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1.0 Introduction:

A networked dynamical system consists of numerous loosely coupled systems. These networked systems are

found throughout our national infrastructure in the guise of our electrical power grid and transportation

networks. Interruptions in the smooth operation of these networks can disrupt the lives of millions of users.

Increased demand due to demographic shifts and greater regulatory burdens have made it more difficult to

operate these networks in a cost effective manner. Tighter coupling between the constituent subsystems

in the network can make it easier for pointwise disturbances to blossom into system wide outages. Good

examples of such failures appear frequently in our electrical power grid. There is, therefore, a compelling

national need to devise more robust and cost effective methods for controlling such networked systems.

Many factors effect the behavior of a networked dynamical system. These include location dependent factors,

uncertain external disturbances, timely completion of tasks at each computational core, timely transmission

of required messages through the network, to name a few. Traditionally, these factors are dealt with by

domain specific experts. That is, control engineers derive sophisticated control algorithms to handle distur-

bances based on the periodically sampled systems, while computer scientists design scheduling algorithms in

an effort to satisfy the timing requirements. Unfortunately, due to the unpredictable nature of disturbances

suffered by many physical systems and the inherently dynamic states of networks (particularly wireless ones),

these approaches invariably sacrifice either robustness or cost effectiveness.

This project aims to improve significantly the robustness and cost effectiveness of controllers for networked

dynamical systems through investigating several innovative approaches. First, based on recent advances

in self-triggered feedback control systems, we propose a method to adaptively determine the sampling

periods of a distributed control system. This represents a radical departure from the traditional use of fixed

sampling periods. We then study distributed scheduling approaches that are suitable for such self-triggered

control systems. Centralized scheduling is avoided to achieve scalability. Finally, we examine the interplay of

control and real-time scheduling. We believe that our framework provides a seamless integration of control

and real-time scheduling and thus can achieve robust systems in a cost effective manner.

2.0 Mathematical Preliminaries:

Let’s first consider a set of decoupled dynamical systems. The state of the ith subsystem is the function,

xi : < → <ni that satisfies the ordinary differential equation,

ẋi(t) = fi(xi(t), wi(t)) + gi(xi(t))ui(t)

where i = 1, . . . , N . The functions ui : < → <mi and wi : < → <pi are the control input and disturbance

input, respectively. We assume that fi(0, 0) = 0 so the unforced decoupled system’s equilibrium point lies

at the origin. For simplicity we assume the system state is observable so we can use a centralized state

feedback controller, ki : <ni → <mi of the form, ui(t) = ki(xi(t)). This controller is chosen to reject the

input disturbance, wi, at the system’s state, xi. The amount of disturbance rejection is measured by the

system gain. In particular, let Si denote a functional mapping the ith disturbance input, wi, onto the state

function, xi, under the state feedback control. Si therefore represents the closed-loop dynamical system. The
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gain of this system is denoted as ‖Si‖ where

‖Si‖ = sup
wi

‖Si[wi]‖2

‖wi‖2

and ‖ · ‖2 is the usual L2 function norm corresponding to signal energy. The controller, ki, is chosen to

ensure that ‖Si‖ ≤ γ where γ is a constant specified by the designer. In this case γ represents the specified

performance level of the system. The smaller this value is, the greater the disturbance is rejected at the

output.

The framework in the preceding paragraph assumes that all subsystems are decoupled. We extend these

equations to include weak coupling between subsystems. This is done by requiring that the state function,

xi, satisfy the following differential equations,

ẋi(t) = fi(xi(t), wi(t)) + gi(xi(t))ui(t) +
∑

j∈Ni

hij(xj(t)) (1)

In this equation, the coupling between subsystems is modeled by the summation. This sum is taken over

all neighbors of the ith subsystem. This neighborhood set is denoted as Ni ⊂ {1, · · · , N}. The “size” of the

function hij : <nj → <ni characterizes the degree of coupling between subsystems.

Decentralized controllers for the system in equation (1) use feedback to limit the coupling between subsystems

to the point where the “local” controller, ki, is able to do its job. These controllers only use information

from their immediate neighbors to achieve their objective so that no single controller observes the state of

the entire network. The decentralized controller for the ith subsystem might have the form,

ui(t) = ki(xi(t)) +
∑

j∈Ni

`ij(xj(t))

where ki is the local controller and `ij : <nj → <ni is a decoupling controller that essentially tries to cancel

out the coupling between the subsystems.

This ad hoc approach to controlling loosely coupled dynamical systems has been in use for a long time.

Early work in decentralized control dates back to the 1970’s where researchers enforced diagonal dominance

conditions on the system matrices for networks of linear systems [46]. A review of this work will be found in

[43]. This control was rarely optimized and recent work in [12] and [22] has tackled that issue by recasting

the networked system as a linear fractional transformation. This enables the use of well known optimal and

robust controller synthesis methods, again for linear systems. Extensions of these ideas to nonlinear systems

are possible using Lyapunov analysis methods. Very recent efforts in this direction developed a “distributed”

receding horizon control strategy [13] to decentralized control.

