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Event-triggered distributed algorithms for network optimization

Abstract
by
Pu Wan

Many existing distributed algorithms for network optimization problems of-
ten rely on the fact that, if the communications between subsystems are frequent
enough, then the state of the network will converge to its optimum asymptotically.
This approach will generally incur large communication cost. This work investi-
gates the use of event-triggered communication schemes in distributed network
optimization algorithms. Under event triggering, each subsystem broadcasts to
its neighbors when a local “error” signal exceeds a state dependent threshold. We
use the network utility maximization (NUM) problem as an example to demon-
strate our idea.

We first present an event-triggered distributed barrier algorithm and prove
its convergence. The algorithm shows significant reduction in the communication
cost of the network. However, the algorithm suffers from several issues which
limit its usefulness. We then propose two different event-triggered distributed
NUM algorithms, the primal, and the primal-dual algorithm. Both algorithms
are based on the augmented Lagrangian methods. We establish state-dependent
event-triggering thresholds under which the proposed algorithms converge to the
solution of NUM. For the primal-dual algorithm, we consider scenarios when the

network has data dropouts or transmission delay, and give an upper bound on the



Pu Wan
largest number of successive data dropouts and the maximum allowable trans-
mission delay, while ensuring the asymptotic convergence of the algorithm. A
state-dependent lower bound on the broadcast period is also given. Simulations
show that all proposed algorithms reduce the number of message exchanges by
up to two orders of magnitude when compared to existing dual decomposition
algorithms, and are scale-free with respect to two measures of network size.

We then use the optimal power flow (OPF) problem in microgrids as a non-
trivial real-life example to demonstrate the effectiveness of event-triggered opti-
mization algorithms. We develop an event-triggered distributed algorithm for the
OPF problem and prove its convergence. We use the CERTS microgrid model as
an example power system to show the effectiveness of our algorithm. The sim-
ulation is done in MATLAB/SimPower and shows that our algorithm solves the
OPF problem in a distributed way, and the communication between neighboring

subsystems is very infrequent.
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CHAPTER 1

Introduction

1.1 Motivation

A networked system is a collection of subsystems where individual subsystems
exchange information over some communication network. Examples of networked
systems include the electrical power grid, wireless sensor networks, and the Inter-
net. In many of these networked systems, we're interested in optimizing overall
system behavior subject to local constraints generated by limited subsystem re-
sources.

Many problems in such networks can be formulated as optimization problems.
This includes estimation [44] [47] [25], source localization [44], data gathering [13]
[12], routing [35], control [52], resource allocation [43] [65] in sensor networks,
resource allocation in wireless communication networks [64] [14], congestion con-
trol in wired communication networks [27] [34], and optimal power dispatch [29]
in electrical power grid. The consensus problem [39] can also be viewed as a
distributed optimization problem where the objective function is the total state
mismatch between neighboring agents. Due to the large-scale nature and complex-
ity of the system, centralized optimization techniques need an unacceptably large
amount of coordination and signaling. When distributed optimization algorithms
are used, each subsystem communicates with a collection of other subsystems, and

all subsystems collaboratively solve the overall optimization problem.



Early distributed algorithms that solve the network optimization problem di-
rectly include [23] [49]. Their results suggest that if the communication between
subsystems is frequent enough, then the state of network will converge to its
optimal point asymptotically. Recently, several other distributed optimization al-
gorithms have been proposed. In [44], a parameter estimation problem for sensor
networks was proposed. A parameter estimate is circulated through the network,
and along the way each node makes a small gradient descent-like adjustment to the
estimate based only on its local data. It was shown that the distributed algorithm
converges to an approximate solution for a broad class of estimation problems. In
[25], a randomized incremental subgradient method was used, where each node
only needs to exchange information with its neighbors. This distributed algorithm
is also shown to converge to a small neighborhood of the optimal solution.

Recent related developments in distributed algorithm has been largely in the
networking community. Most algorithms focused on solving the Network Util-
ity Maximization (NUM) problem. NUM problems maximize a global separable
measure of the networked system’s performance subject to linear inequality con-
straints. It originates in the Internet context [27] [34] as a way to understand
Internet protocols such as TCP. The NUM problem has a rather general form and
many problems in other areas can be formulated as a NUM problem with little
or no variation. As a matter of fact, all the problem we mentioned previously
can be formulated as a NUM problem with little or no variation. It is for this
reason that we will use the general NUM problem formulation as an illustrative
example to demonstrate the idea of our event-triggered algorithm. However, we
must emphasize that our objective is not trying to solve the Internet congestion

control problem in [34] using a better algorithm.



A variety of distributed algorithms have been proposed to solve the NUM prob-
lem [27] [34] [63] [42]. We will explain the main results on distributed algorithms
for the NUM problem in detail later in section 1.3. Kelly [27] first proposed two
classes of algorithms by decomposing the NUM problem into a user problem and a
network problem. In these algorithms, the network sets a “shadow-price” for the
user’s consumption of network resources. The user must then balance the utility
it receives by consuming such resources against the actual cost of the resources.
Simultaneously, the network adjusts its price to maximize its total revenue. The
interplay between user consumption and shadow pricing forms a feedback system
in which the users and network play a cooperative game. Kelly showed that this
game could be implemented in a distributed manner in which the locally greedy
actions of resources and users converge to the solution of the global optimization
problem.

The NUM algorithms can be classified as either primal, dual, or primal-dual
algorithms, depending upon whether the user, the link, or both user and link,
respectively, update their states through gradient following recursions. Among
all existing algorithms, the dual decomposition approach proposed by Low et al.
[34] is the most widely used algorithm for the NUM problem. Low et al. showed
that their dual decomposition algorithm was stable for a step size that is inversely
proportional to two important measures of network size: the maximum length
path L, and the maximum number of neighbors S. So as these two measures
get large, the step size required for stability becomes extremely small. Step size,
of course, determines the number of computations required for the algorithm’s
convergence. Under dual decomposition, system agents exchange information at

each iteration, so that step size also determines the message passing complexity of



the dual decomposition algorithm. Therefore if we use the “stabilizing” step size,
dual decomposition will have a message complexity (as measured by the number of
iterations) that scales in a super-linear manner with those two measures of network
size, L and S. Similar issues exist in earlier algorithms [23] [49] [25], where the
communications between subsystems are assumed to be ”frequent enough”, which
is equal to choosing a small underlying step size in subsystem state update.

For many networked systems this type of message passing complexity may be
unacceptable. This is particularly true for systems communicating over a wireless
network. In such networked systems, the energy required for communication can
be significantly greater than the energy required to perform computation [21]. As
a result, it would be beneficial if we can somehow separate communication and
computation in distributed algorithms. This should reduce the message passing
complexity of distributed optimization algorithms such as dual decomposition
significantly.

Our work presents one way of reducing the message passing complexity of
distributed optimization algorithms. It has recently been demonstrated [61] that
event-triggering in state feedback control systems can greatly lengthen the aver-
age sampling period of such systems. The result suggests that the use of event-
triggering in a suitable distributed algorithm may significantly reduce the message
passing complexity experienced by such algorithms. Event-triggering eliminates
the need for using a pre-selected constant step size in the distributed algorithm.
Under event triggering each subsystem broadcasts its state information when some
local ‘error’ signal exceeds a certain threshold.

The rest of the chapter reviews the major prior work that is related to our

research. In section 1.2, the Network Utility Maximization (NUM) problem is



formally stated. Section 1.3 reviews existing distributed algorithms for solving
the NUM problem. Three of the most representative papers are discussed in more
detail. Section 1.4 reviews some results in event-triggered control. The outline of

the thesis is then presented in section 1.5.

1.2 The Network Utility Maximization (NUM) problem

The network utility maximization (NUM) problem [27] [34] considers a network
consisting of N users and M links. Each user generates a flow with a specified
data rate. Fach flow may traverse several links (which together constitute a route)

before reaching its destination. The problem generally takes the form

maximize: U(z) = S0, Ui(x;) (1.1)

subject to: Ax <c¢ x>0

where © = [11,...,2n]T, 7; € R is user i’s data rate, A € RM*YN represents the
routing matrix, and ¢ € RM is the capacity vector of the M links. U;(z;) is the

utility function of user ¢, which has the following properties:
1. Ui(z;) is twice differentiable and strictly increasing, i.e. VU;(z;) > 0.
2. Uj(x;) is strictly concave in z;, i.e. V2U;(x;) < 0.

The utility function U;(z;) usually represents the reward (i.e. quality-of-service)
[27][34] user ¢ gets by transmitting at rate x;.

For the routing matrix A, if A;; = 1, link j is used by user ¢; if A;; = 0,
then link 7 is not used by user i. The jth row of Ax represents the total data
rates that go through link j, which cannot exceed its capacity ¢;. The constraint ¢

usually represents the bandwidth capacity of the link. For a large scale network, A



usually has sparse structure. People are interested in using a distributed algorithm
to solve the NUM problem. The term ‘distributed” means each user only knows
the information of the links that it uses, and each link only knows the information
of the users that use it. Figure 1.1 is an example network with the following

constraint:

€
1 010 C1
T2
Ar=11 11 0 <1 e
Zs3
1 1 0 1 C3
LTy

Figure 1.1. An example network in NUM

The solution to the NUM problem maximizes the summed utility seen by all
users in the network as a function of the users’ transmission rates. These rates
must clearly be non-negative. Moreover, if U;(z) = w; log z where w; is a positive

constant, then it can be shown that all of the user rates in the optimal solution



must be positive. Such solutions are seen as being “fair”, since no user’s optimal
rate goes to zero.

We use S = {1, ..., N} to denote the set of users, and £ = {1, ..., M} to denote
the set of links. For user ¢, £; = {j € L|i € S;} is the set of links used by it. For
link j, S; = {i € S|j € L;} is the set of its users. Note that j € £; if and only if
i € S;. We also define L = max;cs |£;], S = maxjes |S;|. In other words, L is the
maximum number of links any user i € S uses, and S is the maximum number of

users any link j € £ has.

1.3 Prior work: Distributed algorithms for NUM

This section reviews existing distributed algorithms used in solving the NUM
problem. The NUM algorithms can be classified as either primal, dual, or primal-
dual algorithms, depending upon whether the user, the link, or both user and
link, respectively, update their states through gradient following recursions. In
the algorithms given in [27][34], either the user or the link update is a memoryless
penalty function, which corresponds to a dual or primal algorithm, respectively.
In [41][6], a dual algorithm is used, and the link update is implemented by a
second order dynamical equation. The cases when both user and link updates
are dynamic have been analyzed in [31][2][24]. In [31], stability was shown using
singular perturbations, while in [2][24], stability was established only for the single-
bottleneck case (i.e., only one congested link is considered). In [63], the author
used passivity to establish the stability of a broad class of primal-dual algorithms,
and included the primal and dual algorithms of [27][41] as special cases.

Among the existing literature, the NUM problem is mostly solved using a dual

algorithm. The approach was first applied to the NUM problem in [27], and then



later widely used in the Internet [34] [15], wireless ad hoc networks [43] [65] [66],
and sensor networks [12].

Next we will review three of the most representative papers in more detail. Ini-
tial work on a distributed solution to the NUM problem is presented in subsection
1.3.1. Subsection 1.3.2 discusses the dual decomposition approach. Passivity-

based primal-dual algorithms are presented in subsection 1.3.3.

