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Abstract— This paper studies the input-to-state stabilizability
of quantized linear control systems with external noise undr
feedback dropouts. A vector of feedback measurements is
quantized prior to being transmitted over a communication
channel. The transmitted data may be dropped by the channel.
The channel dropouts are governed by a stationary model,
which is quite general to include many realistic dropout moetls.
This paper derives a lower bound on the constant bit rates
which can almost surely stabilize the system in the input-
to-state sense under the given dropout condition. A dynamic
quantization policy is shown to be able to stabilize the sysm
at that lower rate bound. So the minimum constant stabilizirg
bit rate has be obtained. The achieved theoretical resultsra
also verified through an example.

I. INTRODUCTION

In recent years there has been increasing interest in implb-.

one and dynamic one€Static quantization policiesake a
constant quantization range, and map each bit to a specific
subset of that range in a fixed(static) way. Asymptotic
stability of noise-free systems is lost under static peBci
[5]. Compared with static policiesgynamic quantization
policiesmay choose a time-varying quantization range and
their bit mapping policy can also be time-varying. Although
more complicated, the dynamic policies can asymptotically
stabilize noise-free linear systems at a finite bit rate[éle
minimum bit rate to maintain asymptotic stability is given i
[7][8] (for the time-varying bit rate case) and in [9] ( foreh
constant bit rate case). For quantized systems with bounded
exogenous noise, bounded-input-bounded-output (BIB®) st
ility, instead of asymptotic stability, is pursued and the
minimum bit rate to achieve such stability is derived [7]

menting the feedback loop of a control system over & Nl o 17 yhije the input-to-state stability is investigat in
deterministic digital communication network [1]. This may[lz]_ Due to their efficiency, dynamic quantization polices

hav_e many benefits, such as lower cost, higher reliabilitg 2 are chosen in the present paper for stabilization of quedhtiz
easier maintenance. These advantages are, however,eathiey . A
. . systems with bounded noise.
at the cost of loss of perfect feedback information due to L
o .~ Feedback dropout has not got much attention in the
packet dropouts and quantization (all data must be quznhtlzerevious uantization literature. It seems intuitivelggsin
into a finite number of bits before transmission). Then thfg q ' ¥ 9

) . at when the dropout rate is low, the stabilizability of
results built upon the perfect feedback assumption have .
. e quantized systems would be preserved under feedback
be re-evaluated. A major concern about such systems &

e S . ropouts. In [13], it was asserted that thienost sure stabi-
stabilizability, i.e.,whether the originally stabilizable system izability of quantized linear systems with i.i.d. (independent
can still be stabilized under the given network dropouk yorg y o P

and quantization conditiondHere stability is measured by and identically distributed) dropouts can be guaranteéeif

input-to-state stability (ISS) in the almost sure sensdckwh average bit ratefz satisfies
guantitatively characterizes the system’s robustnessisiga
the input noise and the initial condition[2]. Quantization
condition is characterized by the available bit rate (hbee t
constant bit rate case is chosen due to its communicatioshere)\; (: = 1,---,n) are the eigenvalues of the discrete-
efficiency [3]). We consider a general stationary dropouime open-loop system matrix. The above statement is,
model, which can cover many realistic dropout conditionshowever, proven to be incorrect in [14]. Furthermore, it is
We want to find the minimum constant stabilizing bit rateshown that the system state almost surely diverges for any
under the given dropout. R [14]. In order to resolve this diverging issue, one may
Much research on quantized control systems has been dong choose a weaker notion of stability such as mean
in the last two decades [4]. Many results on quantized contro square stability [15] [11], under the given i.i.d. dropout
systems assume that the quantization bits (or symbols) are gndition.
errorlessly (dropout-freely) transmitted. The available quan-
tization policies can be categorized into two groups, ctati

R > Z max(0, [logaXi|) (1)

=1

« Put constraints on the dropout sequencedn [16], the
BIBO stabilizability of quantized systems is preserved
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under some dropout conditions different from the above
i.i.d. process.

