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m Event-Triggered Sampling:

w (dist.)
[Arzen 99, Arzen 00]

z (objective)

u (control) y (meas.)

Embedded .
Control O Sensor determines when to

sample the system state. :

O The “gap” between current state :L 7 v
and past “sampled” state as a measure o - o
“novelty” in feedback information

O Sample the state when the “gap”
exceeds a state-dependent threshold

I Benefits
O Reduced usage of computer
and communication resources




> Periodic versus Event-triggered control

Event
Triggered Process Model: dx = axdt + udt + dw
Feedback

Variance under Event Sampling = V.

Variance under Periodic Sampling = Vy

Embedded
Control 10 . T T T T T T T T
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Event-triggering and Computational Resources

Event () A

Triggered s —_—
Feedback PID controller: (o_gqu 1)(2;1:" +1)

K(s) = 30+ — 4 —%

Event-trigger threshold: L) s stwa

Embedded le(t)| = |z(t) — z(r;)| < ep = threshold

Control threshold chosen so peak error of both systems are equal
x10~
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O Process Model:

Control

&(t) = f(x(t), w(t)),
o Input-to-State Stability (ISS)
Embedded

z(0) = zg

The system is ISS if there exists L function § and class K function v
such that for any initial condition, z(0) = z, then the response under
any input w € L, for all ¢ > 0 satisfies

@I < Bllwoll, 1) +y(lwlz.)

O  ISS-Lyapunov Function

O function V : ®" — R is ISS-Lyapunov function if there exist
class K functions a, @, v, and 3 such that

a([lz]l) < V() < a(ll])
V< =(llz])) + A(llwl)

If V is an ISS-Lyapunov function, then the system is ISS

[m]

=
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Process Model: G : L —L
O L2 Stability
Embedded

Control

The system map G is Lo stable if for all w € Lo, ||Gw||z, < v||wllz, + 5
Induced L2 Gain

|Gl =inf{y e R : |Gullc, <7llwlle, + 5}

L2



Hamilton Jacobi Inequality and £, Gain

Event
Tggered @ Process Model:  #(t) = A(z(t)) + Bi(x(t))w(t) + Ba(z(t))u(t)
T
2(t) = [ =) u(t) ]
O Hamilton Jacobi Inequality:
Eg‘,ﬁ?&ded Assume there exists ¥=0 and positive definite function 7: R"” — R such that
v 19V [1 - o Jovt o1,

O L2 Controll
ontroller . . o)
If the control ,u(%), is selected so that  u = —Bs (z) 5

We can then show that

. 1 . . 1, .- 1
Vo< =gl + ol =22 wlF) = =3l + gl

Integrating the above inequality yields

21z, < Allwlle, + V27V (2(0))
which implies the L2 induced gain is less than V-




Hamilton Jacobi Inequality and £, Gain

Event
Triggered
Feedback

O Consider the directional derivative of the function V that

satisfies the earlier Hamilton-Jacobi Bellman inequality
Embedded

iz g v = %[A(l‘)+Bl(:L')u!+BQ(1:)u]
< *%% <%BIB,T73233> %Tfé\|z\\§+%32u+%3m HIT
Y g s i—%nuuzfé o z+§|\uv\lﬁf%\lz\\§ o
Ifwelet o= —Bg(m)a‘gi?)T then we can show
Vo< =g (lull o+ el — 27 wl) = —5lel + 5wl

which is sufficient to ensure the L2 induced gain is less than Y
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State-based Sampled Data System

13 99 42 L0
@ Sequence of “release” times {r;},_,

@ Sequence of sampled states

Z;(t) = x(r;) for all t € [r;,7j41)

@ Gap between current state and sampled state
e;(t) = ;(t) — x(t) for all £ € [}, 7;41)
@ Process Model - discretely sampled state feedback
B(t) = Flo(t) k(@ (0) (b)) = Fa(0) Ka(t) + ¢(0), w()
for all t € [rj,rj11) and all j =0,...,00
m ISS assumption - under continuous sampling of state
“Continuously” sampled closed-loop system

&(t) = f(a(t), k(z(t)), w(t))

is input-to-state stable with respect to the input w.



