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Abstract— This paper studies the input-to-state stabilizability
of quantized linear control systems with external noise under
feedback dropouts. A vector of feedback measurements is
quantized prior to being transmitted over a communication
channel. The transmitted data may be dropped by the channel.
The channel dropouts are governed by a stationary model,
which is quite general to include many realistic dropout models.
This paper derives a lower bound on the constant bit rates
which can almost surely stabilize the system in the input-
to-state sense under the given dropout condition. A dynamic
quantization policy is shown to be able to stabilize the system
at that lower rate bound. So the minimum constant stabilizing
bit rate has be obtained. The achieved theoretical results are
also verified through an example.

I. I NTRODUCTION

In recent years there has been increasing interest in imple-
menting the feedback loop of a control system over a non-
deterministic digital communication network [1]. This may
have many benefits, such as lower cost, higher reliability, and
easier maintenance. These advantages are, however, achieved
at the cost of loss of perfect feedback information due to
packet dropouts and quantization (all data must be quantized
into a finite number of bits before transmission). Then the
results built upon the perfect feedback assumption have to
be re-evaluated. A major concern about such systems is
stabilizability, i.e.,whether the originally stabilizable system
can still be stabilized under the given network dropout
and quantization conditions. Here stability is measured by
input-to-state stability (ISS) in the almost sure sense, which
quantitatively characterizes the system’s robustness against
the input noise and the initial condition[2]. Quantization
condition is characterized by the available bit rate (here the
constant bit rate case is chosen due to its communication
efficiency [3]). We consider a general stationary dropout
model, which can cover many realistic dropout conditions.
We want to find the minimum constant stabilizing bit rate
under the given dropout.

Much research on quantized control systems has been done
in the last two decades [4]. Many results on quantized control
systems assume that the quantization bits (or symbols) are
errorlessly (dropout-freely) transmitted. The available quan-
tization policies can be categorized into two groups, static
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one and dynamic one.Static quantization policiestake a
constant quantization range, and map each bit to a specific
subset of that range in a fixed(static) way. Asymptotic
stability of noise-free systems is lost under static policies
[5]. Compared with static policies,dynamic quantization
policies may choose a time-varying quantization range and
their bit mapping policy can also be time-varying. Although
more complicated, the dynamic policies can asymptotically
stabilize noise-free linear systems at a finite bit rate[6].The
minimum bit rate to maintain asymptotic stability is given in
[7] [8] (for the time-varying bit rate case) and in [9] ( for the
constant bit rate case). For quantized systems with bounded
exogenous noise, bounded-input-bounded-output (BIBO) sta-
bility, instead of asymptotic stability, is pursued and the
minimum bit rate to achieve such stability is derived [7]
[10][11] while the input-to-state stability is investigated in
[12]. Due to their efficiency, dynamic quantization polices
are chosen in the present paper for stabilization of quantized
systems with bounded noise.

Feedback dropout has not got much attention in the
previous quantization literature. It seems intuitively pleasing
that when the dropout rate is low, the stabilizability of
the quantized systems would be preserved under feedback
dropouts. In [13], it was asserted that thealmost sure stabi-
lizability of quantized linear systems with i.i.d. (independent
and identically distributed) dropouts can be guaranteed ifthe
average bit rate,R satisfies

R >

n
∑

i=1

max(0, |log2λi|) (1)

whereλi (i = 1, · · · , n) are the eigenvalues of the discrete-
time open-loop system matrix. The above statement is,
however, proven to be incorrect in [14]. Furthermore, it is
shown that the system state almost surely diverges for any
R [14]. In order to resolve this diverging issue, one may

• Choose a weaker notion of stability, such as mean
square stability [15] [11], under the given i.i.d. dropout
condition.

• Put constraints on the dropout sequences. In [16], the
BIBO stabilizability of quantized systems is preserved
under some dropout conditions different from the above
i.i.d. process.

