
This Dissertation

entitled

Event-Triggering in Cyber-Physical Systems

typeset with nddiss2ε v3.0 (2005/07/27) on June 3, 2009 for

Xiaofeng Wang

This LATEX2ε classfile conforms to the University of Notre Dame style guide-
lines established in Spring 2004. However it is still possible to generate a non-
conformant document if the instructions in the class file documentation are not
followed!

Be sure to refer to the published Graduate School guidelines
at http://graduateschool.nd.edu as well. Those guide-
lines override everything mentioned about formatting in the
documentation for this nddiss2ε class file.

It is YOUR responsibility to ensure that the Chapter titles and Table caption
titles are put in CAPS LETTERS. This classfile does NOT do that!

This page can be disabled by specifying the “noinfo” option to the class invocation.
(i.e.,\documentclass[...,noinfo]{nddiss2e})

This page is NOT part of the dissertation/thesis, but
MUST be turned in to the proofreader(s) or the

reviwer(s)!

nddiss2ε documentation can be found at these locations:

http://www.gsu.nd.edu

http://graduateschool.nd.edu

Event-Triggering in Cyber-Physical Systems

A Dissertation

Submitted to the Graduate School

of the University of Notre Dame

in Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy in Electrical Engineering

by

Xiaofeng Wang, Ph.D. Candidate in Electrical Engineering

Michael D. Lemmon, Director

Graduate Program in Department of Electrical Engineering

Notre Dame, Indiana

June 2009

Event-Triggering in Cyber-Physical Systems

Abstract

by

Xiaofeng Wang

Cyber-Physical Systems (CPS) are the systems integrating physical processes

with computation and communication. Embedded computers and networks are

used to monitor and control these physical processes. A great challenge in im-

plementing such systems is the timing issue. Our work addresses this issue using

event-triggering schemes. We first study event/self-triggering in embedded control

systems. Both event-triggering and self-triggering schemes are proposed to enforce

specified stability concepts of the resulting sampled-data systems. These results

provide a solid analytical basis for the development of aperiodic sampled-data

control systems. Based on these results, distributed event-triggering is considered

in networked control systems with packet loss and transmission delays. A dis-

tributed event-triggering scheme is proposed, where a subsystem broadcasts its

state information to its neighbors only when the subsystem’s local state error ex-

ceeds a specified threshold. In this scheme, a subsystem is able to make broadcast

decisions using its locally sampled data. It can also locally predict the maximal

allowable number of successive dropouts (MANSD) and the state-based deadlines

for transmission delays. Moreover, the designer’s selection of the local event for

a subsystem only requires information on that individual subsystem. With the

assumption that the number of each subsystem’s successive data dropouts is less

Xiaofeng Wang

than its MANSD, we show that if the transmission delays are zero, the resulting

system is finite-gain Lp stable. If the delays are bounded by given deadlines, the

system is asymptotically stable. We also show that those state-based deadlines

for transmission delays are always greater than a positive constant.

CONTENTS

FIGURES . iv

CHAPTER 1: Introduction . 1
1.1 Motivation . 1
1.2 Prior Work on Embedded Control Systems 7
1.3 Prior Work on Networked Control Systems 10
1.4 Notations . 15

CHAPTER 2: Asymptotic Stability in Event-Triggered Feedback Systems 16
2.1 Problem Formulation . 16
2.2 Event Design in Systems without Task Delay 20
2.3 Event Design in Systems with Task Delay 23
2.4 Simulations . 27
2.5 Summary . 34

CHAPTER 3: Finite-Gain L2 Stability in Self-Triggered Feedback Systems 35
3.1 Problem Formulation . 35
3.2 Real-Time Constraints in Sampled-Data Systems 39
3.3 Self-Triggered Feedback Schemes 41
3.4 Simulation . 52

3.4.1 System Model . 52
3.4.2 Self-triggered Feedback . 54
3.4.3 Comparison against Event-triggered Feedback 59
3.4.4 Comparison against Periodically-triggered Feedback 66
3.4.5 Self-triggered System’s Computational Cost 69

3.5 Summary . 70

CHAPTER 4: Distributed Event-Triggering in Networked Control Systems 72
4.1 Problem Formulation . 74
4.2 Distributed Event Design for Asymptotic Stability 78

4.2.1 Local Event Design in Nonlinear Systems 79

ii

4.2.2 Local Event Design in Linear Systems 83
4.3 Event-Triggering with Data Dropouts and Transmission Delays . . 90
4.4 Simulations . 100

4.4.1 Implementation in Nonlinear Systems 101
4.4.2 Robustness . 104
4.4.3 Selection of Parameters . 106
4.4.4 Scalability . 109

4.5 Summary . 112

CHAPTER 5: Future Work . 114
5.1 Distributed Event Design for Finite-Gain Lp Stability 114

5.1.1 Real-Time Constraints in Nonlinear Systems 115
5.1.2 Real-Time Constraints in Linear Systems 116
5.1.3 Discussion . 120

5.2 Quantization . 120

APPENDIX A: PROOFS . 122
A.1 Proof of Theorem 2.2.2 . 122
A.2 Proof of Lemma 2.3.1 . 125
A.3 Proof of Lemma 2.3.2 . 126
A.4 Proof of Theorem 2.3.3 . 128
A.5 Proof of Theorem 3.2.1 . 130
A.6 Proof of Corollary 3.2.2 . 132
A.7 Proof of Theorem 3.3.1 . 133
A.8 Proof of Lemma 3.3.2 . 134
A.9 Proof of Lemma 3.3.3 . 135
A.10 Proof of Lemma 3.3.4 . 137
A.11 Proof of Theorem 3.3.5 . 138
A.12 Proof of Corollary 3.3.6 . 142
A.13 Proof of Lemma 4.3.1 . 143
A.14 Proof of Lemma 4.3.2 . 145
A.15 Proof of Lemma 4.3.3 . 149
A.16 Proof of Theorem 4.3.4 . 153
A.17 Proof of Theorem 5.1.2 . 155
A.18 Proof of Theorem 5.1.3 . 156

BIBLIOGRAPHY . 158

iii

FIGURES

2.1 An event-triggered feedback system 17

2.2 Relationship between task period (Tk), delay (τk), release time (rk),
and finishing time (fk) . 18

2.3 The trajectory of V and the threshold lines in event-triggered sys-
tems with non-zero delays . 24

2.4 An event-triggered feedback system 29

2.5 The trajectory of system energy versus time for an event-triggered
feedback system . 30

2.6 An event-triggered feedback system with external disturbance w(t) 32

2.7 An event-triggered feedback system with τk ≤ 0.1 33

3.1 Time history of zk(t) with non-zero task delay. 45

3.2 State trajectories of continuous-time closed-loop systems in equa-
tion (3.1) . 54

3.3 Normalized state error versus time for a self-triggered systems with
w(t) = 0 and a self-triggered system with ‖w(t)‖2 ≤ 0.01‖xs(t)‖2

(δ = 0.7, ǫ = 0.65). 56

3.4 Sampling period and predicted deadline for a self-triggered system
in which δ = 0.7 and ǫ = 0.65. 57

3.5 Sample periods and predicted deadlines versus time for a self-triggered
system (δ = 0.7, ǫ = 0.65, and ‖w(t)‖2 ≤ 0.01‖xs(t)‖2). 58

3.6 Histogram of sample period and predicted deadline for a self-triggered
system in which δ = 0.7 and ǫ ∈ {0.1, 0.4, 0.65}. 59

3.7 Histogram of sample period and predicted deadline for a self-triggered
system in which ǫ = 0.1 and δ ∈ {0.15, 0.40.9}. 60

3.8 Normalized state errors versus time for a self-triggered system and
an event-triggered system (δ = 1, ǫ = 0, and w(t) = 0) 61

iv

3.9 Sampling period versus time for a self-triggered system and an
event-triggered system (δ = 1, ǫ = 0, and w(t) = 0) 62

3.10 Normalized error versus time for a self-triggered system and an
event-triggered system (δ = 1, ǫ = 0, and w(t) = µ(t)) 63

3.11 Sampling period versus time for a self-triggered system and an
event-triggered system (δ = 1, ǫ = 0 and w(t) = µ(t)). 64

3.12 Normalized error versus time for a self-triggered system (δ = 1 and
ǫ = 0) and a periodically triggered system whose period was chosen
from the sample periods shown in the top plot of Figure 3.9. . . 68

4.1 The architecture of the real-time NCS 76

4.2 Relationship between release time (ri
j), successful release (bik), and

finishing time (f i
k) . 78

4.3 Three carts coupled by springs . 101

4.4 State trajectory, broadcast periods, and predicted deadlines in an
event-triggered NCS . 103

4.5 Successful broadcast periods versus time in an event-triggered NCS
with disturbances in agent 1 . 105

4.6 The average period, the SPD, and the MANSD in agent 1 versus ̺1 107

4.7 The average period, the SPD, and the MANSD in agent 1 versus δ1 108

4.8 The comparison between the bound on the MATI in [37] and the
average period generated by our scheme 110

v

CHAPTER 1

Introduction

1.1 Motivation

As digital technologies become popular, more and more digital-based applica-

tions are present in real life. In these applications, communication and compu-

tation are integrated with physical processes. Specific examples include electrical

power grids, transportation networks, advanced automotive systems, process con-

trol, environmental monitoring, medical systems, telecommunication, distributed

robotics, etc. In recent years, it has been popular to refer to such systems as

Cyber-Physical Systems (CPS) [28]. In such systems, pervasive networks are used

to monitor a large number of local physical processes (also called “subsystem”

or “agent”) that might be geographically distributed. Based on the information

gathered through the networks, the control decisions are made by embedded com-

puters located in physical components.

One important attribute of CPS is “networking”. Networking is not only

referred to the interconnection between physical processes, but also referred to the

interaction in cyber side. One example is distributed networked control systems

where subsystems are not only physically coupled together but also share the

same network to transmit information. To be considered as CPS, the system

should also be deeply embedded in a sense that each subsystem has the capability

1

of computing. It must integrate logic rules/events with timed-feedback control

and have high degree of automation.

To better understand CPS, we may compare CPS with real-time control, sen-

sor network, and traditional distributed/decentralized control. In traditional real-

time control, embedded systems can be viewed as “closed” units that do not

explore the computing capability to the outside, whereas in CPS subsystems are

networked and work cooperatively to ensure the performance of the overall sys-

tem. As to sensor networks, the distributed sensors only have the function of

monitoring the environment, whereas in CPS each subsystem has the capability

of making control decisions as well as monitoring. A cyber-physical system is

also different from traditional distributed/decentralized control in a sense that

traditional distributed/decentralized control ignores the timing effect on the sys-

tem performance. In other words, it is assumed each agent can sample the states

and communicate with its neighbors at will. This might be impractical in the

real world. In practice, the delays in computation and information transmission

always exist due to the limitation of embedded computers and communication

media. In CPS this timing issue must be taken into account.

Several interesting questions are raised in the research on CPS:

1. What are the real-time constraints in CPS such that some desired level of

performance can be achieved? How conservative are these constraints?

The introduction of real-time networking and the use of embedded processors

raise important issues regarding the impact of limited communication and

computation resource on the control system’s performance. In practice, it

might be impossible to continuously sample the environment. The control

decisions are also made in a discrete-time manner because of the use of

2

embedded computers. Moreover, the communication behavior has to be well

scheduled due to the limited communication resource. All of these suggest

that there must be predictable real-time constraints in CPS.

2. How can we design CPS that scale well with respect to system cost, perfor-

mance, and maintenance?

As we mentioned before, the number of physical processes in CPS may be

huge. Therefore, scalability becomes extremely important in such systems.

3. How can we design reliable networks to provide real-time guarantee and in-

formation flow required by embedded subsystems?

Even if the real-time constraints mentioned in the first question are available,

we still need to construct a reliable communication network such that those

real-time constraints can be enforced. This question focuses more on the

communication framework that is out of our scope.

The first question is associated with the problem of task period and deadline

selection in networked control systems. We are interested in how frequently sub-

systems should sample and communicate such that the overall system can achieve

a desired level of performance. One approach is to first design the controllers un-

der the assumption of perfect communication and then determine the maximum

allowable transfer interval (MATI) between two subsequent message transmissions

that ensures the stability of the overall system under a network protocol, such as

Try-Once-Discard (TOD) or Round-Robin (RR).

The computation of the MATI, however, is often done in a highly centralized

manner. It requires extremely detailed models of the overall system. This is

impractical for large-scale systems. Moreover, because the MATI is computed

3

before the system is deployed, it must ensure the performance level over all possible

system states. As a result, the MATI may be conservative in the sense of being

shorter than necessary. Consequently, the network bandwidth has to be higher

than necessary to ensure the MATI is not violated. These limitations suggest a

great need for alternative well-scaled approaches to address the timing issue in

CPS in a way that enables the system to use network bandwidth in a extremely

frugal manner as suggested in [9, 10, 21].

Our research is to find such approaches to address the first and second ques-

tions simultaneously. In particular, to characterize the real-time constraints in a

less conservative way, we use sporadic task models. To ensure good scalability,

distributed approaches are considered. Our research, therefore, are separated into

two steps: (1) because sporadic task models are still a relatively open area even in

real-time control, we first would like to study how to realize sporadic task models

in embedded control systems, (2) we try to figure out how to implement such

models into CPS in a distributed manner.

Sporadic task models can be realized in two ways. A hardware realization

is called event-triggering. Under event-triggering the system states are sampled

when some error signal exceeds a given threshold. Event-triggering requires a

hardware event detector that may be implemented using application-specific in-

tegrated circuit (ASIC) or field-programmable gate array (FPGA) processors. A

software realization of sporadic task models is called self-triggering. Under self-

triggering the next task release time is predicted by the processing computer based

on the sampled data. In reality, one might consider periodic task models as self-

triggered tasks since many implementations release tasks upon expiration of a

one-shot timer that was started by the previous invocation of the task. Under a

4

periodic task model, the period of this one-shot timer is always a constant value.

Self-triggering has a more adaptive form in which the value loaded into the one-

shot timer is actually a function of the system state sampled by the current job.

Under this “state-based” self-triggering, each task releases its next job based on

the system state.

Self-triggering approach may be appropriate when the hardware implementa-

tion is unacceptable. But if the cost of using ASIC/FPGA hardware is acceptable,

event-triggering uses lower computation and/or communication resource than self-

triggering and usually generates longer task periods since self-triggering periods

are usually conservative estimates of the periods generated by event-triggering.

Both event-triggering and self-triggering can be considered as a closed-loop form

of releasing tasks for execution, whereas periodic task models release their jobs

in an open-loop fashion. This closed-loop form enables event/self-triggering to

generate longer task periods than periodic task models.

Our research starts from event-triggering in embedded control systems. Chap-

ter 2 presents a novel event-triggering scheme for embedded control systems.

The approach pertains to nonlinear state-feedback systems. The resulting event-

triggered feedback systems are guaranteed to be asymptotically stable. We also

show that the task periods and deadlines generated by our scheme are bounded

strictly away from zero if the continuous closed-loop systems are input-to-state

stable with respect to measurement errors.

Chapter 3 presents a self-triggering scheme for embedded control systems.

Other than considering asymptotic stability of the systems, our approach ensures

L2 stability of the resulting self-triggered feedback systems. The results pertain

to linear time-invariant systems with state feedback. To our best knowledge, this

5

is the first rigorous examination of what might be required to implement self-

triggered feedback control systems. The results in Chapter 2 and Chapter 3 serve

as the foundation of our research on distributed event-triggering in CPS.

A distributed event-triggering scheme is presented in Chapter 4. This scheme

is used to address the issues raised in NCS, such as broadcast period selection,

packet loss and transmission delays. Our scheme is decentralized in the sense that

an agent is able to make broadcast decisions using its locally sampled data. An

agent can also locally predict the maximal allowable number of successive dropouts

(MANSD) as well as the state-based bounds for transmission delays (also called

“deadlines”). Such information may be used to help schedule an agent’s access

to the communication network. Moreover, the selection of the event-triggering

threshold only requires local information about that agent, so that the design is

decentralized.

The analysis applies to both linear and nonlinear subsystems. Designing “lo-

cal” events for a nonlinear subsystem requires us to find a controller that ensures

the subsystem is input-to-state stable. By “local”, it means the event only de-

pends on that subsystem’s local state and error. For linear subsystems, the design

problem becomes a linear matrix inequality (LMI) feasibility problem. With the

assumption that the transmission delays are zero and the number of each agent’s

successive data dropouts is less than its MANSD, we provide state-based deadlines

for those delays, which are always greater than a positive constant. As long as the

delay in each transmission is less than the associated deadline, we show that the

resulting NCS is asymptotically stable. Simulation results show that the average

broadcast period generated by our scheme scales will with respect to the number

of agents. In addition to this, simulation results suggest that the computational

6

time required to select event thresholds also scales well with respect to system

size.

Chapter 5 raises some problems to be solved in the future. One is the robust-

ness of event-triggered NCSs since Chapter 4 only discusses asymptotic stability.

Another problem is to address the impact of quantization on event-triggered NCSs.

Promising approaches are provided to solve these two problems.

1.2 Prior Work on Embedded Control Systems

There is a great deal of related work dealing with event/self-triggered feedback

systems, sample period selection, and real-time control system co-design. We will

review each of these areas in more detail below.

Traditional methods for sample period selection [5] are usually based on Nyquist

sampling. Nyquist sampling ensures that the sampled signal can be perfectly re-

constructed from its samples. In practice, however, feedback within the control

system means the system’s performance will be somewhat insensitive to errors in

the feedback signal, so that perfect reconstruction is much more than we require

in a feedback control system. An alternative approach to the sample period selec-

tion problem makes use of Lyapunov techniques. This was done in Zheng et al.

[64] for a class of nonlinear sampled-data system. Nesic et al. [38] used input-to-

state stability (ISS) techniques to bound the inter-sample behavior of nonlinear

systems. Lp stability of sampled-data systems was considered in [62]. As to net-

worked control systems, upper bounds on the task periods were provided, known

as the maximal allowable transfer interval (MATI) [13, 37, 48].

The sampling periods determined by the aforecited methods can be conserva-

tive because they are essentially “open-loop”. Sample periods are selected before

7

the system is deployed, so this selection must ensure adequate behavior over a

wide range of possible input disturbances. As a result, these selected periods may

be shorter than necessary. This fact was demonstrated by Tabuada et al. [45]

where sampling instants were determined on-line using the current system state.

In this case, the average sampling periods of Tabuada’s event-triggered scheme

appeared to be significantly longer than what one would have chosen using tradi-

tional estimates of the MATI.

Another related research direction viewed sample period selection as a “co-

design” problem that involves both the control system and the real-time system.

In this case, sample periods are selected to minimize some penalty on control

system performance subject to a schedulability condition. Early statements of

this problem may be found in Seto et al. [41] with more recent studies in [14] and

[35]. The penalty function is often a performance index for an infinite horizon

optimal control problem. It has, however, been demonstrated [6] that under slow

sampling such indices may not be monotone functions of the sampling period.

As a result, it only appears to be feasible to do off-line determination of these

“optimal” sampling periods. Instead of considering quadratic cost functions, [40]

presented an approach to maximize the stability radius subject to a schedulability

condition. Although this approach can enlarge the family of stabilizing controllers,

it did not provide a direct relationship between the sampling periods and the

control performance of the systems.

The prior work on co-design really focuses on optimizing performance subject

to scheduling constraints. The scheduling constraints are Liu-Layland [34] schedu-

lability conditions for earliest deadline first (EDF) scheduling. It is not always

clear, however, that these are the best set of constraints to be using. Our work

8

actually derives a set of constraints on both the periods and deadlines that we

can then use as a quality-of-service (QoS) constraint that the real-time scheduler

needs to meet. The schedulability of these QoS constraints is addressed in [17],

[46].

In recent years, a number of researchers have proposed aperiodic and sporadic

task models in which tasks are event-triggered [3, 44, 53]. By event-triggering, we

usually mean that the system state is sampled when some function of the system

state exceeds a threshold. The idea of event-triggered feedback has appeared under

a variety of names, such as interrupt-based feedback [22], Lebesgue sampling [4],

or state-triggered feedback [45]. Event-triggering usually requires some form of

hardware event detector to generate a hardware interrupt to release the control

task. This can be done using either application-specific integrated circuit (ASIC)

or field-programmable gate array (FPGA) processors.

Event triggering provides a useful way of adaptively adjusting task periods

at run time, provided the cost associated with using ASIC/FPGA hardware is

acceptable. In some applications, however, it may be unreasonable or impracti-

cal to retrofit an existing system with such “event detectors”. In these cases, a

software approach such as a self-triggering scheme may be more appropriate. A

self-triggered task model was introduced by Velasco et al. [47] in which a heuristic

rule was used to adjust task periods. A self-triggered task model was also intro-

duced by Lemmon et al. [29] which chose task periods based on a Lyapunov-based

technique. But the authors did not provide analytic bounds for task periods and

the task delays were considered only in the simulation results. The first rigor-

ous examination of what might be required to implement self-triggered feedback

control systems was presented in [49, 55]. A space-time scaling law was provided

9

for homogenous systems in [1, 2]. Based on this law, self-triggering schemes were

presented.

The prior work in [44] is probably most closely related to our work in Chapter

2. The difference is that in [44] the same Lyapunov function V is required to be

always decreasing in both the original closed-loop system (continuously sampling)

and the event-triggered feedback system, whereas in Chapter 2 the requirement

of always decreasing is relaxed. Temporary increases in V are allowed. It means

that we can lengthen the period between events by adopting this less restrictive

condition on V in the sampled-data system.

The techniques used in Chapter 3 are similar to the input-to-state stability

(ISS) methods used in [13, 37] for bounding the MATI. Compared with the prior

work in [29], our result derives explicit bounds on the sampling periods and dead-

lines, which appear to be tight and computationally efficient. Based on these

bounds, we present a practical self-triggering scheme, where the sampling periods

and deadlines are uniformly bounded from below by a positive constant. These

bounds provide less conservative sampling times than those obtained using the

MATI estimates in [37]. Moreover, in many cases the average sampling periods

generated by our approach are less conservative than those generated by [44]. Fi-

nally, a major contribution of our work in Chapter 3 is an explicit state-dependent

bound on the acceptable delay, which is not found in either [13, 37].

1.3 Prior Work on Networked Control Systems

To the best of our knowledge, there is little prior work on the distributed

implementation of event-triggering in NCS. Preliminary results [52, 54] proposed

decentralized event-triggered feedback schemes for both linear and nonlinear sys-

10

tems, respectively. This work studied asymptotic stability of NCS without con-

sidering packet loss and transmission delays. A more complete framework was

considered in [50, 51, 56], which includes delays and dropouts. A recent study

[36] introduced an event-triggering scheme for sensor-actuator networks. This

work, however, adopted a centralized approach to event-design. Other than these

papers, we are aware of no other work formally analyzing distributed implemen-

tations of event-triggering in NCS. There is, however, a great deal of related work

dealing with distributed control, transmission period selection and packet loss in

NCS. We will review these areas and discuss their relationship to our distributed

event-triggering scheme.

In distributed control, each subsystem uses its state and the states of its imme-

diate neighbors to determine its control action. In [7] it was shown that optimal

controllers with a quadratic objective possess an inherent degree of spatial local-

ization. This suggests that it should be possible to effectively regulate the behavior

of distributed systems using local interactions between spatially adjacent subsys-

tems. One approach to distributed control builds upon model predictive control

[12, 20]. Significant progress was made toward this goal in an approach that

modelled system coupling using linear fractional transformations [19] [27]. More

recent work has used integrator backstepping to extend this approach to networks

of nonlinear systems [23].

One thing worth mentioning is that in all of this prior work, it is assumed

that subsystem controllers can communicate with their neighbors at will. In prac-

tice, however, communication, especially wireless communication, takes place over

a digital network which means that information is transmitted in discrete time

rather than continuous-time. Moreover, all real networks have bandwidth limita-

11

tion that can cause delays in message delivery that may have a major impact on

overall system stability [30]. Therefore, the preceding distributed approaches may

have the entire systems unstable in real networks.

For this reason, some researchers began investigating the timing issue in net-

worked control. Early work [42, 65] analyzed the scheduling of real-time network

traffic. The impact of communication constraints on system performance, how-

ever, was not addressed in this work. It was noticed [26, 59, 60] that communi-

cation delay had a harmful effect on system stability. These papers considered

the one packet transmission problem, in which all of the system outputs were

packaged into a single packet. Agents in the network, therefore, do not have to

compete for channel access. One packet transmission strategies, however, require

a supervisor who gathers the data from all subsystems into a single packet. The

cost and complexity of implementing such centralized supervisors will not scale

well with system size. As a result, such schemes may be impractical for large-scale

systems with limited network bandwidth.

Asynchronous transmissions were considered in [48]. In this work, several

sensors and actuators attempt to access to the communication channel at the

same time, but only one of them actually gains access. Which agent gains access

depends on the media access control (MAC) protocol being used. Commonly

used MAC protocols include Try-Once-Discard (TOD) and Round-Robin (RR)

[48]. For these protocols, an upper bound on the MATI was derived [48] that

guarantees asymptotic stability of the system. It led to scheduling methods [63]

that were able to assure the MATI was not violated. Further work [13, 37] derived

tighter bounds on the MATI. All of this prior work confined its attention to

control area network (CAN) buses where centralized computers coordinate the

12

information flow across the network. The length of the MATI heavily relied on

the choice of network protocols.

The aforementioned work computed bounds on the MATI in a centralized man-

ner. This earlier work also assumed that MAC protocols were also realized using a

central supervisor. A centralized approach in analysis and implementation is im-

practical for large-scale systems. Moreover, because the MATI is computed before

the system is deployed, the selected MATI must ensure performance levels over a

wide range of possible system states. As a result, the MATI may be conservative

in the sense of being shorter than necessary to assure a specific performance level.

Consequently, the network bandwidth has to be higher than necessary to ensure

the MATI is not violated.

One approach for reducing the bandwidth requirements within NCS is to re-

duce the frequency with which agents communicate. Recent work considering

event-triggered feedback sampled-data systems [44, 49] shows that the sampling

rates under event-triggering are well below those in periodic task models. This is

because the system can adaptively adjust the rates in a manner that is sensitive

to what is currently happening within the system. It should therefore be possible

to reduce the transmission frequency in NCS using event-triggering.

Another related research direction is to study packet loss in NCS. In [39], a

2-state Markov model was used to describe the packet loss. The system can either

use past control inputs or compute new control inputs based on an estimate of

the lost data. In [31], packet loss is modelled as an identically independently

distributed (i.i.d.) process in a single-input single-output NCS. These results were

extended in [33] by modelling data dropouts as a Markov chain instead of an i.i.d.

process. Optimal dropout compensation for NCS was presented in [32]. A packet-

13

based multi-control strategy was examined in [24] to improve the performance of

NCS, where packet loss is assumed to follow a stochastic 2-state Markov model.

All of this work focused on modelling data dropouts as stochastic processes in a

centralized manner. Chapter 4, on the other hand, presents a method by which

agents can locally estimate their MANSD. Again, this information may be used

in scheduling agent access to the communication medium.

Chapter 4 provides a complete analysis of asynchronous information transmis-

sion in NCS using distributed event-triggering. These results are summarized in

[50, 51]. This work addresses the impact that both data dropouts and transmis-

sion delays have on overall system performance. To the best of our knowledge,

this is the first result examining the requirements for distributed implementation

of NCS. It is also the first result on packet loss in event-triggering. Another

important contribution over prior work [13, 37, 48] is that our work derives state-

based bounds on stabilizing transmission delays. Furthermore, we show that the

existence of strictly positive bounds on stabilizing delays. These bounds can be

used to select realistic deadlines that can be achieved by communication network

middleware. Our results can therefore serve as the basis for the design of firm

real-time systems that guarantee system performance at levels traditionally seen

in hard real-time systems.

14

1.4 Notations

Rn the n-dimensional Euclidean space

Lp Lp space

λmin(P) the minimum singular value of a matrix P

λmax(P) the maximum singular value of a matrix P

‖x‖ the norm of a vector x

‖x‖p the p-norm of a vector x

‖A‖ the norm of a matrix A

∀ for all

∃ exists

∈ belongs to

⊂ subset of

→ tends to

xT the transpose of a vector x

AT the transpose of a matrix A

|s| the absolute value of a scaler s ∈ R

|S| the number of elements in a set S

Lgh the Lie derivative of h with respect to the vector field g

sgn the signum function

N the set of natural numbers

Z the set of integers

15

CHAPTER 2

Asymptotic Stability in Event-Triggered Feedback Systems

2.1 Problem Formulation

This chapter discusses how to design event-triggering schemes in embedded

control systems [53]. The primary goal is to ensure that the resulting event-

triggered feedback back scheme is asymptotically stable. The main idea is that one

first designs the controllers without the consideration of real-time issues and then

derives real-time constraints on the task release and finishing time, with which

system stability can still be maintained. This method is so-called emulation-

based method [37].

Let us first look at how an event-triggered feedback system works. In such a

system, as shown in Figure 2.1, a hardware event-detector (HED), either ASIC

or FPGA, can monitor the continuous signal x(t). Once an event happens, i.e.,

a pre-specified logic rule is violated, the detector has the sensor sample the state

information. The control signal, u, is computed based on this sampled state.

