networking
community. Most of these later algorithms focus on solvingNetwork Utility Maximization (NUM) problem.

The NUM problem maximizes a global separable measure ofarktsystem performance subject to linear inequality
constraints that are directly related to throughput caists. This problem originates in congestion control faetnet
traffic[6] [8]. The NUM problem, however, has a general forndanany problems in other areas can be recast as a
NUM problem with little or no variation. As a matter of fact| af the aforementioned problems can be reformulated
as NUM problems.

Among the existing algorithms [6] [8] [19] [11] solving thelWNM problem, the dual decomposition approach
proposed by Low et al. [8] is the most widely used. Low et abveid that their dual decomposition algorithm was
convergent for a step-size that was inversely proportismélo important measures of network size: the maximum
path lengti_ and the maximum number of neighb&s

So as these two measures get large, the step size requiregiieeonvergence becomes extremely small. Step
size, of course, determines the number of computationsrestfor the algorithm’s convergence. Under dual decom-
position, system agents exchange information at eachidarao that step sizégamma, also determines the message
passing complexity of the algorithm. Therefore if we usestabilizing” step size, dual decomposition algorithms
will have a message passing complexity that quickly scalemteasonable levels as we increase the networklisjze,
or increase the neighborhoood sBeln particular, it was shown in [8] that the dual-decompiosiis convergent if
the step size satisfies
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whereL is the maximum number of links any user us8ss the maximum number of users any link has, &)
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is the utility useri receives for transmitting at rate. For many networked systems this type of message passing
complexity may be unacceptable. This is particularly troedystems communicating over a wireless network. In
such networked systems, the energy required for commumicedn be significantly greater than the energy required
to perform computation. As a result, it would be beneficiaké& can somehow separate communication and com-
putation in these distributed algorithms. This could redihe message passing complexity of distributed algorithms
such as dual decomposition. This section shows how evigigieting can be used to realize the separation between
communication and computation in a primal algorithm saivime NUM problem.

NUM Problem: The NUM problem consists a network Bfusers andM links. Let.” = {1,...,N} denote the set
of users and?Z = {1,...,M} denote the set of links. Each user generates a flow with afsggbdata rate. Each flow
may traverse several links (which together constitute ée)duefore reaching its destination. The set of links that ar
used by user € . will be denoted asZ and the set of users that are using ling . will be denoted as”j. The
NUM problem takes the form

maximize: U(X) = Sic.Ui(X) )
subjectto: Ax<c, x>0

wherex = [ X1 o+ XN }T andx; € 0 is useri’s data rate.A € OM*N is the routing matrix mapping users onto
links andc € O is a vector of link capacities. Thg" componentAji, is 1 if useri’s flow traverses linkj and is zero
otherwise. Theth row of Ax represents the total data rates going through |inKhis rate cannot exceed the link’s
capacitycj. The cost functiot : ON — [ is the sum of the usetility functionsU; : 0 — O, fori=1,...,N. These
utility functions represent the reward,(x), (i.e. quality-of-service) that uséreceives by transmitting at raxe

A specific example of a NUM problem is shown in figure 1. This fegshows a linear network consistingdf= 5
links with N = 3 users. User 1 route includes links 1-4, user 2's route deduinks 2-3, and user 3's route uses link
3-5. Assuming each link has a capacity limit of 1, the thrqugftonstraint therefore becomes,
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Figure 1: Example of NUM Problem

The solution to the NUM problem maximizes the summed utgiégn by all users in the network as a function of
the users’ transmission rates. These rates must clearlph@egative. Moreover, Ifi(x) = ajlog(x) whereq; is a
positive constant, then it can be shown that all the uses iatthe optimal solution must be positive. In other words,
the optimal solution does not result in certain users fromdpdenied access to the network, thereby assuring that all
users have "fair” access to network resources.

Augmented Lagrangian Algorithm: While early algorithms used methods based on the dual to ribiglgm in
equation (1), this section examines an priraajmented Lagrangian method. In particular, we introduce a slack
variables € OM and replace the link constraints; aJ-Tx > 0forall j € .£) by the following equality constraint

ajx—¢j+s=0, §>0, forallje?



Theaugmented cost then becomes
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Here a penalty parametey; is associated with each link constraint amg= [wy,...,Wy] is the vector of penalty
parameters. Supposhirf is the Lagrange multiplier associated with lifle constraintcj — aJ-Tx > 0. ThenAj is an

estimate oﬂj* with A = [A4,...,Am]. The vectmajT = [Ajl, e ,A,—N} is the jth row of the routing matriXA.