Because mean square stable systems may still generate
sample paths with arbitrarily large state magnitude, the
first approach listed above may not be appropriate for real
applications. This paper, therefore, mainly focuses on the
second approach. In order to come up with appropriate



dropout constraints, we first have a close look at the i.i.d.
dropout model in [13]. Due to the i.i.d. property, it is almost
sure that dropout patterns with any number of consecutive
dropouts will infinitely often occur. The consecutive dropouts
are the main reason to drive the state to diverge[14]. Such
arbitrarily long consecutive dropouts are actually prohibited
in real networks. Real-time system engineers work hard
to avoid consecutive dropouts by proposing and enforcing
different constraints on dropouts. Some important constraints
include theskip-overpolicy [17] (which places a bounded
on the number of consecutive dropouts) and the(m,k)-firm
guarantee rule [18] (which requires that at leastm out of k
consecutive attempts succeed). The present paper will givea
dropout model (or a constraint on the dropout sequences)
more general than the aforementioned ones, and proves
the quantized system can be almost surely stabilized under
that dropout condition at the minimum constant rate, which
extends [12] by explicitly considering feedback dropouts.

The rest of this paper is organized as follows. Section
II presents the mathematical models of the quantized linear
system and the feedback dropouts. Under the given dropout
condition, we derive a lower boundRmin on the constant
bit rates to stabilize the quantized system in Section II. That
lower boundRmin is shown to be achieved by a quantizer
in Section III. Simulation results of an example system are
also included to demonstrate the correctness of the theoretical
results in Section III. Some final remarks are included in
Section IV. To improve readability, we move all technical
proofs to the appendix, Section V.

II. M ATHEMATICAL MODELS

A. Model of the Quantized Linear System

This paper focuses on the system in Fig. 1. In Fig. 1,
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Fig. 1. A quantized linear system

x[k] ∈ Rn is the state at time instantk (= 0, 1, 2, · · · ,).
x[k] is quantized into aR-bit symbolss[k] and sent over the
digital communication network.s[k] is either received by the
decoder with 1 step delay or dropped. It is assumed that there
is reliable ACK to notify the transmitter (encoder/quantizer)
regarding dropouts. Define a dropout indicator

d[k] =

{

1, Dropout at timek
0, Success at timek

(2)

{d[k]} is referred to as“dropout sequence”. The input of the

decoder in Fig. 1 iss[k] =

{

s[k − 1], d[k] = 0
φ, d[k] = 1

with φ

representing a dropout. The decoder uses all received sym-
bols {s[k], s[k − 1], · · · , s[0]} to generate the state estimate
xq[k], which can also be viewed as a quantized version of

x[k]. The control inputu[k] ∈ Rm is then constructed from
xq[k]. w[k] ∈ Rn is an exogenous noise signal bounded as

sup
k≥0

‖w[k]‖ ≤ 0.5W (3)

where‖ · ‖ denotes the infinity norm of a vector, andW is
known by both the encoder and the decoder. Under a linear
controller, the system equation is

{

x[k + 1] = Ax[k] +Bu[k] + w[k]
u[k] = Gxq [k]

(4)

where the matricesA, B andG are of appropriate dimen-
sions. The system is assumed to be stabilizable (under the
perfect feedback) and a stabilizing gainG must exist. We
consider the input-to-state stability (ISS) of the system [2]

‖x[k]‖ ≤ β′(‖x[0]‖, k) + γ′(sup
j≥0

‖w[j]‖), ∀k ≥ 0 (5)

whereγ′(·) andβ′(·, ·) areK andKL functions1, respec-
tively.

The quantization errore[k] = x[k] − xq[k] surely affects
stabilizability of the quantized system in eq. 4. It can be
shown that the input-to-state stability in eq. 5 is equivalent
to the following equation [19]

‖e[k]‖ ≤ β(‖e[0]‖, k) + γ(sup
j≥0

‖w[j]‖), ∀k ≥ 0 (6)

whereγ(·) andβ(·, ·) areK andKL functions, respectively.
Therefore this paper establishes the input-to-state stabiliz-
ability of the system in eq. 4 through proving eq. 6.

Assumption 1:The system matrix in eq. 4,A, takes a real
Jordan canonical form, i.e.,

A = diag(J1, J2, · · · , JP ) (7)

where Ji is an ni × ni real matrix with a single real
eigenvalueλi (of the multiplicity ofni) or a pair of conjugate
eigenvaluesλi andλ∗

i (of the multiplicity of ni/2). |λi| ≥
1, ∀i.
For notational convenience, we define

α(A) =

P
∏

i=1

|λi|
ni (8)

B. Dropout model

For a given dropout sequence{d[k]}, define the local
dropout rate asεl[k] = 1

l

∑l−1
i=0 d[k + i]. 0 ≤ εl[k] ≤ 1.

