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Event-Triggered Feedback for Embedded
Control

Mathematical Preliminaries

System Model

ISS and L2 Event-Triggers

Bounds on Periods and Delays

Self-triggered implementations
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Event-Triggered Sampling

Sensor determines when to

sample the system state.

The “gap” between current state 

and past “sampled” state as a measure

“novelty” in feedback information

Sample the state when the “gap”

exceeds a state-dependent threshold

Cyber-Resource

w (dist.) z (objective)

y (meas.)

sensor

u  (control)
x (state)

actuator

u y

gap

Benefits

Event-Triggered Sampling: 

[Arzen 99, Arzen 00]

Reduced usage of computer

and communication resources
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Periodic versus Event-triggered control
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dx = axdt + udt + dwProcess Model:

Variance under Event Sampling = VL

Variance under Periodic Sampling = VR

[Astrom 02]
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Event-triggering and Computational Resources
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Time−driven PID

Event−driven PID

PID controller: 
G(s) =

A

(0.33s + 1)(0.17s + 1)

K(s) = 30 +
40

s
+

2sωd

s + ωdEvent-trigger threshold: 

|e(t)| = |x(t)− x(rj)| ≤ eT = threshold

threshold chosen  so peak error of both systems are equal 

[Sandee 2006]
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Input-to-State Stability

Process Model:

Input-to-State Stability (ISS)

ISS-Lyapunov Function

ẋ(t) = f(x(t), w(t)), x(0) = x0

C1 function V : ℜn → ℜ is ISS-Lyapunov function if there exist
class K functions α, α, γ, and β such that

α(‖x‖) ≤ V (x) ≤ α(‖x‖)

V̇ ≤ −γ(‖x‖) + β(‖w‖)

If V is an ISS-Lyapunov function, then the system is ISS.

The system is ISS if there exists KL function β and class K function γ

such that for any initial condition, x(0) = x0, then the response under
any input w ∈ L∞ for all t ≥ 0 satisfies

‖x(t)‖ ≤ β(‖x0‖, t) + γ(‖w‖L∞)



Event
Triggered
Feedback

M.D. Lemmon

Embedded
Control

Networked
Control
System

Estimation

Optimization

Research
Issues

References

L2 Stability

Process Model:

L2 Stability

Induced L2 Gain

γ||w||
L2

+β

||w||
L2

||G
w

|| L
2

G : L→L

The system map G is L2 stable if for all w ∈ L2, ‖Gw‖L2
≤ γ‖w‖L2

+ β

‖G‖ = inf {γ ∈ ℜ : ‖Gw‖L2
≤ γ‖w‖L2

+ β}
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Hamilton Jacobi Inequality and L2 Gain

Process Model:

L2 Controller

Assume there exists γ≥0 and positive definite function V: ℜn → ℜ such that

Hamilton Jacobi Inequality:

If the control ,u(t), is selected so that 

ẋ(t) = A(x(t)) + B1(x(t))w(t) + B2(x(t))u(t)

z(t) =
[

x(t) u(t)
]T

∂V

∂x
A(x) +

1

2

∂V

∂x

[

1

γ2
B1(x)BT

1
(x)−B2(x)BT

2
(x)

]

∂V

∂x

T

+
1

2
x

T
x ≤ 0

u = −B
T

2
(x)

∂V (x)

∂x

T

We can then show that  

V̇ ≤ −
1

2

(

‖u‖2

2
+ ‖x‖2

2
− γ

2‖w‖2

2

)

= −
1

2
‖z‖2

2
+

1

2γ2
‖w‖2

2

Integrating the above inequality yields 

‖z‖L2
≤ γ‖w‖L2

+
√

2γV (x(0))

which implies the L2 induced gain is less than γ.
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Hamilton Jacobi Inequality and L2 Gain

u = −B
T

2
(x)

∂V (x)

∂x

T

If we let   

V̇ ≤ −
1

2

(

‖u‖2

2
+ ‖x‖2

2
− γ

2‖w‖2

2

)

= −
1

2
‖z‖2

2
+

1

2γ2
‖w‖2

2

which is sufficient to ensure the L2 induced gain is less than γ 

Consider the directional derivative of the function V that

satisfies the earlier Hamilton-Jacobi Bellman inequality

V̇ =
∂V

∂x
[A(x) + B1(x)w + B2(x)u]

≤ −
1

2

∂V

∂x

(

1

γ2
B1B

T

1
− B2B

T

2

)

∂V

∂x

T

−
1

2
‖x‖2

2
+

∂V

∂x
B2u +

∂V

∂x
B1w

=
1

2

∥

∥

∥

∥

∥

u + B
T

2

∂V

∂x

T

∥

∥

∥

∥

∥

2

2

−
1

2
‖u‖2

2
−

1

2

∥

∥

∥

∥

∥

γw −
1

γ
B

T

1

∂V

∂x

T

∥

∥

∥

∥

∥

2

2

+
γ2

2
‖w‖2

2
−

1

2
‖x‖2

2

HJI

Complete

Square

then we can show   
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State-based Sampled Data System