ISS Event Trigger

ﬂ-ij\éz::ed @ 1SS assumption implies the existence of an ISS-Lyapunov function,
Feedback There exist class IC functions a, @, 7, 31, and (2 such that
N a(llal)) < V(@) < a(jz])

oo f (@ Kz +e),w)) < —y([|=[]) + Ba(llell) + Ba(Jwl])
Embedded
Control O ISS Event trigger: [Tabauda 07]
If we can guarantee for all ¢ > 0 and all j =0,..., 00 that

ISS event trigger [ﬂl(”e](t)H) < 0”y(Hx(t)H) j

for some o € [0, 1], then we can ensure that

V<~ =) (llz®)]) + Ba(llwl])

which is sufficient to ensure the sampled system is ISS with respect to w.

, trajectary of state and sampled state (trajectory of gap and threshold,

' ' ' '
' . ' '
! ! ] '
WO V(|[x[)) = state dependent event-trigger
Bulle))! r ' '
: “w/: Billes)

IR T3 Ty o Ty 1, T3 r

501

Xu1)




> Event-triggering Example

Event

Triggered

Feedback . @(t) F(@(t)) +u(t)
@ Process Model: u(t) = —2/((1)

m  EventTrigger: (|le;l]) = €2(t) > (1) = 1(la(1)])

Embedded
Control sublinear linear superlinear
) — q P o ) = 7 _ .3
~ flx) = sgn(x)/|z] fl@)==2 flx)==z
10° o .
10 10°
10° 1 10 vx) VFFF_N?
. 10°
By(e) \o'”% By(e)
L e 107
01 2 38 4 5 6 7 8 9 10 T2 8§ 4 5 6 7 6 9 10
1 05 5
08 Intersample Period 0.4 Intersample Period 4 Intersample Period
06 03 3
04 02 2
02 01 1
0 [} 0
12 4 7 time 10 12 4 7 10 1 2 4 7 time 10

time
@ Three cases in which system dynamic is sublinear, linear, or superlinear
@ sublinear dynamics : exhibit Zeno sampling
© linear dynamics exhibit periodic sampling
© linear dynamics exhibit slow sampling around equilibrium point




» Lower Bound on Sampling Period

Event
Triggered

Feedback @ Lipschitz continuity of system | f(x,k(x + ¢e))|| < L||z| + L|le]|

m Lipschitz continuity of event trigger

Comol Billle;l) = ov(lla@®l) = v~ (o™ Bille;ID) < ll=(t)]
There exists positive constant P such that
1 - llell

H(Bulllel) < Pllell < |||l = o =P

@ Bounds on rate of growth for the “event” quotlent [Tabuada 07]

d lell ( n |||> Lilz]| + Lflell _ < le II)
dt [|] [[]] ] ]
This is a differential inequality that can be used to bound
the evolution of the event quotient, |e||/||x]|




Lower Bound on Sampling Period

Event

Triggered = Solution of the differential inequality
Feedback
d el < Iel)2 le@I _ tL
— e SL T+ = <
Embedded dt ||| [l [e@)I — 1 —tL

Control

@ Lower bound on sampling period [Tabuada 07]

tL
= Tj+17T7 =

<

<

= o
=
~ |~
==
—
I
~
h
Sl =

= Non-zeno Behavior
This bound is bounded away from zero
so sampling interval never equals zero. % ................

Earlier sublinear example exhibits
Zeno behavior because f isn’t Lipschitz
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L, Event Triggers: process model

m L2 event triggers are chosen to preserve the induced L2 gain
of a previously designed control system [Wang 09]

@ Process Model - discretely sampled state feedback

z(t) = A(z)+ Bi(z)w + Ba(x)u

() (I()t;— 1@ 2(a)u State sampled at release times {r; };i
. =

2(t) = { u(t) } 2i(t) = x(r;) for all t € [rj,7j41)

CoviE)T Sampling gap
u) = BTG 2

Tor O ME) | (1) = a5 - 2(t)

0

m L2 Controller
V is a storage function satisfying the HJI for some v > 0

2 2

oV (z)
ox

ov(z)T
ox

ovi(z)T
ox

1 .
~ 3l
2

<
S5
5 2

A(x) Bs(x) By (z)