We can show that the following limit must exist

ε′ = lim
l0→∞

sup
l≥l0

(

lim
k0→∞

sup
k≥k0

εl[k]

)

(9)

We call ε′ in eq. 9 the average dropout rate, which may be
different from the ordinary definition of the average dropout
rate ε = liml→∞

1
l

∑l−1
k=0 d[k] For example,{d[k]} =

{101100111000 · · ·} givesε′ = 1 v.s. ε = 0.5.

1A K function f(x) is continuous, strictly increasing andf(0) =
0. A KL function g(x, y) is a K function w.r.t. x by fixing y and
limy→∞ g(x, y) = 0 for any fixedx.



Assumption 2:There exists0 ≤ ε̂ < 1 such that

lim
l0→∞

sup
l≥l0

(

lim
k0→∞

sup
k≥k0

εl[k]

)

≤ ε̂ almost surely. (10)

It can be verified that many real-time constraints, such as
the skip-overpolicy [17], the(m,k)-firm guarantee rule [18],
satisfy eq. 10.

Under the dropout condition in eq. 10,what is the lowest
bit rate to stabilize the system?The following Lemma
presents a lower bound on all constant bit rates to stabi-
lize the system in eq. 4. Its proof closely follows that of
Proposition 3.2 in [13] and is omitted here.

Lemma 2.1:Under eq. 10, the quantized system in eq. 4
can be almost surely stabilized under at constant bit rate of
R only if

R ≥ Rmin =

⌊

1

1− ε̂
log2 (α(A))

⌋

+ 1 (11)

whereα(A) is defined in eq. 8, and⌊·⌋ stands for the flooring
operation over a real number.
We will construct a quantizer in Section III, which can
achieve the ISS atR = Rmin. So Rmin in Lemma 2.1 is
the minimum stabilizing bit rate.

III. M AIN RESULTS

A. Mathematical preliminaries of quantization policies

The desirable quantizer needs the following preliminaries.
1) Coordinate transformation:For quantized system with

complex eigenvalues, a coordinate transformation is defined,

z[k] = Hkx[k] (12)

where the transformation matrixH is defined as
H = diag(H1, H2, · · · , HP ). Each Hi is associated
with one of the Jordan blocksJi in eq. 7.
Specifically, Hi = Ini

if λi (the eigenvalue ofJi)
is real and Hi = diag

(

r(θi)
−1, · · · , r(θi)−1

)

with

r(θi) =

[

cos(θi) sin(θi)
−sin(θi) cos(θi)

]

if λi is complex and

λi = |λi|ejθi . By [7], eq. 12 transforms eq. 4 into

z[k + 1] = HAz[k] +Hk+1Bu[k] + w[k] (13)

wherew[k] = Hk+1w[k]. w[k] bounded by0.5W (= 0.5 ×
(2W )). Considering the structure ofH , we infer from eq.
12 that0.5‖x[k]‖ ≤ ‖z[k]‖ ≤ 2‖x[k]‖ for any k ≥ 0. So
the input-to-state stability of eq. 4 (with the noise input of
{w[k]}) is equivalent to that of eq. 13. The present paper,
therefore, focuses on the boundedness ofz[k]. We usezq[k]
to denote the quantized version ofz[k] at time k. The
quantization error is represented ase[k] = zq[k] − z[k]. As
argued in Section II,{z[k]} satisfy the ISS requirement in
eq. 5 if and only if{e[k]} can satisfy eq. 6.

2) Uncertainty set:Any bounded set inRN can be over-
bounded by a (hyper-)rectangleP with the center ofzP and
the side length vectorL = [L1, L2, · · · , LN ]T . A rectangle
with the center of the origin and the side length vector
L is denoted asrect(L) (=

∏n
i=1[−0.5Li, 0.5Li] with

∏

standing for the Cartesian product). SoP can be expressed
asP = zP + rect(L).