All of the aforecited work, however, presumes that the neighboring state information can be accessed at any

time. This is, of course, not possible in practice. The subsystems in real-life networked systems (such as

the electric power grid) are separated by large physical distances. This means that state information must

be communicated between subsystems and usually this communication takes place over packet-switched

networks. Packet switched networks only transmit messages at discrete instants in time. Let’s associate the

following monotone increasing sequence {ri[k]}∞k=1
of time instants with the ith subsystem. The time ri[k]

denotes the time when the neighbors of subsystem i sampled their states for the kth time. We also identify

a sequence of time delays {τi[k]}∞k=1
. The sum ri[k] + τi[k] represents the time when the ith controller

first outputs the control signal based on the kth sample. These sampled states are then used by the ith
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subsystem’s controller so that the actual control for this system is

ui(t) = ki(xi(t)) +
∑

j∈Ni

`ij(xj(ri[k])) (2)

where t is constrained to lie between two consecutive sampling times, ri[k] + τi[k] and ri[k + 1] + τi[k + 1].

The system formed by equations (1) and (2) constitutes this project’s object of interest. It is a hybrid dy-

namical system for the control is a function of both continuous time processes and discrete-time processes.

What we are interested in doing is characterizing the sample time sequences, {ri[k]}∞k=1
, for each subsystem

such that the gain of the entire networked system is less than the specified level of γ. We will characterize

those sampling times using an extension of the analysis that [23] used in developing self-triggered controllers

for single processor systems. This project will use that characterization to identify a set of quality-of-service

(QoS) constraints on a sporadic firm/soft real-time environment such that satisfaction of these constraints

guarantees the safe operation of the networked system. We intend to develop networking protocols for wire-

less multi-hop communication networks that satisfy these constraints. In short, this project’s agenda is to

find a path by which we can discard the hard periodic real-time task models that have dominated computer

controlled systems. We believe the self-triggered controllers may provide this path.

3.0 Self-triggered Control Systems

This project’s approach is based on a generalization of the self-triggered control analysis found in [23]. That

earlier work characterized sampling times for a single processor system executing multiple control tasks.

This section generalizes that analysis to networked control systems with multiple processors communicating

over a packet switched network. The main result is a threshold condition (equation 7) that provides a basis

for self-triggering the exchange of information between processors within the networked systems.

3.1 System Model

We can assume without great loss of generality that the time between successive sampling instants is small.

It therefore makes sense to use a linearization of equation 1 around the network’s equilibrium point to

determine the sampling times. These linearized state equations are

ẋi(t) = Aixi(t) + B1iui(t) + B2iwi(t) +
∑

j∈Ni

Hijxj(t)

where Ai, B1i, B2i, and Hij are matrices of suitable dimension. We now form the network state vector,

x = vect(xi) by stacking the state vectors of all subsystems. In a similar way we let u = vect(ui) and

w = vect(wi) denote the control input and disturbance input vectors to the entire system. The ith subsystem

receives “samples” of its neighbors’ states.

To simplify the following narrative, we assume that the delay τi[k] = 0 and simply focus on the sampling times

ri[k]. Under this simplification the control generated by the ith subsystem can be written as u(t) = Lx(ri[k]).

The function x : < → <n (where n =
∑

i ni) is therefore the state function of the entire networked system

and it satisfies the linear differential equation,

ẋ(t) = Ax(t) + B1Lx(ri[k]) + B2w(t) + Hx(t)

for t ∈ [ri[k], ri[k +1]) where A = diag(Ai), B1 = diag(B1i), B2 = diag(B2i) are block diagonal matrices and

H is a block matrix whose components are the matrices Hij . The gain matrix L is a block matrix whose
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ijth block , Lij is a gain that decouples subsystems i and j. Note that Lij = 0 for i /∈ Ni, so the actual

control ui(t) only depends on the states of those subsystems that are in Ni.

3.2 Sample Time Selection

We will now impose three assumptions on the system under consideration to help identify the sampling

instants for which the closed-loop gain is less than γ. These assumptions are itemized below.

Assumption 1: The decoupled systems have an induced gain less than γ.

A sufficient condition for this assumption [14] is that there exist a symmetric positive definite matrix, Pi,

such that

AT
i Pi + PiAi +

1

γ2
PiB2iB

T
2iPi + I ≤ 0 (3)

for i = 1, . . . , N . This is an algebraic Riccati inequality in which γ is the desired performance level for the

decoupled system. This inequality always has a solution for some positive γ.

Assumption 2: The interconnection strength between subsystems is “weak”.

A sufficient condition for this assumption is that there exist symmetric matrices Qi such that

PH + HT P ≤ Q = diag(Qi) (4)

where P = diag(Pi). This condition will not hold for all interconnected system. It essentially represents a

limit on the interconnection strength between the subsystems and is identical to related assumptions used

by [13] in formulating distributed receding horizon control strategies.

Assumption 3: There exists a suitable set of “stabilizing” decoupling gains, L.

This assumption can be enforced by requiring that there exist decoupling gain matrices, L, such that

PH + HT P + PB2L + LT BT
2

P ≤ αI (5)

for some α ∈ (0, 1). Given assumption 2, this condition is relatively easy to enforce. This assumption can

be more difficult to enforce if the subsystem only has indirect access to its neighbors’ state vectors.

By using Schur complements, the inequalities in equations 3-5 can be recast as linear matrix inequalities

(LMI). We can then use well known LMI numerical algorithms to determine matrices Pi, Qi, and L.