Notice that this computation happens in a discrete-time manner. To hold the

control signal continuous, a zero-order hold (ZOH) is placed.

The system considered in this chapter is nonlinear. Let x : [0,∞) → R
n

denote the state trajectory and u : [0,∞) → Rm denote the control input. The

state equation of the sampled-data system is:

16

x(t)

u(t)

x(rk)

ẋ(t) = g(x(t), u(t))

u = κ(x(rk))
x(rk)

HED

Sensor
ZOH

Sampling
Command

Figure 2.1. An event-triggered feedback system

ẋ(t) = g(x(t), u(t))

u(t) = κ(x(rk)) (2.1)

x(0) = x0

for all t ∈ [fk, fk+1) and all k = 0, . . . ,∞, where x0 ∈ Rn is the non-zero initial

state, rk is the time when the kth invocation of a control task (also called “job”)

is released for execution on the computer and fk is the time when the kth job has

finished executing. In the above equation, g : Rn×Rm → Rn and κ : Rn → Rm are

locally Lipschitz functions. In particular, we assume that as soon as the system

samples, a control task is released. In other words, there is no delay between

sampling and task release. To simplify the notation, we define ek : R
+ → R as

ek(t) = x(t)−x(rk) for all t ≥ 0 and all k ∈ N, which are the measurement errors.

Let Tk = rk+1 − rk denote the kth inter-release time (k = 0, . . . ,∞). Tk can

therefore be interpreted as a time-varying “sampling” period by control engineers

and a time-varying “task” period by real-time system engineers. We let τk = fk−rk

17

denote the time interval between the kth job’s release and finishing time. Control

engineers would view τk as the “delay” of the kth job whereas real-time system

engineers would view τk as the “jitter” of the kth job. If the control task satisfies

a hard real-time constraint, then the delay τk is required to lie below a specified

“deadline”. Figure 2.2 illustrates the relationship between the task period, Tk, the

delay τk, the task finishing time fk, and the release time rk. The x-axis in figure

2.2 is time with the period (Tk), delay (τk), finishing time (fk), and release (rk)

marked on the axis. The black rectangles above the time axis mark intervals over

which the task is executing.

τk

Tk
rk−1 rk

fk−1 fk

rk+1

fk+1

rk+2

fk+2

t

job k − 1 job k job k + 1 job k + 2

Figure 2.2. Relationship between task period (Tk), delay (τk), release
time (rk), and finishing time (fk)

The problem is to design the triggering event such that the sampling periods

can be largely saved; meanwhile, asymptotic stability of the resulting sampled-

data system has to be guaranteed. To solve this problem, an emulation-based

approach is proposed in [45]. In [45], One is to find Lyapunov function V : Rn → R

18

and two class K functions α1, α2 : R → R such that the equation

∂V (x)

∂x
g(x, κ(x− e)) ≤ α1(‖x‖) + α2(‖e‖) (2.2)

holds for all x, e ∈ Rn. This inequality implies that the system in equation (2.1) is

input-to-state stable (ISS) with respect to the measurement error e. As a result,

if the system uses the violation of

δα2(‖ek(t)‖) < α1(‖x(t)‖), δ ∈ (0, 1)

to trigger the next sampling release time, the time derivation of V satisfies

V̇ ≤ (δ − 1)α1(‖x(t)‖),

which implies asymptotic stability of the sampled-data system. The main idea

[45] is to ensure the Lyapunov function V (x) for continuous closed-loop system

is also a Lyapunov function for the sampled-data system. It requires that V is

monotonically decreasing in both systems. This is, however, not necessary. As

noted in earlier work on switched system stability, we can still guarantee asymp-

totic stability as long as an appropriate subsequence of V is monotone decreasing

[61]. V does not have to be decreasing all the time. It suggests that we might be

able to lengthen the period between events by adopting this less restrictive con-

dition on V in the sampled-data system. The event design scheme in this chapter

is based on this idea.

The rest of this chapter is organized as follows. Section 2.2 presents an event-

triggering scheme without the consideration of delays. The non-zero delay case is

considered in Section 2.3. Simulation results are presented in Section 2.4. Finally,

19

conclusions are stated in Section 2.5.

2.2 Event Design in Systems without Task Delay

This section studies the sampled-data systems without task delay (rk = fk).

We introduce a design approach that ensures asymptotic stability of the overall

system. To show asymptotic stability of such a system, we only need to show the

existence of a piecewise continuous function h : R+ × Rn → R+ such that

h(t|x0) ≥ V (x(t|x0)), for all t ∈ R
+ (2.3)

lim
t→∞

h(t|x0) = 0, (2.4)

hold, where x is the state trajectories of the resulting event-triggered feedback

system and V ∈ Rn → R is Lyapunov function of the continuous closed-loop

system

ẋ(t) = g(x(t), u(t))

u(t) = κ(x(t)) (2.5)

x(0) = x0.

Since x is also a function of t, we use V (t) to denote V (x(t|x0)).

Notice that h(t|x0) does not have to be a class KL function because it does

not have to be continuous. Also, temporary increases in V are allowed as long

as V is bounded by h(t|x0). Accordingly in our event-triggered feedback systems,

the derivative of V (t) does not have to be negative all the time.

The results in this section focus on sampled-data systems where rk = fk holds

for all k ∈ N. We show that with our event-triggering scheme, the resulting system

20

is asymptotically stable and the sampling period Tk is bounded from below by a

positive constant. To show this, we first introduce a lemma, which will be used

in the later proofs.

Lemma 2.2.1 For two C1 functions p, q : R+ → R, assume ξ ∈ R+ is the smallest

positive solution to p(t) = q(t). The following statements hold:

1. If p(0) = q(0), q̇(0) < ṗ(0), and t∗ > 0 satisfies p(t∗) ≤ q(t∗), then t∗ ≥ ξ;

2. If p(0) > q(0) and t∗ > 0 satisfies p(t∗) ≤ q(t∗), then t∗ ≥ ξ;

3. If p(0) = q(0) and q̇(0) < ṗ(0), then p(t) ≥ q(t) for all t ∈ [0, ξ);

4. If p(0) > q(0), then p(t) ≥ q(t) for all t ∈ [0, ξ).

Proof: It can be easily shown taking advantage of the continuity of p, q, ṗ, q̇. 2

To design the event with the guarantee of asymptotic stability of the system,

we need an assumption on the system in equation (2.1).

Assumption 2.2.1 For the sampled-data system in equation (2.1), assume that

there exist positive constants L, a, ā, b, b̄, L1 ∈ R+, a positive definite, C1 function

V : Rn → R+, and two class K functions α1, α2 : R+ → R+ such that

‖g(x, κ(x+ e))‖2 ≤ L‖x‖2 + L‖e‖2 (2.6)

α1(‖x‖2) ≤ V (x) ≤ α2(‖x‖2) (2.7)

−aV (x) − b‖e‖2 ≤
∂V (x)

∂x
g(x, κ(x− e)) ≤ −āV (x) + b̄‖e‖2 (2.8)

α−1
1 (‖x‖2) ≤ L1‖x‖2 (2.9)

hold for all x, e in a compact set.

21

Remark 2.2.1 Equation (2.8) implies the continuous system ẋ = g(x, κ(x+ e))

is ISS with respect to e. It also suggests that the continuous closed-loop system is

exponentially stable. More discussion on this assumption can be seen in [45].

Remark 2.2.2 For a linear time invariant system

ẋ(t) = Ax(t) +Bu(t)

u(t) = Kx(rk) (2.10)

x(0) = x0,

assumption 2.2.1 is satisfied as long as the system defined in equation (2.10) is

asymptotically stable. Assume W (x) = xTPx is Lyapunov function of this LTI

system. Then V (x) =
√

W (x) =
√
xTPx is also a Lyapunov function. Let

Q = −P (A+BK) − (A +BK)TP > 0. So we have

L = max{‖A+BK‖, ‖BK‖}, (2.11)

a =
1

2
λmax(P

−1Q), ā =
1

2
λmin(P

−1Q), (2.12)

b = b̄ = ‖
√
PBK‖, L1 =

1
√

λmin(P)
. (2.13)

where λmin(P) denote the minimum singular value of P .

Theorem 2.2.2 For the sampled-data system in equation (2.1), let assumption

2.2.1 holds and τk = 0 for all k ∈ N. If r0 = 0 and the k + 1th task release is

triggered by the violation of

V (t) ≤ −δāV (rk)(t− rk) + V (rk), (2.14)

where δ ∈ (0, 1), then the sampled-data system is asymptotically stable and there

22

exists a positive constant ξ > 0, such that the sample period, Tk, satisfies Tk ≥ ξ.

Proof: The proof is in Appendix A.1. 2

Remark 2.2.3 For any k ∈ N, rk+1 is triggered when V (t) intersects the straight

line V (t) = −δāV (rk)(t−rk)+V (rk). This line serves as the threshold. However,

using linear functions of t as the thresholds is not the only choice for the threshold.

Nonlinear functions can also be used as long as the sequence {x(rk)}∞k=1 converges

to zero and rk+1 − rk > 0 holds for all k ∈ N.

2.3 Event Design in Systems with Task Delay

This section considers event-triggered feedback systems with non-zero delays

and show the existence of a non-zero deadline for the delays. The main idea is to

use an upper bound of V (fk) as the starting point of the threshold line. rk+1 is

still triggered when V (t) intersects the threshold line. To ensure the system sta-

bility, we need to properly choose the deadline such that the sequence {V (rk)}∞k=1

converges to zero. In that way, a piecewise continuous h(t|x0) can be constructed

satisfying equation (2.3) and (2.4). This is shown in Figure 2.3, where the horizon-

tal axis is time, the vertical axis is the energy V , the solid curve is the trajectory

of V (t), and the dashed lines are the threshold lines.

As we mentioned above, the first step is to find the upper bound for V (t) for

t ∈ [rk, fk), which is shown in the following lemma.

Lemma 2.3.1 For the sampled-data system in equation (2.1), let assumption

2.2.1 hold. For any k ∈ N, if V (rk−1) ≤ σV (rk) and the delay τk satisfies

τk < min{∆1,∆2}, where σ ∈ (1,∞) and ∆1,∆2 are the smallest positive so-

23

rk−1 rkfk−1 fk rk+1 fk+1 rk+2

t

threshold lines

V (t)

Figure 2.3. The trajectory of V and the threshold lines in
event-triggered systems with non-zero delays

lutions to the equation

b̄L1

ā

[

(1 +
3σ

2
)e2L∆1 − σ

2

]

(

1 − e−ā∆1
)

= ǫ∆1,(2.15)

e−a∆2 +
bL1(1 + σ)

a
e2L∆2

(

e−a∆2 − 1
)

+
σbL1

2a

(

e2L∆2 − 1
) (

e−a∆2 − 1
)

=
1

σ
,(2.16)

respectively, then V (t) ≤ V (rk)(1+ǫτk) and σV (t) ≥ V (rk) hold for all t ∈ [rk, fk),

where ǫ ∈ R+ is a positive constant satisfying ǫ > b̄L1(1 + σ).

Proof: The proof is in Appendix A.2. 2

Lemma 2.3.1 shows that V (t) is bounded by a linear function of delays for

t ∈ [rk, fk) as long as τk < ∆1. Based on this lemma, we can use the point

(fk, V (rk)(1 + ǫ∆)) as the start of the threshold line with the slope −δāV (rk),

where ∆ ≤ ∆1 is the deadline for the delays. Asymptotic stability of the event-

triggered feedback system is guaranteed by theorem 2.3.3. The proof of Theorem

2.3.3 requires the following lemma, which shows that the time length between the

finishing time, fk, and the time instant when V (t) intersects the threshold line is

24

always bounded from below by a positive function of the deadline.

Lemma 2.3.2 For the sampled-data system in equation (2.1), let assumption

2.2.1 hold. If V (rk−1) ≤ σV (rk) and the delay τk satisfies τk < ∆ = min{∆1,∆3},

where σ > 1, ∆ ∈ R+, ∆1 is given by equation (2.15), and ∆3 ∈ R+ is the smallest

positive solution to

b̄L1
2 + σ

2

(

e2L∆3 − 1
)

− ā(1 + ǫ∆3 − δ) = 0, (2.17)

then t∗k − fk ≥ ξ(∆) > 0 holds, where t∗k ≥ fk is the first time when

V (t∗k) = (1 + ǫ∆)V (rk) − δāV (rk)(t
∗
k − fk). (2.18)

holds after fk, ǫ > b̄L1(1 + σ), ξ(∆) is the smallest positive solution to

1 + ǫ∆ − δāπ = (1 + ǫ∆)e−āπ − η(π,∆) (e−āπ − 1)

ā
, (2.19)

with respect to π, and g : R+ × R+ → R+ is defined by

η(π,∆) = b̄L1

[

2 + σ

2

(

e2L∆ − 1
)

e2Lπ +
1

2

(

e2Lπ − 1
)

]

. (2.20)

Proof: The proof is in Appendix A.2. 2

Theorem 2.3.3 For the sampled-data system in equation (2.1), let assumption

2.2.1 hold. If r0 = f0 = 0 and for any k ∈ N,

1. τk < ∆ = min{∆1,∆2,∆3,∆4} holds, where ∆1,∆2,∆3 ∈ R+ are defined

in equation (2.15), (2.16) and (2.17), respectively, ∆4 ∈ R+ is the smallest

25

positive solution to

ǫ∆4 − ξ(∆4)δā = 0 (2.21)

or ∞ if the positive solution to equation (2.21) does not exist, ξ is defined

in equation (2.19), ǫ > b̄L1(1 + σ), δ ∈ (0, 1), and σ ∈ (1,∞).

2. rk+1 is triggered by the violation of

(

E1

∧

E2

)

∨

E3, (2.22)

where

E1 : V (t) ≤ (1 + ǫ∆ − δā(t− fk))V (rk) (2.23)

E2 : σV (t) > V (rk) (2.24)

E3 : rk ≤ t ≤ fk (2.25)

then the sampled-data system (2.1) is asymptotically stable.

Proof: The proof is in Appendix A.4. 2

Remark 2.3.1 Event E2 in equation (2.24) is used to control the distance between

V (rk+1) and V (rk). The reason to do this is that if V (rk+1) is arbitrarily small,

the deadline will go to zero, although the sample period might be enlarged. There

is a tradeoff between periods and the predicted deadlines.

Remark 2.3.2 Event E3 in equation (2.25) means the system does not have to

consider the behavior of V (t) in [rk, fk). It is because when t ∈ [rk, fk), V (t) will

be bounded by V (rk)(1 + ǫ∆) anyway.

26

Remark 2.3.3 Theorem 2.3.3 is only used to show the existence of non-zero dead-

line for the delays. The predicted deadline may be conservative because it is se-

lected before the system is deployed and adequate behavior should be ensured over

a wide range of possible input disturbances. An alternative way is to use dynamic

deadlines that are computed based on the previous sampled information. This is

demonstrated in [49]. How to extend this work with the dynamic deadlines would

be addressed in the future.

2.4 Simulations

In this section, we used the inverted pendulum problem to demonstrate the

proposed event-triggered scheme. The plant’s linearized state equations were

ẋ =



















0 1 0 0

0 0 −mg/M 0

0 0 0 1

0 0 g/ℓ 0



















x+



















0

1/M

0

−1/(Mℓ)



















u = Ax+Bu

where M was the cart mass, m was the mass of the pendulum bob, ℓ was the

length of the pendulum arm, and g was gravitational acceleration. For these

simulations, we let M = 10, m = 1, ℓ = 3, and g = 10. The system state

was the vector x =

[

y ẏ θ θ̇

]T

where y was the cart’s position and θ was

the pendulum bob’s angle with respect to the vertical. The system’s initial state

was the vector x0 =

[

0.98 0 0.2 0

]T

. The controller is u = Kx, where

K =

[

2 12 378 210

]

. The Lyapunov function we used for the continuous

27

closed-loop system is V (x) =
√
xTPx, where

P =



















7 21 222 127

21 106 1180 675

222 1180 26578 14873

127 675 14873 8327



















(2.26)

We used the violation of equation (2.14) to trigger the sampling. In the first

simulation, τk = 0 was assumed and δ = 0.2. The top plot of Figure 2.4 shows

the state trajectories versus time in the resulting event-triggered feedback system.

Obviously, the state converges to zero. The bottom plot of Figure 2.4 is the sample

periods (cross) generated in the system versus time. We can see a wide range of

variations in periods that have an average of 0.4816. This is mainly because

event-triggering can dynamically adjust task periods in response to variations in

the system state. Figure 2.5 plots the trajectory of V . As we mentioned before,

there are temporary increases in V (t). These increases directly result in longer

sample periods, as shown in the next simulation.

In the second simulation, we compared our event-triggering scheme with the

event-triggering scheme in [45] and the bound on the MATI in [13] with τk = 0.

Recall that the event-triggering scheme in [45] samples the state when

eT
k (t)Pek(t) = b2xT (t)Px(t).

where b is the real constant

b =
λmin(P)

2λmax(P)

λmin(−P (A+BK) − (A+BK)TP)

‖PBK‖ .

28

0 5 10 15 20 25 30 35 40
−0.5

0

0.5

1

1.5

Time

S
ta

te
 T

ra
je

ct
or

ie
s

0 5 10 15 20 25 30 35 40
0

0.5

1

1.5

2

2.5

Time

S
am

pl
e

P
er

io
d

y
dy/dt
θ
dθ/dt

Figure 2.4. An event-triggered feedback system

The bound on the MATI in [13] is defined by

TMATI =



























1
lr

arctan r(1−c)

2 c
1+c(

γ
l
−1)+1+c

γ > l

1−c
l(1+c)

γ = l

1
lr

arctanh r(1−c)

2 c
1+c(

γ
l
−1)+1+c

γ < l

, (2.27)

where, in this inverted pendulum case, c = 0, l = max(0.5λmax(−BK−KTBT), 0),

γ is the L2 gain for the closed-loop system, ẋ = (A + BK)x + BKe, from e to

−(A +BK)x, and r =

√

∣

∣

∣

γ2

l2
− 1
∣

∣

∣
.

The average periods generated by different schemes are listed in Table 2.1.

It is obvious that our event-triggered scheme has a much longer average sample

29

0 5 10 15 20
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

Time

S
ys

te
m

 E
ne

rg
y

V
(t

)

Figure 2.5. The trajectory of system energy versus time for an
event-triggered feedback system

period. One thing worth mentioning is that the event-triggering scheme in [45]

generates sampling periods less than 10−5. This is even smaller than the bound

on the MATI, which is derived based on periodic task models. The reason for this

is that the condition number of the particular P matrix is extremely large due to

the great difference in the time constants associated with the dynamics of the cart

and pendulum bob. Such a matrix leads to a very small b, which limits the size

of the sampling periods generated by the approach in [45]. However, for different

systems which allow P with a small condition number, the approach in [45] may

also generate large sampling periods.

We also examined the robustness of our event-triggered feedback system to the

30

TABLE 2.1

Comparison of Different Schemes

Schemes Average Periods

Our event-triggering scheme (δ = 0.2) 0.4816

Event-triggering scheme in [45] < 10−5

The bound on the MATI in [13] 0.0169

external disturbance. The delays were still assumed to be zero and the disturbance

was w(t) = [1, 1, 0.1, 0.1]Tν(t), where ν : R+ → R is a white noise satisfying

|ν(t)| ≤ 0.5. The state equations were ẋ = Ax+Bu+ w. The results are plotted

in Figure 2.6. The top plot of Figure 2.6 shows the state trajectories of the event-

triggered feedback system. The system still converges to a small neighborhood of

the equilibrium point. The bottom plot of Figure 2.6 provides the sample periods

generated by this system. Although the periods still vary a lot, they are in general

much smaller than those in non-disturbance case. The average period is 0.0285.

This verifies the ability of event-triggered feedback systems in adjusting sample

periods in response to changes in the control system’s external inputs. Based on

the results of this simulation, our event-triggering scheme appears to be robust to

the external disturbance.

Finally, we took a look at non-zero delay cases. The parameters were computed

based on equation (2.13) in remark 2.2.2, where ā = 0.015, b = b̄ = 1042.8,

L = 45.58, L1 = 1.91, ǫ = 5993, σ = 2, δ = 0.8. The deadline based on Theorem

2.3.3 is around 10−12. This deadline is extremely small, although it is at the same

level of the predicted deadline in [45] which is around 10−13. It is because the

31

0 5 10 15 20 25 30 35 40
−0.5

0

0.5

1

1.5

Time

S
ta

te
 T

ra
je

ct
or

ie
s

0 5 10 15 20 25 30 35 40
0

0.2

0.4

0.6

0.8

Time

S
am

pl
e

P
er

io
d

y
dy/dt
θ
dθ/dt

Figure 2.6. An event-triggered feedback system with external
disturbance w(t)

large condition number of P leads to a small ā and a big b̄, which directly affect

the solutions to equation (2.17) and (2.21). Notice that the method we proposed

is only for showing the existence of non-zero deadlines. In practice, for systems

with a large condition number of P , it is better to use dynamic deadlines because

of its “on-line” nature as suggested in Remark 2.3.3.

We then added random delays satisfying τk ≤ 0.1 into the proposed event-

triggered feedback system to see how robust this system can be to delays. We

used the violation of equation (2.22) to trigger the next release with ∆ = 0. The

results are presented in Figure 2.7. The state trajectories are shown in the top

plot of Figure 2.7. From this plot, we can see that, the event-triggered feedback

32

system still converges to the equilibrium even when τk can be as large as 0.1. The

bottom plot of Figure 2.7 provides the sample periods in this system. The average

period is 0.1882, which is definitely larger than the periods offered by the prior

work. These simulation results suggest that the event-triggered feedback system

is robust to delays. How to obtain a tighter estimate of the deadline would be an

interesting topic in the future.

0 5 10 15 20 25 30 35 40
−0.5

0

0.5

1

1.5

Time

S
ta

te
 T

ra
je

ct
or

ie
s

0 5 10 15 20 25 30 35 40
0

0.5

1

1.5

2

Time

S
am

pl
e

P
er

io
d

y
dy/dt
θ
dθ/dt

Figure 2.7. An event-triggered feedback system with τk ≤ 0.1

33

2.5 Summary

In this chapter, event design in sampled-data systems is discuessed. The result-

ing event-triggered feedback systems are guaranteed to be asymptotically stable,

provided that the continuous systems are stabilizable. We show that the task pe-

riods and deadlines generated by our scheme are bounded strictly away from zero

if the continuous systems are input-to-state stable with respect to measurement

errors. Simulation results indicate that our event-triggered scheme has a much

larger average period than the previous event/self-triggered schemes. Moreover,

our scheme also appears to be robust to task delays.

34

CHAPTER 3

Finite-Gain L2 Stability in Self-Triggered Feedback Systems

3.1 Problem Formulation

This chapter considers stability of self-triggered feedback systems [49, 55].

Under self-triggering the next task release time is predicted by the processing

computer based on the previously sampled data. Different from event-triggering

that requires hardware detectors, self-triggering is a software implementation of

sporadic task models.

To better understand how self-triggering works, let us take a look at a linear

time-invariant system,

ẋ(t) = Ax(t) +B1u(t) +B2w(t)

u(t) = Kx(t)

x(0) = x0 (3.1)

where x : [0,∞) is the state trajectory, x0 ∈ Rn is the non-zero initial state, u :

[0,∞) → Rm is a control input and w : [0,∞) → Rl is an exogenous disturbance

function in L2.

A sampled-data implementation of the closed-loop system in equation (3.1)

35

satisfies the following set of state equations,

ẋ(t) = Ax(t) +B1u(t) +B2w(t) (3.2)

u(t) = Kx(rk)

x(0) = x0

for t ∈ [fk, fk+1) and all k = 0, . . . ,∞. The time rk denotes the time when the

kth invocation of a control task (also called a job) is released for execution on the

computer’s central processing unit (CPU). The time fk denotes the time when

then kth job has finished executing. At this time, we assume that the system

state is sampled so that rk also represents the kth sampling time instant. In such

systems, the plant’s control, u, is computed by a computer task. Each job of

the control task computes the control u based on the last sampled data. Upon

finishing, the control job outputs this control to the plant. The control signal used

by the plant is held constant by a zero-order hold (ZOH) until the next finishing

time fk+1. We let Tk = rk+1 − rk denote the kth inter-release time (period) and

τk = fk − rk denote the time interval between the kth job’s release and finishing

time (delay).

A self-triggering scheme characterizes {rk}∞i=0 and {fk}∞i=0 in the following way.

The k + 1st task release time rk+1 is predicted at time fk such that

rk+1 = fk + η2({x(rj)}k
j=0) (3.3)

and the k + 1st task finishing time satisfies

fk+1 − rk+1 ≤ ∆({x(rj)}k
j=0). (3.4)

36

The scheme is called admissible if rk ≤ fk ≤ rk+1 for all k = 0, 1, · · · ,∞.

The key problem in self-triggering design is to find a control gain matrix K

and two functions η2,∆ : Rn(k+1) → R+ such that the sampled-data system in

equation (3.2) achieves a desired level of performance. One might consider periodic

task models as a special class of self-triggered tasks where η2({x(rj)}k
j=0) and

∆({x(rj)}k
j=0) are two fixed constants. Self-triggering has a more adaptive form

in which the prediction of task release and finishing time is based on the past

information. Under this “state-based” self-triggering, each task releases its next

job based on the system state. We can therefore consider “state-based” self-

triggering as a closed-loop form of releasing tasks for execution, whereas periodic

task models release their jobs in an open-loop fashion.

Since we are interested in finite-gain L2 stability of the self-triggered feedback

system, we assume there exists a full-information H∞ controller for the system

in equation (3.1). In particular, we assume there exists a symmetric positive

semi-definite matrix P satisfies the H∞ algebraic Riccati equation (ARE) [8, p.

138],

0 = PA+ ATP −Q+R (3.5)

where

Q = PB1B
T
1 P (3.6)

R = I +
1

γ2
PB2B

T
2 P (3.7)

37

for some real constant γ > 0. The state feedback gain matrix in equation (3.1) is

K = −BT
1 P . (3.8)

The sampled-data system, therefore, satisfies

ẋ(t) = Ax(t) +B1u(t) +B2w(t) (3.9)

u(t) = −BT
1 Px(rk)

x(0) = x0.

For notational convenience, let Acl = A−B1B
T
1 P .

Definition 3.1.1 The system in equation (3.9) is said to be finite-gain L2 stable

from w to x with an induced gain less than γ if there exist non-negative constants

γ and ξ such that

(
∫ ∞

t0

‖x(t)‖2
2dt

)
1
2

≤ γ

(
∫ ∞

t0

‖w(t)‖2
2dt

)
1
2

+ ξ (3.10)

for any w ∈ L2.

In the following discussion, we will present an admissible self-triggering scheme

which ensures finite-gain L2 stability of the sampled-data system in equation (3.9)

from w to x.

The remainder of this chapter is organized as follows. Section 3.2 derives a

sufficient threshold condition that can serve as an event trigger for state sampling.

Section 3.3 presents a self-triggering scheme and proves that it is L2 stable. Sim-

ulations are shown in section 3.4. Finally, conclusions are presented in section

3.5.

38

3.2 Real-Time Constraints in Sampled-Data Systems

Consider the sampled-data system in equation (3.9) with a set of admissible

release and finishing time sequences. For all k, define the kth job’s error function

ek : R+ → Rn by ek(t) = x(t) − x(rk). This error represents the difference

between the current system state and the system state at the last release time, rk.

This section presents two inequality constraints on ek(t) (see Theorem 3.2.1 and

Corollary 3.2.2 below) whose satisfaction is sufficient to ensure that the sampled-

data system’s L2 gain is less than γ/β for some parameter β ∈ (0, 1].

The following theorem states that if a function of the state error ek(t) and

state x(t) satisfies a certain inequality constraint, then the closed-loop system in

equation (3.9) is finite-gain L2 stable.

Theorem 3.2.1 Consider the sampled-data system in equation (3.9) with admis-

sible release and finishing time sequences. Let r0 = 0 and β be any real constant

in the interval (0, 1] with the matrix Q as given in equation (3.6). If

eT
k (t)Qek(t) ≤ (1 − β2)‖x(t)‖2

2 + xT (rk)Qx(rk) (3.11)

holds for all t ∈ [fk, fk+1) and any k = 0, . . . ,∞, then the sampled-data system is

finite-gain L2 stable from w to x with a gain less than γ/β.

Proof: The proof is in Appendix A.5. 2

In our following work, we will find it convenient to use a slightly weaker suf-

ficient condition for L2 stability which is only a function of the state error ek(t).

The following corollary states this result.

Corollary 3.2.2 Consider the sampled-data system in equation (3.9) with ad-

missible sequences of release and finishing times. Let x(r0) = x0 and Q be a real

39

matrix that satisfies equation (3.6). For any β ∈ (0, 1], let

M = (1 − β2)I +Q (3.12)

N =
1

2
(1 − β2)I +Q (3.13)

If the state error trajectory satisfies

ek(t)
TMek(t) ≤ xT (rk)Nx(rk) (3.14)

for t ∈ [fk, fk+1) and all k = 0, . . . ,∞, then the sampled data system is finite-gain

L2 stable from w to x with a gain less than γ/β.