Corresponding to the block diagonal structure ofA in
eq. 7, we relabelL with a 2-dimensional index asL =
[L1,1, · · · , L1,n1

, · · · , LP,1, · · · , LP,nP
]
T , where Li,j corre-

sponds to them− th entry ofL with m =
∑i−1

l=1 nl + j.
The decoder does not know the exact value of thez[k], but

can know from the received symbols{s[k]} the set which
z[k] lies within. That set is referred to as the“uncertainty
set”. The uncertainty set is usually a bounded set and can be
over-bounded with a rectangleP [k]. Without confusion,P [k]
is also called the“uncertainty set” at timek. By the criterion
of minimizing the worst case error, we can estimatez[k] with
the center ofP [k], zq[k]. The quantization (estimation) error
is e[k] = zq[k] − z[k] ∈ rect(L[k]), whereL[k] is the side
length vector ofP [k]. It can be shown that{e[k]} satisfies
eq. 6 if and only if

‖L[k]‖ ≤ βL(‖L[0]‖, k) + γL(sup
j≥0

‖w[j]‖), ∀k ≥ 0 (14)

whereβL(·, ·) is aKL function andγL(·) is aK function.
3) Evolution of uncertainty sets:As time moves forward,

we updateP [k], more specificallyzq[k] andL[k], to guar-
antee thatz[k] ∈ zq[k] + rect(L[k]), ∀k. By eq. 4 and the
boundedness of{w[k]} in eq. 3, we can update them as

zq[k + 1] = HAzq[k] +Hk+1Bu[k] (15)

L[k + 1] = KL[k] +
[

W,W, · · · ,W
]T

(16)

where H is defined in eq. 12, and K =
diag (K1,K2, · · · ,KP ) with

Ki =











|λi| 1 0 · · · 0
0 |λi| 1 · · · 0
...

...
...

...
...

0 0 0 · · · |λi|











ni×ni

when λi is real,

Ki =











|λi|I E 0 · · · 0
0 |λi|I E · · · 0
...

...
...

...
...

0 0 0 · · · |λi|I











ni×ni

for complex

λi andE =

[

1 1
1 1

]

.

B. A stabilizing quantizer atR = Rmin

Under the dropout condition in eq. 10, we construct a
quantizer atR = Rmin, which can stabilize the system in
eq. 4. So the boundRmin in Lemma 2.1 isachievableand
is, therefore, the minimum stabilizing constant bit rate.

Now we start to build the desired quantizer. LetQ =
2Rmin . A positive parameterρ can be found to satisfy

ρ > 1, Q1−ε̂ > α(A)

(

1 +Q
3

ρ

)n

(17)

We first assume both the encoder and the decoder agree upon

z[0] ∈ P [0] = zq[0] + rect(L[0]) (18)

The quantizer chooses the “longest” side atk = 0 by

(Ik, Jk) = argmax
i,j

(

Q2ρ
)j

Li,j [k] (19)



Partitioning side(Ik, Jk) into Q equal parts, we get a
modified side length vectorLIk,Jk [k],

LIk,Jk

i,j [k] =

{

Li,j [k], (i, j) 6= (Ik, Jk)
Li,j [k]/Q, (i, j) = (Ik, Jk)

Now P [k] = zq[k]+rect(L[k]) is partitioned intoQ smaller
subsetsPs[k]

Ps[k] = zqs [k] + rect(L(Ik,Jk)[k]), s = 0, · · · , Q− 1,

where zqs [k] = zq[k] + z
(Ik,Jk)
s and z

(Ik,Jk)
s is an n-

dimensional vector with the(Ik, Jk)-th element equal to
−Q+(2s+1)

2Q LIk,Jk
[k] and other elements of0. z[k] must lie

within one of the subsets, to say,Ps0 [k]. Set s[k] = s0,
code s[k] into Rmin bits and send them to the decoder.
Upon receivings[k], decoder sends ACK back to the encoder
to confirm the receipt ofs[k]. Due to ACK, the encoder
and the decoder always agree upon the information ofz[k]:
either z[k] ∈ zq[k] + rect(L[k]) (when s[k] is dropped) or
z[k] ∈ zq

s[k][k]+ rect(L(Ik,Jk)[k]) (whens[k] is successfully
transmitted). Based on the system equation 15, the encoder
and decoder update the state set,P [k + 1] (= zq[k + 1] +
rect(L[k + 1])), as










































Whend[k] = 1:
{

L[k + 1] = KL[k] + [W, · · · ,W ]T

zq[k + 1] = HAzq[k] +Hk+1Bu[k]
,

Whend[k] = 0:










L[k + 1] = KLIk,Jk [k] + [W, · · · ,W ]T

zq[k + 1] = HAzq[k] +Hk+1Bu[k]

+HAz
(Ik,Jk)
s[k]

.