L(x,s,A,w) is a continuous function of ands for fixed A andw. It was shown that

min L(X,s;A,w) =minminL(x,s,A,w) = minLp(X; A, w)
x>0,5>0 x>0 s>0 x>0

where we define thaugmented Lagragian function associated with the NUM problem as

Lp(A,w) =— 5 Uix)+ 5 ¢j(xA,w)

& jer
where
—1lwiaz if ci—alx—wiA; >0
iAW) = 2 7] 1T 2 - o
’ /\j(ajx—cj)+m(ajx—cj) otherwise

The primal algorithm based on the augmented Lagrangianadethlves the NUM problem by approximately
minimizing Lp(x; A k], W[k]) for sequence$wik|}> , and{A [k}, Letx*[k] denote the approximate minimizer for
Lp(x;A[K],W[k]). It has been shown that for appropriately chosen sequemgklyy , and{A [k|}y_,, the sequence of
approximate minimizerg,x*k}y_, converges to the optimal point of the NUM problem. The appedp choices for
these sequences is that for p#t ., that{w;[k] }}°_, is monotone decreasing to zero and thifk|} 2, is a sequence
of Lagrange multiplier estimates where

Ajk+1) = max{O,/\j[k] + ﬁ (af [k — cj)}

A primal algorithm based on the augmented Lagangian mettesddeveloped that converges to the exact mini-
mizer of the NUM problem. In many scenarios, however, it maffige to obtain an approximate minimizer which
can be obtained by consider the problem of minimiziggx; A ,w) for a fixedA andw. In particular, ifA; = 0 andw;
is sufficiently small, the minimizer df,(x; A, w) will be a good approximation to the solution of the original/M
problem. In this regard thigasic primal algorithm can be stated as follows

1. Initialization: Select any initial user rat€ > 0. SetAj = 0 and select a sufficiently smalf, >0 forall j € .Z.
2. Recursive Loop: Minimize Lp(x;A,w) by letting

oL,

X[k+ 1] = max{0, x[K] — Y ax

(X[K[; A, w) )
fork=0,...,00.

The smallenw is the more accurate our approximate solution is. The r@muishown in step 2 tries to minimize
Lo(x;A,w) using a gradient following method in whighis a sufficiently small step size. The computations shown
above can be easily distributed among users and links.

Event-Triggered NUM Algorithm: Implementing the aforementioned primal algorithm in ariistted manner re-
guires communication between users and links. An evegdi¢ried implementation of the algorithm assumes that the
transmission of messages between users and links is teiddpgr some local error signal crossing a state-dependent
threshold. The main problem is to determine a thresholditiondhat results in message streams ensuring asymptotic
convergence to the NUM problem’s approximate solution.



We can search for the minimizer of the Lagrangigiix; A ,w) using a gradient following algorithm. Assuming
that computation is "cheap”, we realize the gradient athamias a continuous-time system in which
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for each user € . where

uj (t) _max{O,/\j+Wij < > Xa(t)—cJ-)} 4)
i€

Here, given a fucntiorf : O — [, its positive projection is defined as
0 ifx=0andf(x) <0
10 ={ | ®

(x) otherwise
The positive projection used above guarantees that the-atgex;(t), is always non-negative along the trajectory.

Equation (3) is the continuous-time version of the disctate update shown in equation (2). Note thatin equation
(3), user computes its rate based only on the information from itsedf the information ofuj from those links that
are being used by user We can think ofu; as thejth link’s local state. From equation (4), link only needs to be
able to measure the total flow that goes through itself. Athad information is locally available so the update of the
user rate can be done in a distributed manner.

In the above equation, this link state information is avdéao the user in a continuous manner. We now consider
anevent-triggered version of equation (3). Here we assume that the user ascasa®pled version of the link stsate.
In particular, let's associate a sequencesavfipling instants,{Tj'- [€]}7_o with the jth link. The timeTJ-'- [¢] denotes the
instant when thgth link samples its link statg; for the ¢th time and transmits that state to usees.”j. We can see
that at any time € 0, the sampled link state is a piecewise constant functioima in which

() = p (TH(€))
forall £=0,...,00 and anyt € [Tj'- [Z],Tj'- [£41]). In this regard, the "event-triggered” version of equati8ntakes the

form
T e +
mm=4(ﬁ%%@—znm0 dr

for all £ and anyt € [T-[¢], T [¢+1]).

We can now try to establish conditions on the sampling tir{TE;Ls[E} that ensure the gradient update shown in
equation (2) is convergent. For notational convenienceeivthk time derivative of the user raig(t), be denoted as
z(t). Referring toz (t) as theuser state, we can see that satisfies the equation
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foralli € .. Now we takelp(x;A,w) as a candidate Lyapunov function. The directional derreatif L, is
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To assure thaip is negative definite, we need to select the sampling timelsato t
M ., N
S ES(pj — )* < le"z
j=1 i=

This almost looks like one of the state-dependent eveggrdris we used earlier in secti@?. Unfortunately, this
trigger cannot be implemented in a distributed manner. &tk left-hand side is separable over the links, the
right-hand side is summed over the users. So the precedalgsesidoes not give rise to an event trigger that can
implemented locally.