1
2

With this V, the continuously-sampled system’s has a gain less than ~.
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L, Event Trigger

m@ Assumption: Lipschitz continuity of L2 controller [|lk(z) — k(2)[l, < Llel2

O Storage Function Rate of Change
V (z)

Vv o= o (A(z) + Bi(x)w — Ba(z)k(Z))
: v 1 OV (z)
T T T R
(HJT) < o2 By (x) B zf§|\l\|§+ B By(z)w — kT (z)k()
2
complete 1 1 ov(x)T 42 .
square < *iHng v ;B?(T) oz + ?Hwﬂg — kT (2)k(2)
2
N B2, A2 (B 1, 5 1
Lipschitz < 2|I|§+'2|w§[2 21 = 5 k(@3 + 5 L2[lel3
@ Event Trigger ensures that boxed . o
Llell3 < (1= 87«3 + [%(®)]3

term is always negative definite

which implies the gain is less than v/ where (0 <f <1)
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Event
Triggered
Feedback m Process Model:

Event Trigger:

- — 3 2 2 2 2 )\ (12
i(t) = x"+utw L2|ell3 = (1 = 8%)[l=]l3 + | k(2)1I3 ,
5 2
Embedded v = —ai? where L = 1l.e, 5 =0.5,v=2, and a > 7211
Control o 9ot
w(t) = (e +nw(t)
No Wideband noise: =0 Wideband noise: 1=0.1
10 10° -
107° event-trigger 107° event-trigger
1070 107
15 15
o scaled error 10 scaled error
107 107
0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10
05 1.4
0.4 12
03 inter-sample period 0_13 inter-sample period
02 06
0.4
0 1 "
12 4 7 T2 4 7 time 10

time 10

@ Example shows event-triggered systems sensitive to wideband noise
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Delays and Periods of £, Event Triggers

@ Sampling with delays job j-1
r. = release time of jth job

(sample taken)

f; = finishing time of jth job
" (control applied) r
Dj = delay of jth job < Deadline

T,= Period of jth job

jobj jobj+1
[f;
. D. ]
T ! Fi
J-1 rJ Tl rj+1
#(t) = Ax+ Byw+ Bau

x(t
B LTI Process Model: forall tE[f,, f;,,) () = { o }

Noise model: ||w(t)|| < W||z(t)]

m HJI becomes Riccati Inequality

u(t)
~BIPi; = k(2;)

<
—~

~
=

P is symmetric P.D. Matrix satisfying the Riccati inequality for some v > 0

ATP+PA—P(B:B] —v ?BBI)P+I1<0

@ L2 Event Trigger [ejr(t)Mej(t)

> 627 (r;)Na(r; )j [Wang 09]

where M = (1— 3%)I + PB,BI P,

1
N=(1- 621 + PByBT P



> Lower Bound on Sampling Period: no delay

T.E;\éz:led I Normalized gap function  z;(t) = v Me;(t)
Feedback
B L2 Event Trigger: |z;(t)|| > 01/ (r;)Na(r;) = dp(z(r)))
Embedded
Control

; o o )
V1 P e j*+2
— T4.|

@ Sample Period Bound: no delay
EI\Z]-( Dll2 < allz;(B)ll2 + po(2(r;))

[Wang 09]

The normalized gap satisfies

r
The solution to the differential inequality: 2; (2 < %(J)) < alt=rs) 1)

Lliedicdh)

which bounds the sampling period as [Perlod 1y =




- Bounds with Nonzero Delay

T'E]‘éz:‘e . B With non-zero delay, the evolution of zj() is governed by

FESREES (t) (t) = BBy Pa(rj_1) + Buw(t)  fort € [ry, f;)
t) — BoBY Px(r;) + Byw(t) for t € [fj, fi+1)

= Ax
z(t) = Ax(

Embedded
Control

m Use differential inequalities to show that if next release time is

p(x(r;)) — p(a(r;), x(rj-1); D;) )
po((ry)) + ag(z(ry), x(rj—1); Dj)
and if the delay satisfies the following deadline

(1 = d)p(a(r;))
adp(x(rj-1)) + po((rj-1))
then the sampled-data system is L2-stable [Wang 09]

. 1
7‘_7’+1 = f/ + — ln <1 + (0%
«

1
Dj < —1In (1 +« > = Deadline
o
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Self-Triggered Feedback

m Self-triggering is a software implementation of
event-triggering.

m Use estimates of next release to trigger next control job
[Velasco 03, Lemmon 07]

m Use predicted bound on delay as deadline for next
control job

m Predicted periods and deadlines serve as task
constraints that the real-time scheduler needs to
enforce.