Sequence of “release” times {rj}
∞

j=0

Sequence of sampled states

Gap between current state and sampled state

Process Model - discretely sampled state feedback 

ẋ(t) = f(x(t), k(x̂j(t)), w(t)) = f(x(t), k(x(t) + ej(t)), w(t))

for all t ∈ [rj , rj+1) and all j = 0, . . . ,∞

“Continuously” sampled closed-loop system

ISS assumption - under continuous sampling of state 

ẋ(t) = f(x(t), k(x(t)), w(t))

is input-to-state stable with respect to the input w.

r
0

r
1

r
2

r
3 r

4

x(t)

x0(t)
x1(t)

x2(t)

x3(t) x4(t)

x̂j(t) = x(rj) for all t ∈ [rj , rj+1)

ej(t) = x̂j(t)− x(t) for all t ∈ [rj , rj+1)
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ISS Event Trigger

ISS assumption implies the existence of an ISS-Lyapunov function, V

ISS Event trigger: [Tabauda 07]

There exist class K functions α, α, γ, β1, and β2 such that

α(‖x‖) ≤ V (x) ≤ α(‖x‖)
∂V

∂x
f(x, k(x + e), w)) ≤ −γ(‖x‖) + β1(‖e‖) + β2(‖w‖)

If we can guarantee for all t ≥ 0 and all j = 0, . . . ,∞ that

β1(‖ej(t)‖) ≤ σγ(‖x(t)‖)

for some σ ∈ [0, 1], then we can ensure that

V̇ ≤ −(1− σ)γ(‖x(t)‖) + β2(‖w‖)

which is sufficient to ensure the sampled system is ISS with respect to w.

ISS event trigger

x(t)

x0(t)

x1(t)

x2(t)

x3(t) x4(t)

trajectory of state and sampled state

σ γ(||x||) = state dependent event-trigger

β1(||e0||)

trajectory of state and sampled statetrajectory of state and sampled statetrajectory of state and sampled state

r
0

r
1

r
2

r
3 r

4

||) = state dependent event-triggerx||) = state dependent event-trigger

r
0

r
1

r
2

r
3 r

4

β1(||e1||)
β1(||e2||) β1(||e3||)

trajectory of gap and threshold
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Event-triggering Example

Process Model: 
ẋ(t) = f(x(t)) + u(t)

u(t) = −2f(x̂j(t))

Event Trigger: β1(‖ej‖) = e
2

j (t) ≥ x
2(t) = γ(‖x(t)‖)
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f(x) = xf(x) = sgn(x)
√

|x| f(x) = x3

sublinear linear superlinear 

Three cases in which system dynamic is sublinear, linear, or superlinear 

sublinear dynamics : exhibit Zeno sampling

linear dynamics exhibit periodic sampling

linear dynamics exhibit slow sampling around equilibrium point
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Lower Bound on Sampling Period

Lipschitz continuity of event trigger 

There exists positive constant P such that

Bounds on rate of growth for the “event” quotient [Tabuada 07]

1

σ
γ−1(β1(‖e‖)) ≤ P‖e‖ ≤ ‖x‖ ⇒

‖e‖

‖x‖
≤

1

P

d

dt

‖e‖

‖x‖
≤

(

1 +
‖e‖

‖x‖

)

L‖x‖+ L‖e‖

‖x‖
= L

(

1 +
‖e‖

‖x‖

)2

This is a differential inequality that can be used to bound 

the evolution of the event quotient,  ||e||/||x||

Lipschitz continuity of system ‖f(x, k(x + e))‖ ≤ L‖x‖+ L‖e‖

β1(‖ej‖) ≥ σγ(‖x(t)‖)⇒ γ−1(σ−1β1(‖ej‖)) ≤ ‖x(t)‖
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Lower Bound on Sampling Period

Solution of the differential inequality 

rj
t

tL
1-tL

||e(t)||

||x(t)||

1
L+LP

1
L

1
P

‖e(t)‖

‖x(t)‖
≤

tL

1− tL

d

dt

‖e‖

‖x‖
≤ L

(

1 +
‖e‖

‖x‖

)2

⇉

Lower bound on sampling period [Tabuada 07] 

rj+1 − rj = Tj ≥
1

L + LP
> 0

‖e(t)‖

‖x(t)‖
≤

tL

1− tL
≤

1

P
⇉

Non-zeno Behavior
This bound is bounded away from zero

so sampling interval never equals zero.