1.3.1 Kelly’s Initial Work

Kelly [27] first proposed two classes of algorithms to solve the NUM problem
(equation 1.1) and proved the convergence of these algorithms by constructing a
Lyapunov function. The utility function for user ¢ € S was chosen explicitly as a
logarithm function U;(x;) = w; log z;, where w; > 0 is a weighting coefficient. For

this utility function, the primal algorithm takes the form

#i(t) = 7<wi—xi(t)zpj(t)> (1.2)

JEL;

() = hy [ S w0) (1.3)

where v > 0 is some gain constant. p;(t) is link j’s feedback signal, which has the
interpretation of the price for using the link. h;(-) is a continuous, non-negative,

increasing function which takes the form

hi(y) =y — ¢; +¢]*/e? (1.4)

where [z]* = max{z,0} and ¢ is a small positive constant. Equations 1.2-1.3 are

called the primal algorithm because the user’s data rate z (which is the primal



variable) is updated using a first order differential equation. On the other hand,
the link’s update is a memoryless function of the user rate. In equation 1.2,
w;/z;(t) can be interpreted as user i’s willingness-to-pay when it transmits at
rate z;(t). Then according to equation 1.2, user i increases its rate if the total
price »_ ec; p;(t) is less than its willingness-to-pay, and decreases it otherwise. In
equation 1.3, since h;(-) is an increasing function, the price p;(t) increases if the
aggregate rates in link j increases.

It was shown that

2ies; it)
V) =Y U =% [ iy (1)
i€S jec”0

is a Lyapunov function for the system in equations 1.2-1.3. Therefore the system
has an equilibrium point that is globally asymptotically stable. As ¢ — 0, the
equilibrium of equations 1.2-1.3 approaches arbitrarily close to the optimal solu-
tion of the NUM problem. If we view V' (x) as the penalty function of the NUM
problem, then equations 1.2-1.3 can be thought of as a gradient descent algorithm
to solve the problem [15].

The dual algorithm proposed by Kelly takes the form

pit) = v [ D w(t) — gi(pi (1) (1.6)
icS;

w;

Zjeﬁi p;(t)

where ¢;(+) is

(1.8)



for small positive constant €. In the dual algorithm 1.6-1.7, the user update is

static and the link update is dynamic. Similarly, the function

p;(t)
V(z) =) U <ij(t)> - Z/O q;(n)dn (1.9)

1€S JEL; JEL

is a Lyapunov function for the system in equations 1.6-1.7. This means the sys-
tem’s equilibrium point is globally asymptotically stable. Again as ¢ — 0, this
equilibrium point approaches the solution of the NUM problem.

We should point out that Kelly in [27] relaxes the nonnegativity constraint on
user rates x and link prices p. This simplifies the stability proof using Lyapunov

techniques.

1.3.2 Dual decomposition approach

Dual decomposition [34] works by considering the dual problem of the NUM

problem, which is given as

minimize:  D(p)

(1.10)
subject to: p >0
where
N
D(p) = maxL(z,p) = rgggg{z Us(x;) — pF(Az — )} (1.11)
= = =1

p = [p1,...,pu]7 is the Lagrange multiplier (which has the interpretation of price
for using each link [27] [34]) associated with the inequality constraint Az < c. If
x* and p* are vectors solving the dual problem, then it can be shown that z* also

solves the original NUM problem.

10



Low et al. [34] established conditions under which a pair of recursions would
generate a sequence of user rates, {z[k]|}2,, and link prices, {p[k]}32,, that asymp-
totically converge to a solution of the dual problem. Given the initial user rates

x[0] and link prices p[0], then for all i € S and j € L, we let

nill+1] = argmax {Ui(xi[k]) —ailk] > pj[k])} (1.12)
JEL;
pilk+1] = max< 0,p;[k] + 7 Zx,[k] — ¢ (1.13)
1€S;
for kK =0,---,00. x;[k] and p;[k] will converge to the optimal value z* and p*,

respectively. In equation 1.12, user i only needs to know the aggregate prices of
all the links that user ¢ uses at time k, which is known to user i. In the link
update law in equation 1.13, link j only needs to know the total data rates that
pass through itself, which is also known to link 7. The above remarks show that
dual decomposition yields a fully distributed computational solution of the NUM
problem.

The update law in equations 1.12-1.13 is very similar to the dual algorithm
1.6-1.7 in Kelly’s work. In the special case where U;(x;) = w;logx;, equations
1.12-1.13 reduces to a similar form of 1.6-1.7, provided ¢;(p;(¢)) = ¢; in equation
1.6. However, this choice of g;(-) does not satisfy certain conditions required for
the stability proof in [27].

The stability of the system in equations 1.12-1.13 is proved by showing that
the dual objective function D(p(t)) can be thought of as a Lyapunov function

for the discrete time system, provided the step size v is sufficiently small. It was

11



shown in [34] that the stabilizing v satisfies

-2 i VAU (x
0<ny <~ = max(% (z:) (1.14)

where L is the maximum number of links any user uses and S is the maximum
number of users any link has. Equation 1.14 requires that the step size be inversely
proportional to both L and S. We can conclude that the computational complexity
of dual decomposition (as measured by the number of algorithm updates) scales
superlinearly with L and S.

If the network is highly congested (large S), or has a long route (large L), then
from equation 1.14, we have to choose small v to ensure stability [5]. When the
utility function is in the form of a logarithm function U;(z;) = w;log z;, then the

optimal step size is

7= L:S%gl(x_?)’ (1.15)

This means that the step size will depend on the maximum data rate the users
can transmit.

In real Internet congestion control protocols, the price p is usually implicitly
fed back to the users. Various protocols have been developed, such as RED[19],
REM[6] and RAM][1]. Such mechanism is certainly more practical than explicit
transmission of price information and suffices in the Internet context. However, it
suffers from various errors inherent in its implicit price-notification [36], which lim-
its its applicability. Moreover, in many applications, such as in the consensus[39]
and electrical power grid [29] problem, there is no way we can employ this kind

of implicit pricing feedback scheme. For this reason, explicit feedback scheme is

12



still needed in many applications. Our later presented event-triggered algorithm
uses an explicit feedback scheme. Since we are interested in solving a large class
of optimization problems instead of just the simple NUM problem in the Internet

context, the scheme serves our purposes well.

1.3.3 Passivity Approach

Consider the following primal-dual algorithm, where both the user update and

the link update are dynamic,

ii(t) = ki (vm(a;i)—zpj(t)) (1.16)
JEL;

pit) = v [ D mlt) —¢ (1.17)

1€S; ;i (t)
Given a function f(z), its positive projection is defined as

(

f(x), if x>0,
(f(2))s = f(z), if =0 and f(z)>0 (1.18)

0, if =0 and f(z)<0

\

If we denote y = Az, then y;(t) = > ;s 2i(t). Denote the optimal value of y
as y*, and the optimal value of p as p*. It was shown in [63] that for the user
algorithm 1.16, the system from —(p — p*) to y — y* is strictly passive if we choose
the storage function
1 (; — x})?
Vi = — —_— 1.19
@) =5 T (119

1€S

13



Similarly, for the link algorithm 1.17, the system from y — y* to p — p* is strictly

passive if we choose the storage function

i) = 3 20 (120)

JjeEL

By the passivity theorem [28, Chap 6], the feedback interconnection of 1.16 and
1.17 is asymptotically stable, and V' (z,p) = Vi(x) + Va(p) can be used as a Lya-
punov function for the interconnected system. This allows us to use a primal-dual
algorithm, where both the user and link update are dynamic. We should empha-
size here that the classes of algorithms are not restricted to equations 1.16-1.17

only, any algorithms satisfying certain passivity properties can be used here.

As we can see, existing solutions to the NUM problem either rely on conser-
vative choice of step size in order to ensure stability, or otherwise stated as a
continuous-time law, which makes it difficult for us to determine how often the
communication is needed. This inspires us to use an event-triggered scheme which

eliminates the need for pre-selected constant step size in the distributed algorithm.

1.4 Prior work: Event-triggered control

Fuvent-triggered systems are systems in which sensors are sampled in a sporadic
non-periodic manner. Event-triggering has an agent transmit information to its
neighbors when some measure of the "novelty” in that information exceeds some
specified threshold. In this way, the communication network is only used when
there is an immediate need. Early examples of event-triggering were used in re-

lay control systems[50] and more recent work has looked at event-triggered PID

14



controllers [3]. Much of the early work in event-triggered control assumed event-
triggers in which the triggering thresholds were constant. Recently it was shown
that state-dependent event triggers could be used to enforce stability concepts
such as input-to-state stability [48] or Ly stability [60] in both embedded control
systems and networked control systems [62]. There has been ample experimental
evidence [4, 46] to suggest that event-triggering can greatly reduce communica-
tion bandwidth while preserving overall system performance. Event-triggering
therefore provides a useful approach for reducing an application’s usage of the

communication network.

1.5 Outline of thesis

The outline of the thesis is briefly introduced in the following paragraphs,

sorted by chapter.

Chapter 2 Existing distributed optimization algorithms usually consume a large amount
of communication resources because of the inherent coupling between inter-
subsystem communication and local computation. This chapter addresses
this issue through the use of an event-triggered scheme. In this chapter we
start to study how to use event-triggering to separate communication and

computation in distributed optimization algorithms.

The chapter uses the NUM problem formulation as an example and presents
a distributed algorithm based on barrier methods that uses event-triggered
message passing. Under event triggering, each subsystem broadcasts to its
neighbors when a local “error” signal exceeds a state dependent threshold.
We prove that the proposed algorithm converges to the global optimal so-

lution of the NUM problem. Simulation results suggest that the proposed

15



Chapter 3

algorithm reduces the number of message exchanges by up to two orders of
magnitude when compared to dual decomposition algorithms, and is scale-

free with respect to two measures of network size L and S.

The event-triggered barrier algorithm in chapter 2 is our very first approach
to solve the distributed optimization problems using the event-triggered idea,
and it shows significantly reduction in the communication cost of the net-
work. However, as we show in the chapter, the algorithm suffers from issues
like the need for an initial feasible point, and performance sensitive to pa-
rameter choices. All these issues limit the usefulness the algorithm. This
inspired us to look for alternative algorithms to apply the event-triggered

idea.

This chapter still uses the NUM problem formulation as an example and
presents two distributed algorithms based on the augmented Lagrangian
methods that use event-triggered message passing and proves their conver-
gence. One of the algorithm is a primal algorithm, and the other is a primal-
dual algorithm. For the primal-dual algorithm, we consider scenarios when
the network has data dropouts, and give an upper bound on the largest
number of successive data dropouts each link can have, while ensuring the
asymptotic convergence of the algorithm. A state-dependent lower bound
on the broadcast period and an upper bound on the transmission delay the
network can tolerate while ensuring convergence are also given. Simulation
results show that both algorithms have a message passing complexity that
is up to two orders of magnitude lower than dual decomposition algorithms,
and are scale-free with respect to two measures of network size L and S.

The primal algorithm in this chapter is similar to the algorithm in chapter
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Chapter 4

2. However, in chapter 2, we used the barrier method instead of the aug-
mented Lagrangian method as the basis for the event-triggered algorithm.
In that case, the resulting algorithm suffers from issues like ill-conditioning,
need for an initial feasible point and sensitive to the choice of parameters.
The event-triggered algorithms presented in this chapter do not have these

1ssues.