Because mean square stable systems may still generate
sample paths with arbitrarily large state magnitude, the
first approach listed above may not be appropriate for real
applications. This paper, therefore, mainly focuses on the
second approach. In order to come up with appropriate



dropout constraints, we first have a close look at the i.i.d:[k]. The control inputu[k] € R™ is then constructed from
dropout model in [13]. Due to the i.i.d. property, it is almhos 2?[k]. w[k] € R™ is an exogenous noise signal bounded as
sure that dropout patterns with any number of consecutive

dropouts will infinitely often occur. The consecutive drops wub lw[k]]| < 0.5W ®3)
are the main reason to drive the state to diverge[14]. Such - o )
arbitrarily long consecutive dropouts are actually prateiv  Where|| - || denotes the infinity norm of a vector, afl is

in rea' networkS. Rea'_time System engineers Work harﬂ']own by both the encoder and the decoder. Under a linear
to avoid consecutive dropouts by proposing and enforcirfgPhtroller, the system equation is
_different consyraints on <_jropouts. Sqme important comgra alk+1] = Ax[k] + Bulk] + w[k]
include theskip-overpolicy [_17] (which places a bognded { uk] = Gai[k] 4)
on the number of consecutive dropouts) and (mek)-firm
guarantee rule [18] (which requires that at leasbut of ¥ Where the matricesl, B and G are of appropriate dimen-
Consecutive attempts Succeed)' The present paper W“mivéions. The SyStem is assumed to be stabilizable (Under the
dropout model (or a constraint on the dropout sequenceR§rfect feedback) and a stabilizing gath must exist. We
more general than the aforementioned ones, and prové@nsider the input-to-state stability (ISS) of the systét [
the quantized system can be almost surely stabilized under / I(a :
that dropout condition at the minimum constant rate, which letk]ll < &' l(Oll, k) +~ (3-121]8 llslil), vk = 0 ®)
extends [12] by explicitly considering feedback dropouts. , , N

The rest of this paper is organized as follows. Sectioly"€re”’(-) and5’(;,-) are K and KL functions”, respec-
Il presents the mathematical models of the quantized IineHYely' o
system and the feedback dropouts. Under the given dropout! N€ duantization erroe(k| = x[k| — x[k] surely affects
condition, we derive a lower boung,,;, on the constant stabilizability of_the quantized sy;t_em_ in eq. 4 It can be
bit rates to stabilize the quantized system in Section IatTh Shown that the input-to-state stability in eq. 5 is equingle
lower boundR, .., is shown to be achieved by a quantizef® the following equation [19]
in Sgction [ll. Simulation results of an example syst.em are e[kl < B(|le[0]], k) +7($up|‘w[j]|‘)’Vk >0 (6)
also included to demonstrate the correctness of the thealret §>0

results in Section Ill. Some final remarks are included i@vhere'y(-) and (., ) arek and . functions, respectively
Sect:cont I\t/h To |mpr3_ve gea(tj_abnsy, we move all teCthalTherefore this paper establishes the input-to-state ligtabi
proots fo the ﬁpp&n X, Sec 'é)n Mo S ability of the system in eq. 4 through proving eq. 6.

- MATHEMATICAL DEL Assumption 1:The system matrix in eq. 4, takes a real
A. Model of the Quantized Linear System Jordan canonical form, i.e.,

This paper focuses on the system in Fig. 1. In Fig. 1,

A:diag(Jl,Jg,---,Jp) (7)
wk] A{k]
W where J; is an n; x n; real matrix with a single real
eigenvalue\; (of the multiplicity ofn;) or a pair of conjugate

1 eigenvalues\; and \* (of the multiplicity of n;/2). |\;| >

Decoder .
Encoder/Quantize! 1’ \V/Z.
- | For notational convenience, we define
K] s{k]D(o;L-~ ,2“—1)§

: P
Digital Feedback Path a(A) — H |/\l|n1 (8)
=1

Fig. 1. A quantized linear system

xz[k] € R™ is the state at time instarit (= 0,1,2,---,). B. Dropout model

xz[k] is quantized into &-bit symbolss[k] and sent overthe  For a given dropout sequendel[k]}, define the local
digital communication networks[k] is either received by the gropout rate as;[k] = 2 ldlk 4+ ). 0 < gfk] < 1.