Proof: The proof is in Appendix A.6. 2

Remark 3.2.1 The inequalities in equations (3.11) or (3.14) can both be used as

the basis for an event-triggered feedback control system. Note that both inequal-

ities are trivially satisfied at t = rk. If we let the delay, τk, be zero for each

job, then by triggering the release times {rk}∞k=0 anytime before the inequalities in

equations (3.11) or (3.14) are violated, we will ensure the sampled-data system’s

induced L2 gain remains below γ/β. The resulting event-triggered feedback sys-

tem is very similar to the state-triggering scheme proposed by Tabuada et al. [45]

for asymptotic stability. The main difference between that result and this one is

that our proposed event-triggering condition provides a stronger assurance on the

sampled-data system’s performance as measured by its induced L2 gain.

40

3.3 Self-Triggered Feedback Schemes

This section establishes sufficient conditions for the existence of admissible

sequences of release and finishing times that ensure the sampled data system in

equation (3.9) is finite-gain L2 stable with a specified gain. These conditions take

the form of admissible bounds on the task sampling periods, Tk, and task delays,

τk. Based on these bounds, we present a self-triggered scheme, where the sampling

periods and deadlines are uniformly bounded from below by a positive constant.

The following assumption is placed on the disturbance w(t) to ensure these bounds

are nonzero.

Assumption 3.3.1 Consider the sampled-data system in equation (3.9). Assume

that there exists a positive real constant a > 0 so that ‖w(t)‖2 ≤ a‖x(t)‖2 for all

t ≥ 0.

Remark 3.3.1 Assumption 3.3.1 consists of a restricted class of signals whose

norm is bounded by a linear function of the state’s norm. The more precise way

to state this assumption is ‖w(t, x(t))‖2 ≤ a‖x(t)‖2 for all t ≥ 0, which means

that w depends on x as well as t. But, to make the notation consistent, we still

use w(t) to denote the disturbance instead of w(t, x). Such disturbances may arise

in uncertain systems when there are unmodeled dynamics caused by fluctuations

in plant parameters. To cover a wider class of disturbances, this assumption is

relaxed in our recent work [58].

For notational convenience let zk : [rk, fk+1) → Rn be given as

zk(t) =
√

(1 − β2)I +Qek(t) =
√
Mek(t) (3.15)

41

where M is defined in equation (3.12) and
√
M is the matrix square root of M .

We refer to zk as the kth job’s “trigger signal”. Note that M is dependent on the

parameter β. In the following discussion, we assume M has full rank by properly

choosing β. It also implies that
√
M has full rank. Notice that M ≥ N always

holds and, if M has full rank, M , N will be both positive definite, where N is

defined in equation (3.13).

We define the function ψ : R
n → R given by

ψ(x) =
√
xTNx (3.16)

where x ∈ Rn. So if we can guarantee for any δ ∈ (0, 1] that

‖zk(t)‖2 ≤ δψ(x(rk)) (3.17)

for all t ∈ [fk, fk+1) for any k = 0, . . . ,∞, then the hypotheses in Corollary 3.2.2

are satisfied and we can conclude that the sampled-data system is finite-gain L2

stable from w to x with a gain less than γ/β.

The first major result examines what happens if we use equation (3.17) as the

basis for an event-triggered feedback control system. In particular, let us assume

that the kth job’s release, rk, is precisely that time when ‖zk(t)‖2 = δψ(x(rk))

under the assumption that the kth job’s delay, τk, is zero. The following theorem

states a lower bound on the sampling period for which a sampled-data system

with zero delay (i.e. τk = 0) has an induced L2 gain less than γ/β.

Theorem 3.3.1 Consider the sampled-data system in equation (3.9) satisfying

assumption 3.3.1. Assume that M has full rank and for some δ ∈ (0, 1] that the

42

sequence of release times {rk}∞k=0 satisfy

‖z(rk+1)‖2 = δψ(x(rk)) (3.18)

where fk = rk for all k = 0, . . . ,∞.

The sequence of release and finishing times is admissible and the sampled-data

system is finite-gain L2 stable from w to x with a gain less than γ/β. Furthermore,

the task sampling periods satisfy

Tk ≥ 1

σ
ln

(

1 + δσ
ψ(x(rk))

µ0(x(rk))

)

(3.19)

where σ is a real constant

σ =
∥

∥

∥

√
MA

√
M

−1
∥

∥

∥+ a
∥

∥

∥

√
MB2

∥

∥

∥

∥

∥

∥

√
M

−1
∥

∥

∥ (3.20)

and µ0 : R
n → R is a real-valued function given by

µ0(x(rk)) =
∥

∥

∥

√
MAclx(rk)

∥

∥

∥

2
+ a

∥

∥

∥

√
MB2

∥

∥

∥
‖x(rk)‖2 . (3.21)

Proof: The proof is in Appendix A.7. 2

Remark 3.3.2 Note that the righthand side of equation (3.19) will always be

strictly greater than zero. We can therefore conclude that if we trigger release

times when δψ(x(rk)) = ‖zk(rk+1)‖, then the sampling period Tk can never be

zero.

Remark 3.3.3 The admissibility of sequences {rk}∞k=0 and {fk}∞k=0 can be restated

in terms of the sequences {τk}∞k=0 and {Tk}∞k=0. By definition, the release and

43

finishing time sequences are admissible if and only if rk ≤ fk ≤ rk+1 for all k.

Clearly this holds if and only if 0 ≤ τk ≤ Tk for all k.

The previous theorem presumes there is no task delay (i.e. τk = 0). Under

this assumption, Theorem 3.3.1 states that triggering release times when equation

(3.18) holds assures the closed-loop system’s induced L2 gain. This theorem, how-

ever, also provides a lower bound on the task sampling period, which suggests that

we can also use theorem 3.3.1 as the basis for state-based self-triggered feedback.

In this scenario, if the kth job would set the next job’s release time as

rk+1 = rk +
1

σ
ln

(

1 + δσ
ψ(x(rk))

µ0(x(rk))

)

(3.22)

then we are again assured that the system’s induced L2 gain is less than γ/β.

The problem faced in using equation (3.22) for self-triggering is the assumption

of no task delay. In many applications, the task delay may not be small enough to

neglect. If we consider non-zero delay, then the triggering signals appear as shown

in Figure 3.1. This figure shows the time history for the triggering signals, zk−1,

zk, and zk+1. With non-zero delay, we can partition the time interval [rk, fk+1)

into two subintervals [rk, fk) and [fk, fk+1). The differential equations associated

with subintervals [rk, fk) and [fk, fk+1) are

ẋ(t) = Ax(t) −B1B
T
1 Px(rk−1) +B2w(t) and

ẋ(t) = Ax(t) −B1B
T
1 Px(rk) +B2w(t),

respectively. In a manner similar to the proof of theorem 3.3.1, we can use dif-

ferential inequalities to bound zk(t) for all t ∈ [rk, fk+1) and thereby determine

sufficient conditions assuring the admissibility of the release/finishing times while

44

preserving the closed-loop system’s L2-stability. The next two lemmas (Lemma

3.3.2 and 3.3.3) characterize the behavior of zk(t) over these two subintervals. We

then use Lemma 3.3.3 to establish sufficient conditions assuring the L2-stability

of the sampled-data system with non-zero delay. The proofs of these lemmas have

been moved to the appendix.

Dk

Tk

rk−1 rkfk−1 fk rk+1 fk+1 rk+2 fk+2

zk+1(t)zk(t)zk−1(t)

t

Figure 3.1. Time history of zk(t) with non-zero task delay.

Lemma 3.3.2 Consider the sampled-data system in equation (3.9) satisfying as-

sumption 3.3.1. Assume that M has full rank and for some k, rk−1 ≤ fk−1 ≤ rk.

Given some ǫ ∈ (0, 1), let η1 : Rn × Rn × (0, 1) → R, φ : Rn × Rn × R → R, and

45

µ1 : Rn × Rn → R be real-valued functions given by

η1(x(rk), x(rk−1); ǫ) =
1

σ
ln

(

1 +
ǫσψ(x(rk))

µ1(x(rk), x(rk−1))

)

, (3.23)

φ(x(rk), x(rk−1); t− rk) =
µ1(x(rk), x(rk−1))

σ

(

eσ(t−rk) − 1
)

, and (3.24)

µ1(x(rk), x(rk−1)) = a
∥

∥

∥

√
MB2

∥

∥

∥
‖x(rk)‖2

+
∥

∥

∥

√
M
(

Ax(rk) − B1B
T
1 Px(rk−1)

)

∥

∥

∥

2
, (3.25)

respectively, where σ is a positive real constant given by equation (3.20) and ψ :

Rn → R is given by equation (3.16). If the kth finishing time fk satisfies

0 ≤ τk = fk − rk ≤ η1(x(rk), x(rk−1); ǫ) (3.26)

for all t ∈ [rk, fk), then the kth trigger signal, zk, satisfies

‖zk(t)‖2 ≤ φ(x(rk), x(rk−1); t− rk) ≤ ǫψ(x(rk)) (3.27)

for all t ∈ [rk, fk).

Proof: The proof is in Appendix A.8. 2

Remark 3.3.4 In Lemma 3.3.2, η1(x(rk), x(rk−1); ǫ) serves as a bound on the

maximal allowable delay. Since we are considering non-zero delays, we would

like η1(x(rk), x(rk−1); ǫ) to be strictly away from zero. To ensure that, we need

to guarantee ‖x(rk−1)‖2

‖x(rk)‖2
is bounded by a positive constant from above. The upper

bound of
‖x(rk−1)‖2

‖x(rk)‖2
can be obtained provided that ‖zk−1(rk)‖2 ≤ δψ(x(rk−1)) and

46

x(rk−1) 6= 0 hold. This is because

0 ≥ ‖zk−1(rk)‖2
2 − δ2ψ(x(rk−1))

2

= x(rk)
TMx(rk) − 2x(rk)

TMx(rk−1) + x(rk−1)
T (M − δ2N)x(rk−1)

≥ −2‖x(rk)‖2 ‖M‖ ‖x(rk−1)‖2 + λmin(M − δ2N)‖x(rk−1)‖2
2

Because ‖x(rk−1)‖2 > 0, the inequality above implies

0 ≥ −2‖x(rk)‖2 ‖M‖ + λmin(M − δ2N)‖x(rk−1)‖2,

which means

‖x(rk−1)‖2

‖x(rk)‖2

≤ 2‖M‖
λmin(M − δ2N)

since M ≥ N > δ2N > 0. With the fact that
‖x(rk−1)‖2

‖x(rk)‖2
is bounded by a positive

constant from above, it is easy to show that η1(x(rk), x(rk−1); ǫ) is greater than a

positive constant, if ‖zk−1(rk)‖2 ≤ δψ(x(rk−1)) holds.

Lemma 3.3.3 Consider the sampled-data system in equation (3.9) satisfying as-

sumption 3.3.1. Assume M has full rank. For a given integer k and some

ǫ ∈ (0, 1), assume that rk−1 ≤ fk−1 ≤ rk. For any π ∈ (ǫ, 1], let

dπ = fk + η2(x(rk), x(rk−1); τk, π), (3.28)

where η2 : Rn × Rn × R × (0, 1] → R is given by

η2(x(rk), x(rk−1); τk, π) =
1

σ
ln

(

1 + σ
πψ(x(rk)) − φ(x(rk), x(rk−1); τk)

µ0(x(rk)) + σφ(x(rk), x(rk−1); τk)

)

.

(3.29)

47

if

0 ≤ τk ≤ η1(x(rk), x(rk−1); ǫ) (3.30)

then

dπ > fk and (3.31)

‖zk(t)‖2 ≤ πψ(x(rk)) for all t ∈ [fk, dπ]. (3.32)

Proof: The proof is in Appendix A.9. 2

According to Lemma 3.3.3, for a positive constant δ ∈ (ǫ, 1), if rk+1 = fk +

η2(x(rk), x(rk−1); τk, δ) and fk+1 ≤ fk+η2(x(rk), x(rk−1); τk, 1) hold, we will always

have ‖zk(rk+1)‖2 ≤ δψ(x(rk)) and ‖zk(fk+1)‖2 ≤ ψ(x(rk)). We will use this fact

below to characterize a self-triggering scheme that preserves the sampled-data

system induced L2 gain. Theorem 3.3.5 formally states this self-triggering scheme.

The proof of theorem 3.3.5 requires the following lemma which shows that the

upper bound for delays given in Lemma 3.3.2 is bounded below by a positive

function of x(rk−1). In that case, the deadline for τk can be predicted at time

rk−1. The proof of this lemma will be found in the appendix.

Lemma 3.3.4 Consider the sampled-data system in equation (3.9) satisfying as-

sumption 3.3.1. Assume that M has full rank and for a constant δ ∈ (0, 1), the

release time rk−1 and rk satisfy

‖zk−1(rk)‖2 ≤ δψ(x(rk−1)) (3.33)

48

for any given k. Then η1 given by equation (3.23) satisfies

η1(x(rk), x(rk−1); ǫ) ≥ ∆(x(rk−1); ǫ, δ) > 0, (3.34)

where ǫ ∈ (0, δ) and ∆ : Rn × (0, 1)× (0, 1) → R is a real-valued function given by

∆(x(rk−1); ǫ, δ) =
1

σ
ln

(

1 +
ǫ(1 − δ)ψ(x(rk−1))

δψ(x(rk−1)) + µ0(x(rk−1))/σ

)

. (3.35)

Proof: The proof is in Appendix A.10. 2

With the preceding technical lemma we can now state a self-triggered feedback

scheme which can guarantee the sampled-data system’s induced L2 gain. The basis

for this self-triggering scheme will be found in the following theorem.

Theorem 3.3.5 Consider the sampled-data system in equation (3.9) satisfying

assumption 3.3.1. Assume M has full rank. For given ǫ ∈ (0, 1) and δ ∈ (ǫ, 1),

we assume that

• The initial release and finishing times satisfy

r−1 = r0 = f0 = 0

• For any non-negative integer k, the release times are generated by the fol-

lowing recursion,

rk+1 = fk + η2(x(rk), x(rk−1); τk, δ) (3.36)

49

and the finishing times satisfy

rk+1 ≤ fk+1 ≤ rk+1 + ∆(x(rk); ǫ, δ), (3.37)

where η2 is given in equation (3.29) and ∆ is given in equation (3.35). Then the

sequence of release times, {rk}∞k=0, and finishing time, {fk}∞k=0, will be admissible

and the sampled-data system is finite-gain L2 stable from w to x with an induced

gain less than γ/β.

Proof: The proof is in Appendix A.11. 2

Remark 3.3.5 ∆(x(rk); ǫ, δ) serves as the deadline for the delay τk+1 in Theorem

3.3.5.

Remark 3.3.6 As is evident from the way it was constructed, δ controls the next

job’s release time. We might therefore expect to see a larger δ result in larger

sampling periods. This is indeed confirmed by the analysis. Since

Tk ≥ rk+1 − fk = η2(x(rk), x(rk−1); τk, δ)

and since η2 is an increasing function of δ we can see that larger δ result in larger

sampling periods.

Remark 3.3.7 By our construction of the parameter ǫ, we see that it controls the

current job’s finishing time. Since this

τk = fk − rk ≤ ∆(x(rk); ǫ, δ)

and since ∆ is an increasing function of ǫ, we can expect to see the allowable delay

increase as we increase ǫ. Note also that ∆ is a decreasing function of δ so that

50

adopting a longer sampling period by increasing δ will have the effect of reducing

the maximum allowable task delay.

Remark 3.3.8 From the previous two remarks we see that the parameters δ and

ǫ can be used to control the task’s deadline and period. One way to choose ǫ and

δ is to enforce real-time schedulability constraints such as those discussed in [16].

As a “rule of thumb” a reasonable strategy is to choose δ and ǫ so that η2 and ∆

are as large as possible; as this makes the task easier to schedule under an earliest-

deadline first (EDF) scheduling discipline. This suggests that ǫ and δ may be seen

as parameters in a scheduling-controller co-design method similar in philosophy to

the approach introduced in [41]. We are currently working to see if this idea indeed

provides a useful formalism for the systematic co-design of real-time self-triggered

control systems.

Remark 3.3.9 The prior techniques can also be applied to self-triggered systems

in which ‖w(t)‖2 ≤ a, thereby relaxing assumption 3.3.1. In this case, however, it

is easy to see that the bounds on sampling periods and deadlines will asymptotically

go to zero, thereby leading to “chattering” behavior. A topic for future research

is how best to address this issue when we can only guarantee the disturbance is

uniformly bounded by a constant.

The following corollary to the above theorem shows that the task periods

and deadlines generated by our self-triggered scheme are all bounded away from

zero. This is important in establishing that our scheme does not generate infinite

sampling frequencies.

Corollary 3.3.6 Let the assumptions in theorem 3.3.5 hold. Then there exist two

positive constants ζ1, ζ2 > 0 such that Tk ≥ ζ1 and ∆(x(rk); ǫ, δ) ≥ ζ2.

51

Proof: The proof is in Appendix A.12. 2

3.4 Simulation

This section presents the results of simulation studies that empirically com-

pare the performance of self-triggered controllers against periodically triggered

and event-triggered controllers. This section’s main finding is that self-triggered

systems appear to generate longer sampling periods than the bound on the MATI

presented in [37]. The simulation results suggest that periodically-triggered sys-

tems with a sampling period T have worse disturbance rejection abilities (as mea-

sured by energy in the tracking error) than self-triggered systems whose average

sampling period is equal to T . Finally we provide examples illustrating that the

self-triggering’s computational cost (as measured by the ratio of the task’s execu-

tion time over period) is comparable and sometimes better than the computational

cost of periodically triggered systems using the the bound on the MATI in [37].

The remainder of this section is organized as follows. Subsection 3.4.1 describes

the system under study. Simulations of the system’s self-triggered controller will

be found in subsection 3.4.2. The performance of the self-triggered system is

then compared against comparable event-triggered schemes (subsection 3.4.3) and

periodically-triggered schemes (subsection 3.4.4). A discussion of self-triggering’s

computational cost is found in 3.4.5.

3.4.1 System Model

The following simulation results were generated for event-triggered and self-

triggered feedback systems. The plant was an inverted pendulum on top of a

52

moving cart. The plant’s linearized state equations were

ẋ(t) =



















0 1 0 0

0 0 −m1g/m2 0

0 0 0 1

0 0 g/ℓ 0



















x(t) +



















0

1/m2

0

−1/(m2ℓ)



















u(t) +



















1

1

1

1



















w(t)

where m2 was the cart mass, m1 was the mass of the pendulum bob, ℓ was the

length of the pendulum arm, and g was gravitational acceleration. For these

simulations, we let m1 = 1, m2 = 10, ℓ = 3, and g = 10. The system state was

the vector x =

[

y ẏ θ θ̇

]T

where y was the cart’s position and θ was the

pendulum bob’s angle with respect to the vertical. The control input u(t) was

generated by either an event-triggered or self-triggered controller. The function

w was an external disturbance to the system. The system’s initial state was the

vector x0 =

[

0.98 0 0.2 0

]T

.

We designed a continuous-time state feedback control system (equation (3.1))

in which the performance level, γ, was set to 200. Solving the Riccati equation in

equation (3.5) yielded a positive definite matrix P such that the state-feedback

gains were

BT
1 P =

[

−2 −12 −378 −210

]

. (3.38)

The state trajectory of the resulting closed-loop system is denoted below as xc.

Figure 3.2 plots the system states as a function of time under the assumption that

w(t) = 0 for all t. Figure 3.2 is therefore the impulse response of the inverted

pendulum system.

53

0 2 4 6 8 10 12 14 16 18 20
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

Time (sec)

S
ta

te
 T

ra
je

ct
or

ie
s

y
dy/dt
θ
dθ/dt

Figure 3.2. State trajectories of continuous-time closed-loop systems in
equation (3.1)

3.4.2 Self-triggered Feedback

The simulations in this subsection are for the self-triggered feedback scheme

associated with equation (3.36) and (3.37) in Theorem 3.3.5 with β = 0.5. In this

case, the task release times were generated at time fk using the equation

rk+1 = fk + η2(x(rk), x(rk−1), τk, δ)

and the finishing times were assumed to satisfy

fk+1 = rk+1 + ∆(x(rk); ǫ, δ),

54

which means the delays are equal to the deadlines. The plant is the inverted

pendulum plant of the preceding subsection in which the external disturbance

w(t) was again zero. The ǫ and δ parameters were chosen to be 0.65 and 0.7,

respectively.

In comparing the performance of the self-triggered versus the continuous-time

system, we examine the “normalized” error, Let xs denote the self-triggered sys-

tem’s response and let xc denote the continuous-time system’s response. The

normalized self-triggered system’s error, E(t; xs) is defined by

E(t; xs) =

∣

∣

∣

√

V (xs(t)) −
√

V (xc(t))
∣

∣

∣

√

V (xc(t))
(3.39)

where V (x) = xTPx and P is the positive definite matrix satisfying the algebraic

Riccati equation (3.5). This normalization of the state error allows us to fairly

measure those states (i.e. the pendulum bob angle) that are most directly affected

when input disturbances exist.

Figure 3.3 plots the normalized error, E(t; xs) of the self-triggered system

assuming w(t) = 0 and ‖w(t)‖2 ≤ 0.01‖xs(t)‖2. For both cases, the normalized

error is small over time, thereby suggesting that the continuous-time and self-

triggered systems have nearly identical impulse responses.

Figure 3.4 plots the task periods, Tk, (crosses) and deadlines, ∆, (dots) gener-

ated by the self-triggered scheme assuming w(t) = 0. The sampling periods range

between 0.021 and 0.185 seconds. Note that these sampling periods show signif-

icant variability. The shortest and most aggressive sampling periods occurred in

response to the system’s non-zero initial condition. Longer and relatively constant

sampling periods were generated once the system state has returned to the neigh-

borhood of the system’s equilibrium point. This seems to confirm the conjecture

55

0 5 10 15 20
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Time (sec)

N
or

m
al

iz
ed

 S
ta

te
 E

rr
or

E(t;x
s
) when w(t)=0

E(t;x
s
) when ||w(t)||

2
 < 0.01||x

s
(t)||

2

Figure 3.3. Normalized state error versus time for a self-triggered
systems with w(t) = 0 and a self-triggered system with

‖w(t)‖2 ≤ 0.01‖xs(t)‖2 (δ = 0.7, ǫ = 0.65).

that self-triggering can effectively adjust sampling periods in response to changes

in the control system’s external inputs.

Figure 3.5 plots the sample periods, Tk (crosses), and predicted deadlines

(dots), generated by the self-triggered system when it is driven by the distur-

bance w where ‖w(t)‖ ≤ 0.01‖xs(t)‖. After the initial transient in the system’s

response, the sampling periods converge to a periodic signal in which the sample

periods range between 0.037 and 0.092. It is interesting to note that Tk shows sig-

nificant periodic variation. Other simulations have shown similar results. These

observations suggest that the choice of “optimal” sampling period has its own

dynamic that leads to a periodic variation in sampling periods. One interesting

56

0 2 4 6 8 10 12 14 16 18 20
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Time (sec)

S
ec

on
d

Sampling Period
Predicted Deadline

Figure 3.4. Sampling period and predicted deadline for a self-triggered
system in which δ = 0.7 and ǫ = 0.65.

issue for future research is whether or not we can take advantage of this variability

in scheduling multiple real-time control tasks.

Figures 3.6 and 3.7 show what happens to task periods and deadlines when we

varied δ and ǫ. In Figure 3.6, δ = 0.7 and ǫ was varied between 0.1, 0.4 and 0.65.

The top two plots show histograms of the sampling period (left) and deadline

(right) for ǫ = 0.65. The middle two plots are histograms of the sampling periods

and deadlines for ǫ = 0.4. The bottom two plots display results when ǫ = 0.1.

Examining the three histograms on the left side of Figure 3.6 shows little change

in sampling period as a function of ǫ. The three histograms on the right side of

Figure 3.6 show significant variation in deadline as a function of ǫ. These results

57

0 5 10 15 20 25 30 35 40
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Time (sec)

S
ec

on
d

Sampling Period

Predicted Deadline

Figure 3.5. Sample periods and predicted deadlines versus time for a
self-triggered system (δ = 0.7, ǫ = 0.65, and ‖w(t)‖2 ≤ 0.01‖xs(t)‖2).

are consistent with our earlier discussion in Remark 3.3.7. Recall that ǫ controls

the time when the kth task finishes. So by changing ǫ we expect to see a large

impact on the predicted deadline (∆) and little impact on the task period.

Figure 3.7 is similar to Figure 3.6 except that we keep ǫ fixed at 0.1 and vary

δ from 0.15 (bottom) to 0.4 (middle) to 0.9 (top). These histograms show that

as we increase δ we also enlarge the task periods. Recall that δ controls the time

interval fk+1 − fk so that what we observe in the simulation is again consistent

with our comments in Remark 3.3.6. As we increase the sampling period, however,

we can expect smaller predicted deadlines because the average sampling frequency

is lower. This too is seen in the histograms on the righthand side of Figure 3.7.

58

0 0.05 0.1 0.15 0.2
0

50

100
Sampling Periods with ε=0.65

0 0.005 0.01 0.015
0

50

100
Predicted Deadlines with ε=0.65

0 0.05 0.1 0.15 0.2
0

100

200

D
is

tr
ib

ut
io

n
of

 S
am

pl
in

g
P

er
io

ds

Sampling Periods with ε=0.4

0 0.005 0.01 0.015
0

50

100

D
is

tr
ib

ut
io

n
of

 P
re

di
ct

ed
 D

ea
dl

in
es

Predicted Deadlines with ε=0.4

0 0.05 0.1 0.15 0.2
0

50

100

Sampling Period

Sampling Periods with ε=0.1

0 0.005 0.01 0.015
0

50

100

Predicted Deadline

Predicted Deadlines with ε=0.1

Figure 3.6. Histogram of sample period and predicted deadline for a
self-triggered system in which δ = 0.7 and ǫ ∈ {0.1, 0.4, 0.65}.

The results in this subsection clearly show that we can effectively bound the

task periods and deadlines in a way that preserves the closed-loop system’s L2

stability. An interesting future research topic concerns how we might use these

bounds on period and deadline in a systematic manner to schedule multiple real-

time control tasks.

3.4.3 Comparison against Event-triggered Feedback

This subsection compares the self-triggered scheme against two event-triggered

schemes; our own event-triggered scheme in theorem 3.3.1 and the event-triggered

scheme in [45]. To make a fair comparison, we set ǫ = 0 and δ = 1 so self-triggering

59

0 0.05 0.1 0.15 0.2
0

50
Sampling Periods with δ=0.9

0 0.005 0.01 0.015 0.02
0

50

100
Predicted Deadlines with δ=0.9

0 0.05 0.1 0.15 0.2
0

50

100
Sampling Periods with δ=0.4

D
is

tr
ib

ut
io

n
of

 S
am

pl
in

g
P

er
io

ds

0 0.005 0.01 0.015 0.02
0

100

200
Predicted Deadlines with δ=0.4

D
is

tr
ib

ut
io

n
of

 P
re

di
ct

ed
 D

ea
dl

in
es

0 0.05 0.1 0.15 0.2
0

100

200
Sampling Periods with δ=0.15

Sampling Period
0 0.005 0.01 0.015 0.02

0

100

200
Predicted Deadlines with δ=0.15

Predicted Deadline

Figure 3.7. Histogram of sample period and predicted deadline for a
self-triggered system in which ǫ = 0.1 and δ ∈ {0.15, 0.40.9}.

occurs with zero delay.

Let xe(t) denote the state trajectory of the event-triggered system based on

Theorem 3.3.1’s threshold test. Let E(t; xe) denote the normalized error (see

equation (3.39)) of the event-triggered trajectory. Figure 3.8 plots the normalized

error for the self-triggered system, E(t; xs) (solid line), and the event-triggered

system, E(t, xe) (dashed line) as functions of time for w(t) = 0. In both cases

the normalized errors are small, though the event-triggered system has a slightly

larger error.

Figure 3.9 plots the sampling periods generated by the self-triggered scheme

(top plot) and the event-triggered scheme (bottom plot). The self-triggered sam-

60

0 5 10 15 20
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Time (sec)

N
or

m
al

iz
ed

 S
ta

te
 E

rr
or

E(t;x
s
)

E(t;x
e
)

Figure 3.8. Normalized state errors versus time for a self-triggered
system and an event-triggered system (δ = 1, ǫ = 0, and w(t) = 0)

pling periods range between 0.0300 and 0.2060 with an average period of 0.1782.

The event-triggered sampling periods range between 0.0340 and 1.3890 with an

average period of 0.3375. Note that the self-triggered sampling periods are an

order of magnitude smaller than the periods of the event-triggered scheme. These

results suggest that even-triggered feedback is better able to reduce sampling pe-

riod frequency than the self-triggered feedback.