The problems and algorithms developed in the previous chapters are some-
what abstract, and did not explicitly show how we can use those event-
triggered algorithms in real-life applications. This chapter uses the optimal
power flow problem in microgrids as a nontrivial real-life example to demon-

strate the effectiveness of event-triggered optimization algorithms.

The optimal power flow (OPF) problem has been the research subject of
power system community since early 1960’s, and is very similar to the NUM
problem we considered in previous chapters. Various centralized or dis-
tributed optimization algorithms have been proposed to solve the OPF prob-
lem. These algorithms usually made the assumptions that communication
between subsystems was not expensive and reliable, which is unrealistic.
One way around this problem is to make use of low power ad hoc wireless
communication networks that operate independently of the main power grid.
Using event-triggering on those wireless networks therefore may provide a
useful approach for reducing the power grid’s use of the communication net-

work.

In this chapter, we develop an event-triggered distributed optimization algo-
rithm for the OPF problem and prove its convergence. We use the CERTS

microgrid model [32] as an example power system to show the effectiveness
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of our algorithm. The simulation is done in MATLAB/SimPower and shows
that our algorithm solves the OPF problem in a distributed way, and the

communication between neighboring subsystems is very infrequent.

Chapter 5 This chapter is a summary of the thesis, and also provides suggestions for

future work.
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CHAPTER 2

Event-triggered distributed optimization using barrier methods

2.1 Introduction

This chapter presents one way of reducing the message passing complexity of
distributed optimization algorithms using event-triggering. The chapter uses the
NUM problem formulation as an example and presents a distributed algorithm
based on barrier methods that uses event-triggered message passing. Under event
triggering, each subsystem broadcasts to its neighbors when a local “error” sig-
nal exceeds a state dependent threshold. We prove that the proposed algorithm
converges to the global optimal solution of the NUM problem. Simulation results
suggest that the proposed algorithm reduces the number of message exchanges by
up to two orders of magnitude, and is scale-free with respect to two measures of
network size L and S.

The rest of the chapter is organized as follows. The event-triggered optimiza-
tion algorithm is based on a barrier method solution to the NUM problem which
is described in section 2.2. Section 2.3 presents our event-triggered distributed al-
gorithm based on barrier methods, and proves its convergence. Simulation results

are shown in section 2.4, and section 2.5 concludes the chapter.
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2.2 Barrier Method NUM Algorithm

The event-triggered algorithm presented in this chapter is based on a barrier
method for the NUM problem. Barrier type algorithms have only recently been
proposed for use on the NUM problem. This recent work uses a special type
of barrier method known as the interior-point method [67]. Primal-dual interior
point methods, however, do not distribute across the network. We therefore have
to develop a barrier method that easily distributes across the network.

In barrier methods, a constrained problem is converted into a sequence of
unconstrained problems, which involve an added high cost for approaching the
boundary of the feasible region via its interior. The added cost is parameterized
by the barrier parameter. As the barrier parameter decreases to zero, the added
cost becomes increasingly inconsequential. This progressively allows the iterates
to approach the optimal point on the boundary. As the barrier parameter goes to
zero, the optimal point on the boundary is reached. The solutions to the sequence
of unconstrained problems form the central path, which is a 1-D curve connecting
the initial point in the feasible region to the optimal point.

Traditional barrier algorithms [38] have only one barrier parameter. Our al-
gorithms consider a more general case in which a barrier parameter is associated
with each constraint. Let F* = {x : © > 0, Az < ¢} denote the strict feasible

region. The Lagrangian associated with the NUM problem is

L(z;7m,\) = — Z Ui(z;) — Z Ailog z; — ij log(c; — afa:) (2.1)

(S (S JEL
where 7 = [, -+, 7| is a vector of barrier parameters associated with the links
in £ and A = [\, -+, A\y] is a vector of barrier parameters associated with the
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users in S. The vector a] = [Aj1,---, A;n] is the jth row of the routing matrix

A.

path of
minimizers

approximate @ x(1?,1%)
path  x(r*A%3) =

Figure 2.1. Ilustration of the barrier methods

Let {7;[k]}22, and {\;[k]}22, be sequences of link (j € £) and user (i € S)
barriers, respectively, that are monotone decreasing to zero. The barrier method
solves the NUM problem by approximately minimizing L(x;7[k], A[k]) for the bar-
rier sequences defined above. Let z*[k] denote the approximate minimizer for
L(z;7[k], A[k]). By the barrier method in [38], the sequence of approximate min-
imizers {z*[k]}72,, converges to the optimal point of the NUM problem, which is

illustrated in figure 2.1. The barrier method algorithm for the NUM problem is

formally stated below.
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1. Initialization: Select an initial user rate z° € F* and set K = 0. Set

7']- :?j[K], )\z :XZ[KL Z 6 S? ] E ‘C7 and € :E[K]

2. Main Recursive Loop:

Do until: ||V.L(2° 7, \)|| < €4

(a) Approximately Minimize L(x;7,\):
Do until: |V, L(z% 7, \)|| < e

v = 2% —4V,.L(2%7,\) (2.2)

T = T

(b) Update Parameters:
Set 7; =T [K +1], s = N[K+1],i €S8, j € L, and e = ¢[K + 1]. Set
K=K+ 1.

3. Set x* = 2°.

In the algorithm above, {€[k]}72, is a sequence of tolerance levels that are
monotone decreasing to zero. €4 is a terminating tolerance level. ~ is a sufficiently
small step size. Note that the inner recursion shown in step 2a is approximately
minimizing L(x;7,\) for a fixed set of barrier vectors using a simple gradient
following method.

The computations above can be easily distributed among the users and links.
The primary computations that need to be distributed are the user rate update and
terminating condition in step 2a, as well as the parameter update in step 2b. We
will see how they are distributed in our event-triggered distributed implementation

of the algorithm in section 2.3.
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In dual decomposition and the barrier algorithm shown above, the exchange
of information between users and links happens each time the gradient follow-
ing update is applied. This means that the number of messages passed between
links and users is equal to the number of updates required for the algorithm’s
convergence. That number is, of course, determined by the step-size. For both
algorithms, these step sizes may be small, so that the number of messages passed
between links and users will be large. The following section presents an event-
triggered implementation of the barrier method NUM algorithm. It reduces the

communication cost of the algorithm significantly.

2.3  Event-triggered NUM Barrier Algorithm

The NUM barrier algorithm solves a sequence of unconstrained optimization
problems that are indexed with respect to the non-negative integers k. In par-
ticular, the algorithm minimizes the Lagrangian L(z;7[k], \[k]) where {7[k]}2,
and {A[k]}2°, are sequences of link and user barrier vectors, respectively, that are
monotone decreasing to zero.

Implementing the NUM barrier algorithm in a distributed manner requires
communication between users and links. An event-triggered implementation of
the NUM barrier algorithm assumes that the transmission of messages between
users and links is triggered by some local error signal crossing a state-dependent
threshold. The main problem is to determine a threshold condition that results
in message streams ensuring the asymptotic convergence of the NUM barrier al-
gorithm to the problem’s solution.

We begin by considering the minimization of L(x;7[k], \[k]) for a fized set

of barrier vectors (i.e. fixed k). Subsection 2.3.1 determines an event thresh-
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old condition ensuring the convergence of the local update (equation 2.2) to this
minimizer. Subsection 2.3.2 then considers the case when the barrier vectors are
switched as we change k. In particular, we present a distributed update strategy
for the barrier parameters that ensures the convergence of the algorithm to the

NUM problem’s solution.

2.3.1 Fixed Barrier Parameter case

This subsection considers the problem of finding a minimizer for the La-
grangian L(z;7,\) under the assumption that the barrier vectors 7 and \ are

constant. We can search for the minimizer using a gradient following algorithm

zi(t) = —/0 Ve, L(x(s); 7, \)ds

[ Uas) N
: /< o +x-<s>‘2“ﬂ'<$>> ds (2:3)

! JEL;

for each user 7 € S and where

T

pj(t) = . o ajJTx( ) (2.4)

Equation 2.3 is the continuous-time version of the update in equation 2.2. Note
that in equation 2.3, user ¢ can compute its rate only based on the information
from itself, and the information of y; from those links that are being used by user
i. We can think of p; as the jth link’s local state. From equation 2.4, link j only
needs to be able to measure the total flow that goes through itself. All of this
information is locally available so the update of the user rate can be done in a
distributed manner.

In the above equation, the link state information is available to the user in
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a continuous manner. We now consider an event-triggered version of equation
2.3. Rather than assuming each user can access the link state j; in a continuous
fashion, we assume that the user accesses a sampled version of the link state. In
particular, let’s associate a sequence of sampling instants, {TJL [0]}32, with the jth
link. The time T}[(] denotes the instant when the jth link samples its link state
(; for the fth time and transmits that state to users ¢ € ;. We can therefore see
that at any time ¢t € R, the sampled link state is a piecewise constant function of

time in which

fui(t) = (T [0) (2.5)

for all ¢ = 0,---,00 and any ¢t € [T}[¢], T}[¢ +1]). In this regard, the “event-

triggered” version of equation 2.3 takes the form

o t 8UZ(I’Z(S)) )\Z R
o = [ ( o +xi(8)—2m(8)> ds (2.6)

for all ¢ and any t € [T}[¢], T}[( +1]).

The sequence {T[(]};2, represents time instants when the link transmits its
“state” to its users. Under event-triggering, it will be convenient to have a sim-
ilar flow of information from the user to the link. We assume that link j can
directly measure the total flow rate, 37, . x;(t), in a continuous manner. The
event-triggering scheme proposed below will require that link 5 have knowledge

of the time derivative of user i’s flow rate. In particular, let z;(¢) denote the time
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derivative of this flow rate. z;(t) therefore satisfies

= VU n(0) + s~ 3 0 (2.7

for all i € §. We will refer to z; as the ith user state. We associate a sequence
{T20)}52, to each user i € S. The time T}°[¢] is the th time when user i transmits
its user state to all links j € £;. We can therefore see that at any time ¢t € R, the

sampled user state is a piecewise constant function of time satisfying

z(t) = (T7[0) (2.8)

forall ¢ =0,---,00and any t € [T°[(], T°[¢+1]). In the proposed event-triggering
scheme, links will use the sampled user state, Z, to help determine when they
should transmit their states back to the user.

We are now in a position to state the main theorem of this subsection.

Theorem 2.3.1 Consider the Lagrangian in equation 2.1 where the functions U;
are twice differentiable, strictly increasing, and strictly concave and where the
routing matrix A is of full rank. Assume a fized barrier vector A > 0 and 7 > 0
and assume the initial user rates x;(0) lie in the feasible set F*. Consider the
sequences {T°[(]}32y and {TF[(]};2, for each i € S, and each j € L, respectively.
For eachi € S, let the user rate, x;(t), satisfy equation 2.6 with sampled link states
given by equation 2.5. For each i € S let the user state z;(t) satisfy equation 2.7
and assume link j’s measurement of the user state satisfies equation 2.8.

Let p be a constant such that 0 < p < 1. Assume that for all i € S and all
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(=0, 00, that

fort € [TP[0), TS[¢ +1]). Further assume that for all j € £ and all { =0, -- , 00

that

pZ =27(t) = LS (1;(t) — f5(t)* = 0 (2.10)
1€S;
fort € [T}[0],T}[¢+1]). Then the user rates x(t) asymptotically converge to the

unique minimizer of L(x;T, \).