Earlier sublinear example exhibits

Zeno behavior because ƒ isn’t Lipschitz
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L2 Event Triggers: process model

Process Model - discretely sampled state feedback 

L2 Controller 

L2 event triggers are chosen to preserve the induced L2 gain 

of a previously designed control system [Wang 09]

ẋ(t) = A(x) + B1(x)w + B2(x)u

z(t) =

[

x(t)
u(t)

]

u(t) = −B
T
2

(x̂j)
∂V (x̂j)

∂x

T

= k(x̂j)

State sampled at release times {rj}
∞

j=0

x̂j(t) = x(rj) for all t ∈ [rj , rj+1)

ej(t) = x̂j(t) − x(t)

Sampling gap 

V is a storage function satisfying the HJI for some γ > 0

∂V (x)

∂x
A(x)−

1

2

∥

∥

∥

∥

∥

B2(x)
∂V (x)

∂x

T
∥

∥

∥

∥

∥

2

2

≤ −
1

2γ2

∥

∥

∥

∥

∥

B1(x)
∂V (x)

∂x

T
∥

∥

∥

∥

∥

2

2

−
1

2
‖x‖2

2

With this V , the continuously-sampled system’s has a gain less than γ.
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L2 Event Trigger

Assumption: Lipschitz continuity of L2 controller

Storage Function Rate of Change 

(HJI)

complete

square

Lipschitz

Event Trigger ensures that boxed 

term is always negative definite

which implies the gain is less than γ/β where (0 < β < 1)

‖k(x)− k(x̂)‖
2
≤ L‖e‖2

V̇ =
∂V (x)

∂x
(A(x) + B1(x)w −B2(x)k(x̂))

≤ −
1

2γ2

∥

∥

∥

∥

∥

B1(x)
∂V (x)

∂x

T
∥

∥

∥

∥

∥

2

2

−
1

2
‖x‖2

2
+

∂V (x)

∂x
B1(x)w − k

T (x)k(x̂)

≤ −
1

2
‖x‖2

2
−

1

2

∥

∥

∥

∥

∥

γw −
1

γ
B

T

1
(x)

∂V (x)

∂x

T
∥

∥

∥

∥

∥

2

2

+
γ2

2
‖w‖2

2
− k

T (x)k(x̂)

≤ −
β2

2
‖x‖2

2
+

γ2

2
‖w‖2

2
−

1− β2

2
‖x‖2

2
−

1

2
‖k(x̂)‖

2

2
+

1

2
L

2‖e‖2
2

L
2|e‖2

2
≤ (1− β2)‖x‖2

2
+ ‖k(x̂)‖

2

2
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L2 Event Trigger: example

Process Model: Event Trigger: 

inter-sample period

Example shows event-triggered systems sensitive to wideband noise

L2‖e‖2
2
≥ (1− β2)‖x‖2

2
+ ‖k(x̂)‖2

2

where L = 1.e, β = 0.5, γ = 2, and α >
2γ

2

γ2
−1

0 1 2 3 4 5 6 7 8 9 10
10

−20

10
−15

10
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10
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10
0

1 2 4 7 10
0
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0.2

0.3

0.4
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scaled error

event-trigger

inter-sample period

time
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10
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1.4

inter-sample period

event-trigger

scaled error

time

ẋ(t) = x
3 + u + w

u = −αx̂
3
− x̂

w(t) = (e−2t + η)ν(t)

No Wideband noise: η=0  Wideband noise: η=0.1 
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Delays and Periods of L2 Event Triggers

LTI Process Model:  for all t ∈ [ƒ
j
 , ƒ

j+1
 ) 

HJI becomes Riccati Inequality 

ẋ(t) = Ax + B1w + B2u

z(t) =

[

x(t)
u(t)

]

u(t) = −B
T
2

Px̂j = k(x̂j)

P is symmetric P.D. Matrix satisfying the Riccati inequality for some γ > 0

A
T
P + PA− P

(

B2B
T

2
− γ

−2
B1B

T

1

)

P + I ≤ 0

L2 Event Trigger 

where M = (1 − β2)I + PB2B
T

2
P, N =

1

2
(1 − β2)I + PB2B

T

2
P

Sampling with delays job jjob j-1 job j+1

ƒ
j
 

ƒ
j-1

 ƒ
j+1

 

r
j-1

 r
j
 r

j+1
 

D
j
 

T
j
 

ƒ
j
 = finishing time of jth job

       (control applied) 

r
j
 = release time of jth job

      (sample taken) 

D
j
 = delay of jth job < Deadline 

T
j
 = Period of jth job 

Noise model: ‖w(t)‖ ≤W‖x(t)‖

[Wang 09] e
T
j (t)Mej(t) ≥ δx

T (rj)Nx(rj)
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Lower Bound on Sampling Period: no delay

Normalized gap function 

Sample Period Bound: no delay 

The normalized gap satisfies 

t
r

jr
j-1

r
j+1

z
j-1

(t) z
j
(t)

z
j+1

(t)

T
j

r
j+2

zj(t) =
√

Mej(t)

L2 Event Trigger: 

d

dt
‖zj(t)‖2 ≤ α‖zj(t)‖2 + µ0(x(rj))

The solution to the differential inequality: ‖zj(t)‖2 ≤
µ0(x(rj))

α

(

eα(t−rj) − 1
)

which bounds the sampling period as  Period = Tj ≥
1

α
ln

(

1 + α
δρ(x(rj))

µ0(x(rj))

)

[Wang 09] 

‖zj(t)‖ ≥ δ

√

xT (rj)Nx(rj) = δρ(x(rj))
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Bounds with Nonzero Delay