(20)

where the control variable is computed as

u[k] = G
(

H−kzq[k]
)

. (21)

The above quantization policy is summarized into
Algorithm 1: Encoder/Decoder initialization:

Initialize zq[0] andL[0] so thatz[0] ∈ zq[0]+rect(L[0]) and
setk = 0.
Encoder Algorithm:

1) Selectthe indices(Ik, Jk) by eq. 19.
2) Quantize the statez[k] by settings[k] = s if z[k] ∈

zq[k] + z
(Ik,Jk)
s + rect(L(Ik,Jk)[k]).

3) Transmit s[k] and wait for ACK. If ACK is received
before timek + 1, d[k] = 0; otherwise,d[k] = 1.

4) Update zq[k+1] andL[k+1] by eq. 20 immediately
before timek + 1. Update time index,k = k + 1 and
return to step 1.

Decoder Algorithm:
1) Compute control for timek by eq. 21.
2) Wait for the quantized data,s[k], from the encoder. If

s[k] is received before timek, send ACK to decoder
and setd[k] = 0; otherwise, setd[k] = 1.

3) Update zq[k+1] andL[k+1] by eq. 20 immediately
before timek + 1. Update time index,k = k + 1 and
return to step 1.

Under the quantizer in Algorithm 1, the quantized system
in eq. 4 is input-to-state stable in the almost sure sense. That

result is formally presented by Theorem 3.1. Its proof is
moved to Section V to improve readability.

Theorem 3.1:Let Rmin =
⌊

1
1−ε

log2 (α(A))
⌋

+ 1 and

Q = 2Rmin . The dropout model in eq. 10 is assumed. The
quantized linear system in eq. 4 is almost surely input-to-
state stable under the quantizer in Algorithm 1.
Remark: input-to-state stability describes more precisely
the dependence The input-to-state stability in Theorem 3.1
unifies the asymptotic stability of noise-free quantized sys-
tems [9] and the BIBO stability of quantized systems with
bounded noise [16] at the minimum bit rate. Compared with
the results in [12], Theorem 3.1 explicitly takes the dropouts
into account.
C. Simulation results

We consider an example with

A =





1.1 1 0
0 1.1 1
0 0 1.1



, B =





0
0
1



, G =

[−1.29,−3.56,−3.27]. The dropout sequence is governed by
a (2, 3)-firm model, i.e., among any3 consecutive packets,
at least2 ones are transmitted successfully. Soε̂ = 1/3,
Rmin = 1 and Q = 2. According to eq. 17, choose
ρ = 109.1. Initial conditions areL[0] = [1, 1, 1]T , x[0] =
[0, 0, 0]T , xq[0] = [0, 0, 0]T . The simulation results forW =
1 and W = 0 are shown in Fig. 2. Note that the zoom-
in versions of the two figures are also shown. It confirms
Theorem 3.1 by showing that‖L[k]‖ and‖x[k]‖ are bounded
for W = 1 and asymptotically converge to0 for W = 0.
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Fig. 2. ‖L[k]‖, ‖e[k]‖ and‖x[k]‖ with : (top) W = 1; (bottom)W = 0.

IV. CONCLUSION

This paper studies the effects of the quantization bit rate
and the feedback dropouts on the input-to-state stability of
linear systems with bounded noise. Under a general dropout
model, it derives the minimum stabilizing constant bit rate
and shows its achievability through constructing a quantizer.
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V. A PPENDIX:PROOF OFTHEOREM 3.1

Theorem 3.1 is proven through showingL[k]

‖L[k]‖ ≤ c1‖L[0]‖η
k + c2W, ∀k (22)

wherec1, c2 areη are constants to be determined.
By eq. 10 and 11, we can boundεl[k] as
Lemma 5.1:There existsδ > 0, N ∈ N andk1 ∈ N to

almost surely guarantee that, for∀l ≥ N, ∀k ≥ k1,
{

εl[k] ≤ ε̂+ δ

Q1−ε̂−δ ≥ α(A)
(

1 + 3Q
ρ

)n (23)

η =
n

√

√

√

√

α(A)
(

1 + 3Q
ρ

)n

Q1−ε̂−δ
< 1. (24)

By comparingW (= 2W ) and ‖L[k1]‖, we see there are
two cases: (i).W ≥ ‖L[k1]‖; (ii). W < ‖L[k1]‖. We will

find upper bounds on‖L[k]‖ (k ≥ k1) for both cases,
respectively. By combining these bounds, together with a
bound on‖L[k]‖ for k < k1, we will get eq. 22.