- Simulation of Self-Triggered System

T,-E\éz:led @  Self-triggered inverted-pendulum example [Wang 09]
Feedback
0 1 0 0 0 1
00 -%2 0 = 1
Embedded z(t) = M z(t) + M + w(t
Cg]nt?ol © *) 0 0 0 1 (t) 01 1 ()
0 0 g 0 — 17 1
0.12
Self-triggered periods tend
o 3 to exhibit periodic oscillations
0.08 |’ in sample period
006 1
% \ Periodic oscillations in
004 Sampling Period period breakdown in
002 I /Predicted Deadiine presence of wideband noise
[¥
0

0 5 10 15 20 25 30 35 40t




) Average Period Comparisons

Event
Triggered
etack Self-triggered Period = 0.1782 [Wang 09]
. . ang
Event-triggered Periods = 0.3375
E'nbedlded Periodically Triggered (MATTI) = 0.0092 [Nesic 04]
ontrol
g 02 +MWWM
g 0.15F
E mhj
ggUOS §
& 0O 2 4 6 8 10 12 14 16 18 20
Time (sec)
2 15
%ﬁu? P 7T **++#+¢$¢+**
a 0 2 4 6 2 14 16 18 20
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Event-Triggering in Networked Control Systems

m Model of Networked Control Systems

m |SS Event-Trigger

m Network Artifacts due to Broadcast Protocol

m Impact of Network Artifacts on Event-triggered NCS
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Model of Networked Control System

Agent’s Dynamics

z;(t) = fi(zp,(t),wi(t),w(t)) X ; = local state

. N for all £ D X; = broadcast state

2i(t) = wx(ry) forallteri,ri ) ri = broadeast time
ui(t) = ki(dz,(t)) forallt>0 D, = systems that physically

drive the ith subsystem

u
@ ' system 1 Z ; = systems that broadcast
i1 = filasso) + 91w) X to the ith subsystem

system 2
. .e° Uy | iy = falwa;w_2) + galus)

X,

system 3

@3 = fa(x3;2-3) + g3(us)




. ISS Event-Triggers in NCS

Event

Triggered Let e; = 2; — x; denote the gap between agent i’s current
ASLRELS state and its last broadcast state. Let V : RV — R
be a positive definite function so that there exist class K
functions ~;, ¥;, and 3; such that

Networked N N
Control .
System V=> LV Z —villzill2) + ¥illleill2) + Bi(llwill2))
1 i—1
where
191%
szV = %f’i(xDm k(:EZz + eZz‘)?wi)
A

This means that V' is an ISS-Lyapunov function when the
gap e; = 0. In other words, k is an ISS controller for the
”continuously” sampled networked system.




ISS Event-Triggers in NCS

)
_Event
,I';gggraeci O  Assume for p; € (0,1), the state and gap trajectories satisfy
—pivi(llzi()l2) + Yi([lei(t)][2) <0

forallt e Rand alli =1,..., N. Then clearly

Networked N
ZLn < Z (1= pi)villzillz) + Bi([[will2))

Control
System

which implies the NCS is input-to-state stable.

O To enforce the previous ”event-triggering” condition, we require the
ith agent broadcast its state information to all of its neighbors in

U; whenever the triggering condition

billle(®ll2) < pm(\lxi(t)llz)J

is violated.




)

Event
TR Process Model [Wang 09a]
Feedback

T, =
! i + kjtanh(y; 11 — yi) + k7tanh(y; 1 — yi) + ws
ui = Ki#; — kjtanh(gip1 — 9i) — kitanh(g; 1 — i)
Y Nl
Networked 1 uy u u
Control L, 05
System s .
0% 1 2 Te 4 5 6

. O  Event Trigger
) 0 = —02zi(05)ll2 + 5.9/} ()]
= for the endpoint ageqts
aé% ey 0 = 02l +103] ()2
L for interior agents
& o5l
0 1 2 4 5 6

Time



Broadcast Protocol in Wireless NCS

Event
Triggered @ Prior analysis assumes that

Fecdback © There is no delay between broadcast and reception.
O All neighbors in Z; receive and use the broadcast data.