= 1 Lui=

decoder with 1 step delay or dropped. Itis assumed that thfg& can show that the following limit must exist
is reliable ACK to notify the transmitter (encoder/quaatiz

regarding dropouts. Define a dropout indicator & = lim sup ( lim sup sl[k]) 9)
X lo—0o0 1>l ko—o0 k>ko
d[k] = 1, Dropout at timek @) _ _
0, Success at timé We call¢’ in eq. 9 the average dropout rate, which may be

{d[k]} is referred to asdropout sequence’The input of the dn‘ferient from the °[d'”?f¥ definition of the average dropou

o _ sk—1], dk]=0 rate € = limy o 7>, d[k] For example,{d[k]} =
decoder in Fig. 1 ig[k] = i ’ dik] = 1 with ¢ {101100111000---} givese’ =1 v.s.g = 0.5.
representing a dropout. The decoder uses all received sym:

_ _ _ . 1A K function f(z) is continuous, strictly increasing and(0) =
bols {S[k]a S[k - 1]’ o '75[0]} to generate the state estimaté, A iz function g(z,y) is a K function w.rt. z by fixing y and

x1[k], which can also be viewed as a quantized version ofimy—, g(x,y) = 0 for any fixedz.



Assumption 2:There exist9) < £ < 1 such that standing for the Cartesian product). $ocan be expressed
asP = 2P + rect(L).
lim sup( lim sup g [k]> < € almost surely.  (10) Corresponding to the block diagonal structure 4fin

It é;:?ézc)eri?i()ezoiﬁgtkoman real-time constraints, such €q. 7, we relabell. with a 2-dimensional index ad, —
- , T
y aTim,-~-,L17m,~-~,Lp_r1,--~,Lp_,nP] , where L; ; corre-

the skip-overpolicy [17], the(m,k)}firm guarantee rule [18], sponds to then — th entry of L with m = Z?j -+ .

satisfy e. 10. The decoder does not know the exact value of:Afig, but

b_tUndtertthe ctircgpl_out iﬁndmorg n f;ﬂ 1?/}|1Iat IS th?_ lowest can know from the received symbo{g[k]|} the set which
't rate fo stabiize ne systemrhe foflowing emma z[k] lies within. That set is referred to as tHencertainty

presents a Iowe_r bound on all constant bit rates to sta et”. The uncertainty set is usually a bounded set and can be
lize the system in eq. 4. Its proof closely follows that o

» . : ) over-bounded with a rectangk{k]. Without confusionP[k]
Proposition 3.2 in [13] and is omitted here. . is also called théuncertainty set” at timek. By the criterion
Lemma 2.1:Under eg. 10, the quantized system in eq.

be almost v stabilized under at tant bit rat minimizing the worst case error, we can estimaltg with
can be aimost surely stabilized under at constant bit rate gy conter ofP[k], z9[k]. The quantization (estimation) error

R only if is e[k] = 29[k] — z[k] € rect(L[k]), where L[k] is the side
1 length vector ofP[k]. It can be shown thafe[k]} satisfies
R > Ryin = L —logs (a(A))J +1 (11)  eq. 6 if and only if

wherea(A) is defined in eq. 8, angi | stands for the flooring  [I1L[F][l < B (| L[0]], k) +’YL(S_1>118 [w[f]l}),Vk =0 (14)
operation over a real number. =

We will construct a quantizer in Section Ill, which canWheres.(-,-) is aCL function andyy(-) is a K function.
achieve the 1SS aR — R..... So R.... in Lemma 2.1 is 3) Evolution of uncertainty setsAs time moves forward,
- main - man .