With non-zero delay, the evolution of zj(t) is governed by 

Use differential inequalities to show that if next release time is 

t
r

jr
j-1

r
j+1

z
j-1

(t) z
j
(t) z

j+1
(t)

D
j

T
j

r
j+2ƒ

j+1
ƒ

j+2
ƒ

jƒ
j-1

and if the delay satisfies the following deadline  

ẋ(t) = Ax(t)−B2B
T
2 Px(rj−1) + B1w(t) for t ∈ [rj , fj)

ẋ(t) = Ax(t)−B2B
T
2 Px(rj) + B1w(t) for t ∈ [fj , fj+1)

rj+1 = fj +
1

α
ln

(

1 + α
δρ(x(rj)) − φ(x(rj), x(rj−1);Dj)

µ0(x(rj)) + αφ(x(rj), x(rj−1);Dj)

)

Dj <
1

α
ln

(

1 + α
(1 − δ)ρ(x(rj))

αδρ(x(rj−1)) + µ0(x(rj−1))

)

= Deadline

then the sampled-data system is L2-stable  [Wang 09] 
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Self-Triggered Feedback

Self-triggering is a software implementation of
event-triggering.

Use estimates of next release to trigger next control job
[Velasco 03, Lemmon 07]

Use predicted bound on delay as deadline for next
control job

Predicted periods and deadlines serve as task
constraints that the real-time scheduler needs to
enforce.
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Simulation of Self-Triggered System
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1
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1
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w(t)

Self-triggered inverted-pendulum example 

Self-triggered periods tend

to exhibit periodic oscillations

in sample period 

Periodic oscillations in 

period breakdown in 

presence of wideband noise 

[Wang 09] 



Event
Triggered
Feedback

M.D. Lemmon

Embedded
Control

Networked
Control
System

Estimation

Optimization

Research
Issues

References

Average Period Comparisons
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Self-triggered Period = 0.1782     

Event-triggered Periods = 0.3375     
[Wang 09] 

Periodically Triggered (MATI) = 0.0092 [Nesic 04]   
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Event-Triggering in Networked Control Systems

Model of Networked Control Systems

ISS Event-Trigger

Network Artifacts due to Broadcast Protocol

Impact of Network Artifacts on Event-triggered NCS
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Model of Networked Control System

system 1

system 3

system 2

agent

agent

agent
x1

x3

x3

x2

u1

u2

u3

x1

x3

x2

x1

x2

x3

ẋi(t) = fi(xDi
(t), ui(t), wi(t))

Agent’s Dynamics

x̂i(t) = xi(r
i
j) for all t ∈ [ri

j , r
i
j+1) r j

i
= broadcast time

x i = local state

x i = broadcast state

D i

Z i

= systems that physically

    drive the ith subsystem

= systems that broadcast

    to the ith subsystem

ui(t) = ki(x̂Zi
(t)) for all t > 0
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ISS Event-Triggers in NCS

Let ei = x̂i − xi denote the gap between agent i’s current
state and its last broadcast state. Let V : ℜnN → ℜ
be a positive definite function so that there exist class K
functions γi, ψi, and βi such that

V̇ =

N∑

i=1

Lfi
V ≤

N∑

i=1

(−γi(‖xi‖2) + ψi(‖ei‖2) + βi(‖wi‖2))

where

Lfi
V =

∂V

∂xi

fi(xDi
, k(xZi

+ eZi
), wi)

This means that V is an ISS-Lyapunov function when the
gap ei = 0. In other words, k is an ISS controller for the
”continuously” sampled networked system.



Event
Triggered
Feedback

M.D. Lemmon

Embedded
Control

Networked
Control
System

Estimation

Optimization

Research
Issues

References

ISS Event-Triggers in NCS

Assume for ρi ∈ (0, 1), the state and gap trajectories satisfy

−ρiγi(‖xi(t)‖2) + ψi(‖ei(t)‖2) ≤ 0

for all t ∈ ℜ and all i = 1, . . . , N . Then clearly

N∑

i=1

Lfi
V ≤

N∑

i=1

(−(1− ρi)γi(‖xi‖2) + βi(‖wi‖2))

which implies the NCS is input-to-state stable.

To enforce the previous ”event-triggering” condition, we require the
ith agent broadcast its state information to all of its neighbors in
Ui whenever the triggering condition

ψi(‖ei(t)‖2) ≤ ρiγi(‖xi(t)‖2)

is violated.