Proof: For convenience, we do not explicitly include the time dependence of
zi(t), (1), z(t), 2:(t), p;(t), f1;(t) in most part of the proof.

For all t > 0 we have

. 0L dx;
—L(z;7,\) = _Zax T (2.11)

N
= Z (VU (; +——Zu] il (2.12)

{_Z _%; i) Ay } (2.13)

AV4
':'MZ ||

Remember there are only |£;| nonzero terms in the sum ij‘il(,uj — [1;)A;;, then

by using the inequality

- [Z(Mj — f15)A;

J=1

1l 3 oy = i) A (214
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we have

Consider the term 3p N

A%

v

v

W,
N | —
WE
Y
[\D:H
] =

WV
N —
WE
2,

[\3:}—‘
M=

zlz

I
l\3|H
Pﬂ:

h

(2.15)
M
{Iﬁi\ > Ml - m)AﬁF} (2.16)
=1 j=1
N
{(Mj — )’y \Q’V@} (2.17)
j=1 i=1
LS(nj — ;) (2.18)
j=1
, we have
32 (2.19)
Iis (2.20)
=2z .
L (2
N
Z;&%+pz: M|ﬁf (2.21)

N M
1 1 R 1 . 1 — .
5223—§PZZ?+§PZ%2—§ZL (1j — i) (2.22)
N o -
{PZ T 22 A — LSy — ﬂj)z} (2.23)

M
. 1 1 — N
T+ 5 d > fziz — LS(p; — iy)* (2.24)

which immediately suggests us if the sequences of sampling instants {727 [¢]}22, and
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{TjL [0]}32, satisfy the inequalities in equation 2.9 and 2.10 for all £ = 0, 1,2, ..., o0,
and any 1 € S, j € L, then L(:E; 7,A) < 0 is guaranteed for all ¢.

By using the properties of U;(x;), it is easy to show that for any fixed A and
7, L(z;7,)\) has a unique minimizer. Suppose z*(7, A) is this minimizer, and the
corresponding Lagrangian is L(z*; 7, A). Define V(x) = L(x; 7, \) — L(z*; 7, A). It
is trivial to see V(z) is a Lyapunov function for the system. Moreover, V (z) = 0

means L(z;7,\) = 0. The only scenario this can happen is

n=45=0, YieS, p=p;, YVieL (2.25)

which corresponds to z*(7, A). As a result, the equilibrium x*(7, \) is asymptoti-
cally stable. Proof complete. B

Theorem 2.3.1 provides the basis for constructing an event-triggered message-
passing protocol. This theorem essentially asserts that we need to select the
transmit times {7;°[¢]} and {T}}/[¢]} so that the inequalities in equations 2.9 and
2.10 always hold. Omne obvious way to do this is to use the violation of these
inequalities to trigger the sampling and transmission of link/user states across
the network. At time t = T°[(], we see that 22 — p2? is nonnegative so that the
inequality in equation 2.9 is automatically satisfied. After this sampling instant,
2;(t) continues to change until the inequality is violated. We let that time instant
be TP[¢ + 1] and transmit the sampled user state to the link.

In a similar way, link j compares the square of the error between the last
transmitted link state ji; and the current link state p;. At the sampling time
T}[e], this difference is zero and the inequality is trivially satisfied. After that

time, p;(t) continues to change or the link may receive an updated user state Z;

that may result in the violation of the inequality. We let that time be the next

29



sampling instant, TjL [0 4+ 1] and then transmit the sampled link state [i; to the
user.

The threshold conditions shown in equations 2.9-2.10 therefore provide the
basis for an event-triggered scheme to solve the local minimization problem in

step 2a of the NUM barrier algorithm presented earlier.

2.3.2 The switching barrier parameter case

Recall that the solution to the fixed-barrier case finds an approximate mini-
mizer to the Lagrangian L(z;7,\) in step 2a of the NUM barrier algorithm. We
now consider what happens when we systematically reduce the barrier parameters
to zero. In particular, we need to identify a distributed strategy for updating these
barrier parameters so that the sequence of approximate minimizers asymptoti-
cally approach the global solution of the NUM problem. This subsection presents
such an updating strategy and proves that the resulting event-triggered algorithm
asymptotically converges to the desired solution.

The discussion of the algorithms needs an additional notation. For a function
f(t) defined on t € [0,T), we denote fT(T') as the limit value of f(¢) when ¢
approaches T from the left hand side.

Each user 7 € S executes the following algorithm. The main assumption here
is that user 7 is continuously transmitting data at rate x;(t) at time ¢. For each
user ¢, we assume there exists a monotone decreasing sequence of user barrier
parameters, {\;[k]}32,, that asymptotically approaches zero. For each user i, we
also assume there exists another monotone decreasing sequence of tolerance levels,

{&lk]}72, that asymptotically approaches zero.

Algorithm 2.3.1 User i’s Update Algorithm
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1. Parameter Initialization: Set the initial user rate 2 so that x° lies in

the feasible set F*. Let K =0, T =0, \; = ,[K], and ¢; = &[K].

2. State Initialization: Upon receiving link state p;(T) from j € L;, set

fj = pi(T). Initialize user state to
S(T) = VU + 25— S (2.26)
) ZIZ'O J

set z; = z;(T) and transmit z;(T) to all links in j € L;.

3. Update User Rate: Integrate the user rate equation

xi(t) = /zi(s)ds (2.27)

4l = VU0 + = S (2.28)
! JEL;
w(T) = a9 (2:29)

where t € [T,T%) and T is the time instant when one of the following

conditions is true

(a) If 22(t) — pz? < 0 then broadcast z (TT) to all links j € L;, and set
Zi =z (TT).

(b) Or if user i receives a new link state p; (TF) from link j € L;, set
By = (T,

(c) Orif |zi(t)] < €, then set \; = N[K + 1] and ¢; = §[K + 1]. Set

K = K + 1 and notify link j € L; that user i performed a barrier

update.
4. Increment Time: Set T =T%, 20 = 2] (T") and go to step 3.
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A similar algorithm is executed by all links j € £. The main assumption here
is that link j can continuously monitor the link state p;(t) at any time ¢t € R. For
each link j we assume there exists a monotone decreasing sequence of link barrier

parameters, {7,[k]}72, that asymptotically approaches zero.

Algorithm 2.3.2 Link ;’s Update Algorithm

1. Parameter Initialization: Set K = 0, T' = 0, 7; = 7;[K] and set the

switching indicator I; = 0 for each i € S;.
2. State Initialization Measure the local link state

7j

1, (T) = (2.30)

Transmit p;(T) to all users i € S; and set fi; = p;(T"). Upon receiving user
state z;(T) from i € S;, set z; = z(T).

3. Link Update: Continuously monitor the link state j;(t) for allt € [T,T7)

where T is the time instant when one of the following events occur

(a) If

p £ < LS (p(t) — iy)*

1€S;

&l =

then set ji; = pu; (T) and broadcast the updated link state juj (TF) to

all users i € S;.

(b) Or if link j receives a new user state z; (TT) for any i € S;, then set

ZAJZ' = Z:_(T—i_)
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(¢) Orif link j receives notification that user i performed a barrier update,

set I, = 1.

4. Update Barrier Parameter: If [; = 1 for all i € S;, then set 7; =

TiK + 1], reset I; =0 for alli € S;. Set K = K + 1.

5. Increment Time: Set T'=T7 and go to step 3.

In the preceding algorithms, the parameters \;, 7;, and ¢; are switched accord-
ing to the parameter sequences {\;[k]}, {7;[k]}, and {&][k]}, respectively. These
switches occur at discrete instants in time. Provided an infinite number of switches
occur, we can guarantee that the sequence of parameters used by the algorithm
also asymptotically approach zero. The following lemma establishes that this

actually occurs.

Lemma 2.3.2 Consider algorithms 2.3.1 and 2.3.2. Foreachi € S, let {Tf[l{:]}gfo
denote the sequences of all time instants when X\; and €; switch values. For each
ML

j € L, let {T][k]},Z, denote the sequence of all time instants when 7; switches

values. Then M? and MJ-L are infinite for all v, 7.

Proof: We will first show that M is infinite for all i € S, then show M} is
infinite for all j € L.

Remember \; and ¢; are switched according to the monotone decreasing se-
quences {\;[k]}5%, and {&[k]}32, which are lower bounded by zero. This means
after an finite or infinite number of switches, they will converge to their equilibria
A;, ef respectively [51]. Next we will show €f = A} = 0 by contradiction.

Assume \; and ¢; are at the equilibrium, then by the algorithm, for each link j,

7; is also at its equilibrium. This means we now have fixed 7%, \*, €*, which satisfy
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all the assumptions in theorem 2.3.1. Suppose at least one user r has a nonzero
equilibrium €. From theorem 2.3.1, we know z,(t) also asymptotically converges
to zero and enters the |z,.(f)| < ¢, neighborhood in finite time for any ¢, > 0. If we
choose €, to be any element in the sequence {€,[k]}32, that is smaller than €, then
a user switch will occur for user r according to the algorithm, which contradicts
the assumption that €, is already at its equilibrium. This means € = 0, Vi € S.
As a result, we know for each user 4, M is infinite.

Next we will show for each link 5, M ]L is also infinite. Define 7@ = max;cs T[0].
Then on t € [0,T™], each user i € S has completed at least one switch. By
algorithm 2.3.2, this means each link 7 € L also has completed at least one
switch. Starting from 7, we can use the same argument again. As a re-
sult, we can partition the time axis [0,+o00) into the union of time intervals
[0, TONYTO, TOJ(TD, T@]---. On each time interval, each link j € £ has
completed at least one switch. Since M? is infinite for each i, we can construct an
infinite number of such intervals. This means M JL is also infinite for each 57 € L.
Proof complete. B

The following lemma provides a lower bound on L(x;7, \) for fixed barrier

parameters. This bound will be later used in the proof of theorem 2.3.4.

Lemma 2.3.3 Under the assumptions of theorem 2.5.1, for allt > 0,

_g Zzlz(t) < W <0 (2.31)
1€S
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Proof: Remember

= Z %[V U;(x;) + A— —~ Zuj il (2.32)

< % 3 {Z? + [z + ZﬂjAji - ZMjAjiF} (2.33)
< SZZE—FZ{Z/LJ ji Z:u] jZ } (234)

As a result of the events in theorem 2.3.1, the right-hand side of equation 2.13 in

the proof is nonnegative, which is
N N
> # - Z{ZM ji Zu] il }_ (2.35)

=1 i=1

This means

:I:TAS

| w
l\.’)IUl

YA+ =57 (2.36)

=1 =1 =1

which completes the proof. B

We can now show that algorithms 2.3.1-2.3.2 asymptotically converge to the
solution of the NUM problem. The main idea is to divide the entire time axis
into an infinite number of mutually disjoint time intervals. On each interval,
we have fixed barrier parameters. Since there are an infinite number of barrier
parameter switches, we can show that the bound in lemma 2.3.3 asymptotically
converges to zero, thereby showing that L converges to zero and thus establishing

the convergence of the algorithm.
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Theorem 2.3.4 Under the assumptions of U;, A, and p in theorem 2.5.1, the
data rates x(t) generated by algorithms 2.3.1- 2.3.2 converge asymptotically to the

unique solution of the NUM problem.