With these three assumptions we can readily find a condition characterizing sampling times, {ri[k]}, that

ensure the networked system’s gain is less than γ/
√

1 − α. In particular, let’s define the new variable

zi =
∑

j∈Ni
Lijxj(ri[k]) where ri[k] is the kth sampling instant for subsystem i’s neighbors. We may then

rewrite the network state equations as ẋ = Ax+B1w+B2z +Hx where z = vect(zi). Consider the function,

V : <n → < such that V (x) = xT Px where P = diag(Pi). We treat V as a candidate Lyapunov function for

the networked system. V becomes a Lyapunov function if its directional derivative is negative definite. Using

the preceding assumptions and a completing the square argument, we can readily show that the directional

derivative for V satisfies the inequality

V̇ (x) ≤ −‖x‖2 + γ2‖w‖2 + xT (PH + HT P )x + xT PB2z + zT BT
2

Px ≤ xT Xx + γ2‖w‖2

where xT =
[

xT zT
]

and X =

[

−I + Q PB2

BT
2

P 0

]

. So if we can ensure that for all t ∈ [ri[k], ri[k + 1])

that

xT Xx ≤ −(1 − α)‖x‖2 (6)
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for some 0 < α < 1, then we can conclude that V̇ (x) ≤ −(1 − α)‖x‖2 + γ2‖w‖2, which from passivity

arguments imply that the networked system’s induced gain is less than γ/
√

1 − α.

Note that the matrix X consists of four block diagonal matrices. This means that the condition in equation

6 can be enforced by requiring the following inequality

[

xT
i (t) zT

i

]

[

−Ii + Qi PiB2i

BT
2iPi 0

] [

xi(t)

zi

]

≤ −(1 − α)‖xi(t)‖2 (7)

hold for all i = 1, . . . , N . (7) is a function of the sampled neighboring state vectors, zi, as well as the

subsystem state, xi. Over the time interval [ri[k], ri[k+1]), the sampled states, zi, are held constant while xi

is a function of time. The inequality in (7) can therefore be checked “locally” by the ith subsystem without

any additional information from the neighboring subsystems.

The analysis leading to (7) can be seen as generalizing the analysis in Lemmon et al [23] to real-time

networked systems. This analysis method makes use of candidate Lyapunov functions to characterize a

system’s local behavior. This is a common technique that has been used to approximate sampling intervals

in nonlinear sampled-data systems. Zheng et al [54], for example, used it to estimate sampling times for a

class of nonlinear sampled data systems. Nesic et al. [38] used this approach within the context of input-to-

state stability (ISS) to bound intersample behavior. Tabuada et al [49] built upon the ISS analysis method

to estimate sampling periods for a class of nonlinear event-triggered control systems.

3.3 Benefits of Self-triggered Control

The most significant consequence of (7) is that the ith subsystem can use it as a local threshold test for

deciding when to request updates of its neighbors’ state vectors. This threshold test can be viewed as the basis

for either an event-triggered or a self-triggered feedback controller. Event-triggered controllers were proposed

by [2]. Variations on the approach have appeared under a variety of similar names such as interrupt-based

feedback [16], Lebesgue sampling [3], asynchronous sampling [52], or state-triggered sampling [49]. All of

these approaches apply a threshold test on some signal within the control loop to trigger sampling of either

the plant output or state. Our inequality in (7) can simply be treated as another possible threshold test for

event-triggered feedback.

Except for relay systems [50] or pulse width modulated feedback [39], event-triggered feedback can be

impractical since it requires integrating an analog event detector into the physical plant. A more pragmatic

approach is found in the self-triggered task model of [51]. In self-triggered systems, the control task

determines its next sampling time based on the most recent sampled state. Self-triggered task models,

therefore, can be implemented in existing computer controlled system without the need for any special

analog event-detectors.

In self-triggered feedback, the next “sampling” instant is determined using our prior knowledge of the system

dynamics. For our application, the ith subsystem knows its own dynamical models and assumption 2

represents an upper bound on the rate of growth in the neighboring systems’ states. We can therefore use

this information to numerically integrate forward in time to determine when the threshold test (equation 7)

is first violated. Once this “time” is known, the ith subsystem can broadcast this time to its neighbors. The

neighbors would then start interval timers that expire at this predicted sampling time. Upon expiration of

this timer, all of the neighbors then sample and transmit their state information back to the ith subsystem.

Self-triggered feedback has a number of benefits that we discuss below.
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Note that this particular approach to trigger sampling does not require “global” time synchronization over

the entire network. The sampling “requests” are issued in an asynchronous manner. If these requests are

passed over multi-hop wireless (radio) channels, like those found in embedded sensor networks, the broadcast

request can be used to “locally” synchronize the clocks of all neighbors so that samples are gathered at the

same time. This is an important benefit of our method, since the message overhead required to maintain

precise global clock synchronization can be prohibitive in any large-scale communication network.

Prior work by [23] suggests that self-triggered controllers have robust performance to timing delays. This

prior work showed that self-triggering was able to maintain high-levels of application performance even in

the face of significant processor overloading. The system’s robust performance is a direct consequence of the

inherent feedback nature of the self-triggered control. Predicted sampling periods are strongly dependent

on the state of the system when it was last sampled. This means that if there were some timing delay, we

can compensate for that disturbance by shortening the time until the next sample is taken. As we’ll discuss

below, such timing delays occur often in best effort communication networks such as the Internet or wireless

multi-hop networks. This observation suggests that by using self-triggered decentralized controllers, we can

still guarantee the performance of the overall system even when messages are passed over such networks.

Self-triggered control systems usually generate sporadic streams of messages between neighboring systems.

This occurs because the time between the samples is determined by how quickly the state vector violates the

condition in equation 7. That rate, of course, is a function of the system state at the prior sampling time, so

we can expect these sampling times to vary over a wide range. This fact was experimentally verified by [23]

in which histograms of the sampling times clearly showed a probabilistic distribution with a wide variance.