Event
Triggered
Feedback

M.D. Lemmon

Embedded
Control

Networked
Control
System

Estimation

Optimization

Research
Issues

References

Event-Triggers in NCS: example

u1 u2 u3

y1

y2

y3

0 1 2 3 4 5 6
−0.5

0

0.5

1

Time

S
ta
te

0 1 2 3 4 5 6
0

0.02

0.04

Time

P
e
ri
o
d

0 1 2 3 4 5 6
0

0.5

1

x 10
−3

Time

D
e
a
d
lin
e

agent 1 agent 2 agent 3

ẋi =

[

ẏi

ui + k1
i
tanh(yi+1 − yi) + k2

i
tanh(yi−1 − yi) + wi

]

ui = Kix̂i − k1
i
tanh(ŷi+1 − ŷi) − k2

i
tanh(ŷi−1 − ŷi)

Process Model [Wang 09a]

Event Trigger

0 = −0.2‖xi(b
i
j)‖2 + 5.9‖ej

i (t)‖2

for the endpoint agents

0 = −0.2‖xi(b
i
j)‖2 + 10.3‖ej

i (t)‖2

for interior agents
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Broadcast Protocol in Wireless NCS

A broadcast protocol must be used to ensure all neighbors

receive the broadcast.  This protocol will always introduce delay

Broadcast at rj
i

First ACK 

Second ACK

PERM at  fj
i

agent agent agent

agent agent agent

agent agent agent

agent agent agent

Prior analysis assumes that 

There is no delay between broadcast and reception.

All neighbors in Zi receive and use the broadcast data.
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Dropout Mechanism in Wireless NCS

Broadcast at rj
i

First NACK 

Second ACK

PERM not sent

agent agent agent

agent agent agent

agent agent agent

agent agent agent

If broadcast is not “heard” by one agent in Zi , then Broadcasting

agent will not get ACKS from all of its neighbors and therefore

will not transmit the PERM message 

If the neighbors don’t receive the PERM message, then they

DROP the broadcast state information.   
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Timing Relations under Broadcast Protocol

r i
j f i

k r i
j+1 r i

j+2
r i

j+     +1d
i

k
r i

j+     d
i

k
f i

k+1

(=b  )i
k (=b    )i

k+1

kth transmission k+1st transmission

Timing

Relations

Signal Definitions

x̂i(t) = xi(b
i
k) = ith agent’s ”received” state

ei(t) = xi(t) − x̂i(t) = gap between received and actual state

ǫi(t) = xi(t) − xi(r
i
j) = gap between transmitted and actual

ri
j = jth consecutive broadcast time

bi
k = kth successful broadcast time

fik = kth successful finishing time

di
k = number of dropped broadcasts

between kth and k + 1st broadcasts
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Quantization, Dropout, and Delay Budgets

b
i
k f

i
kr i

j= r i
j+1

r i
j+d

i
k

r i
j+d  +1

i
k

b
i
k+1 f

i
k+1

Quantization

⎫⎬⎭ ⎬ ⎫⎭

Dropout Delay

‖ek

i
(t)‖

σici‖x̂i(t)‖

ci‖x̂i(t)‖

δici‖x̂i(t)‖

3 Sources for the gap

Quantization at b
i
k

Dropouts between        andb
i
k b

i
k+1

b
i
k+1Delay between          and  f

i
k+1

Create an error budget for each source

σi = budget for quant. error

δi = budget for quant. and dropout

Use these budgets to bound the 

acceptable broadcast quantization 

error, maximum admissible number 

of successive dropouts (MANSD), 

and maximum acceptable

broadcast delay (DEADLINE). 

‖ǫi(t)‖ ≤
ρi

ρi + ai

‖x̂i(t)‖ = ci‖x̂i(t)‖Event-Trigger for this analysis
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Making Event-trigger Robust to Single Dropout

b
i
k f

i
kr i

j= r i
j+1

r i
j+d

i
k

r i
j+d  +1

i
k

b
i
k+1 f

i
k+1

‖ek

i
(t)‖ ci‖x̂i(t)‖

δici‖x̂i(t)‖

Create Local Event 

δ̂ici‖x̂i(t)‖

∥

∥xi(t) − xi(r
i
j)

∥

∥ = δ̂ici‖xi(r
i
j)‖

Choosing δ̂i ∈ (0, δi], ensures that the broadcast event is triggered
before the violation of error budget

(

‖ek

i
(t)‖ ≤ δici‖xi(b

i

k
)‖
)

allo-
cated for dropouts.
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Maximum Admissible Number of Dropouts
(MANSD)

b
i
k r i

j= r i
j+1

r i
j+d  +1

i
k

b
i
k+1

r i
j+2

r i
j+3

Using the prior event-trigger we can show that the gap satisfies

We obtain an upper bound on the admissible number of dropouts 

(

(1 + δ̂ici)
2 − 1

)

‖xi(b
i

k
)‖

δ̂ici‖xi(b
i

k
)‖

(

(1 + δ̂ici)
3 − 1

)

‖xi(b
i

k
)‖

(

(1 + δ̂ici)
d

i

k
+1 − 1

)

‖xi(b
i

k
)‖

‖ek

i
(t)‖ ≤

(

(1 + δ̂ici)
d

i

k
+1 − 1

)