We then added a square wave input to the system to see how the self-triggered

and event-triggered systems react to external disturbances. The results from this

comparison are shown in Figure 3.10. This figure plots the time history of the

normalized error signals, E(t; xs) (solid line) and E(t; xe) (dashed line), for the

61

0 5 10 15 20
0

0.5

1

1.5

2

2.5

Time (sec)

P
er

io
d

by
 E

ve
nt

−
tr

ig
ge

rin
g

(s
ec

)

0 5 10 15 20
0

0.05

0.1

0.15

0.2

0.25

Time (sec)

P
er

io
d

by
 S

el
f−

tr
ig

ge
rin

g
(s

ec
)

Figure 3.9. Sampling period versus time for a self-triggered system and
an event-triggered system (δ = 1, ǫ = 0, and w(t) = 0)

inverted pendulum using the input signal, w(t) = µ(t) where µ : R → R takes the

values

µ(t) =











sgn(sint) if 0 ≤ t < 10

0 otherwise
. (3.40)

Again, the error in the self-triggered system is smaller than that in the event-

triggered system.

Figure 3.11 plots the sampling periods generated by the self-triggered (top

plot) and event-triggered (bottom plot) systems when w(t) = µ(t). The top plot

shows that the sampling periods in the self-triggered system readjust and get

62

0 5 10 15 20
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Time (sec)

N
or

m
al

iz
ed

 S
ta

te
 E

rr
or

E(t;x
s
)

E(t;x
e
)

Figure 3.10. Normalized error versus time for a self-triggered system and
an event-triggered system (δ = 1, ǫ = 0, and w(t) = µ(t))

smaller when the square wave input hits the system over the time interval [0, 10].

In the event-triggered system, as shown in the bottom plot, the average period,

0.2830, also get smaller compared with the periods in the bottom plot of Figure

3.9, although the decrease is not very obvious. These results again demonstrate

the ability of self-triggering and event-triggering to successfully adapt to changes

in the system’s input disturbances.

It is instructive to compare the sampling periods generated by self-triggering

(see the top plot in Figure 3.9) against the periods that would have been generated

by the event-triggering scheme in [45]. Recall that the event-triggering scheme in

63

0 5 10 15 20
0

0.05

0.1

0.15

0.2

0.25

Time (sec)

P
er

io
d

by
 S

el
f−

tr
ig

ge
rin

g
(s

ec
)

0 5 10 15 20
0

0.5

1

1.5

Time (sec)

P
er

io
d

by
 E

ve
nt

−
tr

ig
ge

rin
g

(s
ec

)

Figure 3.11. Sampling period versus time for a self-triggered system and
an event-triggered system (δ = 1, ǫ = 0 and w(t) = µ(t)).

[45] samples the state when

eT
k (t)Gek(t) = b2xT (t)Gx(t).

G is a positive definite matrix associated with a control Lyapunov function V (x) =

xTGx for the closed-loop system with state feedback gains K. Since V is a control

Lyapunov function, we can find a matrix H such that the directional derivative

of the unforced closed-loop system satisfies the inequality V̇ ≤ −xTHx. In the

above equation, p is the real constant

b =
λmin(G)

2λmax(G)

λmin(H)

‖GBK‖ .

64

For this particular simulation, we set G equal to the P associated with our con-

troller to obtain b = 4.17 × 10−11. This event-triggering threshold generates

sampling periods less than 10−5. This is much smaller than the sampling periods

generated by the self-triggering scheme.

The reason for this difference is that the condition number of the particular

G matrix is extremely large due to the great difference in the time constants

associated with the dynamics of the cart and pendulum bob. Such a matrix leads

to a very small b, which limits the size of the sampling periods generated by the

approach in [45]. In fact, for the inverted pendulum model with the control gain

K given by equation (3.38), the smallest condition number of G matrix is 409.05.

The resulting p is equal to 1.35 × 10−11. If we directly consider the value of p,

the largest p we can get is 1.20 × 10−7. The resulting sampling periods are still

less than 10−5. Therefore, for the inverted pendulum model, our event-triggering

threshold generates much longer sampling periods.

However, for different systems which allow G with a small condition number,

the approach in [45] may also generate large sampling periods. For example, for a

scalar system, ẋ = −x+ u+ w, with γ = 1/
√

2, we get P = 1 and K = −1. The

average sampling period generated by self-triggering is 0.3670 associated with β =

0.5, δ = 1, ǫ = 0 and w(t) = 0. The threshold condition in [45] is e2k(t) < 4x(t)2

for the same P and K. The minimal, average, maximal sampling periods by the

approach in [45] are the same, 0.4060, which are longer than the average period

generated by our approach.

65

3.4.4 Comparison against Periodically-triggered Feedback

The simulations in this subsection compare the performance of self-triggered

and “comparable” periodically triggered feedback control systems using the in-

verted pendulum system described above. Again to make a fair comparison, we

enforce zero delays by setting δ = 1 and ǫ = 0 in the self-triggered controller.

We first compare the sampling period in the self-triggered system with the

bound on the MATI given by [37]. The bound on the MATI ensuring an L2 gain

of γ is,

TMATI =
1

L
ln

L+ γ1

ρ̄L+ γ1

, (3.41)

where, in the inverted pendulum model, ρ̄ = 0, L = max(0.5λmax(−B1K −

KTBT
1), 0), γ1 ≥ 0 satisfies

γ =
1 + max{γ1, γ2}

1 − γ1γ2
,

and γ2 is the L2 gain for the closed-loop system (ẋ = Aclx+ B1Ke + B2w) from

(e, w) to −Aclx.

From equation (3.41), we compute the bound on the MATI consistent with

an L2 gain γ = 400. This results in TMATI = 0.0092. The corresponding average

sampling period for a self-triggered system with gain γ = 400 is equal to 0.1782

(see Figure 3.9). Clearly the average period generated by the self-triggered scheme

is longer than the estimate of the MATI for systems with the same induced L2

gain. Note that the bound on the MATI obtained assuming an infinite-gain for γ

is still only 0.0112 which is still much smaller than the average sampling period

generated by the self-triggered controller.

66

Note that the above self-triggered system generated sampling periods under

the assumption that the noise magnitude a = 0. For non-zero a the average

sampling period will decrease. For instance if a = 0.01, then the average self-

triggered period shrinks to 0.0629. Though this is still larger than the bound on

the MATI, it is apparent that as a increases, the average period will continue

shrinking until it is less than the MATI. This appears to be one weakness of the

current result in theorem 3.3.5. We believe this can be relaxed, but that will need

to be addressed in future work.

One thing worth mentioning is that the self-triggering scheme is compared with

a theoretically derived bound on the MATI [37]. This bound may be conservative

due to the sampling scheme and the conservatism of the proof techniques. It does

not mean that the actual maximal allowable transfer interval is conservative.

We should also notice that the bound on the MATI can be predicted before

the system is deployed by methods such as the one in [37]. So when designers

try to build physical devices, they know exactly what the requirements are on the

sampling rate. On the contrary, it is difficult to predict ahead of time the minimal

sampling period in self-triggered feedback systems. It may be possible that for a

short interval, the controller insists on a sampling/control rate that the physical

device cannot provide. Therefore, how to handle such unexpected delays would

be an interesting direction to follow in the future.

We then compared the performance of the self-triggered system and a period-

ically triggered system with “comparable” task period, which is the average sam-

pling period over the entire time zone, 0.1782, generated by the example in Figure

3.9. The results from this comparison are shown in Figure 3.12. This figure plots

the time history of the normalized errors for the self-triggered system, E(t; xs)

67

(solid line), and the periodically triggered system, E(t; xT) (dash-dot line) for an

inverted pendulum with input signal w(t) = µ(t) where µ is defined in equation

(3.40) and xT denotes the periodically triggered system’s response.

0 5 10 15 20
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Time (sec)

N
or

m
al

iz
ed

 S
ta

te
 E

rr
or

E(t;x
s
)

E(t;x
T
)

Figure 3.12. Normalized error versus time for a self-triggered system
(δ = 1 and ǫ = 0) and a periodically triggered system whose period was

chosen from the sample periods shown in the top plot of Figure 3.9.

Figure 3.12 clearly shows that the self-triggered error is significantly smaller

than the error of the periodically triggered system. This error is a direct result of

the self-triggered system’s ability to adjust its sample period as shown in the top

68

plot of Figure 3.11.

3.4.5 Self-triggered System’s Computational Cost

This subsection compares the computational cost in the self-triggered system

by comparing the average utilization of the self-triggered system against a peri-

odically triggered system with period equal to the MATI, TMATI = 0.0092. The

average utilization is the quotient of the execution time over the average sampling

period. In this section, we set δ = 1 and ǫ = 0 with w(t) = 0 for the self triggered

system. In this case the average period is 0.1782.

The computational cost for one task will be measured by the number of mul-

tiplies required for a single update of the control. We focus on “multiplies” since

they represent the most expensive floating point computation. Since other param-

eters (such as σ and
√
M) can be computed off-line, the computational cost for

one task comes from the computation of the control, which uses n multiplies, and

the prediction of the next release time, which requires about 2n2 + 2n multiplies,

where n is the state dimension. The total computational cost of the self-triggered

scheme is therefore 2n2 + 3n, whereas the computational cost of the periodically

triggered controller is only n multiplies.

While the computational cost of self-triggering is higher than that of periodically-

triggered systems, we generally see that self-triggered systems have longer average

periods. So a more appropriate comparison of each method’s resource usage is

provided by their “utilization” which we take here as the quotient of the compu-

tational cost (number of multiplies) over the sampling period. For the inverted

pendulum system the periodically triggered system’s utilization, UT , may there-

fore be taken to be n
TMATI

where we normalized out the cost of the control com-

69

putation. For this example (with n = 4) we earlier computed the MATI to be

TMATI = 0.0092 so that the periodic system’s utilization is UT = 434.7828. The

self-triggered system’s utilization, Us, is given by 2n2+3n

T
where T is the average

period generated by self-triggering. In our simulations T = 0.1782, so that the

self-triggered system’s utilization becomes Us = 246.9136. The main conclusion

to be drawn here is that even though periodically-triggered feedback has lower

computational cost per job, the average utilization of both methods appears to be

comparable.

3.5 Summary

This chapter has presented a state-dependent threshold inequality whose satis-

faction assures the induced L2 gain of a sampled-data linear state feedback control

system. We derive state-dependent bounds on the task periods and deadlines en-

forcing this threshold inequality based on an event-triggered feedback scheme.

These results were used to present a self-triggered feedback scheme with guar-

anteed L2 stability. Simulation results show that the proposed event- and self-

triggered feedback schemes perform better than comparable periodically triggered

feedback controllers. The results in this chapter, therefore, appear to provide a

solid analytical basis for the development of aperiodic sampled-data control sys-

tems that adjust their periods and deadlines to variations in the system’s external

inputs.

There are a number of open directions for future study. The bounds derived

in this chapter can be thought of as quality-of-control (QoC) constraints that a

real-time scheduler must enforce to assure the application’s (i.e. control system’s)

performance level. This may be beneficial in the development of soft real-time

70

systems for controlling multiple plants. The bounds on task period and deadline

suggest that real-time engineers can adjust both task period and task deadline to

assure task set schedulability while meeting application performance requirements.

It would be interesting to see whether such bounds can be used in generalizations

of elastic scheduling algorithms [11] [15]. This might allow us to finally build

soft real-time systems providing guarantees on application performance that have

traditionally been found only in hard real-time control systems.

To our best knowledge, this is the first rigorous examination of what might be

required to implement self-triggered feedback control systems. Self-triggering on

single processor systems may not be very useful since event-triggers can often be

implemented in an inexpensive manner using programmable gate arrays (FPGA)

or custom analog integrated circuits (ASIC). If, however, we are controlling mul-

tiple plants over a wireless network, then the inability of such networks to provide

deterministic guarantees on message delivery make the use of self-triggered feed-

back much more attractive. An interesting future research direction would explore

the use of self-triggered feedback over wireless sensor-actuator networks, which is

partially addressed in [13, 37, 43, 52, 56].

71

CHAPTER 4

Distributed Event-Triggering in Networked Control Systems

A networked control system (NCS) is a system wherein numerous physically

coupled subsystems are geographically distributed throughout the system. Con-

trol and feedback signals are exchanged through a real-time network among the

system’s components. Specific examples of NCS include electrical power grids and

transportation networks. In recent years, it has been popular to refer to such net-

worked systems as cyber-physical systems. The networking of control effort can be

advantageous in terms of lower system costs due to streamlined installation and

maintenance costs. The introduction of real-time network infrastructure, however,

raises new challenges regarding the impact that communication reliability has on

the control system’s performance. In real-time networks, information is transmit-

ted in discrete-time rather than continuous-time. Moreover, all real networks have

bandwidth limitation that can cause delays in message delivery that may have a

major impact on overall system stability [30].

For this reason, some researchers began investigating the timing issue in NCS.

One packet transmission problem was considered in [26, 60], where a supervisor

summarizes all subsystem data into this single packet. As a result such schemes

may be impractical for large-scale systems. Asynchronous transmission was con-

sidered in [13, 37, 48], which derived bounds on the maximum allowable transfer

interval (MATI) between two subsequent message transmissions so that the sys-

72

tem stability can be guaranteed. All of this prior work confined its attention

to control area network (CAN) buses where centralized computers are used to

coordinate the information transmission.

One thing worth mentioning is that these schemes mentioned above require

extremely detailed models of subsystem interactions and the execution of com-

munication protocols must be done in a highly centralized manner. Both of these

requirements can greatly limit the scalability of centralized approaches to NCS.

On the other hand, the MATI is computed before the system is deployed, which

means it is independent of the system state. So it must ensure adequate behavior

over a wide range of possible system states. As a result, it may be conservative.

To overcome these issues, decentralized event-triggering feedback schemes were

proposed in [52, 54] for linear and nonlinear systems, respectively. Most recently,

an implementation of event-triggering in sensor-network was introduced in [36].

By event-triggering, a subsystem broadcasts its state information to its neighbors

only when “needed”. In this case, “needed” means that some measure of the

subsystem’s local state error exceeds a specified threshold [44, 49]. In this way,

event-triggering makes it possible to reduce the frequency with which subsystems

communicate and therefore use network bandwidth in an extremely frugal manner.

An important assumption in [52, 54] is that neither data dropouts nor delays occur

in such systems. In real-time networks, however, especially wireless networks, data

dropouts and delays always exist. It, therefore, suggests a more sophisticated

consideration of such systems.

In this chapter, we study asymptotic stability in the distributed NCS with

data dropouts and transmission delays. A distributed event-triggering scheme is

introduced to ensure system’s stability [56]. Unlike the prior work that modelled

73

data dropouts as stochastic processes using a centralized approach [24, 33], this

event-triggering scheme identifies the maximal allowable number of agents’ suc-

cessive dropouts (MANSD). It also provides the maximal allowable transmission

delay (also called deadline) for each transmission.

This scheme is decentralized in a sense that (1) a subsystem’s broadcast de-

cisions are made using its local sampled data, (2) the maximal allowable trans-

mission delay of a subsystem’s broadcast can be predicted based on the local

information, (3) a subsystem locally identifies the maximal allowable number of

its successive data dropouts, and (4) the designer’s selection of the threshold only

requires information about an individual subsystem and its immediate neighbors.

This chapter is organized as follows. Section 4.1 formulates the problem. Sec-

tion 4.2 presents the decentralized event-design approaches for both nonlinear and

linear systems. Data dropouts and broadcast delays are considered in section 4.3.

Section 4.4 demonstrates the simulation results. Conclusions are drawn in section

4.5.

4.1 Problem Formulation

Consider a distributed NCS containing N agents. These N agents are coupled

together and each agent can receive information from some of other agents. Let

N = {1, 2, · · · , N}. The coupling and information flow in NCS can be described

by coupling graph and communication graph, which are defined as follows.

Definition 4.1.1 A graph Gcp = (N , Ecp) is called the coupling graph of a NCS,

if each node i ∈ N represents an agent in the NCS and each edge (i, j) ∈ Ecp

represents that the system dynamics of agent j is directly driven by agent i.

Definition 4.1.2 A graph Gcm = (N , Ecm) is called the communication graph of a

74

NCS, if each node i ∈ N represents an agent in the NCS and each edge (i, j) ∈ Ecm

represents that agent j can receive the broadcasts from agent i.

In this chapter, the coupling graph and the communication graph do not have

to be the same. Furthermore, both graphs are directed, instead of undirected.

This provides us a general framework on the network topology. For notational

convenience, we let

• Zi , {j ∈ N | (j, i) ∈ Ecm} denotes the set of agents that agent i can get

information from;

• Ui , {j ∈ N | (i, j) ∈ Ecm} denotes the set of agents that can receive agent

i’s information;

• Di , {j ∈ N | (j, i) ∈ Ecp} denotes the set of agents that directly drive

agent i’s dynamics;

• Si , {j ∈ N | (i, j) ∈ Ecp} denotes the set of agents who are directly driven

by agent i;

• For any set Σ ⊆ N , |Σ| to denote the number of the elements in Σ and

Σ̄ = Σ ∪ {i}.

Notice that i 6∈ Zi ∪ Di ∪ Ui ∪ Si. We let Σ̄i = Σi ∪ {i} for any set Σi ∈

{Zi, Ui, Di, Si}. For any set Σ ⊆ N , |Σ| denotes the number of the elements in Σ.

The state equation of agent i is

ẋi(t) = gi(xD̄i
(t), ui(t))

ui(t) = κi(xZ̄i
(t))

xi(t0) = xi0

75

where xi : R → Rn is the state trajectory of agent i, ui : R → Rm is a control

input, κi : Rn|Z̄i| → Rm is the feedback strategy of agent i satisfying κi(0) =

0, gi : Rn|D̄i| × Rm × Rl → Rn is continuous and locally Lipschitz satisfying

gi(0, 0) = 0, and xD̄i
= {xj}j∈D̄i

, xZ̄i
= {xj}j∈Z̄i

. To outline the analysis, we

assume that the states/inputs/disturbances of agents have the same dimension.

The results can be easily extended to the case where the dimensions of agents’

states/inputs/disturbances are different from each other.

Detector DetectorDetectorZOHZOH ZOH

P1 P2 PN· · ·

Communication Channel

Continuous

Time

Discrete

Time
x̂Z̄1

x1

x̂1 x̂2

x̂Z̄2
x̂Z̄N

x̂N

x2 xN
u1 u2 uN

CPUCPU CPU

Figure 4.1. The architecture of the real-time NCS

The architecture of a real-time implementation of distributed NCS is plotted in

Figure 4.1. In such a system, agent i can only detect its own state, xi. If the local

“error” signal exceeds some given threshold, which can be detected by hardware

76

detectors, agent i will sample and broadcast its state information to those agents

in Ui through a real-time network. Meanwhile, agent i’s control, ui, at time t is

computed based on the latest states at time t that are successfully broadcasted

by those agents in Z̄i, denoted as x̂Z̄i
(t). Therefore, the control signal used by

agent i is held constant by a zero-order hold (ZOH) unless one of the agents in Z̄i

makes a successful broadcast. This means that the state equation of agent i can

be written as

ẋi(t) = gi(xD̄i
(t), ui(t))

ui(t) = κi(x̂Z̄i
(t)). (4.1)

Agent i’s broadcast can be characterized by three monotone increasing se-

quences of time instants: the broadcast release time sequence {ri
j}∞j=1, the suc-

cessful broadcast release, {bik}∞k=1, and the broadcast finishing time {f i
k}∞k=1. The

time ri
k denotes the time instant when the jth broadcast of agent i is released,

but not necessarily transmitted successfully. The time bik denotes the time instant

when the kth “successful” broadcast of agent i is released. By “successful”, it

means the data in this broadcast is successfully transmitted to all agents in set Ūi

through the network. Obviously, {bik}∞k=1 is a subsequence of {ri
j}∞j=1. We use di

k

to denote the number of agent i’s broadcast releases between bik and bik+1, which

is also the number of data dropouts of agent i between bik and bik+1. At this time,

we assume there is no delay between sampling and broadcast release. The time

f i
k denotes the time instant when the kth broadcasted data of agent i is received

by its neighbors. Notice that x̂i(t) = xi(b
i
k) for all t ∈ [f i

k, f
i
k+1).

Figure 4.2 illustrates the relationship between the broadcast release time ri
j,

successful release time bik and broadcast finishing time fk of agent i. The x-axis

77

in Figure 4.2 is time with release (ri
j), successful release (bik), and finishing time

(f i
k) marked on the axis. The black rectangles above the time axis mark intervals

over which the data is being transmitted.

ri
j ri

j+1
f i

k ri
j+2

ri
j+di

k

f i
k+1

t

kth transmission

ri
j+di

k
+1· · ·

k + 1th transmission

(= bi
k) (= bi

k+1)

Figure 4.2. Relationship between release time (ri
j), successful release

(bik), and finishing time (f i
k)

The objective is to develop distributed event-triggering schemes to identify

{ri
j}∞j=1, {bik}∞k=1, and {f i

k}∞k=1 such that the NCS defined in equation (4.1) is

asymtotically stable. For notational convenience, let ei : R → Rn be defined as

ei(t) , xi(t) − x̂i(t) for ∀t ≥ 0 and εj
i : R → Rn defined as εj

i (t) , xi(t) − xi(r
i
j).

4.2 Distributed Event Design for Asymptotic Stability

In this section, we proposed distributed schemes to design local events for

both nonlinear and linear systems. For nonlinear subsystems, local event design

is transformed into local ISS design problems; for linear subsystems, the design

is simplified to be local LMI feasibility problems. The broadcast release can be

triggered by these events.

78

4.2.1 Local Event Design in Nonlinear Systems

In this section, a distributed approach for nonlinear systems is proposed to con-

struct local events such that the resulting event-triggered NCS is asymptotically

stable. To obtain such a distributed method, we first introduce a theorem that

provides a centralized approach for local event design. For notational convenience,

we let Lgi
V = ∂V

∂xi
gi(xD̄i

, ui) with some function V (x) ∈ R.

Theorem 4.2.1 Consider the NCS in equation (4.1). Assume that there exist a

smooth, positive-definite function V : RnN → R and class K functions α1, α2, φi,

ψi : R → R for i = 1, · · · , N such that

α1(‖x‖) ≤ V (x) ≤ α2(‖x‖) (4.2)

∑

i∈N

Lgi
V ≤

∑

i∈N

[−φi(‖xi‖) + ψi(‖ei‖)] (4.3)

−δiφi(‖xi(t)‖) + ψi(‖ei(t)‖) ≤ 0 (4.4)

hold for all t ≥ 0 and all i ∈ N with some δi ∈ (0, 1), then the NCS is asymptoti-

cally stable.

Proof: Applying equation (4.4) into equation (4.3), we have

∑

i∈N

Lgi
V ≤

∑

i∈N

[−(1 − δi)φi(‖xi‖)] (4.5)

which is, with equation (4.2), sufficient to show the NCS is asymptotically stable.

2

Remark 4.2.1 The event for agent i is only associated with ei and xi. Agent i

just needs to use the violation of equation (4.4) to trigger the broadcast such that

79

the inequality in equation (4.4) holds. If there are no transmission delay and data

dropouts, the system stability of NCS can be maintained.

Theorem 4.2.1 shows that the satisfaction of equation (4.3) and (4.4) guar-

antees Lp stability of the NCS. Based on this theorem, deriving local events is

equivalent to constructing a collection of class K functions. In fact, we notice that

in order to design its local event, agent i just needs to find two class K functions

φi and ψi. This brings the possibility to decentralize the design procedure. The

following theorem provides such a distributed approach for agent i to construct

φi and ψi.

Assumption 4.2.1 Assume that, for any i ∈ N , there exist a constant p ≥

1, a continuous, positive-definite functions Vi : Rn → R, class K functions αi
1,

αi
2 : R → R, positive constants ζi, βi, ρi ∈ R, and control law gi : Rn|Z̄i| → Rmi

satisfying

αi
1(‖xi‖) ≤ Vi(xi) ≤ αi

2(‖xi‖) (4.6)

Lgi
Vi ≤ −ζi‖xi‖p +

∑

j∈Di∪Zi

βj‖xj‖p +
∑

j∈Z̄i

ρj‖ej‖p (4.7)

ζi − |Si ∪ Ui|βi > 0. (4.8)

Remark 4.2.2 Equations (4.7) suggests that subsystem i is Lp stable from {xj}j∈Di∪Zi

and {ej}j∈Z̄i
to xi. Equation (4.8) specifies the performance level of the subsys-

tem. This assumption is satisfied when the interconnections between subsystems

are weak. If {ρi}N
i=1 and {βi}N

i=1 are pre-selected, agent i needs to find Vi, ζi, and

κi to fulfill equations (4.6) – (4.8). This is an input-to-state stabilization problem

for agent i. The local event design is based on the parameters ζi, βi, and ρi. Notice

that the stabilization problem is only associated with agent i’s local dynamics.

80

Theorem 4.2.2 Consider the NCS defined in equation (4.1). Suppose that as-

sumption 4.2.1 holds. If for any i ∈ N , the inequality

−δi‖xi(t)‖ + σi‖ei(t)‖ ≤ 0 (4.9)

holds for all t ≥ 0, where δi ∈ (0, 1) and

σi =

(|Ūi|ρi

ζi − |Si ∪ Ui|βi

)
1
p

, (4.10)

then the NCS is asymptotically stable.

Proof: Let V (x) =
∑

i∈N Vi(xi). It is easy to see that

V̇ =
∑

i∈N

Lgi
Vi ≤

∑

i∈N



−ζi‖xi‖p +
∑

j∈Di∪Zi

βj‖xj‖p +
∑

j∈Z̄i

ρj‖ej‖p





=
∑

i∈N

[

− (ζi − |Si ∪ Ui|βi) ‖xi‖p + ρi|Ūi|‖ei‖p
]

,

where the equality is obtained by resorting the items according to index i.

Applying equation (4.9) into the preceding equation yields

V̇ ≤
∑

i∈N

[−(1 − δp
i) (ζi − |Si ∪ Ui|βi) ‖xi‖p,] (4.11)

which is, with equation (4.8), sufficient to show the NCS is asymptotically stable.

2

Remark 4.2.3 We use the violation of the inequality in equation (4.9) to trigger

agent i’s broadcasts. This event is only a function of the agent’s local state, xi,

and the local error, ei, between the agent’s current state and its last successfully

broadcast state. Note that these signals are locally available to agent i.

81

Remark 4.2.4 The functions ζi‖xi‖p
2, βj‖xj‖p

2, and ρj‖ej‖p
2 may be replaced by

more general class K functions that are Lipschitz continuous.

We will find it convenient to use a slightly weaker sufficient condition for

asymptotic stability. This condition is stated in the following corollary. The

corollary recasts the event trigger in equation (4.9) as a function of the local

error, ei, and the successfully broadcast local state, x̂i.

Corollary 4.2.3 Consider the NCS in equation (4.1). Suppose that assumption

4.2.1 holds. If for any i ∈ N , the inequality

ci‖ei(t)‖ ≤ δi‖x̂i(t)‖ (4.12)

holds for all t ≥ 0, where δi ∈ (0, 1), ci = 1 + σi, and σi is defined by equation

(4.10), then the NCS is asymptotically stable.

Proof: By the definition of ci, equation (4.12) is equivalent to

σi‖ei(t)‖ + ‖ei(t)‖ ≤ δi‖x̂i(t)‖. (4.13)

for all t ≥ 0. Therefore, we have

σi‖ei(t)‖ ≤ δi‖x̂i(t)‖ − δi‖ei(t)‖

≤ δi‖x̂i(t) + ei(t)‖ = δi‖xi(t)‖

for all t ≥ 0. Since the hypotheses of Theorem 4.2.2 are satisfied, we can conclude

that the NCS is aymptotically stable. 2

Remark 4.2.5 In the later discussion, we use the violation of the inequality in

(4.12) to trigger agents’ broadcasts. In equation (4.12), the threshold on the local

82

error is fixed between two successive transmissions. It brings convenience to predict

the deadlines for the delays, which will be discussed in section 4.3.

4.2.2 Local Event Design in Linear Systems

This section shows how to implement the distributed scheme proposed in sec-

tion 4.2.1 for linear systems. We still confine our attention to asymptotic stability.

For linear systems, events are designed by solving LMI feasibility problems. With

the linear structure, the state equation of agent i is

ẋi(t) = Aiixi(t) +Biui(t) +
∑

j∈Di

Aijxj(t)

ui(t) = Kiix̂i(t) +
∑

j∈Zi

Kij x̂j(t). (4.14)

The state equation of the overall NCS is

ẋ(t) = Ax(t) +Bu(t)

u(t) = Kx̂(t). (4.15)

In equation (4.15), x = (xT
1 , · · · , xT

N)T , u = (uT
1 , · · · , uT

N)T , and

A =













A11 · · · A1n

· · · · · · · · ·

An1 · · · Ann













, B =













B1 · · · 0

· · · · · · · · ·

0 · · · Bn













, K =













K11 · · · K1n

· · · · · · · · ·

Kn1 · · · Knn













(4.16)

where Aij = 0 ∈ Rn×n if j 6∈ Di and Kij = 0 ∈ Rm×n if j 6∈ Zi.

We first propose a centralized approach to design local events for agents that

are used to trigger the broadcast. Linear Matrix Inequalities (LMI) are used to

83

identify the parameters in those events.