Note that earlier sample time approximations [54] and [49] can be seen as lower bounds on the distribution

of sampling times satisfying equation 7. So our approach can often reduce the average sampling rate by

using longer sampling periods.

We can further reduce the sampling rate by adaptively adjusting the performance level γ required by the

system. Recall that control system performance is measured by the “gain” from the disturbance to the state

output. This gain is really a measure of the maximum amount of disturbance rejection for the “worst-case”

disturbance. In real-life, such worst-case disturbances may not always be present. So if our system can

detect when the disturbance level is below this “worst-case”, it would make sense to “relax” the performance

requirement by raising γ. Relaxing the performance requirement will change the sample time distribution

in a way that increases the average sampling period, thereby further reducing the sampling rate. In other

words, if our subsystems can monitor the average “disturbance” level, then they can adaptively adjust their

performance objectives in response to observed changes in the disturbance environment, thereby providing

greater control over the flow of information across the communication network.

The fact that self-triggered controllers require lower bit rates than traditional open-loop time-triggered

controllers is important in developing scalable strategies for control over real-time communication networks.

It is already well known that multi-hop wireless networks have inherent throughput limitations [15]. These

are fundamental limitations that can only be circumvented if we reduce the amount of “work” that the

network has to do in transporting data. This is done by either reducing the bit rate, reducing the distance

over which messages are transmitted, or doing both [44]. Our application does both. Self-triggered control

strategies appear to reduce the bit rate required to assure a specified level of control system performance.

But in addition to this, the decentralized nature of the control guarantees that messages are only transported

over a single hop, thereby reducing the distance over which network traffic must travel.
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3.4 Proposed Work - Decentralized Controllers

The self-triggered approach in this section generalizes results in a preliminary paper [23] that is just about

to appear. The generalization in Section 3.3 has not been previously presented by our group. There are a

number of open issues that we plan to investigate in this project. In particular, we will study the proposed

self-triggered control architecture in detail.

We need to do additional work to determine the impact that delays and dropped feedback might have

on control system performance. It may be the case that “certain” neighboring measurements should be

assigned a higher priority. This assignment of priority should be based on a solid understanding of the

system dynamics. How one should assign such priorities must be determined if we are to be successful in

developing the real-time scheduling approaches (to be discussed in Section 4).

We will aso explore the extent to which the three assumptions given above can be relaxed. Of particular

interest is how best to relax the decoupling assumption in equation (4). The analysis given above relied on

a linearization of the underlying dynamical systems. There is good reason to believe, however, that the L2

analysis methods we’re using can also be extended to certain classes of nonlinear dynamical systems as well.

Finally, we need to extend our framework to deal with output feedback as opposed to pure state feedback.

4.0 Real-time Scheduling over Networks of Self-Triggered Con-
trollers

Implementing self-triggered control systems via a packet-switched communication network faces a number of

challenges. For example, what is the best way of “scheduling” predictable transmissions in order to prevent

message collisions while satisfying some real-time guarantees on message delivery, and how do we deal with

packet losses due to network congestion? Furthermore, we recognize that deriving the next sampling periods

is computationally non-trivial and it can be unrealistic to expect the sampling periods to be re-evaluated

during every sampling period. A natural question is how often the sample periods should be updated and

what to do in between these updates. Analyzing the performance of the resulting networked dynamical system

is also of critical importance in quantifying the robustness of such a system. This part of the project will

address these questions by investigating scheduling and admission control strategies in a real-time network

environment.

4.1 Real-time Networking Model

Let’s first describe the messaging environment for decentralized control over ad hoc wireless networks. Such

communication networks occur frequently in a variety of embedded sensor network applications. The net-

worked dynamical system consists of N systems that communicate over a wireless network. Connectivity

within the communication network is modeled as a graph, (N ,A) where N = {1, · · · , N} is a discrete set

of nodes (systems) and A ⊂ N × N is a set of arcs (communication channels) between subsystems. The

pair (i, j) is an arc in A if subsystems i and j can exchange messages. We associate a message stream

(analogous to tasks used in traditional textbooks on real-time systems [37, 21]) with each channel (arc) in

the communication graph. A message stream consists of messages (analogous to jobs of a real-time task)

that are released for transmission at a release time. We may therefore associate a sequence of release

times, {rij [k]}∞k=1
to the (i, j)th message stream. If the release times satisfy rij [k] = rij [k− 1]+Ti for some

constant Ti and for all k > 0, then we say that the system is periodic. Otherwise, we say that the system

is sporadic.
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A released message may be transmitted at some time after its release. In multi-hop radio networks, we can

assume that a transmitted message is caught by the recipient’s radio if the radio can successfully recover

all of the bits in the message packet. Transmitted messages cannot always be caught and even if they are

caught, they may not be delivered to the application. If the radio detects an error in the packet or if the

“time-stamp” is too old, then the radio may elect to “drop” the packet. In particular, let Dij denote the

relative deadline on message stream (i, j) and let fij [k] denote the time when the kth message of this

stream is caught. We’ll assume that the radio delivers the message to the application if Dij ≥ fij [k]−rij [k].

If we can guarantee that this occurs for all k, then we say the messages are delivered with a hard real-time

guarantee. In practice, however, we know messages may be corrupted or delayed in transmission, so it is

more reasonable to assume that Pr ((fij [k] − rij [k]) ≤ Dij) < 1 so that there is a finite probability of a

message missing its deadline. We say message delivery is soft if such late messages are still delivered to the

application. We say message delivery is firm if these late messages are dropped.