we updateP|k], more specificallyz?[k] and L[k], to guar-

the minimum stabilizing bit rate.
antee that:[k] € z%[k] + rect(L[k]),Vk. By eq. 4 and the

I1l. M AIN RESULTS boundedness ofw[k]} in eq. 3, we can update them as
A. Mathematical preliminaries of quantization policies 2k+1) = HA2k] + H*™ Bulk] (15)
The desirable quantizer needs the following preliminaries Lk+1 = KLkl+ [W, W, ,W}T (16)
1) ICoors:iinate Itransformatig_nForquan;ized syste.mdv;ift_h where H is defined in eq 12, andK =
complex eigenvalues, a coordinate transformation is difine; . (K1, Ko, -, Kp) with
K = Hralk 12 o 100
2lk] = Halk] 12) 0 [N 1 - 0 _
where the transformation matrixd is defined as = | . . . . . when A; is real,
H = diag(Hy, Hs,---,Hp). Each H; is associated 0O 0 0 .. |/\'_|
with one of the Jordan blocksJ; in eq. 7. ' d g xng
Specifically, H; = 1, if X\; (the eigenvalue ofJ;) |/\6|I |)\E|I g 8
is real and H; = diag (r(6:)"",---,r(6:;)"") with K, = _ T _ for complex
r(0;) = cos(0i) - sin(0i) | \; is complex and : S :
| —sin(6:)  cos(6y) 0 0 0 o I
Xi = |\ile?”i. By [7], eq. 12 transforms eq. 4 into 11 o
A andE = { 11 ]
2[k + 1] = HAz[k] + H*" Bu[k] + w[k] (13)

B. A stabilizing quantizer ak = R,in

o ; Under the dropout condition in eq. 10, we construct a
(2W)). Considering the structure df, we infer from eq. quantizer atR — R,.,,, which can stabilize the system in

. < < > 0. . . .
g2 sl < ) = 2 a0 S S e e, L 31 oo
P y 9 P is, therefore, the minimum stabilizing constant bit rate.

{w[k]}) is equivalent to that of eq. 13. The present paper, Now we start to build the desired quantizer. L@t —

therefore, focuses on the boundednessof. We usez’[k]  ,r,... A positive parametep can be found to satisf
to denote the quantized version ofk] at time k. The AP P p y

wherew[k] = H**1wl[k]. w[k] bounded by0.5W (= 0.5 x

quantization error is represented d&] = 29[k] — z[k]. As S 1.0%> a4 (1 §)n 17
argued in Section 11{z[k]} satisfy the ISS requirement in p>10 a1+ Qp (7
eq. 5 if and only if{e[k]} can satisfy eq. 6. We first assume both the encoder and the decoder agree upon

2) Uncertainty set:Any bounded set iR" can be over-
bounded by a (hyper-)rectanglewith the center ok and 2[0] € P[0] = 2[0] + rect(L[0]) (18)
the side length vectoE = [L1, Lo,---,Ln]". A rectangle The quantizer chooses the “longest” sidekat 0 by
with the center of the origin and the side length vector 9 \j
L is denoted asect(L) (= " ,[-0.5L:, 0.5L:] with [] (I, Jx) = argmax (Q*p)" Lij[k] (19)



Partitioning side (I, Jx) into @ equal parts, we get a result is formally presented by Theorem 3.1. Its proof is
modified side length vectak 7k [k], moved to Section V to improve readability.