O A broadcast protocol must be used to ensure all neighbors

Networked receive the broadcast. This protocol will always introduce delay
ontrol

- Broadcast at rj" 4—‘—>
First ACK ‘ 4——
Second ACK —»‘
PERM at /' <——‘———>
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Dropout Mechanism in Wireless NCS

If broadcast is not “heard” by one agent in Z;, then Broadcasting
agent will not get ACKS from all of its neighbors and therefore

will not transmit the PERM message

Broadcast at r;’ « ‘ ><—>
First NACK ‘%
Second ACK ———»‘

PERM not sent %‘%—»

If the neighbors don’t receive the PERM message, then they
DROP the broadcast state information.




)

Event

Triggered - = jth consecutive broadcast time
Feedback

- % = kth successful broadcast time
Timing ; L )
Relations f}c = kth successful finishing time
dj, = number of dropped broadcasts
Networked between kth and k 4 1st broadcasts
Control h L.
System k™ transmission

k+ 15 transmission

r; Sk Pieg Tz ©7° r}+d,i r;+d;€+1 Sks1
(=b) (=bp+p)
Signal Definitions
Z;(t) = x;(by,) = ith agent’s "received” state
ei(t) = z;i(t) — (1) gap between received and actual state

€(t) = x;(t) — a:z(r;) = gap between trans%ittediand actual

DA



Quantization, Dropout, and Delay Budgets

Event
Triggered
Feedback
P, . .
Event-Trigger for this analysis [l€:(t)[| < ———[&:(t)]| = cil|2:(t)]
k( ) pi +a;
lle (t

L4 O 3 Sources for the ga
cil|#:(t)] e &

.......................................... © Quantization at b,

Networked © Dropouts between b and by,

Control

© Delay between by and £,
System

Create an error budget for each source

0, = budget for quant. error

]

d; = budget for quant. and dropout

77777 |7 T | ) 1 l O Use these budgets to bounq thei
pi=ri [} Foe e rl bl . acceptableibroadcast gufmtlzatlon
j j Jtdy i k error, maximum admissible number
T jrdi+l of successive dropouts (MANSD),

— - and maximum acceptable
Quantization Dropout Delay broadcast delay (DEADLINE).
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Making Event-trigger Robust to Single Dropout

Create Local Event Uixz(t) - xz(T;)H = Szcz”xz(T;)H J

Choosing b € (0, 6;], ensures that the broadcast event is triggered
before the violation of error budget (|lef(¢)|| < icif|2:(b%)]]) allo-
cated for dropouts.

1ol cil| 2 ()]

i i i i i i i
by=r; [ Fiep ®*® Thgi biy Sk
i

’/+dk’+/



= Maximum Admissible Number of Dropouts
(MANSD)

Event
Triggered Using the prior event-trigger we can show that the gap satisfies

Feedback . . .
leb @I < ((L+diea) 1 = 1) (B | < diesll (b))

We obtain an upper bound on the admissible number of dropouts

Networked [ dj, < MANSD = [10g1+5i(;1 (1+ (51‘Ci)J - 1] [Wang 09a]
Control
System

((1 + Sl(fl)dz‘“ - l) [ls (BE) || =77

(U bicy® =) sl [

(e e N 1 8

dicillzi ()] |ooooas




L) Upper Bound on Admissible Delay

Event
Triggered > ek D
R If we can bound the Gap’s growth rate 7 lleZ ()] < pi
HHE) L Then to ensure that the total gap is still below the budgeted allowance
we require that the “delay” between broadcast and reception satisfy
; ; (1—d:)c 3 .
Networked [ flz-%—l - b§c+1 < max {#Hxi(b}c)”»Dmin = Deadline
Control ¢
S .
e 1 llek )] [Wang 09a]
cillzi(p )| [ d ”””””””””””” ;
Gleren<p