Proof: By lemma 2.3.2, there are infinite user switches for each user. Let
{T[k]}, be the nondecreasing sorted sequence of all the elements in {7} [k]},i\fo
for all i € §. This means we can partition the time axis [0, +00) into the union
of infinite number of time intervals, [0, T[1]) U[T[1], T'[2]) U[T[2],T[3]) - - -. Here
T'[k| is the time instant when a user barrier switch occurs for any user. On

[T[k], T[k + 1]), we have fixed parameter 7, A, e. By lemma 2.3.3, we have

l\DIOT

N
5] < &), —2 S AW < —2 30 < Elmm ) <0

=1 =1

where €;(t) is defined as
) =ealk—1), te TN, TNE+1)) (2.37)

Since T[k] is the time instant when the kth barrier switch occurs for user 7. At
any time ¢, €(t) is the tolerance for user i right before the latest switch occurs.

Define f(t) = —2 ZZ L €2(t), we know f(¢) is a nondecreasing function of ¢ that
converges to 0. Also for each user i € S, define ¢;(t) = €;(t). Then g;(t) is also a
nondecreasing function of ¢ that converges to 0. This means |z;(t)| converges to
zero as t — oo. Similarly, L(:c, T, A) also converges to zero as t — 0.

Remember equation 2.24 and the user and link events in algorithms 2.3.1-2.3.2,
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this immediately implies Vi € S, Vj € L

Tim {22(t) — p22(t)} = 0 (2.38)

Jim {0 3 222(0) = TS (s(0) — (1))} = 0 (239

1€S;
From equation 2.38 and the fact that lim; .., 2;(t) = 0, we have lim; ., Z;(¢) = 0
fori € §. When combined with equation 2.39, we obtain lim,_, |;(t)—f;(t)| = 0.

This means

() + 2 5 )

t=oo zi(t)

ﬂgﬂﬂjﬂ (15(8) — s (8)) = 0
JEL;

So as t — oo, rate x(t) comes closer and closer to satisfying the Karush-Kuhn-
Tucker conditions of the original NUM problem. Since gL is a continuous function

of z, we have lim;_o z;(t) = z},Vi € S. This completes the proof. B

2.4 Simulation

This section presents simulation results. We compare the number of message
exchanges of our event-triggered barrier algorithm against the dual decomposi-
tion algorithm and our event-triggered augmented Lagrangian algorithm in [57].
Simulation results show that our event-triggered barrier algorithm reduces the
number of message exchanges by up to two order magnitude when compared to
dual decomposition, and has comparable performance as the algorithm in [57].
Moreover, our algorithm is scale free with respect to network size. The remainder

of this section is organized as follows: Subsection 2.4.1 discusses the simulation
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setup. Subsection 2.4.2 discusses the effect of the desired precision of the solution
on the performance of the algorithm. The effect of different tradeoff parameter
p is discussed in subsection 2.4.3. Simulation results on broadcast periods of our
event-triggered algorithm are shown in subsection 2.4.4. The scalability results
with respect to S and L are presented in subsection 2.4.5 and 2.4.6, respectively.
An example where communication delay is taken into consideration is shown in
subsection 2.4.7. Finally in subsection 2.4.8 we discuss the effect of different bar-

rier parameters on the performance of the algorithm.

2.4.1 Simulation Setup

Denote s € Ula,b] if s is a random variable uniformly distributed on [a, b].
Given M, N, L and S, the network used for simulation is generated in the following
way. We randomly generate a network with M links and N users, where |S;| €
U1,S],j € L, |L;] € U[1,L], i € S. We make sure that at least one link has
S users, and at least one user uses L links. After the network is generated, we
assign utility function U;(z;) = «;logz; for each user i, where a; € U[0.8,1.2].
Link j is assigned capacity ¢; € U[0.8,1.2]. Once the network is generated, all
three algorithms are simulated. The optimal rate z* and its corresponding utility
U* are calculated using a global optimization technique.

Define error as (for both algorithms)

e(k) = |———— (2.40)

where z(k) is the rate at the kth iteration. e(k) is the ‘normalized deviation’ from
the optimal point at the kth iteration. In all algorithms, we count the number of

iterations K for e(k) to decrease to and stay in the neighborhood {e(k)|e(k) < eq}.
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In dual decomposition, message passings from the links to the users occur at
each iteration synchronously. So K is a measure of the total number of message
exchanges. In the event-triggered algorithm, link events and user events occur in
a totally asynchronous way. We add the total number of triggered events and the
number of message passings associated with the barrier parameter updates, and
divide this number by the link number M. This works as an equivalent iteration
number K for our event-triggered algorithm, and is a measure of the total number
of message exchanges. We should point out that since we are comparing a primal
algorithm (our event-triggered algorithm) with a dual algorithm, and they run
at different time-scales, iteration number is then a more appropriate measure of
convergence than time [15] [26].

The default settings for simulation are as follows: For all algorithms, the initial
condition x;(0) = 0.95minjes ¢;/N, Vi € S, which is kept in F°. Choosing the
initial conditions can be done in a distributed way through message passings,
however, we will not discuss this issue here. In dual decomposition, initial price
p; = Ofor j € L, and the step size v is calculated using equation 1.14. In our event-
triggered algorithm, {N[k]}2%,, {&[k]}2,, {7,[k]}22, are chosen as {0.1%}2°
{5x0.1%}22 ), {0.1F}22 ), respectively. Other parameters include p = 0.5, e = 1%,
M =60, N =150, L =8, S = 15.

2.4.2 Effect of desired solution accuracy

This subsection discusses the effect of the desired precision of the solution on
the performance of the algorithm.
Since our event-triggered algorithm is based on the barrier method, it is rea-

sonable to expect that the algorithm will not have good performance if we require
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high precision solution, i.e., e; extremely small. To see the effect of e; on the
algorithm, we vary e; from 0.1% to 10%, while keeping all other parameters un-
changed. The resulting figure 2.2 plots K as a function of e, (in logarithm scale)
for both dual decomposition and our event-triggered algorithm. The dotted line
represents the dual decomposition algorithm, and the circled line corresponds to
our event-triggered algorithm.

As we can see, the event-triggered scheme has a much smaller K than its
competitor when ey > 1%. As ey increases from 1% to 10%, K decreases from 3075
to 351 for the dual decomposition algorithm, while for the event-triggered scheme,
K decreases from 186 to 25. Over this region, the event-triggered algorithm is
about 15 times faster than dual decomposition. However, as expected, when ey is
extremely small, i.e., in this case less than 0.2%, the event-triggered scheme does
not show significant advantage over dual decomposition. When e; < 0.15%, the
dual decomposition works even better than event-triggering. This is a result of

the underlying barrier methods used.

2.4.3 Effect of tradeoff coefficient p

In this subsection we discuss the effect of the tradeoff coefficient p on the
performance of our event-triggered algorithm.

In our event-triggered algorithm, we only require the parameter p to be in the
region (0,1). Recall p is a tradeoff between triggering the user event and link
event. It is then natural to ask what impact p will have on the number of user
events and link events, as well as the total number of triggered events.

To see the effect of different p on the algorithm, we vary p from 0.01 to 0.99,

while keeping all other parameters unchanged. The resulting figure 2.3 plots the
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Figure 2.2. Iteration number K as a function of e, for both algorithms.

triggered events count as a function of p. The dotted line at the bottom represents
the triggered events count for all users, the middle dotted line represents the
triggered events count for all links, while the solid line above corresponds to the
total triggered events count.

There are two things we can see in figure 2.3. First, the user events count
is much less than the link events count over the entire region p € (0,1). This
means in our event-triggered algorithm, the major message exchanges are the
links broadcasting their new feedback signal [i; back to the users. Second, the
user events count shows almost linear increase with respect to p, while the link
events count variation is insensitive to the changes in p. Since the link events count
contributes to the major part in the total events count, we believe our algorithm

is rather insensitive to the choice of p, as shown in the figure.
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Figure 2.3. Triggered events count as a function of p.

2.4.4 Broadcast periods of the event-triggered barrier algorithm

In this subsection we present simulation results on the broadcast periods of
our event-triggered algorithm. The simulation ran for 3.12s. For reference, for the
same network, the average broadcast period for the dual decomposition is 0.0010,
and the average broadcast period for the distributed barrier method without trig-
gering is 0.0017. In our event-triggered algorithm, there are a total of 9273 link
events, and 1916 user events. So the links have an average broadcast period of
0.0202, and the users have an average broadcast period of 0.2443. To see how the
broadcast periods vary for each user or link, we pick a user and two links in the
network, and their broadcast results are shown in the following figures.

Figure 2.4 shows the broadcast periods results of one user. The left plot in
figure 2.4 is the time history of broadcast periods generated by its user event. The
right plot is the histogram of the broadcast periods. The broadcast periods range

between 0.0132 and 0.8900. This user was triggered 16 times, with an average
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broadcast period of 0.1926.

broadcast period history
T T

histogram of broadcast period
Ea— T 8 T T

o
©

broadcast period
° ° ° ° ° °
@ = I > 2 >
: : T T :

o
N
T

°
[
+

o+ T
T

+

"

+

o

Figure 2.4. Broadcast results for one user

We also generate such figures for an inactive link and an active link. Figure 2.5
shows the broadcast periods results of an inactive link, while figure 2.6 corresponds
to an active link.

For the inactive link in figure 2.5, The sampling periods range between 0.0131
and 0.7300. This link was triggered 15 times, with an average broadcast period
of 0.1869.

For the active link in figure 2.6, The sampling periods range between 0.0033

and 0.5500. This link was triggered 239 times, with an average broadcast period
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Figure 2.5. Broadcast results for an inactive link

of 0.0130.

As we can see from the above three figures, for the users and inactive links,
the number of triggered events are relatively small, and they have long average
broadcast periods. For the active links, the number of triggered events are large,
which result in short average broadcast periods. The active links broadcasting
their link feedback signals to their users contribute to the major part of the number
of message exchanges. We can also see that the broadcast periods in figure 2.6
are ‘clustered’. Each ‘cluster’ here usually corresponds to an time interval over
which the barrier parameters do not change for this link or its users. When the
broadcast periods move from one ‘cluster’ to another, it usually corresponds to

some change in the barrier parameters.
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Figure 2.6. Broadcast results for an active link

2.4.5 Scalability with respect to S

In this simulation, we fix M, N, L and vary S from 7 to 26. For each S, all three
algorithms were run 1000 times, and each time a random network which satisfies
the above specification is generated. The mean myg and standard deviation og of
K are computed for each S. m;, works as our criteria for comparing the scalability
of the algorithms.

Figure 2.7 plots the iteration number K (in logarithm scale) as a function of S
for all three algorithms. The asterisks above represent my for dual decomposition,
the circles in the middle correspond to our event-triggered barrier algorithm, while
the diamonds below are m for the event-triggered augmented Lagrangian method
in [57]. The dotted vertical line around each asterisk and circle corresponds to the
interval [mg — ok, my + ok for each different S denoted by the z-axis.