Theorem 4.2.4 Consider the NCS in equation (4.15). If the matrices P,Q ∈

RnN×nN and Wi,Mi ∈ Rn×n, i = 1, 2, · · · , N satisfy:

P (A+BK) + (A+BK)TP ≤ −Q (4.17)

Q− PBKM−1BTKTP ≥W (4.18)

P,Q,Mi,Wi > 0 (4.19)

where M = diag{Mj}j∈N and W = diag{Wj}j∈N . If for any i ∈ N , the inequality

eT
i (t)Miei(t) ≤ δix

T
i (t)Wixi(t) (4.20)

holds for all t ≥ 0 with some δi ∈ (0, 1), then the NCS is asymptotically stable.

Proof: Consider V̇ with V (x) = xTPx at time t.

V̇ = xT (PA+ ATP)x+ 2xTPBKx̂

= xT (P (A+BK) + (A+BK)TP)x+ 2xTPBKe

Since equation (4.17) holds, the inequality above can be further reduced as:

V̇ ≤ −xTQx+ 2xTPBKe

≤ −xT (Q− PBKM−1KTBTP)x+ eTMe

Combining equation (4.18) and the preceding inequality, we have

V̇ ≤ −xTWx+ eTMe = −
∑

i∈N

xT
i Wixi +

∑

i∈N

eT
i Miei. (4.21)

84

Applying equation (4.20) into equation (4.21) yields

V̇ ≤ −
∑

i∈N

(1 − δi)x
T
i Wixi

for any t ≥ 0, which is sufficient to show that the NCS in equation (4.15) is

asymptotically stable. 2

It can be shown that the matrices {Wj}j∈N and {Mj}j∈N required in Theorem

4.2.4 always exist, provided equation (4.17) holds (for example, let Wi = εIni×ni

and Mi = ‖PBK‖2

σmin(Q)−ε
Ini×ni

, where ε ∈ (0, σmin(Q)).

Remark 4.2.6 Notice that equation (4.18) can be rewritten as the following







Q−W PBK

KTBTP M






≥ 0 (4.22)

Therefore, equation (4.17), (4.19), (4.22) form a linear matrix inequalities (LMI),

which characterizes the desired matrices.

Theorem 4.2.4 provides a way to design local events. Agent i can use the viola-

tion of the inequality in equation (4.20) to trigger its broadcasts. Directly solving

the LMIs in equation (4.17), (4.19), (4.22), however, may not be suitable for large-

scale systems. We now propose a way to solve this LMI feasibility problem in a

decentralized manner.

Let us look at agent i. Assume that

Z̄i = {i1, i2, · · · , iqi
} ⊆ N ,

Z̄i ∪ D̄i = {i1, · · · , iqi
, iqi+1, · · · , isi

} ⊆ N .

85

Therefore, qi = |Z̄i| and si = |Z̄i ∪ D̄i|. Without loss of the generality, we assume

i1 = i. For notational convenience, we define four matrices Ai ∈ Rn×nsi, Ki ∈

Rm×nsi, and K̃i ∈ Rm×nqi by

Ai = (Ai,i1 , Ai,i2, · · · , Ai,isi
) ∈ R

n×nsi,

Ki = (Ki,i1, Ki,i1 , · · · , Ki,isi
) ∈ R

m×nsi,

K̃i = (Ki,i1, Ki,i1 , · · · , Ki,iqi
) ∈ R

m×nqi (4.23)

and two functions Fi : Rn×n → Rnsi×nsi and Gi : Rn×n × R → Rnsi×nsi by

Fi(Pi) =







Pi(Ai +BiKi)

0






∈ R

nsi×nsi (4.24)

Gi(Qi; β) =



















Qi 0 · · · 0

0 −βI · · · 0

0 0 · · · 0

0 0 · · · −βI



















∈ R
nsi×nsi. (4.25)

With these matrices and functions, we can define the local LMI problem asso-

ciated with agent i:

Problem 4.2.1 (Local LMI) For given constants ρ, β > 0, find Pi, Qi,Wi ∈

86

Rn×n such that

Fi(Pi) + F T
i (Pi) +Gi(Qi; β) ≤ 0 (4.26)







Qi − |Si ∪ Ui|βIn×n −Wi PiBiK̃i

K̃T
i B

T
i Pi ρInqi×nqi






≥ 0 (4.27)

Pi,Wi > 0. (4.28)

The following theorem shows that if the LMI problem 4.2.1 is feasible, then

the events can be constructed in a distributed manner.

Theorem 4.2.5 Consider the NCS in equation (4.14). Given ρ, β, assume that

for any i ∈ N , the local LMI in problem 4.2.1 is feasible and Pi, Qi, Wi ∈ Rn×n

are the solutions. If for any i ∈ N , the inequality

ρ|Ūi|‖ei(t)‖2
2 ≤ δix

T
i (t)Wixi(t) (4.29)

holds for all t ≥ 0 with some δi ∈ (0, 1), then the NCS is asymptotically stable.

Proof: Notice that the inequality still holds when we expand the matrices in

equation (4.26) into nN ×nN dimension by appropriately adding zero. Summing

both sides of the expanded matrix inequalities yields the satisfaction of equation

(4.17) with

P = diag{Pi}N
i=1

Q = diag{Qi − |Si ∪ Ui|βIn×n}N
i=1,

where Qi − |Si ∪ Ui|βIn×n > 0 holds due to equation (4.27).

87

Similarly, we can show the satisfaction of equation (4.18) with

W = diag{Wi}N
i=1

M = diag{ρ|Ūi|In×n}N
i=1.

Since the hypotheses in Theorem 4.2.4 are satisfied, we conclude that the NCS is

asymptotically stable. 2

Remark 4.2.7 Since ρ and β are pre-selected, the local problem associated with

agent i only requires the information on agent i’s system dynamics. To design the

local events, agents do not have to know other agents’ system information and,

therefore, the design scheme is distributed.

Remark 4.2.8 The dimensions of the matrices on the lefthand side of the LMIs

in (4.26) and (4.27) are (nsi + l)× (nsi + l) and (nqi +n)× (nqi +n), respectively.

These dimensions are much smaller than the dimensions of the matrices in the

equations (4.17) and (4.22).

In problem 4.2.1, two parameters, ρ and β, are pre-selected and all agents share

the same ρ and β. The following corollaries 4.2.6 and 4.2.7 discuss the selection of

these parameters so that the local LMIs are feasible. A more general setup is to

pre-select a group of parameters {ρi}N
i=1 and {βi}N

i=1. The preceding results can

be easily modified to handle this more general setup.

Corollary 4.2.6 Consider the NCS in equation (4.1). For any i ∈ N , if there

exist positive-definite matrices Pi ∈ Rn×n such that

Fi(Pi) + F T
i (Pi) +Gi(|Si ∪ Ui|βIn×n; β) < 0 (4.30)

88

then there always exists a positive constant ρ∗ ∈ R+, such that for any ρ ≥ ρ∗, the

LMI in problem 4.2.1 is feasible.

Proof: Equation (4.30) implies that there exists a positive definite matrix Qi ∈

Rn×n such that

Fi(Pi) + F T
i (Pi) +Gi(Qi; β) ≤ 0 (4.31)

Qi − |Si ∪ Ui|βIn×n > 0 (4.32)

Equation (4.32) implies that there exists a positive definite matrix Wi ∈ Rn×n

such that

Qi − |Si ∪ Ui|βIn×n −Wi > 0

which suggests that there always exists a positive constant ρ∗ ∈ R+ such that for

all ρ ≥ ρ∗, equation (4.27) holds. 2

Corollary 4.2.6 suggests that ρmust be large enough to guarantee the feasibility

of the local LMI, provided equation (4.30) holds. We still need to know how to

select β. In the following corollary, we show that the satisfaction of equation

(4.30) is independent of the selection of β.

Corollary 4.2.7 If there exist a positive-definite matrix Pi ∈ Rn×n and a positive

constant β ∈ R such that equation (4.30) holds, then for any β̂ > 0, the pair β̂

β
Pi

and β̂ also satisfies equation (4.30).

Proof: This can be easily proven by the definitions of Fi and Gi. 2

Remark 4.2.9 Corollary 4.2.7 suggests that the selection of β will not affect

89

the existence of Pi satisfying equation (4.30). Therefore, if only considering the

existence of Pi, we just need to arbitrarily pick a positive constant β.

4.3 Event-Triggering with Data Dropouts and Transmission Delays

The previous section provides real-time constraints that guarantee asymptotic

stability. If there are no dropouts and delays during data transmissions, agents

can directly use the violation of the inequality in equation (4.12) to trigger the

broadcast. When dropouts and delays are involved, agent i uses the violation of

‖xi(t) − xi(r
i
j)‖2 ≤

δi
ci
‖xi(r

i
j)‖2 (4.33)

to trigger broadcast, where ri
j denotes the time instant when agent i samples and

releases the jth broadcast. Notice that the difference between equation (4.33) and

(4.12) is that xi(r
i
j) in (4.33) might be lost during the transmission; while xi(b

i
k)

in (4.12) is always successfully transmitted. Under this triggering mechanism, we

provide maximal allowable number of successive dropouts (MANSD) and bounds

on delays (also called “deadline”) for each agent to ensure asymptotic stability

of the overall system. These parameters can be identified by agents using local

information. For notational convenience, let εj
i (t) = xi(t) − xi(r

i
j) and di

MANSD

denote agent i’s MANSD.

To analyze data dropouts and transmission delays in networks, we first need to

introduce the transmission procedure. Let us take agent i as an example. Agent i

uses the violation of inequality in (4.33) to trigger the next broadcast. When the

local event occurs, agent i samples and then sends a DATA message to neighboring

agents in Ui. The DATA packet contains a time tag and the sampled state xi(r
i
j+1).

90

At the same time, the triggering event is updated to be the violation of

‖εj+1
i (t)‖2 ≤

δi
ci
‖xi(r

i
j+1)‖2.

Those agents who receive the packet from agent i need to send acknowledgement

messages (ACK) back to agent i. Notice that at this point, agents in Ūi are not

allowed to use this DATA packet to update their control inputs. Otherwise, the

broadcast state x̂i(t) may be inconsistent in subsystems whereas in our analysis

we require x̂i(t) to be consistent in all subsystems.

If agent i receives confirmations from ALL of its neighbors in Ui within τ i
k

seconds, i.e. during the interval [ri
j+1, r

i
j+1 + τ i

k), it sends out a permission mes-

sage (PERM) to its neighboring agents. The PERM message gives th neighboring

agents permission to use the previously transmitted data. Otherwise, the DATA

packet is treated as a lost packet. Notice that sending PERM indicates a suc-

cessful broadcast. ri
j+1 is, therefore, the time instant of a successful broadcast.

We use the symbol bik to denote the release time of the kth successful broadcast

({bik}∞j=1 is a subsequence of {ri
j}∞j=1). After the agents in Ūi receive the permission

from agent i, they are allowed to use this packet to update their control inputs.

We assume that transmission of the permission takes τ̂ i
k seconds. Following this

transmission procedure, it is easy to see that a packet sent by an agent is either

lost or transmitted to all of its neighbors. The broadcast state x̂i(t), therefore,

remains consistent in all subsystems.

We currently know how to design local events. But to ensure asymptotic

stability of the system, we still need to determine di
MANSD and derive upper bounds

on τ i
k+ τ̂ i

k in a way that ci‖ei(t)‖2 ≤ δ̄i‖xi(t)‖2 is always valid with some δ̄i ∈ (δi, 1)

for all t ≥ t0 and all i ∈ N . Notice that x̂i(t) = xi(b
i
k) for all t ∈ [f i

k, f
i
k+1) and

91

therefore ei(t) = xi(t) − xi(b
i
k) for all t ∈ [f i

k, f
i
k+1). Recall that f i

k is the time

instant when the kth successful broadcast is completed. This suggests that we only

need to ensure ci‖xi(t) − xi(b
i
k)‖2 ≤ δ̄i‖xi(b

i
k)‖2 over the time interval [f i

k, f
i
k+1).

We may actually split [f i
k, f

i
k+1) into two subintervals: [f i

k, b
i
k+1) and [bik+1, f

i
k+1).

To determine di
MANSD, we focus on the time interval [f i

k, b
i
k+1) since data dropouts

happen during this time interval. di
MANSD is selected in a way that even if packets

are lost, the real-time constraint, ci‖ei(t)‖2 ≤ δ̄i‖x̂i(t)‖2, is still valid over that

interval. To determine bounds on τ i
k and τ̂ i

k, we focus on the interval [bik+1, f
i
k+1)

because τ i
k and τ̂ i

k are basically transmission delays. The parameters τ i
k and τ̂ i

k are

associated with two different types of delays (delay in transmitting DATA pack-

ets and delay in sending PERM message). To obtain the constraints on τ i
k and

τ̂ i
k, we just need to find an upper bound on f i

k − bik, denoted as ηi
k, that ensures

asymptotic stability.

Before we present the main results, we need two lemmas. The first lemma

(Lemma 4.3.1) describes the behavior of ei(t) over [f i
k, b

i
k+1) when data dropouts

happen. The second lemma (Lemma 4.3.2) considers the effect of delays on the

convergence of the overall system.

Lemma 4.3.1 Consider the NCS in equation (4.1). Suppose that assumption

4.2.1 holds. Given two collections of positive constants δi ∈ (0, 1) and ̺i ∈ [δi, 1)

for i = 1, 2, · · · , N , if for any i ∈ N , the next broadcast release time, ri
j+1, is

triggered by the violation of

ci‖εj
i (t)‖2 ≤ δi‖xi(r

i
j)‖2, (4.34)

where ci = 1+σi, and σi is defined by equation (4.10), and the number of successive

92

dropouts, di
k ∈ Z, satisfies

di
k ≤ di

MANSD ,

⌊

log(
1+

δi
ci

)

(

1 +
̺i

ci

)

− 1

⌋

, (4.35)

then the inequality

‖xi(t) − xi(b
i
k)‖2 ≤

ξi(d
i
k)

ci
‖xi(b

i
k)‖2 ≤

̺i

ci
‖xi(b

i
k)‖2 (4.36)

holds for all t ∈ [bik, b
i
k+1) and all k ∈ N, where ξi : Z → (0, ̺i) is defined by

ξi(d
i
k) , ci

(

1 +
δi
ci

)di
k+1

− ci ∈ (0, ̺i). (4.37)

Proof: The proof is in Appendix A.13. 2

Remark 4.3.1 If all the hypotheses in Lemma 4.3.1 hold and bik = f i
k holds for

all i ∈ N and all k ∈ N, then the NCS is finite-gain Lp stable from w to x. This

is because when bik = f i
k holds, x(bik) = x̂i(t) and ‖ei(t)‖2 = ‖xi(t) − xi(b

i
k)‖2 for

t ∈ [f i
k, f

i
k+1). Equation (4.36), therefore, implies ‖ei(t)‖2 ≤ ̺i

ci
‖x̂i(t)‖2 for all

t ≥ 0 with ̺i ∈ (0, 1). This is sufficient to show that the NCS is finite-gain Lp

stable from w to x according to Corollary 4.2.3.

Lemma 4.3.2 Consider the NCS in equation (4.1) with wi = 0 for all i ∈ N .

Suppose that assumption 4.2.1 holds and αi
1, α

i
2 in equation (4.6) satisfy

αi
1(‖xi‖2) ≥ Li‖xi‖q

2 (4.38)

αi
2(‖xi‖2) ≤ L̄i‖xi‖q

2,

respectively, with some positive constants Li, L̄i > 0, q ≥ 1. Also assume that

93

there exist a collection of positive constants θi ∈ R+ for i = 1, 2, · · · , N such that

‖gi

(

xD̄i
(t), κi

(

x̂Z̄i
(t)
))

‖2 ≤ θi, (4.39)

holds for all t ≥ t0 and all i ∈ N . Given a constant ∆ ∈ R
+
0 and two collections

of positive constants δi ∈ (0, 1), ̺i ∈ [δi, 1) for i = 1, 2, · · · , N , if for any i ∈ N ,

the broadcast release time ri
j+1 is triggered by the violation of the inequality in

equation (4.34), the number of successive dropouts, di
k, satisfies equation (4.35),

and the delay in the k + 1st successful transmission satisfies

f i
k+1 − bik+1 ≤

1 − ξi(d
i
k)

ciθi

max

{‖xi(b
i
k)‖2

2
,∆

}

(4.40)

where ξi is defined in equation (4.37), then there exists T ≥ t0 such that

∑

i∈N

‖xi(t)‖q
2 ≤ max

i,j∈N

{

L̄i

Lj

}

µπq∆q

holds for all t ≥ T , where

µ =











1 p ≤ q

N1− q
p p > q

(4.41)

π =

(
∑

i∈N (ζi − |Si ∪ Ui|βi) (1 − δi)

mini∈N{(ζi − |Si ∪ Ui|βi) (1 − ς̄i)}

)
1

p

(4.42)

ς̄i = max

{(

1 + ̺i

2

)p

, ̺i

}

. (4.43)

Proof: The proof is in Appendix A.14. 2

Lemma 4.3.2 suggests that, with the assumption that the system dynamics is

bounded, the overall system is globally uniformly ultimately bounded for any ∆.

94

It is, however, still not clear how to select ∆ so that this assumption of bounded

system dynamics holds. The following lemma solves this issue and therefore helps

us relax the assumption of equation (4.39) in Lemma 4.3.2. It shows that if ∆

is small enough, the system dynamics will be in a pre-selected compact set. We

now define this compact set. Suppose assumption 4.2.1 holds and gi, κi are locally

Lipschitz for all i ∈ N . Then we can define a compact set, Λ ⊂ RnN , as

Λ ,
{

x ∈ R
nN | V (x) ≤ V (x0)

}

(4.44)

and find positive constants, θi, Li, Li, L̄i ∈ R for i = 1, 2, · · · , N such that

‖gi(xD̄i
, κi(x̂Z̄i

))‖2 ≤ Li

∑

i∈N

(‖xi‖2 + ‖x̂i‖2), ∀x, x̂ ∈ Λ (4.45)

αi
1(‖xi‖2) ≥ Li‖xi‖q

2, ∀x ∈ Λ

αi
2(‖xi‖2) ≤ L̄i‖xi‖q

2, ∀x ∈ Λ (4.46)

θi = 2LiN
q−1

q

(

V (x0)

mini∈N Li

)
1

q

(4.47)

with some q ≥ 1. For the notational convenience, we use V (t) to denote V (x(t))

for all t ≥ t0.

Lemma 4.3.3 Consider the NCS in equation (4.1) with wi = 0 for all i ∈ N .

Suppose that assumption 4.2.1 and equation (4.45), (4.46) hold with some q ≥ 1.

Given positive constants δi ∈ (0, 1), ̺i ∈ [δi, 1), θ̄i ∈ [θi,∞) for all i ∈ N and

π̄ ∈ (π,∞), where θi, π are defined in equation (4.47) and (4.42), respectively,

if for any i ∈ N , the broadcast release time ri
j+1 is triggered by the violation of

the inequality in equation (4.34), the number of successive data dropouts, di
k ∈

Z, satisfies equation (4.35), and the delay in the k + 1st successful transmission

95

satisfies

f i
k+1 − bik+1 ≤ ηi

k , max







(1 − ξi(d
i
k))

2ciθ̄i

‖xi(b
i
k)‖2,

(1 − ξi(d
i
k)) mini L

1

q

i

2ciLiπ̄N
1− 1

max{p,q} maxi L̄
1
q

i







(4.48)

where Li, L̄i, Li, ξi are defined in equation (4.45), (4.46), (4.37), respectively, then

x(t) ∈ Λ for all t ≥ t0, where Λ is defined in equation (4.44), .

Proof: The proof is in Appendix A.15. 2

With these three lemmas, we now can present the main theorem.

Theorem 4.3.4 If the hypotheses in Lemma 4.3.3 hold, the NCS is asymptotically

stable.

Proof: The proof is in Appendix A.16. 2

Remark 4.3.2 ηi
k in equation (4.48) serves as the deadline for the kth successful

broadcast of agent i. With the fact that ξi(d
i
k) ≤ ̺i holds, we have ηi

k always

greater than a positive constant, τ i
SPD. In other words,

ηi
k ≥ τ i

SPD =
(1 − ̺i) mini L

1
q

i

2ciLiπ̄N
1− 1

max{p,q} maxi L̄
1
q

i

> 0 (4.49)

holds for all k ∈ N. τ i
SPD is the smallest predicted deadline (SPD) of agent i. To

show the SPD is greater than zero is important in establishing that our scheme

does not require the network to transmit data infinitely fast.

Remark 4.3.3 The number of successive dropouts, di
k determines the deadline

ηi
k. As di

k increases, the value of ξi(d
i
k) increases. It, therefore, results in a short

deadline according to equation (4.48). There is a trade-off between the number of

successive dropouts and the deadline.

96

Remark 4.3.4 Two parameters δi, ̺i are used in the scheme. The parameter δi

determines di
MANSD, τ i

SPD, and the transmission periods, T i
j . The large δi is, the

longer T i
j is and the smaller di

MANSD is, according to equation (4.34) and (4.35).

Large δi may also result in a small π according to equation (4.42) and therefore

leads to a larger τ i
SPD. The parameter ̺i determines di

MANSD and τ i
SPD. The large ̺i

is, the larger di
MANSD is and the smaller τ i

SPD is. As a “rule of thumb”, a reasonable

strategy is to choose δi and ̺i so that the periods and the SPDs are as large as

possible; as this makes the task easier to schedule under an earliest-deadline first

(EDF) scheduling discipline.

Remark 4.3.5 To design a system with special requirements on di
MANSD and τ i

SPD,

we solve equation (4.35) and (4.48) for δi and ̺i. There is no constraint on the

selection of di
MANSD. It can be arbitrarily large. τ i

SPD, however, must be less than

some positive constant so that equation (4.35) and (4.48) have solutions.

We also provide a lower bound on the transmission periods in the following

corollary.

Corollary 4.3.5 If the hypotheses in Lemma 4.3.3 hold, then

T i
j = ri

j+1 − ri
j ≥

δi
ciθi

‖xi(r
i
j)‖2

holds for all j ∈ N and all i ∈ N .

Proof: By Lemma 4.3.3, we have

‖gi

(

xD̄i
(t), κi

(

x̂Z̄i
(t)
))

‖2 ≤ θi

97

for all i ∈ N and all t ≥ t0. Consider the derivative of
∥

∥εj
i (t)
∥

∥

2
over the time

interval [ri
j , r

i
j+1).

d

dt

∥

∥εj
i (t)
∥

∥

2
≤
∥

∥ε̇j
i (t)
∥

∥

2
= ‖ẋi(t)‖2 = ‖gi

(

xD̄i
, κi

(

x̂Z̄i

))

‖2 ≤ θi

holds for ∀t ∈ [ri
j, r

i
j+1). Solving this inequality with the initial condition

∥

∥εj
i (r

i
j)
∥

∥

2
=

0 implies

∥

∥εj
i (t)
∥

∥

2
≤ θi(t− ri

j) (4.50)

holds for all t ∈ [ri
j, r

i
j+1). Since

∥

∥εj
i (r

i
j+1)

∥

∥

2
= δi

ci
‖xi(r

i
j)‖2, equation (4.50) implies

∥

∥εj
i (r

i
j+1)

∥

∥

2
=
δi
ci
‖xi(r

i
j)‖2 ≤ θi(r

i
j+1 − ri

j),

which means ri
j+1 − ri

j ≥ δi

ciθi
‖xi(r

i
j)‖2. 2

Remark 4.3.6 It is easy to see that in Corollary 4.3.5, the lower bound on the

transmission period goes to zero as the state goes to the equilibrium. It, however,

does not mean the actual periods go to zero. In fact, in section 4.4, the simulation

results show that the periods are always greater than a positive constant. It suggests

that the bound in Corollary 4.3.5 may be conservative.

Remark 4.3.7 With the bound on periods given in Corollary 4.3.5, the MANSD

given in equation (4.35), and the deadline given in equation (4.48), we can not

only do hard real-time scheduling of the transmission tasks, but also study firm

real-time scheduling schemes, in which the case that a task misses its deadline is

allowed.

Based on the preceding results, we are able to present the distributed event

98

design scheme and the distributed event-triggering scheme.

Distributed Event Design Scheme (DEDS)

1. Select positive constants p, q and βi, ρi, γi ∈ R+ for i = 1, · · · , N ;

2. For agent i,

(1) Find Vi : Rn → R, αi
1, α

i
2 : R → R, ζi ∈ R+, and κi : Rn|Z̄i| → Rm

satisfying equation (4.6), (4.7), (4.8);

(2) Compute σi according to equation (4.10) and ci = 1 + σi;

(3) Select δi ∈ (0, 1), ̺i ∈ (δi, 1), and identify di
MANSD by (4.35);

(4) Compute Li, Li, L̄i satisfying equation (4.45), (4.46), respectively;

(5) Select θ̄i large enough so that θ̄i ≥ θi, where θi is defined in (4.47);

(6) Compute ς̄i according to equation (4.43);

(7) Identify π̄ ∈ (π,∞), where π is defined in equation (4.42);

(8) Identify maxi∈N L̄i and mini∈N Li.

The DEDS is an offline design process. It computes the parameters used in

the following online distributed event-triggering scheme.

99

Distributed Event-Triggering Scheme (DETS) for Agent i

When the violation of the inequality in equation (4.34) occurs at time ri
j,

1 sample and broadcast xi(r
i
j),

2 update the triggering event using the newly sampled state xi(r
i
j),

3 compute the deadline ηi
k according to equation (4.48),

4 determine τ i
k, τ̂

i
k such that τ i

k + τ̂ i
k ≤ ηi

k,

5 If receiving confirmations from all agents in Ui within τ i
k seconds, sends

out permission of using xi(r
i
j) within τ̂ i

k seconds,

6 If the permission is sent out, update ui with xi(r
i
j).

Remark 4.3.8 It is obvious that the event-triggering scheme is completely de-

centralized. In the event design scheme, however, global coordination is required

identify the value of Li, L̄i, Li, θi, π̄, maxi∈N L̄i, and mini∈N Li.

4.4 Simulations

This section presents simulation results demonstrating the distributed event-

triggering scheme. The system under study is a collection of carts coupled by

springs (Figure 4.3). Both soft spring models (nonlinear) and normal spring

models (linear) are considered. The state of the ith subsystem is the vector

xi =

[

yi ẏi

]T

where yi is the ith cart’s position. We assume that at equilib-

rium, all springs are unstretched. We also assume that cart i can only receive the

broadcast state information from cart i+ 1.

This section consists of four subsections. Subsection 4.4.1 shows how to im-

plement our scheme in nonlinear systems. Subsection 4.4.2 investigates the ro-

100

u1 u2
u3

Figure 4.3. Three carts coupled by springs

bustness of the event-triggering scheme to transmission delays, data dropouts,

and exogenous disturbances. Subsection 4.4.3 explores how the parameters in the

scheme affects transmission periods, the MANSD, and the SPD. Finally, subsec-

tion 4.4.4 examines the communication cost and the complexity of our scheme by

comparing it against the approach in [37] that derives the bound on the MATI.

These simulations results show that our scheme is robust to transmission delays,

data dropouts, and exogenous disturbances. The average broadcast period and

the time spent in event design in our scheme scales well with respect to the number

of agents.

4.4.1 Implementation in Nonlinear Systems

This subsection considers how to implement our scheme in nonlinear systems.

In this simulation, the carts are coupled together by soften springs [18]. The state

equation for the ith cart is

ẋi =







ẏi

ui + ν1
i tanh(yi+1 − yi) + ν2

i tanh(yi−1 − yi)






(4.51)

In the preceding equation, ν2
1 = ν1

N = 0. Otherwise, ν1
i = ν2

i = 1.

101

The control input of subsystem i is

ui = Kix̂i − ν1
i tanh(ŷi+1 − ŷi),

where Ki =

[

−5 −5

]

for i = 1, · · · , N .

We set ρi = 10, βi = 1, δi = 0.1, ̺i = 0.65, and γi = 40 for all i ∈ N . The

triggering events are

−0.1‖x1(r
i
j)‖2 + 3.6847‖εj

1(t)‖2 = 0

−0.1‖xi(r
i
j)‖2 + 5.7202‖εj

i(t)‖2 = 0, for i = 2, · · · , N − 1

−0.1‖xN (rN
j)‖2 + 3.8700‖εj

N(t)‖2 = 0

according to equation (4.34) and the MANSDs for agents are all 5 according to

equation (4.35).

We set N = 3 and ran the event-triggered NCS for 6 seconds. We assumed

that for each agent, the number of data dropouts between successive transmis-

sions is equal to its MANSD. We also assumed that transmission delays are equal

to the predicted deadlines defined in equation (4.48). The initial state x0 was

randomly generated satisfying ‖x0‖∞ ≤ 1. From the top plot of Figure 4.4, we

can see that the system is asymptotically stable. The broadcast periods of agent

1 (cross), agent 2 (diamond), and agent 3 (dot) are shown in the middle plot of

Figure 4.4 that vary in a wide range before the system approaches its equilibrium.