For the decentralized self-triggered control systems discussed in Section 3, we argue that a natural real-time

abstraction presumes that messages are transmitted in a sporadic manner with firm or soft real-time guar-

antees on their delivery. Provided that this environment satisfies certain quality-of-service (QoS) constraints,

the decentralized controller should be able to guarantee specified levels of application performance. So the

chief question addressed in this part of the project concerns the precise form of these QoS constraints and

how to schedule message transmission to ensure these constraints are satisfied.

The reliable transmission of released messages requires a number of “services” that are usually encapsulated

into layers that form a network stack. We consider, for the purposes of this proposal, a simplified version

of the traditional OSI stack that consists of only three layers: (i) the top layer called the application layer

consisting of services that control the application’s (i.e. controller) access to the network, (ii) the middle

layer called the network layer appending routing headers to the application layer’s data packet, and (iii)

the lowest layer, i.e., the radio layer, which is responsible for the transmission of packets over the physical

channel.

4.2 Related Work and Unique Challenges

Radio channels must be accessed in a mutually exclusive manner. This means that node i’s message is caught

by the jth node if no neighbor of node i or j (other than i) is also transmitting at the same time. If this

condition is not satisfied, messages from two transmitters collide and cannot be successfully decoded by the

radio layer. The radio layer can reduce the likelihood of packet collisions through carrier-sense media access

(CSMA) protocols. CSMA schemes detect if the channel is “busy” and then back off the transmission of a

packet by a random amount. CSMA is very important in helping reduce the frequency of message collisions,

but it is not fool proof. Collisions are still possible if two transmitters that are “hidden” from each other

decide to transmit at the same time to a receiver that lies within the range of both transmitters. This is

sometimes referred to as the hidden node problem and its solution requires a more elaborate handshaking

mechanism between the transmitter and receiver to help prevent such collisions [1]. These handshaking

mechanisms are usually implemented in mid-level layers of the network stack. The MACAW protocol is a

well-known example of such a handshaking mechanism [5].

CSMA/MACAW can help reduce the frequency of message collisions in multi-hop radio networks. These

access protocols were designed for networks in which few assumptions were placed on users’ requests for media

access. In self-triggered control systems, however, user requests can be predicted based on our knowledge of

the control application. This fact can be exploited to schedule transmissions in a way that further reduces
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channel collisions and hence maximizes channel bandwidth.

Scheduling message transmission and delivery to meet real-time constraints is a non-trivial task particularly

for wireless networks. Prior work usually relied on fully synchronized nodes coupled with time-division

multiple access (TDMA) schemes or presume a priori knowledge of packet arrival patterns [10] [27] [40].

Such approaches lack the flexibility to respond to dynamic changes in the networking environment and are

not suitable for our self-triggered control system.

A number of papers have examined the problem of distributed scheduling and resource allocation. These

papers can be categorized in two groups. One group exploits the broadcast nature of the wireless medium

and piggybacks scheduling related information (such as priority) so as to obtain global information about

the network state [6] [19]. The disadvantage of this approach is that extra resource overhead makes it

less scalable. The other group [53] totally forgoes global information and simply monitors packet delay

information to adjust the contention window, thereby adjusting the priority of the packets.

Our proposed approach adopts the distributed scheduling concept. The unique properties of self-triggered

dynamical systems make the basic scheduling procedure easier to implement but in the meantime introduce

some interesting problems. We believe that if done properly, the combination of self-triggered model together

with distributed scheduling can significantly improve system robustness in a cost effective manner.

Let us examine the precise way in which control messages are passed in our system. Self-triggered controllers

“predict” the next time they must receive sampled updates of their neighbors’ states. This means that a

node can “request” a future update from its neighbors. This request would be transmitted as a short control

message. Upon receipt of that message, the neighboring nodes would start an interval timer. Upon expiration

of that timer the neighbors would sample and transmit their states back to the requesting node. There are

two scenarios we need to consider and they are shown in figure 1.

Scenario 1: In the first scenario shown on the lefthand side of figure 1, we have a single node requesting

future samples from its neighbors. The neighbors would all want to release their messages at the same time.

So the transmission of such messages must be scheduled in a way to avoid collisions (as shown in the figure).

We refer to this scenario as receiver scheduling.

Scenario 2: The second scenario is shown on the righthand side of the figure 1. In this case we have a single

neighbor that receives two requests. The two requests may or may not have the same sampling time and

deadline. Scheduling may be needed in order to satisfy the deadline constraints. We refer to this scenario

as sender scheduling.
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Figure 1: LEFT: neighbors need to schedule message transmission to prevent collision at the requesting

system. RIGHT: neighbor needs to schedule message transmissions to multiple requesting subsystems
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Traditional real-time scheduling employs priorities to order task execution. The most often used priority is

task deadline, which leads to the well known earliest-deadline first (EDF) scheduling discipline [34]. With

the self-triggered networked control systems, the message deadlines can be selected by the requesting node

and readily made known to the neighbors when sampling requests are sent out. As discussed in Section

3.3, since each node only requires information from its neighboring nodes, no global synchronization is

needed. Therefore, our self-triggered controllers adopt the EDF scheduling discipline locally at each node

such that messages with the earliest deadlines are transmitted first. How to select message deadlines to

ensure performance is one of the proposed task as discussed in Section 3.4.

To achieve robustness in the self-triggered dynamical system, we face additional unique problems. First, in

the receiver scheduling scenario, we often have messages with the same deadline (left hand picture in figure

1). Should we break the ties arbitrarily as done in most real-time scheduling? Second, if a sender must

transmit multiple messages with different deadlines, what is to be done if not all deadlines can be satisfied?