. 1
L?’“j"]’“ " :{ Li [k, (Z:’j:) £ (In, Ji) Tfhe(})%rebm 3.1:Let Ryin = {;logg (O‘(f_l))J + 1 and
b L;[k)/Q, (i,7) = Ix, Jk) Q@ = 2"~ The dropout model in eq. 10 is assumed. The
: .. : guantized linear system in eq. 4 is almost surely input-to-
Now P[k] = 24[k] +rect(L[k]) is partitioned intoQ) smaller state stable under the quantizer in Algorithm 1.
subsetsP; k] o I, : .
Remark: input-to-state stability describes more precisely
P.[k] = 29[k] + rect(L*7W[k]), s = 0,---,Q — 1, the dependence The input-to-state stability in Theorem 3.1
unifies the asymptotic stability of noise-free quantized-sy
tems [9] and the BIBO stability of quantized systems with
bounded noise [16] at the minimum bit rate. Compared with

~2Q the results in [12], Theorem 3.1 explicitly takes the drasou
within one of the subsets, to say,[k]. Sets[k] = s0, into account.

code s[k| into R,,;, bits and send them to the decoderc. simulation results
Upon receivings[k|, decoder sends ACK back to the encoder We consider an example with
to confirm the receipt ofs[k]. Due to ACK, the encoder 11 10 0
and the decoder always agree upon the information|[ioff A = 0 11 1 B = 0
either z[k] € 29[k] + rect(L[k]) (when s[k] is dropped) or o o 11| 1l
2[k] € 2y [k] +rect(LUx 7 [k]) (whens[k] is successfully [_j 99 3756 —3.27]. The dropout sequence is governed by
transmitted). Based on the system equation 15, the enco [2,3)-firm model, i.e., among an§ consecutive packets,
and decoder update the state setk + 1] (= 27k + 1] + 4t |east2 ones are transmitted successfully. So= 1/3,
rect(L[k +1])), as Rmin = 1 and Q = 2. According to eq. 17, choose
Whend|k] = 1: p = 109.1. Initial conditions areL[0] = [1,1,1]T, z[0] =
Lk +1] = KLk + [W, -, W]|T [0,0,0]T, 24[0] = [0,0,0]T. The simulation results fol’ =
29[k + 1] = HAz9[k] + H* 1 Bulk] 1 and W = 0 are shown in Fig. 2. Note that the zoom-
in versions of the two figures are also shown. It confirms

Ik,Jk) Ik7Jk)

where 29[k] = 29k| + 2 and 2! is an n-
dimensional vector with the€1;, J)-th element equal to
ML%% [k] and other elements df. z[k] must lie

Whend[k] = 0: (20)
Lk+1 = KL®*E +[W,---, W|T Theorem 3.1 by showing.thﬁll}[k]ﬂ and||z[k]|| are bounded
21k +1] = HAz[k] + H*" Bulk] for W =1 and asymptotically converge tbfor W = 0.
(I, Jk) 10
+HAzs[k]
where the control variable is computed as o
ulk] = G (H*29[k]) . (21)
The above quantization policy is summarized into i |
Algorithm 1: Encoder/Decoder initialization: I,

Initialize 24[0] and L[0] so thatz[0] € 2¢[0] +rect(L[0]) and
setk = 0. \
Encoder Algorithm: e,
1) Selectthe indices(Iy, Ji) by eq. 19. o
2) Quantize the statez[k| by settings[k] = s if z[k] € e,
29k + 2o Tk) rect(LUx7K)[k]).
3) Transmit s[k] and wait for ACK. If ACK is received
before timek + 1, d[k] = 0; otherwised[k] = 1. w0
4) Update z7[k + 1] and L[k + 1] by eq. 20 immediately
before timek + 1. Update time indexk = k + 1 and
return to step 1.
Decoder Algorithm:

50 100

Fig. 2. ||L[K]|l, lle[k]|| and||z[k]|| with : (top) W = 1; (bottom) W = 0.

IV. CONCLUSION

1) Compute control for timek by eq. 21.

2) Wait for the quantized data]k], from the encoder. If
s[k] is received before tim&, send ACK to decoder
and setd[k] = 0; otherwise, seti[k] = 1.

3) Update %[k + 1] and L[k + 1] by eq. 20 immediately
before timek 4 1. Update time indexk = k£ + 1 and
return to step 1.