‖xi(b
i

k
)‖ ≤ δici‖xi(b

i

k
)‖

[Wang 09a]d
i

k
≤ MANSD =

⌊

log
1+δ̂ici

(1 + δici)
⌋

− 1



Event
Triggered
Feedback

M.D. Lemmon

Embedded
Control

Networked
Control
System

Estimation

Optimization

Research
Issues

References

Upper Bound on Admissible Delay

b
i
k r i

j= b
i
k+1

If we can bound the Gap’s growth rate

Then to ensure that the total gap is still below the budgeted allowance

we require that the “delay” between broadcast and reception satisfy

f
i
k+1f

i
k

‖ek

i
(t)‖

d

dt
‖ek

i
(t)‖ ≤ pi

ci‖xi(b
i

k
)‖

δici‖xi(b
i

k
)‖

d

dt
‖ek

i
(t)‖ ≤ pi

[Wang 09a]

f i

k+1 − bi

k+1 ≤ max

{

(1− δi)ci

ρi

‖xi(b
i

k
)‖, Dmin

}

= Deadline
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Event-Triggered Estimation in Wireless Sensor
Networks

Single Transmission Finite Horizon Problem

Transmission Decision and Optimal Stopping

Dynamic Programming

Optimal Event-trigger
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Canonical Finite-Horizon Problem

Consider a “simple” canonical problem: [Rabi 06, Rabi 08]

Finite Horizon,  [0,M]

Discrete-time Scalar LTI System

0 1 r M

estimate 

process state xk

Sensor transmits at time instant, r ∈ [0,M]

w[k] = zero mean white 

         Gaussian noise with

         covariance q

x0 = initial state is normal 

 random variable N(μ0,π0)

Least Square Estimate

x[k] = ax[k − 1] + w[k]

x̂[k] = E[x[k]|Fk]

x̂[k] = E[x[k]|Fk] =

{

µ0a
k k = 0, . . . , r − 1

x[r]ak−r k = r, . . . ,M
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Transmission as Optimal Stopping

The problem is to determine these event sets such that the estimator’s 

means square error is minimized

The transmission time r is a random variable that is a stopping

time of the random process {x[k]}. In particular this means

r = min {k : x[k] /∈ Sk}

were Sk is a set of event sets

0 1 r M

process state x[k]

event-trigger, Sk 

J(S1, · · · , SM ) = E

[

M
∑

k=1

(x[k] − x̂[k])2

]

= E

[

M
∑

k=1

x̃[k]2

]



Event
Triggered
Feedback

M.D. Lemmon

Embedded
Control

Networked
Control
System

Estimation

Optimization

Research
Issues

References

Dynamic Programming

This problem may viewed as an optimal “control” problem in which

the stoppng events {Sk} are the “controls”.  We can therefore use 

dynamic programming to solve the problem.

Value Function, V(x,n), is the optimal value obtained if the

process starts at state x at time n < M.

Bellman’s Principle of Optimality says that if {u∗[n]}M

n=k
is an

optimal control generating state trajectory {x∗[n]}M

n=k
from initial

state (x∗[k], k) to M , then {u∗[n]}M

n=k+1
is the optimal control from

initial state (x∗[k + 1], k + 1) to M .

V(x,M)V(x,k+1)V(x,k)V(x,1)V(x,0)

0 1 k k+1 M

contours of constant value



Event
Triggered
Feedback

M.D. Lemmon

Embedded
Control

Networked
Control
System

Estimation

Optimization

Research
Issues

References

Problem’s Value Functions

V 1(y, k) = min
Sk,··· ,SM

Er,X̃M

k





M
∑

j=k

x̃2[j] | x̃−[k] = y, k ≤ r ≤M





=
minimum cost from k to M when transmission oc-
curs after k − 1 and a priori est. error is y.

V 0(y, k) = min
Sk,··· ,SM

Er,X̃M

k





M
∑

j=k

x̃2[j] | x̃−[k] = y, k > r





=
minimum cost from k to M when transmission oc-
curs before k and a priori estimation error is y

0 1 r M

process state xk

event-trigger, Sk 

k

V 0(y,k)
Value if sampling occurs

 before current time, k

V 1(y,κ)

κ

Value if sampling occurs

 after current time, κ
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Optimal Event-Triggered Transmission
Thresholds

The optimal control (stopping event) is easily obtained from the
choice implied by the backward recursion

u∗[k] =

{

0 don’t sample Fk(x̃[k]) < Gk(q)
1 sample Fk(x̃[k]) ≥ Gk(q)

This is an event-triggered threshold logic.

The minimum cost is achieved by J∗ = E
[

V 1(x̃0, 0)
]

. We can
use Bellman’s principle to compute this in a backward recursion.

V 1(y, k) = min {Fk(y), Gk(q)}

Gk(q) = Ex̃[k+1]

[

V 0(k + 1, x̃−[k + 1]) | x̃[k] = 0
]

= Cost if transmission occurs at time k

Fk(y) = y2 + Ex̃[k+1]

[

V 1(k + 1, x̃−[k + 1]) | x̃[k] = y
]

= y2 + Gk+1(q) −

∫

Sk+1

[Gk+1(q) − Fr+1(x̃[r + 1])] dPx̃[k+1]

= Cost if transmission occurs after time k given error is y

where
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Suboptimal Transmission Thresholds

The threshold function Fk can be computed numerically off-line.
We can also adopt a sub-optimal approach by noting that

Fk(y) = y2 + Gk+1(q)−

∫

Sk+1

[Gk+1(q)− Fk=1(x̃[k + 1])] dPx̃[k+1]

≤ y2 + Gk+1(q)

which leads to a stopping event that is only dependent on the
process noise covariance q.