It demonstrates the ability of event-triggering in adjusting broadcast periods in

response to variations in the system’s states. Also notice that the periods are

always greater than a positive constant, even when the states are close to the

equilibrium. This is important because it shows that our scheme can avoiding

102

0 1 2 3 4 5 6 7 8
−1

0

1

S
ta

te

0 1 2 3 4 5 6 7 8
0

0.02

P
er

io
d

0 1 2 3 4 5 6 7 8
1
2

4

6
x 10

−4

D
ea

dl
in

e

Time

Agent 1 Agent 3 Agent 3

Agent 1 Agent 2 Agent 3

Figure 4.4. State trajectory, broadcast periods, and predicted deadlines
in an event-triggered NCS

103

infinitely fast broadcasting. On the other hand, it means the lower bound on

periods obtained in Corollary 4.3.5 might be conservative. The bottom plot in

Figure 4.4 shows the history of predicted deadlines, which are reduced to fixed

constants as the states approach to the equilibrium . This is because as the states

get small,
(1−ξi

k)mini L
1
q
i

2ciLiπ̄N
1− 1

max{p,q} maxi L̄
1
q
i

dominates the deadlines. The SPDs of agent 1,

2, 3 are 400 µs, 200 µs, and 300 µs, respectively.

4.4.2 Robustness

Robustness of our scheme is studied with respect to delays, dropouts, and ex-

ogenous disturbances in this subsection. We first considered increasing the trans-

mission delays in the simulation. We kept all settings the same as the simulation

in subsection 4.4.1 except that the transmission delays can exceed the predicted

deadlines. The system becomes unstable when the delay in each transmission is

larger than 0.002 s. The time, 0.002 s, is, therefore, the maximal delay that the

system can actually tolerate. Notice that our predicted SPDs (400 µs, 200 µs, and

300 µs in agent 1,2,3, respectively) are around 15% of the actual allowable delay.

The next simulation used the model in section 4.4.1 except that data dropouts

are modeled as a stochastic way, instead of setting it equal to the MANSD. The

probability of a data dropout is set to be a constant p ∈ [0, 1]. Simulation results

show that the system can be stable even when p is as large as 0.9. The maximal

number of successive dropouts that occurred in the simulation is 41. These results

show that the event-triggered system is very robust to data dropouts.

We finally considered the effect of exogenous disturbances on the event-triggered

system. We assumed that there are neither transmission delays nor data dropouts

in the system. We ran the system for 40 seconds with N = 10. δi = ̺i = 0.9 for

104

0 5 10 15 20 25 30 35 40
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Time

P
er

io
d

agent 1
agent 7
agent 10

Figure 4.5. Successful broadcast periods versus time in an
event-triggered NCS with disturbances in agent 1

105

all i ∈ N . An external disturbance was added into agent 1, where |w1(t)| ≤ 5

for t ∈ [2, 10] and wi(t) = 0 otherwise. The broadcast periods of agent 1, 7, 10

are plotted in Figure 4.5. We see from the figure that agent 1’s broadcast peri-

ods became short when the disturbance came in during t ∈ [2, 10]. It is because

event-triggering can adjust the agent’s broadcast periods in response to variations

in the system’s external inputs. Although no disturbance directly came into agent

7, 10, their periods were also shortened. Also notice that the decrease of agents’

periods happens over different time intervals. This is because the effect of the dis-

turbance in agent 1 was passed to each agent, from 1 to 10. The spatial distance

causes a time delay in passing the effect of the disturbance. Another thing worth

mentioning is that, although the periods in agent 7 and 10 decrease for a while,

the intensity of such decease is much less than that in agent 1. This is because the

effect of the disturbance decreases when it is passed from agent 1 to other agents.

4.4.3 Selection of Parameters

The simulations in this subsection examined the effect of parameters δi and

̺i on the broadcast periods, the MANSDs, and the SPDs. In particular, we

studied agent 1. We assume that the delays in each agent are equal to its SPD

and the number of each agent’s successive dropouts is equal to its MANSD. The

parameters δ2 = δ3 = 0.1 and ̺2 = ̺3 = 0.9.

We first fixed δ1 = 0.1 and varied ̺1 from 0.1 to 0.9. The simulation results

are shown in Figure 4.6. The top plot in Figure 4.6 is the average broadcast

periods versus ̺1. It shows that the average period almost remains the same as ̺1

changes. It suggests that ̺i does not affect the broadcast periods. The middle plot

in Figure 4.6 is the SPD versus ̺1. We can see that when ̺1 increases, the SPD

106

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.019

0.02

0.021

A
ve

ra
ge

 P
er

io
d

Agent 1, δ
1
=0.1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

5
x 10

−4

S
P

D

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

5

10

ρ
1

M
A

N
S

D

Figure 4.6. The average period, the SPD, and the MANSD in agent 1
versus ̺1

107

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.1

0.2

A
ve

ra
ge

 P
er

io
d

Agent 1, ρ
1
=0.9

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
5

6

7
x 10

−5

S
P

D

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

5

10

M
A

N
S

D

δ
1

Figure 4.7. The average period, the SPD, and the MANSD in agent 1
versus δ1

decreases. Therefore, to have a longer SPD, we need a small ̺i. The bottom plot

in Figure 4.6 is the MANSD versus ̺1. As ̺1 increases, the MANSD increases,

which means ̺i has to be large to ensure large MANSD.

We then fixed ̺ = 0.9 and varied δ1 from 0.1 to 0.9. The simulation results are

shown in Figure 4.7. The top plot in Figure 4.6 is the average broadcast periods

versus δ1. As δ1 increases, the average period increases. It implies that to obtain

long periods, δ1 needs to be large. The middle plot in Figure 4.6 is the SPD

versus δ1. We can see that when δ1 increases, the SPD increases. The bottom plot

in Figure 4.6 is the MANSD versus δ1. As ̺1 increases, the MANSD decreases.

These simulations verify the comments in Remark 4.3.4. It suggests a tradeoff

108

between the broadcast periods, the MANSD, and the SPD.

4.4.4 Scalability

This subsection studied the scalability of the distributed event-triggered sys-

tem. We compared the average broadcast period and the design complexity of our

scheme against the approach in [37] that derives the bound on the MATI. The

simulations were done using normal spring models (linear). The state equation of

the ith cart is

ẋi =







ẏi

ui + κ1
i (yi+1 − yi) + κ2

i (yi−1 − yi)







ui = Kix̂i − κ1
i (ŷi+1 − ŷi), (4.52)

where Ki =

[

−5 −5

]

for i = 1, · · · , N and κ2
1 = κ1

N = 0, κ1
i = κ2

i = 1

otherwise.

We set ρ = 10 and β = 1 and solved local LMI problems 4.2.1 using MATLAB

toolbox. With δi = 0.9 for ∀i ∈ N , the events are

−0.9‖x1(r
i
j)‖2 + 2.5908‖εj

1(t)‖2 = 0

−0.9‖xi(r
i
j)‖2 + 4.1626‖εj

i(t)‖2 = 0, for i = 2, · · · , N − 1

−0.9‖xN (rN
j)‖2 + 3.7833‖εj

N(t)‖2 = 0

We first compared the average broadcast period generated by our scheme with

the MATI in [37]. Recall that for a NCS containing N subsystems, the MATI in

109

[37], denoted as TN
MATI, is,

TN
MATI =

1

L
ln

L+ γ

δL+ γ
, (4.53)

where, with TOD protocol, δ =
√

N−1
N

, L = max(0.5λmax(−BK − KTBT), 0),

γ is the L2 gain for the system (ẋ = (A + BK)x + BKe + Cw) from (e, w) to

−(A +BK)x, and A,B,C,K are in equation (4.15).

The average broadcast period generated by our scheme in a NCS containing

N agents, denoted as T̄N , is defined as

T̄N =
System Runtime

Total Number of Broadcasts
. (4.54)

0 20 40 60 80 100
0

1000

2000

3000

4000

5000

6000

7000

Number of Agents, N

A
ve

ra
ge

 F
re

qu
en

cy

1/T
N

1/T
MATI
N

Figure 4.8. The comparison between the bound on the MATI in [37] and
the average period generated by our scheme

110

The simulation was done under the assumption that there are no data dropouts,

transmission delays or disturbances in NCS. We varied N from 3 to 100. The

system ran for 10 seconds. We compared T̄N and TN
MATI as N varied. In the sim-

ulation, the MATI, TN
MATI, is almost 6 times smaller than the average broadcast

period generated by our scheme, T̄N , for all N ∈ [3, 100]. This means our scheme

uses less communication resource, compared with the MATI. Figure 4.8 plots the

number of agents versus the average broadcast frequency generated by our scheme

and the approach in [37]. The average broadcast frequency, 1
T N

, is almost propor-

tional to the number of agents increases. Moreover, the increase of 1
T N

is much

slower than that of 1
T N
MATI

as N increases. This suggests that the average broadcast

period in our scheme scales well with respect to the number of agents.

We also compared the time spent in event design in our scheme with the time

spent in computing the MATI in [37]. The simulation was run with 3.0GHZ P4

CPU. It took around 0.04 seconds in MATLAB to compute the parameter, ci,

in one local event. So the total time used to design N events is 0.04 × N . The

MATI was computed according to equation (4.53), where γ was obtained using

MATLAB robust control toolbox. It took 21 seconds to compute the MATI when

N = 150, 225 seconds when N = 200, and 463 seconds when N = 250. By our

scheme, it only took 6 seconds to design all events when N = 150, 8 seconds when

N = 200, 10 seconds when N = 250. Our scheme took much less time in event

design than the computation of the MATI when the number of agents is large.

It is obvious that the time spent in event design in our scheme scales well with

respect to the number of agents.

111

4.5 Summary

This chapter examines event-triggered broadcasting of state information in

distributed networked control systems with data dropouts and transmission delay.

We propose an event-triggering scheme, where a subsystem broadcasts its state

information to its neighbors only when the subsystem’s local state error exceeds

a specified threshold. This scheme is decentralized in a sense that a subsystem’s

broadcast decisions are made using its local sampled data; a subsystem is able to

locally predict its MANSD and deadlines for transmission delay; and the designer’s

selection of the local event for a subsystem only requires information about that

individual agent.

Our analysis applies to both linear and nonlinear subsystems. For nonlinear

subsystems, the local event design is transformed into local ISS design problems;

for linear subsystems, the design is simplified to be local linear matrix inequal-

ity (LMI) feasibility problems. With the assumption that the transmission delay

is zero and the number of each agent’s successive data dropouts is less than its

MANSD, we show that the resulting NCS is finite-gain Lp stable using our dis-

tributed scheme. When the transmission delay is not zero, we provide state-based

deadlines that are always greater than a positive constant. As long as the delay in

each transmission is less than the associated deadline, we show that the resulting

NCS is asymptotically stable, provided the external disturbance vanishes. Sim-

ulation results show that our scheme has a good scalability with respect to the

system maintenance and the average broadcast period.

These results are significant because they show how one might stabilize dis-

tributed control systems over ad hoc networks without necessarily requiring a high

degree of synchronization within the communication network. They can serve as

112

the basis for the design of firm real-time systems that guarantee network control

system performance at levels traditionally seen in hard real-time systems. How to

use these results to schedule the broadcasts over the network will be an interesting

research direction in the future.

113

CHAPTER 5

Future Work

This chapter discusses some research problems in event-triggered networked

control systems (NCS) that have not been completely addressed in our work. The

first problem is the robustness of event-triggered NCSs. It is discussed in Section

5.1. Section 5.2 studies the effect of quantization on event-triggered NCSs.

5.1 Distributed Event Design for Finite-Gain Lp Stability

This section discusses the robustness of event-triggered NCSs. This problem

has been partially addressed in [51, 57]. This work presents a distributed event

design scheme that guarantees finite-gain Lp stability of the resulting NCS. The

analysis is based on the assumption that the transmission delays are zero.

Consider a distributed NCS containing N agents. The state equation of agent

i is

ẋi(t) = gi(xD̄i
(t), ui(t), wi(t))

ui(t) = κi(x̂Z̄i
(t))

xi(t0) = xi0. (5.1)

The objective is to develop distributed event-triggering schemes to identify

114

{ri
j}∞j=1, {bik}∞k=1, and {f i

k}∞k=1 such that the NCS defined in equation (5.1) is

finite-gain Lp stability.

5.1.1 Real-Time Constraints in Nonlinear Systems

This section proposes a distributed approach for nonlinear systems to construct

local events such that the resulting event-triggered NCS is finite-gain Lp stable.

For notational convenience, we let Lgi
V = ∂V

∂xi
gi(xD̄i

, κi(xZ̄i
− eZ̄i

), wi) with some

function V (x) ∈ R.

Assumption 5.1.1 Assume that, for any i ∈ N , there exist a constant p ≥ 1,

a continuous, positive-definite functions Vi : Rn → R, class K functions αi
1, α

i
2 :

R → R, positive constants ζi, βi, ρi, γi ∈ R, and control law κi : Rn|Z̄i| → Rmi

satisfying

αi
1(‖xi‖2) ≤ Vi(xi) ≤ αi

2(‖xi‖2) (5.2)

Lgi
Vi ≤ −ζi‖xi‖p

2 +
∑

j∈Di∪Zi

βj‖xj‖p
2 +

∑

j∈Z̄i

ρj‖ej‖p
2 + γp

i ‖wi‖p
2 (5.3)

ζi − |Si ∪ Ui|βi > 0. (5.4)

Theorem 5.1.1 Consider the NCS defined in equation (5.1). Suppose that as-

sumption 5.1.1 holds. If for any i ∈ N , the inequality

−δi‖xi(t)‖2 + σi‖ei(t)‖2 ≤ 0 (5.5)

holds for all t ≥ 0, where δi ∈ (0, 1) and

σi =

(|Ūi|ρi

ζi − |Si ∪ Ui|βi

)
1

p

, (5.6)

115

then the NCS is finite-gain Lp stable from w to x.

Proof: Let V (x) =
∑

i∈N Vi(xi). It is easy to see that

V̇ =
∑

i∈N

Lgi
Vi

≤
∑

i∈N



−ζi‖xi‖p
2 +

∑

j∈Di∪Zi

βj‖xj‖p
2 +

∑

j∈Z̄i

ρj‖ej‖p
2 + γp

i ‖wi‖p
2





=
∑

i∈N

[

− (ζi − |Si ∪ Ui|βi) ‖xi‖p
2 + ρi|Ūi|‖ei‖p

2 + γp
i ‖wi‖p

2

]

,

where the equality is obtained by resorting the items according to index i.

Applying equation (5.5) into the preceding equation yields

V̇ ≤
∑

i∈N

[−(1 − δp
i) (ζi − |Si ∪ Ui|βi) ‖xi‖p

2 + γp
i ‖wi‖p

2,] (5.7)

which is, with equation (5.4), sufficient to show the NCS is finite-gain Lp stable

from w to x. 2

5.1.2 Real-Time Constraints in Linear Systems

This section shows how to implement the distributed scheme proposed in Sec-

tion 5.1.1 in linear systems. For linear systems, we set p = 2. The local event

design is characterized by a local LMI problem. With the linear structure, agent

i has the following state equation,

ẋi(t) = Aiixi(t) +Biui(t) +
∑

j∈Di

Aijxj(t) + Ciwi(t)

ui(t) = Kiix̂i(t) +
∑

j∈Zi

Kijx̂j(t) (5.8)

116

Therefore, the state equation of the overall NCS is

ẋ(t) = Ax(t) +Bu(t) + Cw(t)

u(t) = Kx̂(t). (5.9)

We first propose a centralized approach to design local events for agents that

are used to trigger the broadcast. Linear Matrix Inequalities (LMI) are used to

identify the parameters in those events. The resulting event-triggered NCS is

finite-gain L2 stable, shown in Theorem 5.1.2.

Theorem 5.1.2 Consider the NCS in equation (5.9). Assume that there exist

positive-definite matrices P,Q ∈ RnN×nN and Wi,Mi ∈ Rn×n, i = 1, 2, · · · , N

such that:







−P (A+BK) − (A +BK)TP −Q PC

CTP γ2IlN×lN






≥ 0, (5.10)







Q−W PBK

KTBTP M






≥ 0, (5.11)

P,Q,Mi,Wi > 0, (5.12)

hold, where M = diag{Mj}j∈N and W = diag{Wj}j∈N . If for any i ∈ N , the

inequality

ai‖ei(t)‖2 ≤ δi‖x̂i(t)‖2 (5.13)

holds for all t ≥ 0, where ai = 1 +
√

λmax(Mi)
λmin(Wi)

with some δi ∈ (0, 1), then the NCS

is finite-gain L2 stable from w to x.

117

Proof: The proof is in Appendix A.17. 2

Theorem 5.1.2 presents a method to design local events. Equation (5.10),

(5.11), (5.12) is a highly centralized approach that may not be suitable for large-

scale systems. In the later discussion, we focus on distributed event design for

NCS. Each agent is associated with a local LMI problem. The feasibility of those

local LMI implies the feasibility of the centralized LMI in equation (5.12), (5.10),

(5.11). The solutions to local LMI can be used to construct the solution to the

centralized LMI.

Let us look at agent i. Assume that

Z̄i = {i1, i2, · · · , iqi
} ⊆ N ,

Z̄i ∪ D̄i = {i1, · · · , iqi
, iqi+1, · · · , isi

} ⊆ N .

It is easy to see that qi = |Z̄i| and si = |Z̄i ∪ D̄i|. Without loss of the generality,

we assume i1 = i.

The local LMI problem associated with agent i is defined in the following way:

Problem 5.1.1 (Local LMI) For given constants ρ, β > 0, find Pi, Qi,Wi ∈

Rn×n and γi ∈ R such that







−Fi(Pi) − F T
i (Pi) −Gi(Qi; β) Hi

HT
i γ2

i Il×l






≥ 0 (5.14)







Qi − |Si ∪ Ui|βIn×n −Wi PiBiK̃i

K̃T
i B

T
i Pi ρInqi×nqi






≥ 0 (5.15)

Pi,Wi > 0, γi > 0, (5.16)

where Hi =

[

(PiCi)
T 0

]T

∈ R
nsi×l and K̃i ∈ R

m×nqi, Fi : R
n×n → R

nsi×nsi,

118

G : Rn×n×R → Rnsi×nsi are defined in equation (4.23), (4.24), (4.25), respectively.

The following theorem shows that with the distributed event-design approach,

the resulting event-triggered NCS is L2 stable.

Theorem 5.1.3 Consider the NCS in equation (5.8). Assume that for any i ∈ N ,

the local LMI in problem 5.1.1 is feasible and Pi, Qi, Wi ∈ Rn×n, and γi ∈ R are

the solutions. If for any i ∈ N , the inequality

bi‖ei(t)‖2 ≤ δi‖x̂i(t)‖2 (5.17)

holds for all t ≥ 0, where bi = 1 +
√

ρ|Ūi|
λmin(Wi)

and δi ∈ (0, 1), then the NCS is

finite-gain L2 stable from w to x.

Proof: The proof is in Appendix A.18. 2

Remark 5.1.1 Similar to Corollary 4.2.6, for the NCS in equation (5.1), if there

exist positive-definite matrices Pi ∈ Rn×n such that

Fi(Pi) + F T
i (Pi) +Gi(|Si ∪ Ui|βIn×n; β) < 0 (5.18)

then there always exists a positive constant ρ∗ ∈ R
+, such that for any ρ ≥ ρ∗, the

LMI in problem 5.1.1 is feasible.

Remark 5.1.2 Similar to Corollary 4.2.7, if there exist a positive-definite matrix

Pi ∈ Rn×n and a positive constant β ∈ R such that equation (5.18) holds, then for

any β̂ > 0, the pair β̂

β
Pi and β̂ also satisfies equation (5.18).

119

5.1.3 Discussion

The previous sections discuss how to design local real-time constraints that

ensure Lp stability of NCSs. Although packet loss is not studied in this chapter,

it can be addressed using the similar approach proposed in Section 4.3 in Chapter

4. The difficulty lies in how to derive the bounds on the transmission delays.

The bounds on delays provided in Chapter 4 are for asymptotic stability. It is

derived based on the fact of bounded system dynamics. However, when exogenous

disturbances are involved, the system state are not necessarily bounded in general.

Novel approaches are expected to solve this delayed case in the future. One

possible way is to restrict the class of disturbances such that the system dynamics

are still bounded.

5.2 Quantization

Quantization is always an important research topic in NCSs. Although our

work did not consider the effect of quantization on NCSs, it seems promising to

extend our results to quantized NCSs. Recall that the local real-time constraint

derived in Chapter 4 requires the satisfaction of the equation

ci‖ei(t)‖ ≤ ̺i‖x̂i(t)‖ (5.19)

with some ̺i ∈ (0, 1). Notice that no matter quantization exists or not, as long

as equation (5.19) holds, the overall system will be asymptotically stable.

Let q : Rn → Rn be the quantizer. Then

x̂i(t) = q(xi(b
i
k))

120

for all t ∈ [f i
k, f

i
k+1). We can split the time interval [bik, f

i
k+1] into three parts:

t = bik, (bik, b
i
k+1), and [bik+1, f

i
k+1). Quantization happens at t = bik. Data dropouts

happen over (bik, b
i
k+1). Delays happen over [bik+1, f

i
k+1). To ensure the satisfaction

of equation (5.19), we just need to enforce

‖xi(b
i
k) − qxi(b

i
k)‖ ≤ δ1

i ‖q(xi(b
i
k))‖,

‖xi(t) − qxi(b
i
k)‖ ≤ δ2

i ‖q(xi(b
i
k))‖, ∀t ∈ [bik, b

i
k+1)

‖xi(t) − qxi(b
i
k)‖ ≤ ̺i‖q(xi(b

i
k))‖, ∀t ∈ [bik+1, f

i
k+1)

where δ1
i ≤ δ2

i ≤ ̺i < 1. The quantizer, the MANSD and the bounds on delays,

therefore, might be derived following the similar analysis in Section 4.3, Chapter

4.

121

APPENDIX A

PROOFS

A.1 Proof of Theorem 2.2.2

Proof: We first show that the sampling period Tk is bounded from below by

a positive constant. By equation (2.6),

d

dt
‖ek(t)‖2 ≤ ‖ẋ(t)‖2 ≤ 2L‖ek(t)‖2 + L‖x(rk)‖2

holds for all t ∈ [rk, rk+1). Solving this differential inequality with the initial

condition ek(rk) = 0 yields

‖ek(t)‖2 ≤
‖x(rk)‖2

2

(

e2LTk − 1
)

(A.1)

for all t ∈ [rk, rk+1). According to equation (2.7) and (2.9),

‖x(rk)‖2 ≤ α−1
1 (V (rk)) ≤ L1V (rk) (A.2)

holds. Applying equation (A.1) and (A.2) into equation (2.8) leads to the inequal-

ity

V̇ (t) ≤ −āV (t) +
b̄L1V (rk)

2

(

e2LTk − 1
)

122

for t ∈ [rk, rk+1). Solving this differential inequality with the initial condition

V (rk) provides

V (t) ≤ V (rk)e
−ā(t−rk) − b̄L1V (rk)

2ā

(

e2LTk − 1
) (

e−ā(t−rk) − 1
)

(A.3)

for all t ∈ [rk, rk+1). Because rk+1 is triggered by the violation of equation (2.14),

V (rk+1) = −δāV (rk)Tk + V (rk) (A.4)

holds. Combining equation (A.3) and (A.4) yields

−δαV (rk)Tk + V (rk) ≤ V (rk)e
−αTk − βL1V (rk)

2α

(

e2LTk − 1
) (

e−αTk − 1
)

which implies

p(Tk) , −āδTk + 1 ≤ e−āTk − b̄L1

2ā

(

e2LTk − 1
) (

e−āTk − 1
)

, q(Tk).

It is obvious that p(0) = q(0) = 1 and q̇(0) = −ā < ṗ(0) = −āδ. Therefore,

using Lemma 2.2.1, we conclude

Tk ≥ ξ, (A.5)

where ξ is the smallest positive solution to the equation p(t) = q(t).

We now show asymptotic stability of the resulting system. First, define the

function h(t|x0) as:

h(t|x0) = −δāV (rk)(t− rk) + V (rk), ∀t ∈ [rk, rk+1). (A.6)

123

Because rk+1 is triggered by the violation of equation (2.14),

V (t) ≤ −δāV (rk)(t− rk) + V (rk) = h(t|x0) (A.7)

holds for all t ∈ [rk, rk+1), k ∈ N.

To show asymptotic stability of the system, we still need to show limt→∞ h(t|x0) =

0. By the definition of h(t|x0) in equation (A.6), we know h(t|x0) is differentiable

for t ∈ (rk, rk+1). By equation (2.7), the derivative of h(t|x0) is

ḣ(t|x0) = −δāV (rk) ≤ −δā · α1(‖x(rk)‖2) (A.8)

for all t ∈ (rk, rk+1), which means h(t|x0) is decreasing over (rk, rk+1).

Although h(t|x0) may not be differentiable at t = rk for some k ∈ N, it satisfies

lim
t→r−

k

h(t|x0) = lim
t→r+

k

h(t|x0) = h(rk|x0),

lim
t→r−

k

ḣ(t|x0) ≤ −δā · α1(‖x(rk−1)‖2), and

lim
t→r+

k

ḣ(t|x0) ≤ −δā · α1(‖x(rk)‖2) (A.9)

which means for any k ∈ N, h(t|x0) is continuous at t = rk and the left-hand and

right-hand sided derivatives of h(t|x0) at t = rk are both negative. Since equation

(A.5) holds, rk → ∞ holds. Combining this with equation (A.8) and (A.9) yileds

lim
t→∞

h(t|x0) = 0. (A.10)

Since equation (A.7) and (A.10) are satisfied, we can conclude that the sampled-

data system is asymptotically stable. 2

124

A.2 Proof of Lemma 2.3.1

Proof: Consider the derivative of ‖ek−1(t)‖2.

d

dt
‖ek−1(t)‖2 ≤ 2L‖ek−1(t)‖2 + L‖x(rk−1)‖2

holds for all t ∈ [rk, fk). Solving the differential inequality with the initial condi-

tion ‖ek−1(rk)‖2, we have

‖ek−1(t)‖2 ≤ ‖ek−1(rk)‖2e
2Lτk +

‖x(rk−1)‖2

2

(

e2Lτk − 1
)

(A.11)

for all t ∈ [rk, fk). By equation (2.8), the inequality

V̇ (t) ≤ −āV (t) + b̄‖ek−1(t)‖2

holds for t ∈ [rk, fk). Combining this inequality with equation (A.11) yields

V̇ (t) ≤ −āV (t) + b̄‖ek−1(rk)‖2e
2Lτk + b̄

‖x(rk−1)‖2

2

(

e2Lτk − 1
)

for all t ∈ [rk, fk). Solving this differential inequality with the initial condition

V (rk) leads to

V (t) ≤ V (rk)e
−ā(t−rk) − b̄

ā
‖ek−1(rk)‖2e

2Lτk
(

e−ā(t−rk) − 1
)

− b̄

ā

‖x(rk−1)‖2

2

(

e2Lτk − 1
) (

e−ā(t−rk) − 1
)

(A.12)

125

for all t ∈ [rk, fk). Using ‖x‖2 ≤ α−1
1 (V (x)) ≤ L1V (x) and V (rk−1) ≤ σV (rk),

equation (A.12) implies

V (t) ≤ V (rk) −
βL1V (rk−1)

(

e2Lτk − 1
)

(e−ατk − 1)

2α

−βL1

α
(V (rk) + V (rk−1))e

2Lτk
(

e−ατk − 1
)

≤ V (rk) −
b̄L1

ā
(1 + σ)V (rk)e

2Lτk
(

e−āτk − 1
)

− b̄L1

ā

σV (rk)

2

(

e2Lτk − 1
) (

e−āτk − 1
)

(A.13)

for all t ∈ [rk, fk).

By Lemma 2.2.1 and τk < ∆1, we know

1− b̄L1

ā
(1 + σ)e2Lτk

(

e−āτk − 1
)

− b̄L1

ā

σ

2

(

e2Lτk − 1
) (

e−āτk − 1
)

≤ 1 + ǫτk (A.14)

where ǫ > b̄L1(1+σ). According to equation (A.13) and (A.14), it is easy to show

that V (t) ≤ V (rk)(1 + ǫτk) holds for all t ∈ [rk, fk). Using the similar technique,

we can show that if τk < ∆2, σV (t) ≥ V (rk) holds for all t ∈ [rk, fk). 2

A.3 Proof of Lemma 2.3.2

Proof: Consider the derivative of ‖ek(t)‖2 over the interval t ∈ [rk, fk):

d

dt
‖ek(t)‖2 ≤ 2L‖ek(t)‖2 + L‖x(rk)‖2 + L‖ek−1(rk)‖2.

Solving this differential inequality with the initial condition ek(rk) = 0, we

have

‖ek(t)‖2 ≤
‖x(rk)‖2 + ‖ek−1(rk)‖2

2

(

e2Lτk − 1
)

(A.15)

126

for all t ∈ [rk, fk). The derivative of ek(t) over [fk, t
∗
k) satisfies

d

dt
‖ek(t)‖2 ≤ 2L‖ek(t)‖2 + L‖x(rk)‖2.