Third, due to channel conditions, some messages may be lost. What is the best way to maintain overall

system performance? We will discuss below the approaches that we will explore for solving these problems.

4.3 Proposed Work – Real-time Network Scheduling

In handling the receiver scheduling scenario, we believe that arbitrary tie breaking is not desirable since

the underlying physical system under control may respond to the lateness of different neighbors differently.

We propose that the receiver (i.e., the requesting node) assigns priorities to the neighbors’ replies. Pri-

ority assignment will be based on how “important” that neighbors’ reply is in enforcing the application’s

performance specification.

Recall that the decoupling feedback gain, `ij , in equation (2) is chosen to help “decouple” neighboring

subsystems. Clearly, if the neighboring state is small, its contribution to decoupling will be small and so it

should have a lower priority. The requesting node can use its a priori knowledge of its neighbors’ dynamics

to predict which states should be “large” at the next release time. So the natural thing to do is have the

requesting nodes broadcast these “priority” levels when it first broadcasts the requested next release time.

The priority may be in the form of ”deadlines” such that higher priority ones get a shorter deadline. The

challenge here is how to ”decrease” or ”increase” the deadlines such that they are meanful to both the

receiver and sender nodes. We will investigate the deadline choices in detail in the project.

When attempting to address the problem of missing deadlines by the senders, we note that the sender

node basically schedules periodic messages between sampling period updates. Well known schedulability

conditions can be used to determine whether all deadlines (which are often much smaller than periods) can

be satisfied [4]. If the messages cannot be feasibly scheduled, EDF scheduling can lead to unpredictable

performance degradation. To overcome this problem, we can either selectively drop some messages or allow

all messages to be sent but alter the periods of certain messages. The goal of both of these approaches is to

achieve predictable performance degradation.

Suppose we could somehow determine the relative importance of the messages to be sent. We may simply

drop those messages of less importance. It is not difficult to see that continuously dropping messages

intended for the same receiver would cause the physical system at that receiver to suffer severe performance

degradation. Therefore, some mechanism is needed to dynamically adjust message importance. The impact

of dropping samples on control performance needs to be studied.

An alternative to dropping messages is to modify message periods to reduce bandwidth requirement. This
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approach is attractive as it somewhat “resembles” the self-triggered control that we intend to adopt, but

could be made much less computationally demanding. We propose to leverage our experience on elastic

scheduling to examine this approach in greater detail. The elastic scheduling mechanism was first proposed

by Buttazzo [7] for single processor real-time systems. Buttazzo’s elastic task model uses a mechanical

analogy to develop an algorithm for adjusting task periods. The task model was extended by Caccamo et

al. [9] to handle uncertainties in computation time. A later paper [8] showed how to modify the original

algorithm to handle additional resource constraints.

A critical factor in elastic scheduling is the task’s elastic coefficient which models a task’s relative importance.

In essence, the algorithm tries to extend the periods of less important tasks in order to satisfy the deadline

requirement of the resulting tasks. In doing so, some optimization objective is met. Our recent work [17]

revealed that Buttazzo’s elastic scheduling algorithm can be viewed as minimizing a task set’s summed

squared utilization subject to the EDF schedulability condition [34]. Furthermore, we have developed a

elastic scheduling algorithm for task deadlines less than periods [11]. Since the elastic scheduling algorithm

(with O(n2) complexity) in fact solves a specific convex programming problem, we feel that it can be used

in our proposed work to help achieve quantifiable performance degradation. We will investigate different

objective functions to find the proper one for the networked control system.

From the above discussions, both message dropping and elastic scheduling have a common concern regarding

the way in which relative importance between messages might be chosen. The relative importance (or elastic

coefficients) reflects the “relative” priority of the two requesting nodes in the sender scheduling scenario.

One way of selecting these weights might be through a “learning” process in which we use the time rate

of change in requested message release times as a measure of how “dissatisfied” the requesting agent is

with its given priority level. The scheduling agent would then use this “dissatisfaction” to set a “price” for

earlier transmission in much the same way that Kelly et al. [20] proposed using shadow price formalisms for

rate control in multi-hop networks. We propose using the game theoretic ideas inherent in the shadow price

formalism to develop “learning” algorithms that schedulers use to automatically adjust the elastic coefficients

in Buttazzo type scheduling algorithms.

Addressing the message loss problem may also leverage the elastic scheduling approach. For example, when

a receiver does not receive its desired messages, it could “raise” the importance of its message stream. The

elastic scheduling algorithm would then re-adjust the message periods by allowing this message stream to

be transmitted more often (with shorter periods) and thus increases the probability for successful message

delivery. Note that the message loss problem could also be handled through the self-triggering mechanism by

re-evaluating the sampling periods. In our project, we will study and compare these two different approaches

in terms of tradeoff between the impact on system performance and the computational demands.

Precisely how well control systems work under self-triggering together with the above scheduling methods

remains to be seen. The scheduling methods can only provide firm real-time guarantees. One goal of this

project is to study the behavior of self-triggered control under the firm and soft real-time environments and

determine suitable constraints whose satisfaction assures some level of application performance. The precise

issue is how quickly control system performance degrades under dropped or delayed messages?

We have answered that question, in part, for firm real-time messaging environments. Our prior work studied

a Markov chain generalization of the (m, k)-firm guarantee model [41]. In [30] we related this Markov chain

model for dropped messages to the application’s performance using jump linear systems. We then identified

a Markov chain dropout process that “optimized” the application’s performance for a given average dropout
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rate. That “optimal” dropout process was used as a quality-of-service (QoS) constraint (called an MC-

constraint) on the firm real-time environment. In [36, 35, 18], we showed how to develop real-time schedulers

enforcing this QoS constraint in a way that provided guarantees on the control system’s performance.