Sicillai (O )| -----mmmm e 5




= Event-Triggered Estimation in Wireless Sensor
Networks

Event
Triggered
Feedback

m Single Transmission Finite Horizon Problem
m Transmission Decision and Optimal Stopping
m Dynamic Programming

m Optimal Event-trigger

Estimation
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Event
Triggered

Feedback

Consider a “simple” canonical problem: [Rabi 06, Rabi 08]
O Finite Horizon, [0,M]

O Discrete-time Scalar LTI Systen:
z[k] = axlk — 1] + w[k]

w[k] = zero mean white
Estimation

Gaussian noise with !
covariance ¢
X, = initial state is normal

1

T

random variable N(u,, 7)) |

M
w estimate Z[k] = E[x[k]|Fi]
, e process state x;
O Sensor transmits at time instant, » € [0, M]
O Least Square Estimate

poak k=0,..
z[rla* " k=r

Elalk|Fi] = {

Lr—1
LM



)

Event

Triggered
Feedback

r=min{k :

O The transmission time r is a random variable that is a stopping
z[k] ¢ Sk}
were Si is a set of event sets

time of the random process {z[k]}. In particular this means

Estimation

J(S1,---,Su)=FE
A
B

O The problem is to determine these event sets such that the estimator’s
means square error is minimized
M

> (alk] - 2[k])?

M
k=1

- 5[5 ]

1

r

-=- event-trigger, S
[ ]

Y

process state x[k]



Event
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Estimation

Dynamic Programming

O This problem may viewed as an optimal “control” problem in which

O

the stoppng events {S,} are the “controls”. We can therefore use
dynamic programming to solve the problem.
Value Function, V(x,n), is the optimal value obtained if the
process starts at state x at time n < M.
Bellman’s Principle of Optimality says that if {u*[n]}}L, is an
optimal control generating state trajectory {z*[n]}*, from initial
state (z*[k], k) to M, then {u*[n]}2L, ., is the optimal control from
initial state (z*[k 4+ 1],k + 1) to M.
V(x,0) V(x,1) Vxk) Vixk+l) V(x, M)

A A
' ' '
' ' '
' '
' ' '
' ' '
T ' '
'
'
! I

: bt ... M

Y

contours of constant value
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Event

Tri |
e Viy,k) = min F

Feedback

Estimation

[ M
~Or | ~—
T Tk =y k<r<M
i Ep | S #llla W=y k<<
.]=k
minimum cost from k to M when transmission oc-
" curs after k — 1 and a priori est. error is y.

VOy,k) = min E, g | D &K=y k>r

Sk, 8.
M =k

minimum cost from k to M when transmission oc-
curs before k and a priori estimation error is y

V(yx) Value if sampling occurs
after current time, K

Vo)

H*'*H Value if sampling occurs
before current time, k&

LT

I T T
1 kK r k M

-= event-trigger, S
e process state x;
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Estimation

Optimal Event-Triggered Transmission
Thresholds

O The minimum cost is achieved by J* = F [Vl(iio,())]. We can
use Bellman’s principle to compute this in a backward recursion.

V! (y, k) = min {F(y), Gx(q)}

where
Gi(a) = Eapery [VO(k+ 1,3 [k+1])|2[k] = 0]
= Cost if transmission occurs at time k
Fi(y) = ¥+ Eapeyyy [V + 1,2 [k +1]) | k] = y]
= >+ Gralg) — /5 (Grt1(q) = Frya(B[r + 1])] dPs gy
k+1

= Cost if transmission occurs after time k given error is y

O The optimal control (stopping event) is easily obtained from the
choice implied by the backward recursion

W TE] — 0 don’t sample Fy(Z[k]) < Gr(q)
w[k] = 1 sample Fy(zlk]) > Gr(q)

This is an event-triggered threshold logic.



Event
Triggered
Feedback

Estimation

Suboptimal Transmission Thresholds

@ The threshold function Fj can be computed numerically off-line.
O We can also adopt a sub-optimal approach by noting that

Fe(y) = 9+ Gryrlq) — / (Grr1(q) — Fr=1(Z[k + 1])] dPzpi41)

Sk41
< ¥+ Grialg)

O which leads to a stopping event that is only dependent on the
process noise covariance q.