For our event-triggered barrier algorithm, when S increases from 7 to 26,
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Figure 2.7. Iteration number K as a function of S for all algorithms.

similar to the event-triggered augmented Lagrangian algorithm, mg does not show
noticeable increase, and it varies between 90 and 189. The standard deviation ok
varies between 22 and 78. For dual decomposition, my increases from 1.3103 x 103
t0 9.5412 x 103. o at the same time increases from 0.187 x 10% to 1.171 x 10%. Our
event-triggered barrier algorithm is up to two order magnitude faster than the dual
decomposition. We can also see that, unlike the dual decomposition algorithm,
which scales superlinearly with respect to S, our event-triggered algorithm on
the other hand is virtually scale-free. For comparison, in the event-triggered
augmented Lagrangian algorithm, my varies between 35 and 50, and ok at the
same time varies between 6 and 33. This means although the event-triggered
barrier algorithm is significantly faster than dual decomposition, it is slower than

our later algorithm in [57].
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2.4.6 Scalability with respect to L

This simulation is similar to subsection 2.4.5 except that we vary L from 4 to
18 instead of S.

Figure 2.8 plots K (in logarithm scale) as a function of L for all algorithms.
For our event-triggered algorithm, when L increases from 4 to 18, mg does not
show noticeable increase, and it varies between 93 and 228. oy varies between 22
and 86. We notice that, however, our event-triggered algorithm has worse perfor-
mance when L is small. For dual decomposition, my increases from 1.8074 x 103
to 8.6312 x 10%. o at the same time increases from 0.173 x 103 to 1.143 x 103.
Our event-triggered algorithm is up to two order magnitude faster than the dual
decomposition. We can also see that, unlike the dual decomposition algorithm,
which scales superlinearly with respect to L, our event-triggered algorithm on the
other hand is virtually scale-free. For comparison, in the event-triggered aug-
mented Lagrangian algorithm, my varies between 35 and 68, and ok at the same
time varies between 12 and 34. Similar to the previous subsection, although the
event-triggered barrier algorithm is significantly faster than dual decomposition,
it is slower than our later algorithm in [57].

The reason that the event-triggered barrier algorithm has worse performance
at small L is because the parameters we choose work poorly for those cases. The
choice of barrier parameters can sometimes greatly affect the performance of our

algorithm, as we will show in subsection 2.4.8.

2.4.7 An example considering transmission delay

Transmission delays usually exist in networked systems. In our event-triggered

algorithm presented in the previous section, we did not consider transmission
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Figure 2.8. Iteration number K as a function of L for all algorithms.

delays in the network. Due to the complexity of the algorithm, it is difficult to
analyze the effect of delays analytically. However, simulation results show that
the algorithm still converges when the delay is not too big.

In this subsection we consider the scenario when each Z; or fi; packet expe-
riences a random transmission delay ranging from 0.002s to 0.02s. The system
reaches the e; neighborhood in 4.3s. Figure 2.9 has two plots. The dotted plot
above corresponds to the case when transmission delays are taken into consider-
ation, and the solid plot below corresponds to the case when there is no trans-
mission delay. As we see, the algorithm converges in both cases. However, in the
case without delay, there are only 180 iterations, and in the case with delay, there
are 310 iterations. The increase in iteration number is expected with the use of
outdated information. The simulation clearly demonstrated the effectiveness of

our event-triggered algorithm with the presence of transmission delay.
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Figure 2.9. Error e(k) as a function of iteration number k

2.4.8 Effect of barrier parameters

In this subsection we consider the effect of different barrier parameters on
the performance of our event-triggered algorithm. Remember by default, the
sequences {\;[k]}2%, {&[K]}20, {7i[K]}2, are chosen as {0.1%}2 | {5 x 0.1k} |
{0.1%}%2, respectively. Here we consider two different scenarios from the default
setup. In the first scenario, we choose {7;[k]}2, as {a*}22,, where o = 7;[k +
1)/7;[k] varies from 0.02 to 0.5, while keeping all other parameters unchanged.
« measures how fast we lower the barrier level, and let the trajectory of iterates
approach the boundary of the feasible set. The smaller « is, the faster we lower
the barrier level. In the second scenario, we choose {&[k]}52, as {8 x 0.1},
where 3 varies from 0.1 to 30, while keeping all other parameters unchanged. (3
measures how far away we allow the iterates to stay off-course from the primal
central path. The smaller (3 is, the less off-course the iterates are allowed to be.

Figure 2.10 plots K as a function of « in the first scenario. Over the region

[0.05,0.25], K is relatively small, and varies from 186 to 580. On region [0.25, 0.5],
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K increases dramatically, from 440 to 8000 as « increases. On region (0,0.05], K

increases as « decreases.
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Figure 2.10. Iteration number K as a function of oo = 7, [k + 1]/7;[k].

Figure 2.11 plots K as a function of 3 in the second scenario. Over the region
[0.4,6], K is relatively small, and varies from 147 to 470. On region [6,30], K
shows linear increase in the trend. On region [0.1,0.4], K increases dramatically
as [ decreases. When = 0.1, K = 1155.

The phenomenon in both figure 2.10 and 2.11 can be explained by the barrier
method itself. In figure 2.10, when « increases, we are slowing down the speed of
lowering the barrier level, so the algorithm will in general converge slower, which
results in larger K. However, if we choose a too small, then the next desired point

on the central path might be very far away from the current iterate, which results
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in slow convergence as well. This means « can neither be too large nor too small,
which is shown in figure 2.10. In figure 2.11, when [ increases, we are allowing the
iterates to stay further away from the primal central path, which may result in
landing on the boundaries of the feasible set prematurely. In this case, the barrier
methods will then progress very slowly. This also explains why in region [6, 30]
of figure 2.11, we do not have a large K in all cases. Because in some cases, the
iterates may not have premature landing. However, as [ increases, the possibility
of premature landing increases as well. When (3 is chosen too small, the iterates
are then forced to stay very close to the primal central path, which may result in
large number of iterations for each set of barrier parameters. This will slow down

the convergence of the algorithm as well. So just like o, # can not be too large or

too small either.
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2.5 Conclusion

This chapter presents an event-triggered distributed optimization algorithm
based on the barrier methods. We use the NUM problem as an example to il-
lustrate the idea of event-triggering in distributed optimization. The chapter
establishes state-dependent event-triggering thresholds under which the proposed
algorithm converges to the optimal solution of the NUM problem. Simulation
results suggest that the proposed algorithm is scale-free with respect to two mea-
sures of network size, and reduces the number of message exchanges by up to two
orders of magnitude when compared to existing dual decomposition algorithms.

This is our very first approach to solve the distributed optimization problems
using the event-triggered idea, and it shows significantly reduction in the commu-
nication cost of the network. However, as we show in the chapter, the algorithm
suffers from issues like the need for an initial feasible point, and performance sen-
sitive to parameter choices. All these issues limit the usefulness the algorithm.
In our later work (which will be discussed in chapter 3), we propose an event-
triggered algorithm based on the augmented Lagrangian method, which does not

suffer from the issues mentioned above, while exhibiting even better performance.
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CHAPTER 3

Event-triggered distributed optimization using augmented Lagrangian methods

3.1 Introduction

This chapter uses the NUM problem formulation as an example and presents
two distributed algorithms based on the augmented Lagrangian methods that use
event-triggered message passing and proves their convergence. One of the algo-
rithm is a primal algorithm, and the other is a primal-dual algorithm. For the
primal-dual algorithm, we consider scenarios when the network has data dropouts,
and give an upper bound on the largest number of successive data dropouts each
link can have, while ensuring the asymptotic convergence of the algorithm. A
state-dependent lower bound on the broadcast period and an upper bound on
the transmission delay the network can tolerate while ensuring convergence are
also given. Simulation results show that both algorithms have a message passing
complexity that is up to two orders of magnitude lower than dual decomposition
algorithms, and are scale-free with respect to two measures of network size L and
S. The primal algorithm in this chapter is similar to the algorithm in chapter
2. However, in chapter 2, we used the barrier method instead of the augmented
Lagrangian method as the basis for the event-triggered algorithm. In that case,
the resulting algorithm suffers from issues like ill-conditioning , need for an ini-
tial feasible point and sensitive to the choice of parameters. The event-triggered

algorithms presented in this chapter do not have these issues.
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The rest of the chapter is organized as follows. Two event-triggered algorithms,
the primal algorithm, and the primal-dual algorithm, will be presented in section
3.2 and section 3.3, respectively. Simulation results are shown in section 3.4, and

section 3.5 concludes the chapter.

3.2 The Primal algorithm

This section presents the event-triggered distributed primal algorithm. The
algorithm is based on the augmented Lagrangian method for the NUM problem,
which will be first discussed in subsection 3.2.1. Subsection 3.2.2 then presents

the event-triggered distributed primal algorithm, and proves its convergence.

3.2.1 Basic Primal Algorithm

In the augmented Lagrangian method, a constrained problem is converted into
a sequence of unconstrained problems by adding to the cost function a penalty
term that prescribes a high cost to infeasible points.

To apply the augmented Lagrangian method on our NUM problem, we need
to introduce the slack variable s € RM™ and replace the inequalities cj — af:c >0,

Vj € L by
a;px—cjjtsj:O, s; >0, VjeLl (3.1)
The augmented cost is then

1 1
L(z,s; A w) ==Y Ui(z:) + > Ala]z—c;+s;) + 3 > ;(afx —¢j+5))t3.2)

= jeL jer 7

Here a penalty parameter w; is associated with each link constraint, and w =
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[wy, -+ ,wyy] is the vector of penalty parameters. Suppose A} is the Lagrange mul-
tiplier associated with link j’s constraint ¢; — af:c > 0 in the Karush-Kuhn-Tucker
conditions of the NUM problem. J; is an estimate of A7 and A = [Ay, -+, Ay
The vector a] = [Ajy, -, Ajn] is the jth row of the routing matrix A.

L(z,s; A\, w) is a continuous function of = and s for fixed A and w. It is shown

[8] that

xirollg L(z,s; \,w) = I;lzlglrsnzlglL(:E,s;)\,w) = I;lzlgle(l’; A, w)

where we define the augmented Lagrangian function associated with the NUM

problem as

Ly(zs A w) = =Y Uiz + > _ (w3 M, w) (3.3)
€S jeL
Here we have
—Lw:\2, if c¢;—alz—w\; >0
Giladw)y =4 2 LT

Aj(a]z —¢j) + ﬁj(agpx —¢;)?, otherwise

The primal algorithm based on the augmented Lagrangian method solves
the NUM problem by approximately minimizing L,(x; A[k], w[k]) for sequences
of {wlk]}2, and {A[k]}32,. Let 2*[k] denote the approximate minimizer for
L,(x; N[k],w[k]). The method in [8, Chap 4.2] can be used to show that for appro-
priately chosen sequences {w[k]}32, and {A[k]}72,, the sequence of approximate
minimizers {z*[k]}32, converges to the optimal point of the NUM problem. The
choices are as follows. {w;[k]}?2, are sequences of link (j € £) penalty parame-

ters that are monotone decreasing to zero. {\;[k]}72, are sequences of Lagrange
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multiplier estimates, where A;[k + 1] = max{0, \;[k] + ﬁ(a;fpx* (k] —¢;)}.