Solving this differential inequality with the initial condition given by equation

(A.15), we have

‖ek(t)‖2 ≤ ‖x(rk)‖2 + ‖ek−1(rk)‖2

2

(

e2Lτk − 1
)

e2L(t−fk) +
‖x(rk)‖2

2

(

e2L(t−fk) − 1
)

≤ ‖x(rk)‖2 + ‖ek−1(rk)‖2

2

(

e2Lτk − 1
)

e2L(t∗k−fk) +
‖x(rk)‖2

2

(

e2L(t∗k−fk) − 1
)

(A.16)

holds for all t ∈ [fk, t
∗
k). By equation (2.8) and (A.16), we have

V̇ (t) ≤ −āV (t) + b̄
‖x(rk)‖2

2

(

e2L(t∗k−fk) − 1
)

+b̄
‖x(rk)‖2 + ‖ek−1(rk)‖2

2

(

e2Lτk − 1
)

e2L(t∗k−fk)

for all t ∈ [fk, t
∗
k). Since ‖x(rk)‖2 ≤ α−1

1 (V (rk)) ≤ L1V (rk) for all k ∈ N and

V (rk−1) ≤ σV (rk), the inequality above can be further reduced as

V̇ (t) ≤ −āV (t) + η(t∗k − fk, τk)V (rk), (A.17)

for all t ∈ [fk, t
∗
k). Solving the differential inequality in equation (A.17) with the

initial condition V (fk) leads to

V (t∗k) ≤ V (fk)e
−ā(t∗k−fk) − η(t∗k − fk, τk)V (rk)

ā

(

e−ā(t∗k−fk) − 1
)

.

Since the hypotheses of Lemma 2.3.1 are satisfied, V (fk) ≤ (1 + ǫ∆)V (rk)

127

holds. Applying this and equation (2.18) to the inequality above, we have

p(t∗k − fk) , 1 + ǫ∆ − δā(t∗k − fk)

≤ (1 + ǫ∆)e−ā(t∗k−fk) − η(t∗k − fk,∆)

ā

(

e−ā(t∗k−fk) − 1
)

, q(t∗k − fk)

Notice that p(0) = q(0). Since ∆ < ∆3 implies ṗ(0) > q̇(0), by Lemma 2.2.1,

we know t∗k − fk ≥ ξ(∆) > 0. 2

A.4 Proof of Theorem 2.3.3

Proof: By Lemma 2.3.1, we know E1 and E2 always hold when t = fk.

It is easy to show that ξ(0) > 0 according to equation (2.19). Therefore, ǫτk −

ξ(τk)δā < 0 holds when τk = 0. By lemma 2.2.1 and the definition of ∆4, we

have ǫτk − ξ(τk)δā < 0 for all τk < ∆4. Consequently , there must be a positive

constant ε such that

ǫ∆ − ξ(∆)δā < −ε, (A.18)

holds since ∆ < ∆4. We construct a piecewise continuous function h : R+×Rn →

R+ in the following way:

h(t|x0) =











[1 + ǫ∆ − δā(t− fk)]V (rk), t ∈ [fk, rk+1)

(1 + ǫ∆)V (rk+1), t ∈ [rk+1, fk+1)
(A.19)

Because rk+1 is triggered by the violation of E1 or E2, it is easy to show

V (t) ≤ h(t|x0) for all t ∈ [fk, rk+1) and k ∈ N. Since τk < ∆ ≤ ∆1 holds, by

Lemma 2.3.1, V (t) ≤ (1 + ǫ∆)V (rk) = h(t|x0) holds for all t ∈ [rk, fk) and k ∈ N.

128

Therefore,

V (t) ≤ h(t|x0) (A.20)

holds for all t ∈ R+. We now show that limt→∞ h(t|x0) = 0. Two cases are

considered.

Case I: rk+1 is triggered by the violation of E1. Then

h(fk|x0) = (1 + ǫ∆)V (rk)

h(fk+1|x0) = (1 + ǫ∆)V (rk+1) (A.21)

Since rk+1 is triggered by the violation of E1, we have

V (rk+1) = [1 + ǫ∆ − δā(rk+1 − fk)]V (rk).

By Lemma 2.3.2, we know rk+1 − fk ≥ ξ(∆). So

V (rk+1) ≤ [1 + ǫ∆ − δāξ(∆)]V (rk)

holds. Combining this inequality with equation (A.21), we have h(fk+1|x0) ≤

[1 + ǫ∆ − δāξ(∆)]h(fk|x0), which implies

h(fk+1|x0) ≤ (1 − ε)h(fk|x0) (A.22)

according to equation (A.18).

Case II: rk+1 is triggered by the violation of E2. Following the similar analysis

129

for case I, we have

h(fk+1|x0) =
1

σ
h(fk|x0). (A.23)

Equation (A.22) and (A.23) implies

lim
k→∞

h(fk|x0) = 0 (A.24)

since σ ∈ (1,∞). Notice that h(t|x0) ≤ h(fk|x0) holds for all t ≥ fk. So equation

(A.24) implies

lim
t→∞

h(t|x0) = 0. (A.25)

Equation (A.20) and (A.25) are sufficient to conclude that the sampled-data

system is asymptotically stable. 2

A.5 Proof of Theorem 3.2.1

Proof: Consider the storage function V : Rn → R given by V (x) = xTPx

for x ∈ Rn where P is a symmetric positive semi-definite matrix satisfying the

algebraic Riccati equation (equation (3.5)). The directional derivative of V for

130

t ∈ [fk, fk+1) is

V̇ =
∂V

∂x

(

Ax(t) −B1B
T
1 Px(rk) +B2w(t)

)

= −x(t)T

(

I −Q+
1

γ2
PB2B

T
2 P

)

x(t)

−2x(t)TQx(rk) + 2x(t)TPB2w(t)

= −x(t)T (I −Q)x(t) −
∥

∥

∥

∥

γw(t) − 1

γ
BT

2 Px(t)

∥

∥

∥

∥

2

2

+γ2‖w(t)‖2
2 − 2x(t)TQx(rk)

≤ −x(t)T (I −Q)x(t) + γ2‖w(t)‖2
2 − 2x(t)TQx(rk)

Insert x(t) = ek(t) + x(rk) into the above equation to obtain

V̇ ≤ −‖x(t)‖2
2 + [ek(t) + x(rk)]

T Q [ek(t) + x(rk)]

−2 [ek(t) + x(rk)]
T Qx(rk) + γ2‖w(t)‖2

2

= −‖x(t)‖2
2 + ek(t)

TQek(t) − xT (rk)Qx(rk)

+γ2‖w(t)‖2
2 (A.26)

By the assumption in equation (3.11), we know that equation (A.26) can be rewrit-

ten as

V̇ ≤ −β2‖x(t)‖2
2 + γ2‖w(t)‖2

2, (A.27)

which holds for all t and is sufficient to ensure the sampled-data system is finite-

gain L2 stable from w to x with a gain less than γ/β. 2

131

A.6 Proof of Corollary 3.2.2

Proof: Equation (3.14) can be rewritten as

ek(t)
TMek(t) = (1 − β2)‖ek(t)‖2

2 + ek(t)
TQek(t)

≤ 1

2
(1 − β2)‖x(rk)‖2

2 + x(rk)
TQx(rk)

This can be rewritten to obtain

ek(t)
TQek(t) ≤ (1 − β2)

(

‖x(rk)‖2
2 + ‖ek(t)‖2

2

)

+ xT (rk)Qx(rk)

−(1 − β2)

(

1

2
‖x(rk)‖2

2 + 2‖ek(t)‖2
2

)

= (1 − β2)
(

‖x(rk)‖2
2 + ‖ek(t)‖2

2

)

+ xT (rk)Qx(rk)

−(1 − β2)

(

1

2
‖x(rk)‖2

2 + 2‖ek(t)‖2
2

)

−(1 − β2)
(

2xT (rk)ek(t) − 2xT (rk)ek(t)
)

= (1 − β2) ‖x(rk) + ek(t)‖2
2 + xT (rk)Qx(rk)

−(1 − β2)

∥

∥

∥

∥

1√
2
x(rk) +

√
2ek(t)

∥

∥

∥

∥

2

2

≤ (1 − β2)‖x(t)‖2
2 + x(rk)

TQx(rk).

This inequality is the sufficient condition in Theorem 3.2.1 so we can conclude

that the sampled-data system is L2 stable from w to x with a gain less than γ/β.

2

132

A.7 Proof of Theorem 3.3.1

Proof: Let Γ = {t ∈ [rk, fk+1) | ‖zk(t)‖2 = 0}. The time derivative of

‖zk(t)‖2 for t ∈ [rk, fk+1)\Γ satisfies

d

dt
‖zk(t)‖2 ≤

∥

∥

∥

√
Mėk(t)

∥

∥

∥

2
=
∥

∥

∥

√
Mẋ(t)

∥

∥

∥

2

=
∥

∥

∥

√
M
(

Ax(t) −B1B
T
1 Px(rk) +B2w(t)

)

∥

∥

∥

2

≤
∥

∥

∥

√
MAek(t)

∥

∥

∥

2
+
∥

∥

∥

√
MAclx(rk)

∥

∥

∥

2
+
∥

∥

∥

√
MB2

∥

∥

∥
‖w(t)‖2,(A.28)

where the righthand sided derivative is used when t = rk. Since ‖w(t)‖2 ≤

a‖x(t)‖2, x(t) = ek(t) + x(rk), and zk(t) =
√
Mek(t), we can bound the preceding

equation (A.28) as

d

dt
‖zk(t)‖2 ≤

∥

∥

∥

√
MA

√
M

−1
∥

∥

∥
‖zk(t)‖2 +

∥

∥

∥

√
MAclx(rk)

∥

∥

∥

2

+a‖
√
MB2‖‖

√
M

−1
zk(t)‖2 + a‖

√
MB2‖‖x(rk)‖2

≤
(∥

∥

∥

√
MA

√
M

−1
∥

∥

∥
+ a‖

√
MB2‖‖

√
M

−1‖
)

‖zk(t)‖2

+
∥

∥

∥

√
MAclx(rk)

∥

∥

∥

2
+ a

∥

∥

∥

√
MB2

∥

∥

∥
‖x(rk)‖2

= σ‖zk(t)‖2 + µ0(x(rk)). (A.29)

where σ and µ0 : Rn → R are defined in equation (3.20) and (3.21), respectively.

The initial condition is ‖zk(rk)‖2 = 0. Using this in the differential inequality

in equation (A.29) yields,

‖zk(t)‖2 ≤
µ0(x(rk))

σ

(

eσ(t−rk) − 1
)

(A.30)

for all t ∈ [rk, fk+1) since ‖zk(t)‖2 = 0 for all t ∈ Γ.

133

By assumption rk+1 = fk+1 (i.e. no task delay) and δψ(x(rk)) = ‖zk(rk+1)‖2,

so we can conclude that

δψ(x(rk)) = ‖zk(rk+1)‖2 ≤
µ0(x(rk))

σ

(

eσTk − 1
)

(A.31)

where Tk = rk+1 − rk is the task sampling period for job k. Solving equation

(A.31) for Tk yields equation (3.19). The righthand side of inequality (3.19) is

clearly strictly greater than zero, which implies that rk+1 − rk > 0. Therefore

rk = fk ≤ rk+1 which implies that the sequence of finishing and release times is

admissible. Finally we know that ‖zk(t)‖2 ≤ δψ(x(rk)) for all t ∈ [rk, fk+1) =

[fk, fk+1) and all k = 0, . . . ,∞, which by Corollary 3.2.2 implies that the system

is L2 stable from w to x with a gain less than γ/β. 2

A.8 Proof of Lemma 3.3.2

Proof: Let Γ = {t ∈ [rk, fk) | ‖zk(t)‖2 = 0}. For t ∈ [rk, fk)\Γ, the derivative

of ‖zk(t)‖2 satisfies the differential inequality,

d

dt
‖zk(t)‖2 ≤ ‖żk(t)‖2 =

∥

∥

∥

√
Mėk(t)

∥

∥

∥

2
=
∥

∥

∥

√
Mẋ(t)

∥

∥

∥

2

=
∥

∥

∥

√
M
(

Ax(t) −B1B
T
1 Px(rk−1) +B2w(t)

)

∥

∥

∥

2

=
∥

∥

∥

√
MAek(t) +

√
MAx(rk) −

√
MB1B

T
1 Px(rk−1) +

√
MB2w(t)

∥

∥

∥

2

≤
(∥

∥

∥

√
MA

√
M

−1
∥

∥

∥
+ a

∥

∥

∥

√
MB2

∥

∥

∥

∥

∥

∥

√
M

−1
∥

∥

∥

)

‖zk(t)‖2

+
∥

∥

∥

√
M
(

Ax(rk) − B1B
T
1 Px(rk−1)

)

∥

∥

∥

2
+ a

∥

∥

∥

√
MB2

∥

∥

∥
‖x(rk)‖2

= λ‖zk(t)‖2 + µ1(x(rk), x(rk−1)), (A.32)

where we use the righthand sided derivative when t = rk. The differential in-

134

equality in equation (A.32) along with the initial condition zk(rk) = 0, allows us

to conclude that

‖zk(t)‖2 ≤ φ(x(rk), x(rk−1); t− rk) (A.33)

for all t ∈ [rk, fk) since ‖zk(t)‖2 = 0 for all t ∈ Γ.

The assumption in equation (3.26) can be rewritten as

φ(x(rk), x(rk−1); τk) ≤ ǫψ(x(rk)) (A.34)

φ(x(rk), x(rk−1); t − rk) is a monotone increasing function of t − rk. Combining

this fact with equation (A.33) and (A.34) yields

‖zk(t)‖2 ≤ φ(x(rk), x(rk−1); t− rk) ≤ φ(x(rk), x(rk−1); τk) ≤ ǫψ(x(rk))

which leads to equation (3.27) holding for all t ∈ [rk, fk). 2

A.9 Proof of Lemma 3.3.3

Proof: The hypotheses of this lemma also satisfy the hypotheses of Lemma

3.3.2 so we know that

‖zk(fk)‖2 ≤ φ(x(rk), x(rk−1); τk) ≤ ǫψ(x(rk)) ≤ πψ(x(rk)). (A.35)

By equation (3.29) and (A.35), we have

η2(x(rk), x(rk−1); τk, π) > 0

135

which implies

dπ > fk

Assume the system state x(t) satisfies the differential equation

ẋ(t) = Ax(t) − B1B
T
1 Px(rk) +B2w(t)

for t ∈ [fk, dπ]. Using an argument similar to that in Lemma 3.3.2, we can show

that ‖zk(t)‖2 satisfies the differential inequality

d

dt
‖zk(t)‖2 ≤ λ‖zk(t)‖2 + µ0(x(rk)). (A.36)

Equation (A.35) can be viewed as an initial condition on the differential in-

equality in equation (A.36). Solving the differential inequality, we know for all

t ∈ [fk, dπ],

‖zk(t)‖2 ≤ eλ(t−fk)φ(x(rk), x(rk−1); τk) +
µ0(x(rk))

λ

(

eλ(t−fk) − 1
)

. (A.37)

Because the right side of equation (A.37) is an increasing function of t, we get

‖zk(t)‖2 ≤ eλ(dπ−fk)φ(x(rk), x(rk−1); τk) +
µ0(x(rk))

λ

(

eλ(dπ−fk) − 1
)

= πψ(x(rk)) (A.38)

for all t ∈ [fk, dπ], where the equivalence in the right side of equation (A.38) is

achieved according to the definition of dπ in equation (3.28). 2

136

A.10 Proof of Lemma 3.3.4

Proof: First note that x(rk) = ek−1(rk) + x(rk−1) implies that

−‖ek−1(rk)‖2 ≤ ‖x(rk)‖2 − ‖x(rk−1)‖2 ≤ ‖ek−1(rk)‖2.

We now use this inequality to bound µ1(x(rk), x(rk−1)) and ψ(x(rk)) as a

function of x(rk−1).

An upper bound on µ1(x(rk), x(rk−1)) can be obtained by noting that

µ1(x(rk), x(rk−1))

=
∥

∥

∥

√
M
(

Ax(rk) −B1B
T
1 Px(rk−1)

)

∥

∥

∥

2
+ a‖

√
MB2‖‖x(rk)‖2

=
∥

∥

∥

√
M (Aclx(rk−1) + Aek−1(rk))

∥

∥

∥

2
+ a‖

√
MB2‖‖x(rk−1) + ek−1(rk)‖2

≤
∥

∥

∥

√
MAclx(rk−1)

∥

∥

∥
+ a‖

√
MB2‖‖x(rk−1)‖2 +

∥

∥

∥

√
MA

√
M

−1
zk−1(rk)

∥

∥

∥

2

+a‖
√
MB2‖‖

√
M

−1
zk−1(rk)‖2

≤
∥

∥

∥

√
MAclx(rk−1)

∥

∥

∥
+ a‖

√
MB2‖‖x(rk−1)‖2

+
(∥

∥

∥

√
MA

√
M

−1
∥

∥

∥
+ a‖

√
MB2‖‖

√
M

−1‖
)

δψ(x(rk−1))

= µ0(x(rk−1)) + λδψ(x(rk−1))

A lower bound on ψ(x(rk)) is obtained by noting that

ψ(x(rk)) =
∥

∥

∥

√
Nx(rk)

∥

∥

∥

2
=
∥

∥

∥

√
N(ek−1(rk) + x(rk−1))

∥

∥

∥

2

≥ ‖
√
Nx(rk−1)‖2 −

∥

∥

∥

√
Nek−1(rk)

∥

∥

∥

2

= ‖
√
Nx(rk−1)‖2 −

√

eT
k−1(rk)Nek−1(rk)

We know M ≥ N by the definitions of M and N in equation (3.12) and (3.13),

137

respectively. So the inequality above can be further reduced as

ψ(x(rk)) ≥ ‖
√
Nx(rk−1)‖2 −

√

eT
k−1(rk)Mek−1(rk)

≥ ψ(x(rk−1)) − δψ(x(rk−1))

= (1 − δ)ψ(x(rk−1))

Putting both inequalities together we see that

η1(x(rk), x(rk−1); ǫ) =
1

λ
ln

(

1 + ǫλ
ψ(x(rk))

µ1(x(rk), x(rk−1))

)

≥ 1

λ
ln

(

1 + ǫλ
(1 − δ)ψ(x(rk−1))

λδψ(x(rk−1)) + µ0(x(rk−1))

)

≡ ∆(x(rk−1); ǫ, δ) > 0,

which completes the proof. 2

A.11 Proof of Theorem 3.3.5

Proof: From the definition of ∆ in equation (3.35), we can easily see that

∆(x(rk); ǫ, δ) > 0 for any non-negative integer k. We can therefore use equation

(3.37) to conclude that the interval [rk+1, rk+1 + ∆(x(rk); ǫ, δ)] is nonempty for all

k.

Next, we insert equation (3.36) into equation (3.37) to show that

fk+1 ≤ rk+1 + ∆(x(rk); ǫ, δ)

≤ fk + η2(x(rk), x(rk−1); τk, δ) + ∆(x(rk); ǫ, δ)

≤ fk + η2(x(rk), x(rk−1); τk, 1) (A.39)

138

for all non-negative integers k.

With the preceding two preliminary results, we now consider the following

statement about the kth job. This statement is that

1. rk ≤ fk ≤ rk+1,

2. ‖zk(t)‖2 ≤ δψ(x(rk)) for all t ∈ [fk, rk+1],

3. and ‖zk(t)‖2 ≤ ψ(x(rk)) for all t ∈ [fk, fk+1].

We now use mathematical induction to show that under the theorem’s hypotheses,

this statement holds for all non-negative integers k.

First consider the base case when k = 0. According to the definition of η2

(equation (3.29)) we know that

η2(x0, x0; τ0, δ) = η2(x0, x0; 0, δ) > 0

We can therefore combine equation (3.37) and (3.36) to obtain

r0 = f0 ≤ f0 + η2(x0, x0; τ0, δ) = r1 (A.40)

which establishes the first part of the inductive statement when k = 0.

Next note that

τ0 = 0 ≤ η1(x(r0), x(r−1); ǫ). (A.41)

If we use the fact that δ ∈ (ǫ, 1) ⊂ (0, 1] in equation (3.36) and (A.41), we can

see that the hypotheses of Lemma 3.3.3 are satisfied. This means that ‖z0(t)‖2 ≤

δψ(x(r0)) for all t ∈ [f0, r1] which completes the second part of the inductive

statement for k = 0.

139

Now define the time

d0
1 = f0 + η2(x(r0), x(r−1); τ0, 1)

Equation (A.41) again implies that the hypotheses of Lemma 3.3.3 are satisfied,

so that

‖z0(t)‖2 ≤ ψ(x(r0)) for all t ∈ [f0, d
0
1]. (A.42)

From equation (A.39), we know that f1 ≤ d0
1. We can also combine equation (3.37)

and (A.40) to conclude that f0 ≤ f1. We therefore know that [f0, f1] ⊆ [f0, d
0
1]

which combined with equation (A.42) implies that

‖z0(t)‖2 ≤ ψ(x(r0)) for all t ∈ [f0, f1]

This therefore establishes the last part of the inductive statement for k = 0.

We now turn to the general case for any k. For a given k let us assume that

the statement holds. This means that

rk ≤ fk ≤ rk+1 (A.43)

‖zk(t)‖2 ≤ δψ(x(rk)) for all t ∈ [fk, rk+1] (A.44)

‖zk(t)‖2 ≤ ψ(x(rk)) for all t ∈ [fk, fk+1] (A.45)

Now consider the k+1st job. Because equation (A.44) is true, the hypothesis of

Lemma 3.3.4 is satisfied which means there exists a function ∆ (given by equation

140

(3.35)) such that

0 < ∆(x(rk); ǫ, δ) ≤ η1(x(rk+1), x(rk); ǫ).

We can use this in equation (3.37) to obtain

0 ≤ τk+1 ≤ ∆(x(rk); ǫ, δ) ≤ η1(x(rk+1), x(rk); ǫ). (A.46)

From equation (A.46) and the fact that δ(0, 1) we know that the hypotheses

of Lemma 3.3.3 hold and we can conclude that

fk+1 ≤ rk+2 and (A.47)

‖zk+1‖2 ≤ δψ(x(rk+1)) for all t ∈ [fk+1, rk+2]. . (A.48)

Combining equation (3.37) with equation (A.47) yields rk+1 ≤ fk+1 ≤ rk+2 which

establishes the first part of the statement for the case k + 1. Equation (A.48) is

the second part of the statement.

Finally let

dk+1
1 = fk+1 + η2(x(rk+1), x(rk); τk+1, 1)

Following our prior argument for the case when k = 0, we know that the validity

of equation (A.46) satisfies the hypotheses of Lemma 3.3.3. We can therefore

conclude that

‖zk+1(t)‖2 ≤ ψ(x(rk+1)) for all t ∈ [fk+1, d
k+1
1] (A.49)

141

According to equation (A.39), fk+2 ≤ dk+1
1 . We can therefore combine equa-

tion (3.37) and (A.47) to show that fk+1 ≤ fk+2 and therefore conclude that

[fk+1, fk+2] ⊆ [fk+1, d
k+1
1]. Combining this observation with equation (A.49) yields

‖zk+1(t)‖2 ≤ ψ(x(rk+1)) for all t ∈ [fk+1, fk+2] which completes the third part of

the inductive statement for case k + 1.

We may therefore use mathematical induction to conclude that the inductive

statement holds for all non-negative integers k. The first part of the statement,

of course, simply means that the sequences {rk}∞k=0 and {fk}∞k=0 are admissible.

The third part of the inductive statement implies that the hypotheses of Corollary

3.2.2 are satisfied, thereby ensuring that the system’s induced L2 gain is less than

γ/β. 2

A.12 Proof of Corollary 3.3.6

Proof: From Theorem 3.3.5, we know

fk − rk ≤ ∆(x(rk−1); ǫ, δ) ≤ η1(x(rk), x(rk−1); ǫ)

Therefore, by Lemma 3.3.2,

‖zk(fk)‖2 ≤ φ(x(rk), x(rk−1); τk) ≤ ǫψ(x(rk))

142

Let us first take a look at Tk. From equation (3.36), we have

Tk ≥ rk+1 − fk = η2(x(rk), x(rk−1); τk, δ)

≥ 1

σ
ln

(

1 + σ
δψ(x(rk)) − ǫψ(x(rk))

µ0(x(rk)) + σǫψ(x(rk))

)

≥ 1

σ
ln

(

1 +
σ(δ − ǫ)λmin(

√
N)

‖
√
MAcl‖ + a‖

√
MB2‖ + σǫλmax(

√
N)

)

= ζ1 > 0

It is easy to show that

∆(x(rk); ǫ, δ) ≥ 1

σ
ln



1 +
ǫσ(1 − δ)λmin(

√
N)

∥

∥

∥

√
MAcl

∥

∥

∥
+ a‖

√
MB2‖ + δσλmax(

√
N)





= ζ2 > 0

holds. 2

A.13 Proof of Lemma 4.3.1

Proof: Consider agent i over the time interval [bik, b
i
k+1). For notational con-

venience, we assume bik = ri
0 < ri

1 < · · · < ri
di

k

< ri
di

k
+1

= bik+1.

Consider ‖xi(t) − xi(b
i
k)‖2 for any t ∈ [ri

j , r
i
j+1). We have

‖xi(t) − xi(b
i
k)‖2 = ‖xi(t) − x̂i(t)‖2 = ‖xi(t) − xi(r

i
0)‖2

≤
j−1
∑

l=0

‖xi(r
i
l+1) − xi(r

i
l)‖2 + ‖xi(t) − xi(r

i
j)‖2

for ∀t ∈ (ri
j , r

i
j+1).

143

Applying equation (4.34) into the preceding equation yields

‖xi(t) − xi(b
i
k)‖2 ≤

j
∑

l=0

δi
ci
‖xi(r

i
j)‖2 (A.50)

for all t ∈ (ri
j , r

i
j+1). Therefore,

‖xi(t) − xi(b
i
k)‖2 ≤

di
k
∑

l=0

δi
ci
‖xi(r

i
l)‖2 (A.51)

holds for all t ∈ [bik, b
i
k+1).

Because

‖εj
i (r

i
j+1)‖2 = ‖xi(r

i
j+1) − xi(r

i
j)‖2 =

δi
ci
‖xi(r

i
j)‖2,

we have

‖xi(r
i
j+1)‖2 ≤

(

1 +
δi
ci

)

‖xi(r
i
j)‖2

and therefore

‖xi(r
i
j+1)‖2 ≤

(

1 +
δi
ci

)j+1

‖xi(r
i
0)‖2 =

(

1 +
δi
ci

)j+1

‖xi(b
i
k)‖2 (A.52)

for j = 0, 1, 2, · · · , di
k.

Applying equation (A.52) into (A.51) yields

‖xi(t) − xi(b
i
k)‖2 ≤

di
k
∑

l=0

δi
ci

(

1 +
δi
ci

)l

‖xi(b
i
k)‖2

=

(

(1 +
δi
ci

)di
k+1 − 1

)

‖xi(b
i
k)‖2 =

ξi
k

ci
‖xi(b

i
k)‖2

for all t ∈ [bik, b
i
k+1). Also notice that di

k ≤ di
MANSD holds according to equation

144

(4.35). It is easy to show that

ξi
k = ci

(

1 +
δi
ci

)di
k+1

− ci ≤ ci

(

1 +
δi
ci

)di
MANSD

+1

− ci ≤ ̺i.

2

A.14 Proof of Lemma 4.3.2

Proof: We first consider the behavior of agent i after a successful transmission

occurs, say the kth successful transmission of agent i. For notational convenience,

we assume bik−1 = ri
0 ≤ ri

1 ≤ · · · ≤ ri
di

k

≤ ri
di

k
+1

= bik. Consider the derivative of
∥

∥

∥
ε

di
k+1

i (t)
∥

∥

∥

2
,

∥

∥

∥
xi(t) − xi(r

i
di

k
+1

)
∥

∥

∥

2
over the time interval [bik, f

i
k).

d

dt

∥

∥

∥
ε

di
k+1

i (t)
∥

∥

∥

2
≤
∥

∥

∥
ε̇

di
k+1

i (t)
∥

∥

∥

2
= ‖ẋi(t)‖2 = ‖gi

(

xD̄i
, κi

(

x̂Z̄i

))

‖2 ≤ θi

holds for all t ∈ [bik, f
i
k). Solving the preceding inequality with the initial condition

∥

∥

∥
ε

di
k+1

i (bik)
∥

∥

∥

2
= 0 implies

∥

∥

∥
ε

di
k+1

i (t)
∥

∥

∥

2
= ‖xi(t) − xi(b

i
k)‖2 ≤ θi(t− bik) ≤

1 − ξi
k

ci
max

{‖xi(b
i
k−1)‖2

2
,∆

}

(A.53)

holds for all t ∈ [bik, f
i
k), where the inequality on the right side is obtained by

applying (4.40).