1 — q2(M—Fk) 1 — g2(M—k)
St = |- ,
k \/ 1—a2 @ \/ 1—a? 4

which is an inverse quadratic threshold that goes to zero as k
goes to M.




Simulation Results

Event
Tggered O Simulation of optimal, suboptimal, and periodically sampled

schemes where M = 10, ¢ = 1, and wy € N(0,1).

a = 0 (stable) periodic | suboptimal

optimal
J (cost) 9.98 8.50 7.68
r (sampling time) 5 3.13 7.1
Estimation a =1 (unstable) | periodic | suboptimal | optimal
7T (cost) 30.15 21.70 21.68
r (sampling time) 5 7.01 7.56

O Simulation results show that
O J*<J*<J, so that optimal policy is indeed optimal
O J*=J* when process is unstable (forgets initial condition quickly)
o optimal policy always delays sampling longer than periodic policy
- but this is not necessarily true for suboptimal sampling policy.
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O Finite-horizon problem can be used as the basis of a
receding-horizon estimation scheme
A

1]

I, M
-= event-trigger, S,
v e process state x;

Estimation

%)

M-+,

Trigger broadcast based on thresholds for finite-horizon problem.
Treat broadcast as starting point for next finite-horizon problem
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Network Utility Maximization (NUM) Problem

a

Maximize utilities of N users transmitting
over M shared communication links.

[maximize: U(:L‘)Zzzil Ui(;) ] SR

subject to: Ax <e¢, x>0

where 4 is an incidence matrix mapping
network nodes to network links, c is a
vector of limits on link throughput, and
x is the vector of user transmission rates.

U, (x;)= log x; is the it user’s utility function.

The Network Utility Maximization (NUM)
problem is found in numerous applications
that optimize overall networked system

performance subject to a shared resources.

<

USER 1

— . 1 ur] .

S qury . - )lu![. € yuI|

[Kelly 98]



-/ Dual Version of NUM Problem
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prices transmitted back over
communication network

O Recast as a dual min-max problem
S N
minimize: max;>o (Zi:l Ui(z;) — pT (Az — ())
agent

subject to: p >0

where the vector p is a set of shadow prices that
each link charges its users.

Optimization O Solve thif _pro’?lem in an “qlternating” manner where
© each “link” selects a price based on observed user rates
© each user selects its rate based on the transmitted prices

O An algorithm known as “dual-decomposition” allows
us to implement this “alternating” recursion in

a highly distributed manner [Low 99] user rates observed by

each link router
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Dual-Decomposition Algorithm

O Dual-decomposition [Low 99] is a “distributed” algorithm commonly
used to solve the dual form of the NUM problem

zilk+1] = argmax | Ui(zi[k]) — a;[k] S ol | = | D pilkl
= JEL; JEL;
pilk+1] = max<q 0,p;[k]+~ Z xi[k] — ¢;
i€s;

where U;(z;) = log(x;) where is the user’s utility function

O Y is a step size chosen to ensure convergence [Low 99]
—2max; 5,y V2U;(x;)
LS
where Z is maximum number of links that any route uses
and S is the maximum number of users on any link.
@O L and S are measures of network complexity. So the number of
messages passed by dual-decomposition increases with longer
routes and neighborhoods.

0<y<

-1



- Augmented Lagrangian Algorithm
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O Event-triggered NUM algorithm is best implemented using an “interior-point

algorithm based on an Augmented Lagrangian.
O Augmented Lagrangian of the NUM problem

¢*[1], A[1
L(z; M\ w) = — ZleJrZL)Jx/\u' LA

x[0]

where ;(x;A,w) is a constraint penalty

O Primal Augmented-Lagrangian algorithm

Optimization

O Sequence {Ai[k]} of Lagrange Multipliers Taint boundary
1
pi

© Compute approximate minimizer x *[k] optimal point

z* [k + 1] = arg max L(x; A[k], w) [Wan 09, Wan 09a]




® Distributed Augmented Lagrangian Algorithm -
continuous access
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. S link states transmitted over
O  Users compute the approximate minimizer o
. . . . communication network
using a gradient following algorithm.