In our work in [57], we gave a primal algorithm based on the augmented
Lagrangian method for the NUM problem that converges to the exact minimizer
of the NUM problem. However, in many scenarios, it usually suffices to obtain an
approximate minimizer to the problem. So instead of minimizing L, (x; A[k], W[k])
for sequences of {w[k|}2, and {A[k]}2,, we are only considering the problem of
minimizing L,(z; A\, w) for fixed A\ and w in the discussion here. If X\; = 0 and w;
is sufficiently small, the minimizer of L,(x; A, w) will be a good approximation to
the solution of the original NUM problem. We can choose w; to be small enough
such that the approximation lies within the desirable neighborhood of the solution

of NUM.

The basic primal algorithm for the NUM problem is given as follows:

1. Initialization: Select any initial user rate 2° > 0. Set \; = 0 and suffi-

ciently small w; > 0, j € L.

2. Recursive Loop: Minimize L,(x; A\, w)

v = max{0,2° —yV,L,(z"; A\, w)} (3.4)

T = T

The above algorithm converges to an approximate solution of the original NUM
problem. The smaller w is, the more accurate the approximation is. The recursion
shown in step 2 is minimizing L,(z; A, w) using a simple gradient following method.
~ is a sufficiently small step size.

The computations above can be easily distributed among the users and links.

We will see how they are distributed in our event-triggered distributed implemen-
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tation of the algorithm in section 3.2.2.

In dual decomposition and the algorithm shown above, the exchange of infor-
mation between users and links happens each time the gradient following update
is applied. This means that the number of messages passed between users and
links is equal to the number of updates required for the algorithm’s convergence.
That number is determined by the step size. For both algorithms, these step sizes
may be small, so that the number of messages passed will be large.

The following subsection presents an event-triggered distributed implementa-

tion of the basic primal algorithm presented in this subsection.

3.2.2 Event-triggered Distributed Primal Algorithm

Implementing the primal algorithm in section 3.2.1 in a distributed manner
requires communication between users and links. An event-triggered implementa-
tion of the algorithm assumes that the transmission of messages between users and
links is triggered by some local error signal crossing a state-dependent threshold.
The main problem is to determine a threshold condition that results in message
streams ensuring the asymptotic convergence of the algorithm to the NUM prob-
lem’s approximate solution. This subsection determines such an event threshold
condition and gives an event-triggered distributed primal algorithm for solving
problem 1.1.

We can search for the minimizer of the Lagrangian L,(z; A\, w) using a gradient
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following algorithm where

zi(t) = _/0 (Vmin(x(T);A’w»;:(T)dT
B /0 (80*8:;@2 jezﬁ (e ) dr (3.5)

zi(T)

for each user 7 € S and

pi(t) = max < 0,\; + L Z z;(t) — ¢; (3.6)

w .
J 1€S;

Here given a function f : R, — R, its positive projection is defined as

0, if =0 and f(z)<0
(f (@) = (3.7)

f(z), otherwise

The positive projection used in equation 3.5 guarantees the user rate z;(t) is always
nonnegative along the trajectory.

Equation 3.5 is the continuous-time version of the update in equation 3.4. Note
that in equation 3.5, user 7 can compute its rate only based on the information
from itself, and the information of y; from those links that are being used by user
i. We can think of p; as the jth link’s local state. From equation 3.6, link j only
needs to be able to measure the total flow that goes through itself. All of this
information is locally available so the update of the user rate can be done in a
distributed manner.

In the above equation, this link state information is available to the user in a
continuous manner. We now consider an event-triggered version of equation 3.5.

Here we assume that the user accesses a sampled version of the link state. In
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particular, let’s associate a sequence of sampling instants, {TJL [0]}32, with the jth
link. The time T}[(] denotes the instant when the jth link samples its link state
(t; for the fth time and transmits that state to users ¢ € §;. We can see that at
any time ¢t € R, the sampled link state is a piecewise constant function of time in

which

fui(t) = (T [0]) (3.8)

for all ¢ = 0,---,00 and any ¢t € [T}[¢(], T}[( +1]). In this regard, the “event-

triggered” version of equation 3.5 takes the form

5i(t) = /0 (8(]5; NG ) ar (3.9)

Jek zi(r)

for all ¢ and any t € [T}[¢], T}[¢ +1]).

The sequence {T}[{]}32, represents time instants when the link transmits its
“state” to its users. In the event-triggered primal algorithm, it will be conve-
nient to have a similar flow of information from the user to the link. We assume
that link j can directly measure the total flow rate, > ‘; x;(t), in a continuous
manner. The event-triggering scheme proposed below will require that link j have
knowledge of the time derivative of user i’s flow rate. In particular, let z;(¢) denote

the time derivative of this flow rate. z;(¢) therefore satisfies

Zi(t) = i(t) = <VU wi(t) = > it ) (3.10)

Jeki 0

for all i € S. We will refer to z; as the ith user state. We associate a sequence

{T210)}52, to each user i € S. The time T} [(] is the th time when user 7 transmits
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its user state to all links j € £,. We can therefore see that at any time ¢t € R, the

sampled user state is a piecewise constant function of time satisfying

Zi(t) = z(T7[0) (3.11)

forall ¢ = 0,---,00 and any t € [T°[(], T°[¢+1]). In the proposed event-triggering
primal algorithm, links will use the sampled user state, Z;, to help determine when
they should transmit their states back to the user. Here we assume that there is
no transmission delay in each fi;(t) or Z;(t) broadcast.

Next we will state the main theorem of this subsection.

Theorem 3.2.1 Consider the Lagrangian in equation 3.3 where the functions U;
are twice differentiable, strictly increasing, and strictly concave and where the
routing matriz A is of full rank. Assume a fized penalty parameter w > 0 and
vector X > 0. Consider the sequences {T[(]}32, and {T}[(]};2, for each i € S,
and each j € L, respectively. For each i € S, let the user rate, z;(t), satisfy
equation 3.9 with sampled link states given by equation 3.8. For each i € S let the
user state z;(t) satisfy equation 3.10 and assume link j’s measurement of the user
state satisfies equation 3.11.

Let p be a constant such that 0 < p < 1. Assume that for alli € S and all

{=0,---,00, that

(1) — p22(t) = 0 (3.12)

fort € [TP[0), TP[¢ + 1]). Further assume that for all j € £ and all ¢ =0, -+ , 00
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that

pZ =27(t) — LS (15(t) — 15(1)* > 0 (3.13)

1€S;

fort € [T, T}[¢+1]). Then the user rates x(t) asymptotically converge to the

unique minimizer of Ly(z; A, w). B

Proof: For convenience, we do not explicitly include the time dependence of
xi(t), 2;(t), zi(t), Z:i(t), pj(t), f1;(t) in most part of the proof. For all t > 0 we

have

. 0L, dx;
e - _
P(zv )\,'LU) Z axz dt
N
= Zzz VU;(z;) Z,u] jil (3.14)
i=1
N M
1 1
= Z{ﬁ §Z“J i Z“ﬁ jil } (3.15)
i=1 j=1
N M
> Z{3z2—1[2<u»—ﬂ->z4~]2} (3.16)
= 5% T 5 j )51 .
i=1 j=1

The last inequality holds whether the positive projection is active or not for each
user 7. Also remember there are only |£;| nonzero terms in the sum Zj]\il(:uj -

f1;)Aj;, then by using the inequality

2

- [Z(M — 1) Aji

j=1

> —|Li| Z (1 — 1) Azi)? (3.17)

we have

61



—Ly(z; A w) > %Zzzz - %Z {|£i| Z[(Mj - ﬂj)Ajz']2}

AV
N | —
WE
sNN
[\3:}—‘
2
=

|

;(;>
e

Consider the term 3p STV 22, we have

1 - 1 o1, 1 sl 1
3P Z =5p2 L=i =502 3 FA A+ 50 (L ‘5%
i=1 i=1 j=1 i=1 i=1
The last equality holds since
N 1 N oMo M 1
OIISUEEID SHPEE TP o) SEEFH
i=1 i=1 j=1 7j=1 i=1

—Ly(z; \,w)
1Y - 1 & 1 Y
> oY A gpd Egpd E 5> LS - )’
i=1 i=1 i=1 j=1
1 1 & 1
2 52[22_p2]+§z piég_LS(ﬂj :&J)2
i=1 j=1 i€S;

(3.18)

(3.19)

(3.20)

(3.21)

(3.22)

(3.23)

which immediately suggests that if the sequences of sampling instants {7°[¢]}22,

and {T/[(]}32, satisfy the inequalities in equation 3.12 and 3.13 for all £ =

0,1,2,...,00, and any ¢ € S, j € L, then Lp(x; A, w) < 0 is guaranteed for all

t.

By using the properties of U;(z;) and v;(z; A\, w), it is easy to show that for
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any fixed A and w, L,(z; A\, w) is strictly convex in x. It thus has a unique min-
imizer. Suppose x*(\, w) is this minimizer, and the corresponding Lagrangian is
L,(z*; A\, w). Define V(x) = L,(x; A\, w) — L,(x*; \,w). It is trivial to see V' (x) is
a Lyapunov function for the system. Moreover, V (z) = 0 means L,(z; A\, w) = 0.

The only scenario this can happen is
Zi = 22 = 0, Vi € S, Hi = ,&ja \V/] eL (324)

which corresponds to x*(\, w). As a result, the equilibrium z*(\, w) is asymptot-
ically stable. Proof complete. B

Theorem 3.2.1 provides the basis for constructing an event-triggered message-
passing protocol. This theorem essentially asserts that we need to select the
transmit times {7;°[¢]} and {T[¢]} so that the inequalities in equations 3.12 and
3.13 always hold. One obvious way to do this is to use the violation of these
inequalities to trigger the sampling and transmission of link/user states across
the network. At time ¢ = T°[/], the inequality in equation 3.12 is automatically
satisfied. After this sampling instant, z;(¢) continues to change until the inequality
is violated. We let that time instant be T)°[¢ + 1] and transmit the sampled user
state to the links j € £;. Similarly, link j compares the square of the error between
the last transmitted link state ji; and the current link state p;. At the sampling
time T"[/], this difference is zero and the inequality is trivially satisfied. After
that time, j;(¢) continues to change or the link may receive an updated user state
Z; that may result in the violation of the inequality. We let that time be the next
sampling instant, TjL [0 4+ 1] and then transmit the sampled link state [i; to the
users i € S;.

In theorem 3.2.1, p models the tradeoff between triggering the user events and

63



triggering the link events. When p is large, we would expect more user events
and less link events. On the contrary, when p is small, we would expect more link
events and less user events.

The threshold conditions shown in equations 3.12-3.13 provide the basis for an
event-triggered implementation of the basic primal algorithm presented earlier in
subsection 3.2.1. Next we will present such an event-triggered distributed primal
algorithm.

Future discussion needs an additional notation. For a function f(¢) defined on
t € [0,T), denote fH(T") as the limit of f(¢) when ¢ approaches T from the left
hand side.

Each user 7 € § executes the following algorithm. The main assumption here

is that user ¢ is continuously transmitting data at rate x;(¢) at time ¢.

Algorithm 3.2.1 User i’s Update Algorithm
1. Parameter Initialization: Set the initial user rate 9 > 0. Let T = 0.

2. State Initialization: Upon receiving link state p;(T) from j € L;, set

fj = pi(T'). Initialize user state to

4(T) = (vo;-(x?) -3 m) (3.25)

T ay(m)

set Z; = z;(T) and transmit z;(T') to all links in j € L;.
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3. Update User Rate: Integrate the user rate equation

() = / wi(F)dr (3.26)

%(t) = <VUi($i(t>)_Zﬂj> (3.27)
JELi (1)
z(T) = a2 (3.28)

where t € [T,T%) and T is the time instant when one of the following

conditions is true

(a) If 22(t) — pz? < 0 then broadcast 2 (TT) to all links j € L;, and set

(b) Or if user i receives a new link state uj(T*) from link j € L;, set

by = 1 (1),
4. Increment Time: Set T =T%, 20 = 2] (T") and go to step 3.