S+
k

=



−

√

1− a2(M−k)

1− a2
q,

√

1− a2(M−k)

1− a2
q





which is an inverse quadratic threshold that goes to zero as k

goes to M .
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Simulation Results

Simulation of optimal, suboptimal, and periodically sampled
schemes where M = 10, q = 1, and wk ∈ N(0, 1).

a = 0 (stable) periodic suboptimal optimal
J (cost) 9.98 8.50 7.68

r (sampling time) 5 3.13 7.1

a = 1 (unstable) periodic suboptimal optimal
J (cost) 30.15 21.70 21.68

r (sampling time) 5 7.01 7.56

Simulation results show that 

      J*<J+<Jp, so that optimal policy is indeed optimal

      J+≈ J*  when process is unstable (forgets initial condition quickly)

      optimal policy always delays sampling longer than periodic policy

          - but this is not necessarily true for suboptimal sampling policy.
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Moving Beyond Finite-Horizon Problem

Finite-horizon problem can be used as the basis of a 

receding-horizon estimation scheme

0 1 r1 M

process state xk

event-trigger, Sk 
r2 M+r1

Trigger broadcast based on thresholds for finite-horizon problem.

Treat broadcast as starting point for next finite-horizon problem
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Event-triggered Distributed Optimization

Network Utility Maximization Problem

Dual-Decomposition Algorithm

Event-triggered Augmented Lagrangian Algorithm

Scalability Results
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Network Utility Maximization (NUM) Problem

Maximize utilities of N users transmitting

over M shared communication links.

maximize: U(x) =
∑

N

i=1
Ui(xi)

subject to: Ax ≤ c, x ≥ 0

where A is an incidence matrix mapping

network nodes to network links, c is a 

vector of limits on link throughput, and 

x is the vector of user transmission rates.

The Network Utility Maximization (NUM)

problem is found in numerous applications

that optimize overall networked system 

performance subject to a shared resources.

lin
k

 1
lin

k
 3

lin
k

 2
lin

k
 4

lin
k

 5
USER 1

USER 2

USER 3

Ui (xi)= log xi  is the ith user’s utility function.

[Kelly 98]
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Dual Version of NUM Problem

Recast as a dual min-max problem

minimize: maxx≥0

(

∑

N

i=1
Ui(xi)− pT (Ax− c)

)

subject to: p ≥ 0

where the vector p is a set of shadow prices that 

each link charges its users.

Solve this problem in an “alternating” manner where

An algorithm known as “dual-decomposition” allows

us to implement this “alternating” recursion in

a highly distributed manner [Low 99]

each “link” selects a price based on observed user rates

each user selects its rate based on the transmitted prices

rate

agent
user

link

router
price

agent

link

router
price

agent

link

router
price

agent

link

router
price

agent

link

router
price

agent

link

router
price

agent

rate

agent
user

rate

agent
user

prices transmitted back over

communication network

user rates observed by

each link router
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Dual-Decomposition Algorithm

Dual-decomposition [Low 99] is a “distributed” algorithm commonly 

used to solve the dual form of the NUM problem

xi[k + 1] = arg max
x≥0



Ui(xi[k]) − xi[k]
∑

j∈Li

pj [k]



 =





∑

j∈Li

pj [k]





−1

pj [k + 1] = max







0, pj [k] + γ





∑

i∈Sj

xi[k] − cj











where Ui(xi) = log(xi) where is the user’s utility function 

γ is a step size chosen to ensure convergence [Low 99] 

0 < γ <
−2 max(i,xi)∇

2Ui(xi)

LS

where L is maximum number of links that any route uses

and S is the maximum number of users on any link.

S are measures of network complexity.  So the number of L and 
messages passed by dual-decomposition increases with longer 

routes and neighborhoods.
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Augmented Lagrangian Algorithm

Primal Augmented-Lagrangian algorithm 

L(x;λ, w) = −

N∑

I=1

Ui(xi) +

M∑

j=1

ψj(x;λ, w)

Augmented Lagrangian of the NUM problem

constraint boundary

*

*

*

x*[1], λ[1]

x*[2], λ[2]

x*[3], λ[3]

x[0] 

optimal point

λj [k + 1] = λj [k] +
1

wj

(

a
T
j x[k] − cj

)

Sequence {λj[k]} of Lagrange Multipliers

Compute approximate minimizer x*[k]

where ψj(x;λ,w) is a constraint penalty

x∗[k + 1] = arg maxL(x;λ[k], w) [Wan 09, Wan 09a]

Event-triggered NUM algorithm is best implemented using an “interior-point”

algorithm based on an Augmented Lagrangian.