.

t [ au; ﬁ

n) = [ | Zu :
()

dr agent

.QJ

2

where the links update the variable

4
Optimization wi(t) = <)\ +— <Z Ajjai(t ))

O  Note that these two equations define a feedback loop
between users and links in the players have “continuous” ‘ﬁ

access to each others’ states.

(] In practice, link updates are carried over packet
switched network, so that users only have “discrete
access to link states.

,, user rates observed by
each link router
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With discrete access to ”link” states, let prices transmitted at discrete
{TjL [0]}32, be the time instants when link instants over comm. network
j transmits its link state to its users. The et ETEEL L

>

link state received by the users is

£ (t) = (T3 [4))
With this sampled link state, the user’s
gradient algorithm becomes

t (i (T M
zi(t) = /0 %xi()) =Y i(r)Ay | dr

If we treat L(x;A,w) as a candidate Lyapunov function

then we need to examine L(z; A, w)
user rates observed by

each link router
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Convergence Analysis

O Let z; be the ith user state’s rate of change

+
. OU; (x4(t
2i(t) = (1) = axl Z it
O Let L(x;A,w)Dbe a candidate Lyapunov function
N N
Leaw) = Y-St =—3 ;
(iE, 7w> P 8161 dt ;Z quj J

IN

|
[~]=
N =
N
=N
|
N | —
=
[

|
=
.
2

i=1 j=1

N
1 1 &

< *55 21‘2+§§ LS(uj — fiy)?
i=1 7

O We can’t use this to directly set up an event trigger for the link.



Convergence Analysis and Event Triggers

Event
Triggered . o, r : i
Feedback O We need "local” conditions that can ensure L(z; A, w) is negative

definite. So introduce a sequence {T°[¢]}2,, of time instants when
the ¢th user transmits its modified state, z;, to its links. The trans-
mitted user state is

Zi(t) =2z (Tis [4)

O We can now rewrite our bound on L as

. 1 1 1, —=
L(z; M\ w) < _§Z[ZE_P"312] 52 PZEQ?_LS(M_I}%

i=1 =1 |\ ies;

where p € (0,1). \

Event Trigger for User Event Trigger for Link

Optimization
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Event-Triggered Distributed Optimization

e Ny
. .

-
* ~,

rate
user
agent
rate
user
agent
rate
user

agent

PR N T
LR

jth link broadcast its state, p;, at times
{TF{)}72, when

__ . 1.
LS(u() = i) 2 p Y 2520
i€S;
jth link can continuously monitor its local
state
+

w) = [y + = | T w -

7 \ies;

ith user can continuously monitor its local
modified state
4

at) = | 2520 5740

ith user broadcasts its modified state, z;,
at times {7}°[]}2, when

7 (t) = pE () <0




Simulation Results and Scaling

Event
Triggered .
Feedback O Simulated on Randomly Generated Network - 150 users
O Event-triggering reduced message complexity by two orders
of magnitude
O Event-triggering message complexity was nearly scale-free
. ot [Wan 09, Wan 09a]
10
o dual-gecomposition algorithm o) duql-degom:position:a]gorith|:n o
. @ event-triggered Flgorlthm ' 000 =] evelnt—trlggelred algongmgwo oxe [¢]
g ¢ooo¢0°° - : 500" :
Optimization S 103f--0-Q oo . [ $ 103} ----- e O‘Q.Q ..... R TR
] ' ' ' o 0® ° ' ' '
= i ‘ | ] 07| ‘ ‘ ‘
ks ' ' | ?_ ' ' ' '
R EET S R Foeee- 5 107} - S
5 : : ! £ Lo
z ' X ' £ ' ' X X
! 1 1 = a ' ' 1 1
ol fB@mEmamsEfEesf el LLLLLLELEEET
2 4 6 8 10 12 14 16 18 8 10 12 14 16 18 20 22 24 26

L= maximum number of links used by any user S = maximum number of users any link has
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Issues

Research Issues

Real-life applications and testbeds
Fault Tolerance and Resiliency
Safety-critical Applications

Extending Single Sample Finite Horizon Estimation
Problem

Moving from State-Feedback to Output Feedback

Observability, controllability, and certainty equivalence
of event-triggered systems

Event-triggers based on stochastic stability concepts
Event-triggered consensus filtering and flocking
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