To develop appropriate "local” event-triggers we consideother sequence of tim€{§is[£]}2‘;o for each user
i € 7. The timeTS[¢] is the/th time when user transmits its user state to all linkss .%. We can therefore see that
at any timet € O, the sampled user rate is a piecewise constant functiomefdatisfying

forall ¢=0,...,0 and anyt € [T;3[¢], T;S[¢+ 1]). We can now use this sampled user state in our earlier expneiss
Lp to show that

NI =

LocA,w) <=5 5 [7-p%] - %1 [p_ > %ZZ—L—S(HJ —ﬂ;-)zl
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for somep € (0,1). Now we see thdip is negative definite as long as we can ensure that
N
0 > .ZFZ - pZ]
=

M
0 > ,; [Piezyj %f—L—S(HJ —ﬂj)zl

In this case, both inequalities are separable. The first®eeparable over the users and the second one is separable
over the links. We can therefore ensure these conditionsadisfied if

Z-p#>0 (5)

for eachi € .. This condition can be enforced by requiring that the userdmitz at those time instants when the
inequality is about to be violated. The other condition iss$i@s if

LS —)2<p y 172 (6)

i€ L

for eachj € .Z. This condition can be enforced by requiring that the lirdnsmity; at those time instants when
the inequality is about to be violated. The informal disemsgiven above therefore establishes that if we generate
user/link transmissions using the event triggers in equa) and (6), theth,(x; A, w) indeed becomes a Lyapunov
function for this system and we can ensure that this systewmrigergent to a neighborhood of the optimal solution of
the NUM problem.

Figure 2 shows the event-triggered optimization algoritihngraphical from. In this case we see the system
"network” that was used to introduce the NUM problem in figdre In this case each link in the network has an
associated router which monitors the total data flowinguftothe link ¢c o, Xi(t) — cj). Attached to each router is
a "price agent” that updates the link statpand checks the event-trigger in equation (6) to determinethdr or not
it will transmit its local link state. In a dual manner, eadeuthat is pumping data into the network has an associated
rate agent” that updates the user state) and checks the trigger in equation (5) to determine whenatostnit to
the links. We therefore see that our algorithm has both ab@ed(link to user) and feedforward path (user to link) in
which the information streams are both sporadic in nature.



O jth link broadcast its state, u;, at times
{Tf10}7 when

RELLEET T
s

—— 1
LS(ui(t) = a0 2 p ) f}?(t)
i€S;
O jth link can continuously monitor its local
state

+
um%(y+%<2mm—ﬂ)
7 \ies;
J

O 4th user can continuously monitor its local
modified state

.
amzcﬂﬁmme)

JEL;

O ith user broadcasts its modified state, z;,
at times {T°[]}22,, when

#(t) = pEi(t) <0

.

Figure 2: Diagram of the event-triggered primal algorithm

Scaling of Event-Triggered Algorithm: We compare the number of message exchanges of our evegertitjalgo-
rithms against the dual decomposition algorithm. Simaftatiesults show that event-triggered algorithms reduce the
number of message exchanges by up to two orders of magnitoele gompared to dual decomposition.

In this simulation, we fixM, N, L and varySfrom 7 to 26. For eacl, all algorithms were run 1500 times, and
each time a random network which satisfies the above spdizifida generated. The meank and standard deviation
ok of K are computed for eac® my, works as our criteria for comparing the scalability of bolgpogithms. The left
hand plot in figure 3 plots the iteration numie(in logarithm scale) as a function &ffor all algorithms. The circles
represening for dual decomposition and the squares correspond to theapalgorithm.

104 10* — -
© dugl-decomipositionjalgorithin o dual-{ecomposition algorithm
M event-triggered algo«ithgO 600 ] m event-triggered Plgorithm ' 500
! ' o n °
" : ('poco. ' 28 Oq',ooo¢oo X
R T S REEED 2 10% -0 -oo oo oo oo
3 @ ' ' 1 ] ! ' 1
2 OO I ' ' ' = ! ! !
2 A 5 : . .
S 1 1 1 1 = ' 1
S 9]
5 102f---- S R e S 2 q02f------ [ [ e
Q9 1 1 1 1 S ! 1 1
S \ \ \ \ 2 ! i !
S 1 1 1 1 1 1
z =] H : : : : : . (=l =]
10 el LL L LLLL LT ol _"@@smsemmEReneq
6 8 10 12 14 16 18 20 22 24 26 2 4 6 8 0 12 14 16 18
S = maximum number of users any link has L= maximum number of links used by any user

Figure 3: Iteration numbef as a function oBandL for all algorithms.

For the primal algorithm, wheB increases from 7 to 261k does not show noticeable increase. For the primal
algorithm,my varies between 1% and 211. For dual decompositiomy increases from.3856x 10° to 5.0692x 10°.
Our event-triggered algorithm is up to two orders of magtetfiaster than the dual decomposition. We can also
see that, unlike the dual decomposition algorithm, whichlesc superlinearly with respect & the event-triggered
algorithm is scale-free.

We also simulated the algorithms as a functioh.ofn particular, we varied from 4 to 18. The right hand plotin
figure 3 plotK (in logarithm scale) as a function bffor all algorithms. For the primal algorithm, whénincreases
from 4 to 18,mk increases slowly. In particulary increases from 18 to 182. For dual decompositiomy increases
from 0.9866x 10° to 3.5001x 10°. Our event-triggered algorithm again is up to two orders afjmitude faster than



the dual decomposition. We also see that our event-trigigdgorithms is scale-free.
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