A. WhenW ≥ ‖L[k1]‖

Define

ri,j [k] =

{

max
(

Li,j[k], ρW
)

, j = ni

max (Li,j [k], ρri,j+1[k]) , j < ni
(25)

p[k] =
P
∏

i=1

ni
∏

j=1

ri,j [k] (26)

It is straightforward to get
{

ri,j [k] ≥ Li,j [k]
ri,j [k] ≥ ρni−j+1W ≥ ρW ≥ W

. (27)

where the parameterρ is defined in eq. 17. There are two
bounds on the growth rate ofri,j [k].

Lemma 5.2:For ∀k, ∀i = 1, · · · , P ; j = 1, · · · , ni,

ri,j [k + 1]

ri,j [k]
≤ |λi|

(

1 +
3Q

ρ

)

. (28)

Lemma 5.3:Suppose side(Ik, Jk) is the longest at time
k according to the criterion in Algorithm 1. Whend[k] = 0
andLIk,Jk

[k] ≥ Q2ρnIk
−Jk+1W ,

rIk,Jk
[k + 1]

rIk,Jk
[k]

≤
|λi|

Q

(

1 +
3Q

ρ

)

. (29)

The proofs to Lemmas 5.2 and 5.3 comes from eq. 19 and 20
and the definitions ofri,j [k]. Due to space limitation, they
are omitted.

By eq. 26,p[k] is just the product of allri,j [k]. Combining
Lemmas 5.2 and 5.3, we get

Lemma 5.4:

p[k + 1] ≤ α(A)

(

1 +
3Q

ρ

)n

p[k] < Qp[k], ∀k. (30)

Whend[k] = 0 andp[k] ≥
∏P

i=1

∏ni

j=1

(

Q2ρni−j+1W
)

,

p[k + 1] ≤
1

Q
α(A)

(

1 +
3Q

ρ

)n

p[k] (31)

Now we partition the time instants into windows with
the duration ofN (see Lemma 5.1 for the definition of
N ). Lemma 5.4 yields an upper bound onp[mN + k1]
(m = 0, 1, · · ·).

Lemma 5.5:It is almost sure that

p[mN + k1] ≤ QN

P
∏

i=1

ni
∏

j=1

(

Q2ρni−j+1W
)

, ∀m ≥ 0. (32)

For mN + k1 ≤ k < (m+ 1)N + k1, we implement eq.
30 frommN + k1 to k, together with Lemma 5.5, to reach

Corollary 5.6: It is almost sure that

p[k] ≤ Q2N
P
∏

i=1

ni
∏

j=1

(

Q2ρni−j+1W
)

, ∀k ≥ k1 (33)

p[k] is the product ofn terms,ri′,j′ [k](i′ = 1, · · · , P ; j′ =
1, · · · , ni′ ). Among these terms, we consider a particular one
with i′ = i, j′ = j. With the lower bounds ofri′,j′ [k](i′ 6=



i orj′ 6= j) in eq. 27 and the upper bound ofp[k] in Corollary
5.6, we obtain

Proposition 5.7:For ∀k ≥ k1,

Li,j [k] ≤ ri,j [k] ≤ Q2N





P
∏

i=1

ni
∏

j=1

(

Q2ρni−j+1
)



W. (34)

B. WhenW < ‖L[k1]‖

There existk2 (k2 > k1) such that‖L[k1]‖ηk2−k1 ≥ W
and‖L[k1]‖ηk2−k1+1 < W , whereη is defined in eq. 24.

1) Under the conditionk ≤ k2,: we redefineri,j [k] and
p[k] into r′i,j [k] andp′[k] as






r′i,j [k] =

{

max(Li,ni
[k], ρηk−k1‖L[k1]‖), j = ni

max(Li,j [k], ρri,j+1[k]), j < ni

p′[k] =
∏P

i=1

∏ni

j=1 r
′
i,j [k]

Similar to Lemmas 5.2 and 5.3, we can get
Lemma 5.8:For ∀k ∈ {k1, k1 + 1, · · · , k2},






r′i,j [k+1]

r′
i,j

[k] ≤ |λi|
(

1 + 3Q
ρ

)

p′[k + 1] ≤ α(A)
(

1 + 3Q
ρ

)n

p[k] < Qp′[k]
. (35)

When LIk,Jk
[k] ≥ Q2ρnIk

−Jk+1ηk−k1‖L[k1]‖ and d[k] =
0,

r′Ik,Jk
[k + 1]

r′Ik,Jk
[k]