Under the quantizer in Algorithm 1, the quantized system
in eq. 4 is input-to-state stable in the almost sure sensat Th

This paper studies the effects of the quantization bit rate
and the feedback dropouts on the input-to-state stabifity o
linear systems with bounded noise. Under a general dropout
model, it derives the minimum stabilizing constant bit rate
and shows its achievability through constructing a quantiz
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V. APPENDIX:PROOF OFTHEOREM3.1
Theorem 3.1 is proven through showirig|

LK < el L[0] ]l + c2W, Wk (22)

wherecy, co aren are constants to be determined.

By eq. 10 and 11, we can bounfk] as

Lemma 5.1:There exists) > 0, N € N andk; € N to
almost surely guarantee that, faf > N, Vk > kq,

eilk] <é+9

{ Ql—é—éza(A) (1_’_%) (23)
Ja(a)y (14 32)"

n= M<l. (24)

Qlféfé
2W) and || L[k1]||, we see there are

By comparingWV (= [k1
> |ILI; (). W < [|IL[k1]]. We wil

two cases: (i).JV

find upper bounds on|L[k]|| (¢ > k;) for both cases,
respectively. By combining these bounds, together with a
bound on||L[k]|| for k < k1, we will get eq. 22.

A. WhenW > || L[k4]|

Define
Li k], pW), Jj=n;

k] = max( . ' 25
" "J[ ] { max (Li,j [k], PTij+1 [k]) , ) <ny ( )

P Uz
plkl = T]]]ris (26)

i=1j=1

It is straightforward to get
Ti,j (k] > Li,; [k] o __ (27)
rijlk] > phiTIHIW > pW > W

where the parametegr is defined in eq. 17. There are two
bounds on the growth rate of ;[k].
Lemma 5.2:Forvk,Vi=1,--- . P;j=1,---,n,,
iglk + 1 3
et (1422 (28)
Lemma 5.3:§7uppose sidél, Ji) is the longest at time
k according to the criterion in Algorithm 1. Whetjk] = 0
ElrldL[k_’J,C [k] > sznlki‘]kJer,

lewjk[k_'— 1] |)‘1| 1+ 3Q

(29)

T'Ti, Ji [k p
The proofs to Lemmas 5.2 and 5.3 comes from eq. 19 and 20
and the definitions of; ;[k]. Due to space limitation, they
are omitted.
By eq. 26,p[k] is just the product of alt; ;[k]. Combining
Lemmas 5.2 and 5.3, we get
Lemma 5.4:

plk +1] < a(4) (1 n ?)nmk] < Qplkl. VK. (30)

Whend(k] = 0 andplk] > T, [T}, (Q%p™~7+'W),

1 3Q\"
plk+1] < éa(A) 1+ 762 plk] (31)
Now we partition the time instants into windows with
the duration of N (see Lemma 5.1 for the definition of
N). Lemma 5.4 yields an upper bound @fmN + k]
(m=0,1,--).
Lemma 5.5:1t is almost sure that
P Uz
plmN + k1] < QV [ ] (@™ 7' W) ,¥m > 0. (32)
i=1j=1
FormN + k1 < k < (m+1)N + k1, we implement eq.
30 frommN + k; to k, together with Lemma 5.5, to reach
Corollary 5.6: It is almost sure that

P Uz
plk] < QNI (@™ 7' W), VE>k  (33)
i=1j=1
plk] is the product ofn terms,r; j/ [k](i' = 1,---, P;j' =
1,---,ny). Among these terms, we consider a particular one

with ¢ = 4,5’ = j. With the lower bounds of; ;/[k](i" #



1orj’ # 7)in eq. 27 and the upper boundgk| in Corollary BecausenoN + k1 < ko, €q. 40 is applicable and yields
5.6, we obtain

Proposition 5.7:For Vk > ki, LijlmoN + ki]
P n;
P n < QN (Q%p™ ) [ N | L k|| (41)
L; [ ] < TZJ | < QQN HH Q2 i j+1 w. (34) (11:11]1:[1
1=1j5=1 P n; —_—
: | W
_ < 2N 2 n;—j+1 s
B. WhenV < ||L[ki]| <@ (1:[1]1:[1 (@ )) o (42)