Since the hypotheses in Lemma 4.3.1 are satisfied, we know

‖xi(t) − xi(b
i
k−1)‖2 ≤

ξi
k

ci
‖xi(b

i
k−1)‖2 ≤

̺i

ci
‖xi(b

i
k−1)‖2 (A.54)

145

holds for all t ∈ [bik−1, b
i
k) and therefore,

‖xi(b
i
k) − xi(b

i
k−1)‖2 ≤

ξi
k

ci
‖xi(b

i
k−1)‖2. (A.55)

Combining equation (A.53) and (A.55) implies that for t ∈ [bik, f
i
k),

‖xi(t) − xi(b
i
k−1)‖2 ≤ ‖xi(t) − xi(b

i
k)‖2 + ‖xi(b

i
k) − xi(b

i
k−1)‖2 (A.56)

≤ 1 − ξi
k

ci
max

{‖xi(b
i
k−1)‖2

2
,∆

}

+
ξi
k

ci
‖xi(b

i
k−1)‖2.(A.57)

Let ς ik =
1+ξi

k

2
. Therefore, equation (A.57), with equation (A.54), implies

‖xi(t) − xi(b
i
k−1)‖2 ≤ max

{

ς ik
ci
‖xi(b

i
k−1)‖2,

∆(1 − ξi
k)

ci
+
ξi
k

ci
‖xi(b

i
k−1)‖2

}

(A.58)

for all t ∈ [bik−1, f
i
k). Because 0 < δi ≤ ξi

k ≤ ̺i < 1, we know

δi ≤ ξi
k < ς ik ≤ 1 + ̺i

2
< 1. (A.59)

Equation (A.58) then suggests that

σi‖ei(t)‖2 = σi‖xi(t) − xi(b
i
k−1)‖2 = (ci − 1)‖xi(t) − xi(b

i
k−1)‖2

≤ max
{

ς ik‖xi(b
i
k−1)‖2, (1 − ξi

k)∆ + ξi
k‖xi(b

i
k−1)‖2

}

− ‖xi(t) − xi(b
i
k−1)‖2

≤ max
{

ς ik‖xi(t)‖2, (1 − ξi
k)∆ + ξi

k‖xi(b
i
k−1)‖2 − ‖xi(t) − xi(b

i
k−1)‖2

}

≤ max
{

ς ik‖xi(t)‖2, (1 − ξi
k)∆ + ξi

k‖xi(b
i
k−1)‖2 − ξi

k‖xi(t) − xi(b
i
k−1)‖2

}

≤ max
{

ς ik‖xi(t)‖2, (1 − ξi
k)∆ + ξi

k‖xi(t)‖2

}

(A.60)

holds for t ∈ [f i
k−1, f

i
k), where σi is defined in equation (4.10) and ci = 1 + σi.

146

Therefore,

σp
i ‖ei(t)‖p

2 ≤ max
{

ς ik
p‖xi(t)‖p

2,
(

(1 − ξi
k)∆. + ξi

k‖xi(t)‖2

)p}

(A.61)

With the fact that ((1 − ξi
k)∆ + ξi

k‖xi(t)‖2)
p ≤ (1 − ξi

k)∆
p + ξi

k‖xi(t)‖p
2 holds

for p ≥ 1, equation (A.61) implies

σp
i ‖ei(t)‖p

2 ≤ max
{

ς ik
p‖xi(t)‖p

2, (1 − ξi
k)∆

p + ξi
k‖xi(t)‖p

2

}

. (A.62)

We now consider V̇ for any t ≥ 0. Equation (4.7) implies that

V̇ ≤
∑

i∈N

[

− (ζi − |Si ∪ Ui|βi) ‖xi(t)‖p
2 + ρi|Ūi|‖ei(t)‖p

2

]

=
∑

i∈N

(ζi − |Si ∪ Ui|βi) [−‖xi(t)‖p
2 + σp

i ‖ei(t)‖p
2]

Because ζi−|Si ∪Ui|βi > 0 holds, applying equation (A.62) into the preceding

equation yields

V̇ ≤
∑

i∈N

− (ζi − |Si ∪ Ui|βi) ‖xi(t)‖p
2

+
∑

i∈N

(ζi − |Si ∪ Ui|βi)max
{

ς ik
p‖xi(t)‖p

2, (1 − ξi
k)∆

p + ξi
k‖xi(t)‖p

2

}

.

Let Ωt =
{

i ∈ N | ς ik
p‖xi(t)‖p

2 > (1 − ξi
k)∆

p + ξi
k‖xi(t)‖p

2

}

. Therefore, the pre-

147

ceding equation is equivalent to

V̇ ≤
∑

i∈Ωt

(ζi − |Si ∪ Ui|βi)
(

ς ik
p − 1

)

‖xi(t)‖p
2

+
∑

i∈N\Ωt

(ζi − |Si ∪ Ui|βi) (1 − ξi
k)∆

p

+
∑

i∈N\Ωt

(ζi − |Si ∪ Ui|βi) (ξi
k − 1)‖xi(t)‖p

2

Applying equation (A.59), (4.43), to the preceding equation implies

V̇ ≤
∑

i∈N\Ωt

(ζi − |Si ∪ Ui|βi) (1 − δi)∆
p

+
∑

i∈N

(ζi − |Si ∪ Ui|βi) (ς̄i − 1)‖xi(t)‖p
2

≤
∑

i∈N

(ζi − |Si ∪ Ui|βi) (1 − δi)∆
p

+
∑

i∈N

(ζi − |Si ∪ Ui|βi) (ς̄i − 1)‖xi(t)‖p
2

≤ ∆p
∑

i∈N

(ζi − |Si ∪ Ui|βi) (1 − δi)

−min
i
{(ζi − |Si ∪ Ui|βi) (1 − ς̄i)}

∑

i∈N

‖xi(t)‖p
2, (A.63)

which means V̇ ≤ 0 if
∑

i∈N

‖xi(t)‖p
2 ≥ ∆pπp,

where π is defined in equation (4.42).

We know if 1 ≤ p ≤ q <∞, the inequality

(

N
∑

i=1

‖xi‖q
2

)
1
q

≤
(

N
∑

i=1

‖xi‖p
2

)
1
p

≤ N
1
p
− 1

q

(

N
∑

i=1

‖xi‖q
2

)
1
q

(A.64)

148

holds. So equation (A.63) implies that if p ≤ q, then V̇ ≤ 0 when

∑

i∈N

‖xi(t)‖q
2 ≥ ∆qπq.

Similarly, if p ≥ q, then we have V̇ ≤ 0 when

∑

i∈N

‖xi(t)‖q
2 ≥ N1− q

p ∆qπq.

Combining these two cases, we have

V̇ ≤ 0 when
∑

i∈N

‖xi(t)‖q
2 ≥ µ∆qπq, (A.65)

where µ is defined in equation (4.41). By equation (4.38),

min
i∈N

Li

∑

i∈N

‖xi‖q
2 ≤ V (x) =

∑

i∈N

Vi(xi) ≤ max
i∈N

{L̄i}
∑

i∈N

‖xi‖q
2, (A.66)

holds, which, together with equation (A.65), is sufficient to show that there exists

T ≥ t0, such that
∑

i∈N

‖xi(t)‖q
2 ≤ max

i,j∈N

{

L̄i

Lj

}

µπq∆q

holds for all t ≥ T , as shown in [25]. 2

A.15 Proof of Lemma 4.3.3

Proof: Consider the set

Γ =

{

x ∈ Λ |
∑

i∈N

‖xi‖q
2 ≤

V (x0)

maxi∈N L̄i

}

. (A.67)

149

According to equation (4.46), we have

min
i∈N

Li

∑

i∈N

‖xi‖q
2 ≤ V (x) =

∑

i∈N

Vi(xi) ≤ max
i∈N

L̄i

∑

i∈N

‖xi‖q
2, (A.68)

which implies Γ ⊆ Λ and maxi,j∈N
L̄i

Lj
≥ 1.

We now show that V (t) ≤ V (t0) holds for all t > t0. We prove it by contra-

diction. Suppose that there is time instant t̂ > t0 such that V (t̂) > V (t0).

Notice that before the first time the inequality in equation (4.34) is violated,

the inequality

V̇ ≤
∑

i∈N

[−(1 − δp
i) (ζi − |Si ∪ Ui|βi) ‖xi‖p

2]

holds. Therefore, there must exist time instant t̄ > t0 such that V (t) < V (t0) for

all t ∈ (t0, t̄]. Since V (t) is continuous and V (t̂) > V (t0), we know there must

exist at least one time interval (s− ǫ1, s+ ǫ1) ⊂ (t̄, t̂) such that

V (s) = V (t0) (A.69)

V̇ (t) ≥ 0, ∀t ∈ (s− ǫ, s). (A.70)

Assume that s is the first time in (t0, t̂) satisfying equation (A.69), (A.70) with

a parameter ǫ1. Then we have

t0 < t̄ < s < t̂ (A.71)

V (t) ≤ V (t0), ∀t ∈ [t0, s). (A.72)

150

Equation (A.72) implies

x(t) ∈ Λ and
∑

i∈N

‖xi(t)‖q
2 ≤

V (t0)

mini∈N Li

(A.73)

for all t ∈ [t0, s) according to equation (A.68).

With the fact that

1

N q−1

(

∑

i∈N

‖xi‖2

)q

≤
∑

i∈N

‖xi‖q
2, ∀q ≥ 1, ∀xi ∈ R

n, (A.74)

equation (A.72), (A.73), (A.74) suggest that

1

N q−1

(

∑

i∈N

‖xi(t)‖2

)q

≤ V (t0)

mini∈N Li

holds for all t ∈ [t0, s) and any q ≥ 1. Combining this inequality with equation

(4.45), we have

gi

(

xD̄i
(t), κi(xZ̄i

(t))
)

≤ 2LiN
q−1

q

(

V (t0)

mini∈N Li

)
1

q

= θi

for all t ∈ [t0, s). Also equation (4.48) implies

f i
k − bik ≤ max

{

(1 − ξi
k)

2ciθi

‖xi(b
i
k−1)‖2,

(1 − ξi
k)

ciθi

∆

}

(A.75)

with

∆ =
θi

2Liπ̄N
1− 1

max{p,q} maxi,j∈N

{

(

L̄i

Lj

)
1

q

} . (A.76)

151

Therefore, following the same reasoning in Lemma 4.3.2, we have

V̇ (t) ≤ ∆p
∑

i∈N

(ζi − |Si ∪ Ui|βi) µ̄i − min
i
{(ζi − |Si ∪ Ui|βi) (1 − ς̄i)}

∑

i∈N

‖xi(t)‖p
2

= min
i
{(ζi − |Si ∪ Ui|βi) (1 − ς̄i)}

[

∆pπp −
∑

i∈N

‖xi(t)‖p
2

]

(A.77)

for all t ∈ [t0, s), where ς̄i is defined in equation (4.43). Since V̇ (t) ≥ 0 for all

t ∈ (s− ǫ1, s), from equation (A.77), we know

∆pπp ≥
∑

i∈N

‖xi(t)‖p
2, ∀t ∈ (s− ǫ1, s), (A.78)

which implies

µ∆qπq ≥
∑

i∈N

‖xi(t)‖q
2, ∀t ∈ (s− ǫ1, s), (A.79)

where µ is defined in equation (4.41).

Therefore, implementing equation (A.76) into the preceding equation implies

µ∆qπq =
V (t0)π

q

π̄q maxi∈N L̄i

≥
∑

i∈N

‖xi(t)‖q
2, ∀t ∈ (s− ǫ1, s). (A.80)

Since x(t) is continuous, equation (A.80) implies

V (t0)π
q

π̄q maxi∈N{L̄i}
≥ lim

t→s

∑

i∈N

‖xi(t)‖q
2 =

∑

i∈N

‖xi(s)‖q
2.

Because π̄ > π, we have

V (t0)

maxi∈N{L̄i}
>

V (t0)π
q

π̄q maxi∈N{L̄i}
≥
∑

i∈N

‖xi(s)‖q
2,

152

which implies that

V (t0) > max
i∈N

{L̄i}
∑

i∈N

‖xi(s)‖q
2 ≥ V (s).

This makes a contradiction with equation (A.69). Therefore, we conclude that

V (t) ≤ V (t0) holds for all t ≥ t0. 2

A.16 Proof of Theorem 4.3.4

Proof: By Lemma 4.3.3, we know the state trajectory x(t) ∈ Λ for all t ∈ t0.

Therefore, by equation (4.46),

min
i∈N

Li

1

N q−1

(

∑

i∈N

‖xi(t)‖2

)q

≤ min
i∈N

Li

∑

i∈N

‖xi(t)‖q
2 ≤ V (t) ≤ V (t0), ∀t ≥ t0(A.81)

holds, where the inequality on the left most is obtained using Holder’s inequality.

Therefore,

∑

i∈N

‖xi(t)‖2 ≤ N
q−1

q

(

V (t0)

mini∈N Li

) 1
q

, ∀t ≥ t0. (A.82)

According to equation (4.45), we have

gi

(

xD̄i
(t), κi(x̂Z̄i

(t))
)

≤ 2LiN
q−1

q

(

V (t0)

mini∈N Li

)
1
q

= θi (A.83)

for all t ≥ t0.

Since the hypotheses of Lemma 4.3.2 are satisfied with

∆ := ∆1 =
θi

2Liπ̄N
1− 1

max{p,q} maxi,j∈N

{

(

L̄i

Lj

)
1
q

} ,

153

we know that there exists a positive number t1 > t0, such that

1

N q−1

(

∑

i∈N

‖xi(t)‖2

)q

≤
∑

i∈N

‖xi(t)‖q
2

≤ max
i,j∈N

{

L̄i

Lj

}

µπq∆q
1 =

(π

π̄

)q V (t0)

mini∈N Li

, ∀t ≥ t1,

where µ is defined in equation (4.41).

Applying the preceding equation into equation (4.45) yields

gi

(

xD̄i
(t), κi(x̂Z̄i

(t))
)

≤ π

π̄
θi, ∀t ≥ t1. (A.84)

We now set ∆ := ∆2 = π
π̄
∆1 and use the preceding equation to bound the

behavior of gi over [t1,∞). Then Lemma 4.3.2 suggests that there exists t2 ≥ t1

such that

1

N q−1

(

∑

i∈N

‖xi(t)‖2

)q

≤
∑

i∈N

‖xi(t)‖q
2

≤ max
i,j∈N

{

L̄i

Lj

}

µπq∆q
2 =

(π

π̄

)2q V (t0)

mini∈N Li

, ∀t ≥ t2

With the preceding equation, we can re-compute the bound for gi over [t2,∞)

and re-apply Lemma 4.3.2 to get a new ultimate bound on
∑

i∈N ‖xi(t)‖q
2, so on

and so forth. Then there exists tk > t0 such that

∑

i∈N

‖xi(t)‖q
2 ≤

(π

π̄

)kq V (t0)

mini∈N{Li}
and gi

(

xD̄i
(t), κi(x̂Z̄i

(t))
)

≤
(π

π̄

)k

θi

hold for all t ≥ tk. Since π
π̄
∈ (0, 1), as k → ∞, the preceding equation implies

x(t) → 0, which means the NCS is asymptotically stable. 2

154

A.17 Proof of Theorem 5.1.2

Proof: Consider V̇ with V (x) = xTPx at time t.

V̇ = xT (PA+ ATP)x+ 2xTPBKx̂+ 2xTPCw

= xT (P (A+BK) + (A+BK)TP +
1

γ2
PCCTP)x

+2xTPBKe+ γ2‖w‖2
2 − ‖γw − 1

γ
CTPx‖2

2

≤ xT (P (A+BK) + (A+BK)TP +
1

γ2
PCCTP)x

+2xTPBKe+ γ2‖w‖2
2

Since equation (5.10) holds, the inequality above can be further reduced as:

V̇ ≤ −xTQx+ 2xTPBKe+ γ2‖w‖2
2

≤ −xT (Q− PBKM−1KTBTP)x

+eTMe + γ2‖w‖2
2

Combining equation (5.11) and the preceding inequality, we have

V̇ ≤ −xTWx+ eTMe + γ2‖w‖2
2

= −
∑

i∈N

xT
i Wixi +

∑

i∈N

eT
i Miei + γ2‖w‖2

2

≤ −
∑

i∈N

λmin(Wi)‖xi‖2
2 +

∑

i∈N

λmax(Mi)‖ei‖2
2 + γ2‖w‖2

2. (A.85)

Equation (5.13) implies

λmax(Mi)‖ei‖2
2 ≤ δ2

i λmin(Wi)‖xi‖2
2 (A.86)

155

holds. Applying this inequality into equation (A.85) yields

V̇ ≤ −
∑

i∈N

(1 − δ2
i)λmin(Wi)‖xi‖2

2 + γ2‖w‖2
2

≤ −min
i∈N

{

(1 − δ2
i)λmin(Wi)

}

‖x‖2
2 + γ2‖w‖2

2

for any t ≥ 0, which is sufficient to show that the NCS in equation (5.1) is finite-

gain L2 stable with an induced gain less than γ
√

mini∈N{(1−δ2
i)λmin(Wi)} . 2

A.18 Proof of Theorem 5.1.3

Proof: Notice that the inequality still holds when we expand the matrices in

equation (5.14) into nN ×nN dimension by appropriately adding zero. Summing

both sides of the expanded matrix inequalities yields the satisfaction of equation

(5.10) with

P = diag{Pi}N
i=1

Q = diag{Qi − |Si ∪ Ui|βIn×n}N
i=1

γ = max
i

{γi},

where Qi − |Si ∪ Ui|βIn×n > 0 holds due to equation (5.15).

Similarly, we can show the satisfaction of equation (5.11) with

W = diag{Wi}N
i=1

M = diag{ρ(|Ūi|)In×n}N
i=1

Since the hypotheses in Theorem 5.1.2 are satisfied, we conclude that the NCS is

156

finite-gain L2 stable with an induced gain less than maxi{γi}
√

mini{(1−δ2
i)λmin(Wi)} . 2

157

BIBLIOGRAPHY

1. A. Anta and P. Tabuada. Self-triggered stabilization of homogeneous control
systems. In American Control Conference, pages 4129–4134, 2008.

2. A. Anta and P. Tabuada. Space-time scaling laws for self-triggered control.
In 47th IEEE Conference on Decision and Control, pages 4420–4425, 2008.

3. K.E. Arzen. A simple event-based PID controller. In Proceedings of the 14th
IFAC World Congress, 1999.

4. K.J. Astrom and B.M. Bernhardsson. Comparison of Riemann and Lebesgue
sampling for first order stochastic systems. In Proceedings of IEEE Conference
on Decision and Control, 1999.

5. K.J. Astrom and B. Wittenmark. Computer-Controlled Systems: theory and
design. Prentice-Hall, third edition, 1997.

6. B. Bamieh. Intersample and finite wordlength effects in sampled-data prob-
lems. IEEE Transactions on Automatic Control, 48(4):639–643, 2003.

7. B. Bamieh, F. Paganini, and M.A. Dahleh. Distributed control of spatially
invariant systems. IEEE Transactions on Automatic Control, 47(7):1091–
1107, 2002.

8. T. Basar and P. Bernhard. H∞-optimal Control and Related Minimax Design
Problems: A Dynamic Game Approach. Birkhauser, 1995.

9. Roger Brockett. Stabilization of motor networks. In Proceedings of IEEE
Conference on Decision and Control, 1995.

10. Roger Brockett. Minimum attention control. In Proceedings of IEEE Confer-
ence on Decision and Control, 1997.

11. G. Buttazzo, G. Lipari, M. Caccamo, and L. Abeni. Elastic scheduling for
flexible workload management. IEEE Transactions on Computers, 51(3):289–
302, 2002.

158

12. E. Camponogara, D. Jia, B.H. Krogh, and S. Talukdar. Distributed model
predictive control. IEEE Control Systems, 22(1):44–52, 2002.

13. Daniele Carnevale, Andrew R. Teel, and Dragan Nesic. Further results on sta-
bility of networked control systems: a lyapunov approach. IEEE Transactions
on Automatic Control, 52:892–897, 2007.

14. A. Cervin, J. Eker, B. Bernhardsson, and K-E Arzen. Feedback-feedforward
scheduling of control tasks. Real-time Systems, 23(1-2):25–53, 2002.

15. T. Chantem, X. Hu, and M.D. Lemmon. Generalized elastic scheduling. In
IEEE Real Time Systems Symposium, 2006.

16. T. Chantem, X.S. Hu, and M.D. Lemmon. Period and deadline selection
problem for real-time systems. In Real Time Systems Symposium (work-in-
progress track), 2007.

17. T. Chantem, X. Wang, M.D. Lemmon, and X.S. Hu. Period and deadline se-
lection for schedulability in real-time systems. In Euromicro Technical Com-
mittee on Real-Time Systems, 2008.

18. X. Chen, K.K. Tamma, and D. Sha. Virtual-pulse time integral methodology:
A new approach for computational dynamics. Part 2. Theory for nonlinear
structural dynamics. Finite Elements in Analysis & Design, 20(3):195–204,
1995.

19. R. D’Andrea and G.E. Dullerud. Distributed control design for spatially in-
terconnected systems. IEEE Transactions on Automatic Control, 48(9):1478–
1495, 2003.

20. W.B. Dunbar. A distributed receding horizon control algorithm for dynami-
cally coupled nonlinear systems. In Proceedings of IEEE Conference on De-
cision and Control, 2005.

21. P. Gupta and P.R. Kumar. The capacity of wireless networks. IEEE Trans-
actions on Information Theory, 46(2):388–404, 2000.

22. D. Hristu-Varsakelis and P.R. Kumar. Interrupt-based feedback control over
a shared communication medium. In Proceedings of IEEE Conference on
Decision and Control, 2002.

23. M.R. Jovanovic and B. Bamieh. Lyapunov-based distributed control of sys-
tems on lattices. IEEE Transactions on Automatic Control, 50(4):422–433,
2005.

159

24. PA Kawka and AG Alleyne. Stability and performance of packet-based feed-
back control over a Markov channel. In American Control Conference, 2006,
page 6, 2006.

25. H.K. Khalil. Nonlinear systems. Prentice Hall Upper Saddle River, NJ, 2002.

26. R. Krtolica, U. Ozguner, H. Chan, H. Goktas, J. Winckelman, and M. Li-
ubakka. Stability of linear feedback systems with random communication
delays. In American Control Conference, 1991.

27. C. Langbort, R.S. Chandra, and R. D’Andrea. Distributed control design
for systems interconnected over an arbitrary graph. IEEE Transactions on
Automatic Control, 49(9):1502–1519, 2004.

28. E.A. Lee. Computing Foundations and Practice for Cyber-Physical Systems:
A Preliminary Report.

29. M.D. Lemmon, T. Chantem, X. Hu, and M. Zyskowski. On self-triggered
full information h-infinity controllers. In Hybrid Systems: computation and
control, 2007.

30. F-L Lian, J. Moyne, and D. Tilbury. Network design consdieration for dis-
tributed control systems. IEEE Transactions on Control Systems Technology,
10(2):297–307, 2002.

31. Q. Ling and M.D. Lemmon. Robust performance of soft real-time networked
control systems with data dropouts. In Proceedings of IEEE Conference on
Decision and Control, 2002.

32. Q. Ling and MD Lemmon. Optimal dropout compensation in networked
control systems. In Decision and Control, 2003. Proceedings. 42nd IEEE
Conference on, volume 1, 2003.

33. Q. Ling and MD Lemmon. Soft real-time scheduling of networked control
systems with dropouts governed by a Markov chain. In American Control
Conference, 2003. Proceedings of the 2003, volume 6, 2003.

34. C.L. Liu and J.W. Layland. Scheduling for multiprogramming in a hard-
real-time environment. Journal of the Association for Computing Machinery,
20(1):46–61, 1973.

35. P. Marti, C. Lin, S. Brandt, M. Velasco, and J. Fuertes. Optimal state feed-
back resource allocation for resource-constrained control tasks. In IEEE Real-
Time Systems Symposium (RTSS 2004), pages 161–172, 2004.

160

36. M. Mazo Jr and P. Tabuada. On event-triggered and self-triggered control
over sensor/actuator networks. In 47th IEEE Conference on Decision and
Control, pages 435–440, 2008.

37. D. Nesic and A.R. Teel. Input-output stability properties of networked control
systems. IEEE Transactions on Automatic Control, 49:1650–1667, 2004.

38. D. Nesic, A.R. Teel, and E.D. Sontag. Formulas relating KL stability estimates
of discrete-time and sampled-data nonlinear systems. Systems and Control
Letters, 38:49–60, 1999.

39. J. Nilsson. Real-Time Control Systems with Delays. Lund, Sweden: Lund
Institute of Technology, 1998.

40. Luigi Palopoli, Claudio Pinello, Antonio Bicchi, and Alberto Sangiovanni-
Vincentelli. Maximizing the stability radius of a set of systems under real-time
scheduling constraints. IEEE Transactions on Automatic Control, 50:1790–
1795, 2005.

41. D. Seto, J.P. Lehoczky, L. Sha, and K.G. Shin. On task schedulability in
real-time control systems. In IEEE Real-time Technology and Applications
Symposium (RTAS), pages 13–21, 1996.

42. K. G. Shin. Real-time communications in a computer-controlled workcell.
IEEE Transactions on Robotics and Automation, 7(1):105–113, 1991.

43. M. Tabbara, D. Nesic, and A.R. Teel. Stability of wireless and wireline net-
worked control systems. IEEE Transactions on Automatic Control, 52:1615–
1630, 2007.

44. P. Tabuada. Event-Triggered Real-Time Scheduling of Stabilizing Control
Tasks. Automatic Control, IEEE Transactions on, 52(9):1680–1685, 2007.

45. P. Tabuada and X. Wang. Preliminary results on state-triggered scheduling
of stabilizing control tasks. In Proceedings of IEEE Conference on Decision
and Control, 2006.

46. M. Velasco, P. Mart́ı, and E. Bini. Control-Driven Tasks: Modeling and
Analysis. In Proceedings of the 2008 Real-Time Systems Symposium-Volume
00, pages 280–290. IEEE Computer Society Washington, DC, USA, 2008.

47. M. Velasco, P. Marti, and J.M. Fuertes. The self triggered task model for
real-time control systems. In Work-in-Progress Session of the 24th IEEE
Real-Time Systems Symposium (RTSS03), 2003.

161

48. G.C. Walsh, H. Ye, and L.G. Bushnell. Stability analysis of networked control
systems. IEEE Transactions on Control Systems Technology, 10(3):438–446,
2002.

49. X. Wang and M. Lemmon. Self-triggered feedback control systems with
finite-gain L2 stability. IEEE Transactions on Automatic Control, 54(452
– 467):1680–1685, 2008.

50. X. Wang and M.D. Lemmon. Asymptotic stability in distributed event-
triggered networked control systems with delays. Submitted to 48th IEEE
Conference on Decision and Control.

51. X. Wang and M.D. Lemmon. Event-triggering in distributed networked con-
trol systems. Submitted to IEEE Transactions on Automatic Control.

52. X. Wang and M.D. Lemmon. Decentralized event-triggering broadcast over
networked systems. In Hybrid Systems: Computation and Control, 2008.

53. X. Wang and M.D. Lemmon. Event Design in Event-Triggered Feedback
Control Systems. In 47th IEEE Conference on Decision and Control, 2008.
CDC 2008, pages 2105–2110, 2008.

54. X. Wang and M.D. Lemmon. Event-triggered broadcasting across distributed
networked control systems. In American Control Conference, 2008.

55. X. Wang and M.D. Lemmon. State based self-triggered feedback control sys-
tems with L2 stability. In Proceedings of the 17th IFAC World Congress,
2008.

56. X. Wang and M.D. Lemmon. Event-triggering in distributed networked sys-
tems with data dropouts and delays. In Hybrid Systems: Computation and
Control, 2009.

57. X. Wang and M.D. Lemmon. Finite gain L2 stability in distributed event-
triggered networked control systems with data dropouts. Accepted to Euro-
pean Control Conference, 2009.

58. X. Wang and M.D. Lemmon. Self-triggered Feedback Systems with State-
Independent Disturbances. In American Control Conference, 2009.

59. W. S. Wong and R. W. Brockett. Systems with finite communication band-
width constraints – Part I: State estimation problems. IEEE Transactions on
Automatic Control, 42(9):1294–1299, 1997.

60. W. S. Wong and R. W. Brockett. Systems with finite communication band-
width constraints – Part II: Stabilization with limited information feedback.
IEEE Transactions on Automatic Control, 44(5):1049–1053, 1999.

162

61. H. Ye, AN Michel, and L. Hou. Stability theory for hybrid dynamical systems.
Automatic Control, IEEE Transactions on, 43(4):461–474, 1998.

62. L. Zaccarian, A.R. Teel, and D. Nesic. On finite gain Lp stability of nonlinear
sampled-data systems. System and Control Letters, 49:201–212, 2003.

63. W. Zhang, M.S. Branicky, and S.M. Phillips. Stability of networked control
systems. IEEE Control Systems Magazine, 21:84–99, 2001.

64. Y. Zheng, D.H. Owens, and S.A. Billings. Fast sampling and stability of
nonlinear sampled-data systems: Part 2. sampling rate estimations. IMA
Journal of Mathematical Control and Information, 7:13–33, 1990.

65. K. M. Zuberi and K. G. Shin. Scheduling messages on controller area net-
work for real-time CIM applications. IEEE Transactions on Robotics and
Automation, 13(2):310–316, 1997.

163