Event
Triggered
Feedback

M.D. Lemmon

Embedded
Control

Networked
Control
System

Estimation

Optimization

Research
Issues

References

Distributed Augmented Lagrangian Algorithm -
continuous access

Users compute the approximate minimizer

using a gradient following algorithm. 

xi(t) =

∫ t

0





∂Ui(xi(τ))

∂xi

−

M
∑

j=1

µj(τ)Aji





+

dτ

where the links update the variable  

µj(t) =

(

λj +
1

wj

(

N
∑

i=1

Aijxi(t) − cj

))+

Note that these two equations define a feedback loop

between users and links in the players have “continuous”

access to each others’ states. 

rate

agent
user

link

router
price

agent

link

router
price

agent

link

router
price

agent

link

router
price

agent

link

router
price

agent

link

router
price

agent

rate

agent
user

rate

agent
user

link states transmitted over

communication network

user rates observed by

each link router

In practice, link updates are carried over packet

switched network, so that users only have “discrete”

access to link states.
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Broadcasting Link States

rate

agent
user

link

router
price

agent

link

router
price

agent

link

router
price

agent

link

router
price

agent

link

router
price

agent

link

router
price

agent

rate

agent
user

rate

agent
user

prices transmitted at discrete

instants over comm. network

user rates observed by

each link router

If we treat L(x;λ,w) as a candidate Lyapunov function

then we need to examine 

  

With discrete access to ”link” states, let
{TL

j [ℓ]}∞
ℓ=0

be the time instants when link
j transmits its link state to its users. The
link state received by the users is

µ̂j(t) = µj(T
L
j [ℓ])

With this sampled link state, the user’s

gradient algorithm becomes

xi(t) =

∫ t

0





∂Ui(xi(τ))

∂xi

−

M
∑

j=1

µ̂j(τ)Aji





+

dτ

L̇(x;λ, w)
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Convergence Analysis

Let zi be the ith user state’s  rate of change

zi(t) = ẋi(t) =





∂Ui(xi(t))

∂xi

−

M
∑

j=1

µ̂j(t)Aji





+

Let L(x;λ,w) be a candidate Lyapunov function

L̇(x;λ, w) =
N
∑

i=1

∂L

∂xi

dxi

dt
= −

N
∑

i=1

zi





∂Ui(xi(t))

∂xi

−

M
∑

j=1

µjAji





≤ −

N
∑

i=1







1

2
z2

i −
1

2





M
∑

j=1

(µj − µ̂j)Aji





2






≤ −
1

2

N
∑

i=1

z2

i +
1

2

M
∑

j=1

LS(µj − µ̂j)
2

We can’t use this to directly set up an event trigger for the link.
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Convergence Analysis and Event Triggers

We need ”local” conditions that can ensure L̇(x;λ, w) is negative
definite. So introduce a sequence {TS

i
[ℓ]}∞

ℓ=0
of time instants when

the ith user transmits its modified state, zi, to its links. The trans-
mitted user state is

ẑi(t) = zi(T
S

i [ℓ])

We can now rewrite our bound on L̇ as

L̇(x;λ, w) ≤ −
1

2

N
∑

i=1

[

z2

i − ρẑ2

i

]

−
1

2

M
∑

j=1



ρ
∑

i∈Sj

1

L
ẑ2

i − LS(µj − µ̂j)
2





where ρ ∈ (0, 1).

Event Trigger for User Event Trigger for Link
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Event-Triggered Distributed Optimization

rate

agent
user

link

router
price

agent

link

router
price

agent

link

router
price

agent

link

router
price

agent

link

router
price

agent

link

router
price

agent

rate

agent
user

rate

agent
user

jth link broadcast its state, µj , at times
{TL

j [ℓ]}∞
ℓ=0

when

LS(µj(t)− µ̂j(t))
2
≥ ρ

∑

i∈Sj

1

L
ẑ2

i (t)

jth link can continuously monitor its local
state

µj(t) =



λj +
1

wj





∑

i∈Sj

xi(t) − cj









+

ith user can continuously monitor its local
modified state

zi(t) =





∂Ui(xi(t))

∂xi

−

∑

j∈Li

µ̂j(t)





+

ith user broadcasts its modified state, zi,
at times {TS

i
[ℓ]}∞

ℓ=0
when

z
2

i (t)− ρẑ2

i (t) ≤ 0
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Simulation Results and Scaling

dual-decomposition algorithm
event-triggered algorithm
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S = maximum number of users any link has
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L = maximum number of links used by any user

Simulated on Randomly Generated Network -  150 users 

Event-triggering reduced message complexity by two orders

of magnitude 

Event-triggering message complexity was nearly scale-free 

[Wan 09, Wan 09a]
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Research Issues

Real-life applications and testbeds

Fault Tolerance and Resiliency

Safety-critical Applications

Extending Single Sample Finite Horizon Estimation
Problem

Moving from State-Feedback to Output Feedback

Observability, controllability, and certainty equivalence
of event-triggered systems

Event-triggers based on stochastic stability concepts

Event-triggered consensus filtering and flocking
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