There existky (ky > ki) such that|| L[ki]||n*> % > W o W p _ -
and||L[k,]||n*?>~ %+ < W, wheren is defined in eq. 24. Define W' = Cf,zv (Hi:l T2, (QQP"FJH)) W. Note
1) Under the conditiork < k»,: we redefiner; j[k] and  that W' > W. Similar to r; ;[k] and p[k], we define, for

plk] into r; ;[k] andp'[k] as k> moN + ki,
L, [K], pn* =% || Lk = n, Tk oW i~ .
r;j [k] _ maX( 1[ ] on H [ l]H)a ] 7’L. ’f‘//j[k] _ max (L%J [k],pW ) , Jj=mn; (43)
' max(L; ;[k], pri j+1(k]), J<mn ’ max (L;j[k], pr{ 1 [k]) . G <
[] Hz 1Hglz,][] P n;
Similar to Lemmas 5.2 and 5.3, we can get plk] = H H vkl (44)
Lemma 5.8:ForVk € {k1,k1 + 1, -, ka}, =1j=1
i So we can repeat the previous procedure for the case of
[ “] < |\ (1 + 3Q) (35) [IL[k1]]| < W to get a result similar to eq. 34
n . 35
e 11 < a(4) (1+22)" plk] < Q'[K L[k
P Kz
When leka [k] > QQpnzkakJrlnkfkl ||L[k1]H and d[k] — < QQN (H H (Qme—j-i-l)) W/
0, i=1j=1
ALY |A1-|< Q> P n ?
LT A Y 14 2% 36 - 1 —
ol @ U7 (39) = (e [T @) ) | W @
i=1j=1
P n; 2 n;—j+1,k—k1
Whenp/[k] > [T;-; [T52, (@™ 7 Fin* [ L{ki]Il) and  go v > moN + k;. Of course, the above inequality holds
d[k] = 0, for k > ko due toky > moN + k;.
Plk+1] < 1 a(A) <1 + @) P[] (37) C. Final proof to Theorem 3.1
Q P From time0 to k£, we can easily deduce the following
Under the condition in eq. 23, inequality on||L[k]|| by the updating rule of[k]
T T 1Lk 4+ 1] < (a(4) + 2 | L) + T
< g —, —R1
[+ =@ E 71;[1 (Q P K ”L[kl]”) (38) So it is straightforward to reach
Similar to eq. 27, we get, fovk € {k1,k1 + 1, -, ka}, IL[K]|| < (a(A) + 2)k1 L[]l + (al(A) + z)kl W, (46)
{ r; k] = L ;[k] (39) for vk € {0,1,---,k}. Eq. 34, 40, 45 and 46 providée
i, g[k] > pi TR L[| > n* | Lk | upper bounds orL; ;%] under4 different conditions. These

4 bounds can be bounded byi| L[0] || 7*+ 4 c; W from above
for Vk > 0 with

o o= QN (I T (@74 ) ™ (a(4) +2)"
k] < QzN (H H (Q2pm—j+1)> nk—lﬁ ||L[k1]|| (40) ey = 2 (QzN (Hil H;lél (Q2p"7‘_j+l)))2

- <N (a(4) +2)"
2) Under the conditionk > ky + 1. Starting from Then it is aimost sure that

k > ki, the time instants are grouped into epoches with

Considering the definition of'[k] and applying eq. 39 to eq.
38, we get wherk; < k < ko,

1
the duration of N. Let mo = |(ks —k1)/N|. Because LK) < 01|\L[0]||77k+502W
Lik]||pF=t1=F < W and ks +1 — k1 < + 1)N,
Uve[kﬂgv - ’ v (mot <l Lo)n* + W, VE >0
N 1 where the relationshipl’ = 2W is utilized. The proof of
"MLk < W Theorem 3.1 has been completgy.
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