Prior work [25] examined how this approach might be applied to networked dynamical systems, so our

work with MC-constraints provides a natural starting point for studying the impact that firm real-time

environments might have on the performance of self-triggered decentralized controllers. This is, however,

just one initial direction. We believe that similar methods might be used to investigate soft real-time

messaging as well. The expectation is that these analyses will enable us to identify a suitable set of soft

or firm real-time constraints that can assure some probabilistic measure of application performance (similar

to what we did in [36]. We believe this is a realistic expectation, based on the apparent robustness of

self-triggered control to delays [23].

5.0 Technology Transfer

We believe that it is important that this project have an impact that extends well beyond our respective

research communities. One way of broadening this project’s impact is through technology transfer. This

section discusses our technology transfer plans.

Dr. Lemmon is currently working with a local company named EmNet LLC. This company was created by a

former Ph.D. student at the University of Notre Dame (Dr. Luis Montestruque). Its start up was capitalized

by a grant that Dr. Lemmon had from the state of Indiana to develop an embedded sensor network for

reducing the frequency of combined sewer overflow (CSO) events. The company’s main product line is the

Chasqui node. This is an embedded sensor node based on U.C. Berkeley’s MICA2 sensor node that has been

ruggedized for outdoor use. The Chasqui node uses a more powerful radio than the MICA2 node, so it can

form ad hoc networks in which average link ranges are 2-4 kilometers. EmNet LLC provides researchers at

the University of Notre Dame was a unique local ability to build custom sensor networks for a variety of

real-life applications including CSO networks [42] and monitoring of lake environments [45]. This project

will work with EmNet LLC to assess the effectiveness of self-triggered decentralized controllers in EmNet’s

CSO network (CSOnet) infrastructure project.

EmNet LLC’s CSO network project was originally funded under a grant from the State of Indiana. The

project consists of a partnership between the University of Notre Dame, EmNet LLC, and the City of South

Bend that is building an embedded sensor-actuator network to monitor and control CSO events in the South

Bend’s sewer system. CSO events represent a major environmental health hazard. These events occur in

older sewer systems where sanitary flows are mixed with storm water flows. These older systems become

overloaded during storm events and the excess water is dumped into the nearest river. Since this excess

water contains raw sewage it is highly impacted with chemical and biological contaminants. Under the 1974

clean water act, the environmental protection agency (EPA) has begun fining local municipalities for each

CSO event. These fines can be on the order of tens of millions of dollars and cities are scrambling for

methods to reduce the frequency of these events. The most direct way to solve this problem is to rebuild the

physical sewer infrastructure. This approach however is extremely expensive (100’s of millions of dollars)

and highly disruptive of the community. The CSO network being built by EmNet LLC is using embedded

sensor-actuator networks to provide an alternative lower cost solution to the problem. The embedded sensor-

actuator network is used to monitor and control storm water flows in a way that takes advantage of excess

unused capacity in the city’s existing sewer system.
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EmNet LLC demonstrated a small part of CSOnet in the summer of 2005. That network controlled the

storm water flows generated by a 3.2 mile by 1500 foot corridor in the city of South Bend. The system has

been in operation for over a year and has prevented numerous CSO events from being generated by this

corridor. Future plans are to expand this demonstration network to the entire city’s interceptor sewer line,

thereby providing a metropolitan-scale demonstration of the technology. This project’s PI will be working

with EmNet LLC under sponsorship from the State of Indiana to complete this demonstration. The working

relationship between the PI and EmNet LLC provides an excellent opportunity for technology transfer.

The CSOnet technology provides an excellent platform for testing the use of self-triggered controllers in the

real world. CSOnet is an embedded sensor-actuator network. Actuator nodes are located at CSO diversion

points along the entire length of the city’s interceptor sewer. These actuator nodes control the rate at which

water enters the interceptor structure. Sensor nodes are placed in other parts of the sewer system feeding

into the interceptor. These sensor nodes monitor current flow rates. All nodes communicate over a wireless

multi-hop network. CSOnet, therefore, is a specific example of a networked dynamical system being studied

by this project.

The PIs will work with EmNet LLC to help evaluate the suitability of this project’s work to CSOnet. We

think this might be done by first building a scale hardware model of the city’s interceptor sewer in our

lab, and then using this model to experimentally evaluate how best to transfer the project’s algorithms and

network protocols to CSOnet.

6.0 Curriculum Development

For the most part, the undergraduate control curriculum has changed little over the past fifty years. This

is regrettable, for it has meant that undergraduate control classes have not always kept up with advances

in computer and communication technology. The consequence of this neglect is that enrollment in under-

graduate control classes has steadily dwindled over the past 20 years. But more importantly, it means that

many graduating seniors are ill prepared to work with the control systems that they will inevitably encounter

during their careers. If this trend is to be reversed, we must find ways of better engaging undergraduates

so that our future engineering workforce has a good understanding of control theory as well as a working

knowledge of the impact that modern communication and computer technologies have on control.

The basic research work being done under this project is directly concerned with the impact that networking

and real-time systems technologies have on control. We believe it is time to develop a new curriculum

for control that is integrated with real-time system concepts. As part of this project, both PI’s intend to

develop undergraduate courses on real-time control systems. This course will be targeted at junior/senior

level students across engineering including both computer, electrical, and mechanical engineers. The course

will cover the mathematical system models usually treated in traditional signal/systems and control courses.