≤
|λi|

Q

(

1 +
3Q

ρ

)

. (36)

When p′[k] ≥
∏P

i=1

∏ni

j=1

(

Q2ρni−j+1ηk−k1‖L[k1]‖
)

and
d[k] = 0,

p′[k + 1] ≤
1

Q
α(A)

(

1 +
3Q

ρ

)n

p′[k] (37)

Under the condition in eq. 23,

p′[k] ≤ Q2N
P
∏

i=1

ni
∏

j=1

(

Q2ρni−j+1ηk−k1‖L[k1]‖
)

(38)

Similar to eq. 27, we get, for∀k ∈ {k1, k1 + 1, · · · , k2},
{

r′i,j [k] ≥ Li,j [k]
r′i,j [k] ≥ ρni−j+1ηk−k1‖L[k1]‖ > ηk−k1‖L[k1]‖

. (39)

Considering the definition ofp′[k] and applying eq. 39 to eq.
38, we get whenk1 ≤ k ≤ k2,

Li,j [k] ≤ Q2N





P
∏

i=1

ni
∏

j=1

(

Q2ρni−j+1
)



 ηk−k1‖L[k1]‖. (40)

2) Under the conditionk ≥ k2 + 1: Starting from
k ≥ k1, the time instants are grouped into epoches with
the duration ofN . Let m0 = ⌊(k2 − k1)/N⌋. Because
‖L[k1]‖ηk2+1−k1 ≤ W and k2 + 1 − k1 ≤ (m0 + 1)N ,
we know

ηm0N‖L[k1]‖ ≤
1

ηN
W

Becausem0N + k1 ≤ k2, eq. 40 is applicable and yields

Li,j[m0N + k1]

≤ Q2N





P
∏

i=1

ni
∏

j=1

(

Q2ρni−j+1
)



 ηm0N‖L[k1]‖ (41)

≤ Q2N





P
∏

i=1

ni
∏

j=1

(

Q2ρni−j+1
)





W

ηN
(42)

Define W
′
= Q2N

ηN

(

∏P
i=1

∏ni

j=1

(

Q2ρni−j+1
)

)

W . Note

that W
′
≥ W . Similar to ri,j [k] and p[k], we define, for

k ≥ m0N + k1,

r′′i,j [k] =

{

max
(

Li,j[k], ρW
′
)

, j = ni

max
(

Li,j [k], ρr
′′
i,j+1[k]

)

, j < ni

(43)

p′′[k] =

P
∏

i=1

ni
∏

j=1

r′′i,j [k] (44)

So we can repeat the previous procedure for the case of
‖L[k1]‖ ≤ W to get a result similar to eq. 34

Li,j [k]

≤ Q2N





P
∏

i=1

ni
∏

j=1

(

Q2ρni−j+1
)



W
′

=



Q2N





P
∏

i=1

ni
∏

j=1

(

Q2ρni−j+1
)









2

1

ηN
W (45)

for ∀k ≥ m0N + k1. Of course, the above inequality holds
for k ≥ k2 due tok2 ≥ m0N + k1.

C. Final proof to Theorem 3.1

From time0 to k1, we can easily deduce the following
inequality on‖L[k]‖ by the updating rule ofL[k]

‖L[k + 1]‖ ≤ (α(A) + 2) ‖L[k]‖+W

So it is straightforward to reach

‖L[k]‖ ≤ (α(A) + 2)
k1 ‖L[0]‖+ (α(A) + 2)

k1 W, (46)

for ∀k ∈ {0, 1, · · · , k1}. Eq. 34, 40, 45 and 46 provide4
upper bounds onLi,j [k] under4 different conditions. These
4 bounds can be bounded byc1‖L[0]‖ηk+ 1

2c2W from above
for ∀k ≥ 0 with














c1 = Q2N
(

∏P
i=1

∏ni

j=1

(

Q2ρni−j+1
)

)

η−k1 (α(A) + 2)
k1

c2 = 2
(

Q2N
(

∏P
i=1

∏ni

j=1

(

Q2ρni−j+1
)

))2

×η−k1−N (α(A) + 2)
k1

Then it is almost sure that

‖L[k]‖ ≤ c1‖L[0]‖η
k +

1

2
c2W

≤ c1‖L[0]‖η
k + c2W, ∀k ≥ 0

where the relationshipW = 2W is utilized. The proof of
Theorem 3.1 has been completed.♦