But we intend to integrate the systems theory material with a laboratory to provide students with a hands-on

understanding of these abstract concepts. The laboratory will familiarize students with real-time computing

systems and help them better understand the current directions that the technology is taking. We will make

the class lecture notes and lab notes available to all instructors to broaden its impact beyond the University

of Notre Dame.

7.0 Statement of Work

We see this project as consisting of four primary tasks based on the ideas discussed in Sections 3-6. These

tasks are summarized below.
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Task 1 – Self-Triggered Decentralized Controllers:

This task will study self-triggered decentralized controllers for networked dynamical systems. The analysis

outlined in Section 3 represents this task’s starting point. This analysis generalizes our earlier work [23] to

networked dynamical systems. We intend to broaden our earlier work to output feedback control systems. A

major objective of this analysis is to understand the impact that firm/soft real-time message delivery might

have on the achievable performance level.

Task 2 – Real-Time Scheduling over Networks of Self-Triggered Controllers:

This task will study means to schedule messages for self-triggered controllers communicating over a packet-

switched network in order to meet real-time constraints. The work will be built on our experiences on

elastic scheduling, (m,k) and Markov Chain firm scheduling. We will explore game theory based learning

mechanisms to dynamically tune the relative importance of message streams. The ultimate goal is to achieve

robust control performance in a cost effective manner.

Task 3 – Technology Transfer:

This task will investigate the feasibility of integrating the self-triggered controllers into the CSOnet project

described in Section 5. We will work with our technology partner, EmNet LLC, to build a hardware model

demonstrating the benefits of the project’s work. The expectation is that this hardware demonstration will

lead to the transfer of the project’s technology to EmNet LLC’s CSOnet project.

Task 4 – Curriculum Development:

This task will develop a new curriculum for control engineering at the junior and senior undergraduate level.

The task will develop lecture and lab modules that integrate real-time system concepts into traditional

control theory curriculum to provide graduating seniors with a working knowledge of how real-time control

systems are built in the real world.

8.0 Prior NSF Research

Dr. Lemmon received prior support under NSF grants

• Scalable Decentralized Control over Ad Hoc Sensor Actuator Networks

ECS04-00479 - $210,000 - (2004-2007).

This grant studied networked control systems and the relationship between control system performance in

the presence of dropouts and quantized feedback. It also studied coordination in multi-agent networked

control systems. This work generated several papers. In [28] and [29] we developed a power spectral analysis

for linear system performance in the presence of randomly dropped feedback packets. That work was later

summarized in [31]. [30] and [25] used a Markov-chain model of the dropout process and jump linear systems

to characterize the performance achievable under dropped data. [24] and [33] studied the stability of dynam-

ically quantized feedback systems. Optimal bit assignment algorithms for noise-free quantized feedback [32]

and noisy quantized feedback [26] were developed. We also studied the use of periodic communication logics

for multi-agent systems [47]. We studied the interconnection of swarming dynamics and consensus filtering

in [26] and [48].

Dr. Lemmon and Dr. Hu received NSF funding under grant

• Flexible Scheduling in Real-Time Control Systems with Uncertainty

CNS-0410771 - $240,000 - (2004-2007).
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This grant focused on the relationship between control systems and real-time computing systems. This

second grant is most closely related to the current proposal. That earlier work generated a number of

publications. This work developed the Markov chain QoS constraint for firm real-time systems. Initial ideas

on this appeared in [18]. That work was later extended in [35] and a journal publication for the approach

appeared in [36]. This sponsored work has also studied Buttazzo’s elastic scheduling algorithm [7]. It was

initially suggested in [17] that elastic scheduling could be viewed as an optimization problem. That idea was

used in [11] to develop elastic scheduling algorithms for periodic task sets whose deadlines were less than

their periods. The self-triggered controller approach was introduced in [23].

9.0 Intellectual Impacts

Computer controlled systems have been dominated by periodic hard real-time systems. This domination

has made it difficult to develop decentralized controllers over packet-switched networks such as the Internet

or ad hoc wireless networks. This project will develop self-triggered decentralized controllers (Section 3)

and the associated real-time networking environments (Section 4) that will finally allow us to build control

large-scale physical processes over such best-effort networks. In simple words, this project’s chief intellectual

impact lies in developing firm and soft real-time control systems that have performance levels comparable

to traditional hard real-time systems.

10.0 Broader Impacts

The project will broaden the impact of the basic scientific research goals through technology transfer and

curriculum development.

Technology transfer will be realized through the collaborative work described in Section 5 concerning

CSOnet. If successful, this collaboration will lead to the deployment of self-triggered decentralized controllers

in embedded sensor-actuator networks used to control the frequency of CSO events. The potential impact of

this technology transfer is large. CSO problems effect over 800 cities across this nation. It is a problem that

also effects many metropolitan areas across the world. Should the CSOnet collaboration succeed, there is

the strong possibility that the technology will be adopted on a national level, thereby significantly extending

the influence of this project on effectively managing our national infrastructure.

Curriculum development will be realized by developing a new course at the University of Notre Dame

that integrates real-time system concepts into the traditional control theory curriculum. A more detailed

description will be found in Section 6. This curriculum will be made available to students in computer,

electrical, and mechanical engineering. It will consist of both lecture and lab components to provide students

with a hands-on introduction to real-time control. The educational materials developed under the project

will be made available to other educators in an attempt to broaden its reach beyond the University of Notre

Dame.
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