A similar algorithm is executed by all links j € £. The main assumption here

is that link j can continuously monitor the link state y;(t) at any time ¢ € R.
Algorithm 3.2.2 Link j’s Update Algorithm

1. Parameter Initialization: Set T'= 0, w; > 0.

2. State Initialization Measure the local link state

1i(T) = max O,wij sz(T) — ¢ (3.29)

1€S;

Transmit j1;(T) to all users i € S; and set fi; = p;(T). Upon receiving user

state z;(T) from i € S;, and set 2; = z(T).
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3. Link Update: Continuously monitor the link state j1;(t) for allt € [T,T7)

where T is the time instant when one of the following events occur

(a) If

then set fi; = pu; (T) and broadcast the updated link state p (TF) to

all users i € S;.

(b) Or if link j receives a new user state z; (T") for any i € S;, then set

éi = Zi+ (T+)
4. Increment Time: Set T =T7 and go to step 3.

By theorem 3.2.1, the data rates z(t) generated by algorithms 3.2.1-3.2.2 con-
verge asymptotically to the unique minimizer of L,(x; A, w), which is an approxi-
mate solution to the NUM problem.

In our work in [57], we gave an event-triggered distributed primal algorithm
that converges to the exact minimizer of the NUM problem. To be specific, we
included a distributed update strategy for the penalty parameters w. So as w
goes to zero, the sequence of approximate minimizers asymptotically approach
the solution of the NUM problem. However, in this chapter, we only consider

fixed penalty scenarios.

3.3 The Primal-dual algorithm

In the algorithm in chapter 2 and the primal algorithm in section 3.2.2, there
is an event associated with each user and link. The interactions between the user

events and link events complicate the event-triggered algorithm significantly, and
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make the analysis of the algorithm very difficult. This section presents a different
event-triggered algorithm, namely, the primal-dual algorithm. In the primal-dual
algorithm, there are only link events. The algorithm has comparable performance
as the primal algorithm, but the simplicity in the event structure enables us to
obtain some additional analytical results. Moreover, the primal-dual algorithm in
this section is much easier to implement.

The event-triggered distributed primal-dual algorithm is based on the basic
primal-dual algorithm for the NUM problem, which will be first discussed in
subsection 3.3.1. Subsection 3.3.2 then presents the event-triggered distributed
primal-dual algorithm, and proves its convergence. Subsection 3.3.3 considers
scenarios when the network has data dropouts, and gives an upper bound on the
largest number of successive data dropouts each link can have, while ensuring
the asymptotic convergence of the event-triggered algorithm in subsection 3.3.2.
Subsection 3.3.4 analyzes the broadcast period of the event-triggered primal-dual
algorithm, and lower bounds it as a function of the local link state in the network.
Finally subsection 3.3.5 studies the effect of transmission delay on the algorithm,
and gives an upper bound on the maximum tolerable delay while ensuring the

convergence of the event-triggered algorithm.

3.3.1 Basic Primal-dual Algorithm

The event-triggered distributed primal-dual algorithm in this section is also
based on the augmented Lagrangian method for the NUM problem. However, it
uses the augmented Lagrangian method in a slightly different way than in section

3.2.
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Recall that the augmented cost for the NUM problem in equation 3.2 is

Lz, s;\,w) = — Z Ui(z;) + Z Az —¢j + ;) + % Z %(ajrx —¢; + 5;(3.30)
i€S jeL jec Y

In the primal algorithm in section 3.2, we eliminate the dual variable s, and
rewrite the augmented cost in equation 3.2 as equation 3.3, which is only a function
of the primal variable x for fixed A and w. That approach gives us the resulting
basic primal algorithm in section 3.2. In this section, we are adopting a slightly
different approach. To be specific, we deal with the augmented cost in equation
3.30 directly. L(x,s; A\, w) is a function of both the primal variable x and dual
variable s. We deal with them simultaneously and similarly obtain a basic primal-
dual algorithm.

The basic primal-dual algorithm is given as follows:

0

1. Initialization: Select any initial data rate x” > 0, initial dual variable

s% > 0. Set \; = 0 and sufficiently small w; > 0, j € L.

2. Recursive Loop: Minimize L(zx,s;\, w)

T = max {0, 20 — YV, L(2%, 5%\, w)} (3.31)
s = max{0,s" —V,L(z",s"; A\, w)} (3.32)
(2%°) = (a,5)

Again the computations above in equations 3.31-3.32 can be easily distributed
among the users and links. We will see how they are distributed in our event-

triggered distributed implementation of the algorithm next.
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3.3.2  Event-triggered Distributed Primal-dual Algorithm

This subsection presents an event-triggered distributed implementation of the
basic primal-dual algorithm in subsection 3.3.1. The idea is similar to subsec-
tion 3.2.2, where we apply event-triggering to an underlying gradient following
algorithm.

For each link 5 € £, we have

s;(t) = — /0 (vst(x(T),S(T);A,w))jmdT

= [ e (3.33)

where

1;(t) = X\ + wi > wi(t) — ¢+ s4(t) (3.34)
7 \ies;

Unlike in the primal algorithm in subsection 3.2.2, here link j € L is associated
with a dynamical system which is characterized by equations 3.33-3.34. This first-
order dynamical system takes the total flow rate that goes through link j as the
input, and outputs p;. To make our notations consistent, we still call y1; as the
Jth link’s local state, which serves as the feedback signal to the users in 7 € S;.

Similar to subsection 3.2.2, we associate a sequence of sampling instants,
{T}[0]}32, with the jth link. The time T}[(] denotes the instant when the jth
link samples its link state ;; in equation 3.34 for the /th time and transmits that

state to users ¢ € S;. At any time ¢ € R, the sampled link state satisfies

fi(t) = (T [0) (3.35)
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for all £ =0,---, 00 and any t € [T[{], T [¢ + 1]).

For each user i € S we have

) = [ (W—Zm&)) ir (3.36)

zi(T)

for all ¢ and any ¢ € [T[¢], T} [(+1]). Here we assume that there is no transmission
delay in each fi;(t) broadcast.

Similar to the primal algorithm, the user rate update and the link state com-
putation above can again be done in a distributed manner.

In the primal-dual algorithm in this section, links do not need knowledge of
the time derivative of users’ flow rate, and only link events are needed in the

algorithm. Next we will state the main theorem of this subsection.

Theorem 3.3.1 Consider the Lagrangian in equation 3.30 where the functions
U; are twice differentiable, strictly increasing, and strictly concave and where the
routing matriz A is of full rank. Assume a fized penalty parameter w > 0 and
vector X > 0. For each link j € L, consider the sequence {TF[(]};2, and its
dynamics satisfy equations 3.33-3.34. For each useri € S, let the user rate, x;(t),
satisfy equation 3.36 with sampled link states defined in equation 3.35.

For all j € L, let p; be a constant such that 0 < p; < 1. Assume that for all
jeL,and all{=0,--- 00 that

i [0 = ST ) — (o) > 0 (3.37)

fort € [T}[0), T} +1]). Then the user rates x(t) asymptotically converge to the

unique minimizer of L(x,s; A\, w). B
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Proof: Define z;(t) in the same way as in equation 3.10, where /i,(¢) is given

in equation 3.35. For all ¢ > 0 we have

—L(:c S; A, w)

B oL dx; oL ds]
B _Zaxl dt Zﬁsj dt

[V (AV2
[N M
M —
2 | =

| s
Fﬁ‘i ?,Ri
2
<.

! RS
K
+ )
M= <
T IMs
RS —

= %éz? + 2(1 — pj) [(_“1)5]2
+i {pj [(—Mj);:r L5 (n, ﬂ’)z}

(3.38)

(3.39)

The above inequalities are easy to check using the proof of theorem 3.2.1 and the

definition of positive projection in equation 3.7. This immediately suggests us that

if the sequences of sampling instants {TJL [0]}32,, satisfy the inequality in equation

3.37forall ¢ =0,1,2,...,00, and j € £, then L(x, s; \, w) < 0 is guaranteed for all

t. Using a similar argument as the proof of theorem 3.2.1, we immediately know

that z(t) and s(t) asymptotically converge to the unique minimizer of L(z, s; A\, w).

The threshold condition in equation 3.37 provides the basis for an event-

triggered distributed implementation of the basic primal-dual algorithm presented

earlier in subsection 3.3.1.

Remember that in the primal algorithm in section 3.2, p is a constant for the
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entire network that tradeoffs between triggering the user events and triggering
the link events. Here in theorem 3.3.1, we have a similar parameter p;. p; can
be different for each link 7 € £. One may wonder why we do not simply choose
p; = 1 in equation 3.37. For stability consideration in theorem 3.3.1, it is correct
that we can simply choose p; = 1. However, as we will see in the next subsection,
choosing a smaller p; makes the network more robust to data dropouts. For this
reason, we keep it as a parameter here.

We should point out that, in equation 3.37, if the positive projection stays
active, in other words, s;(¢) = 0 and p;(t) > 0 for t over some time interval,
then the link dynamical system in equations 3.33-3.34 reduces to a memoryless
function. In those situations, if we still use the inequality in equation 3.37 to
trigger the link event, it would require that ji;(t) = p;(¢) over the interval. This is
highly undesirable since it requires link j to sample and transmit its state infinitely
fast. Fortunately, this turns out to be not a serious problem here since we are
more interested in how fast the primal-dual algorithm enters some neighborhood
of the optimal point. This neighborhood can be chosen large enough so that the
positive projections will not become active before entering the neighborhood. In
all our simulations, this neighborhood is chosen to be within 3% relative error
(refer to equation 3.77) around the optimal point, which is rather small. The
positive projections are not active before entering this 3% neighborhood in all
of our simulations. If we insist on obtaining a more accurate solution, what we
can do is, once the projection stays active, then we no longer use the primal-dual
algorithm. Instead, we switch to the primal algorithm 3.2.1-3.2.2 in subsection
3.2.2. This will enable us to get a more accurate solution.

In the remaining part of the chapter, we will assume that the positive projec-
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tion in equation 3.37 cannot be active unless at the minimizer of L(x, s; A, w). In
general this assumption is only true with certain choice of penalty coefficient w;
for each link 5. However, it is reasonable if we are only interested in converging
to some neighborhood of the optimal point, because our analysis only focuses on
the behavior of the system before entering this neighborhood. This assumption
enables us to present and analyze the primal-dual algorithm in a much clearer
way.

In the following work, we will find it convenient to use a slightly more conser-

vative event than equation 3.37.

Corollary 3.3.2 Consider the Lagrangian in equation 3.30 where the functions
U; are twice differentiable, strictly increasing, and strictly concave and where the
routing matriz A is of full rank. Assume a fized penalty parameter w > 0 and
vector X > 0. For each link j € L, consider the sequence {T}[(]};2, and its
dynamics satisfy equations 3.33-3.34. For each useri € S, let the user rate, x;(t),
satisfy equation 3.36 with sampled link states defined in equation 3.35.

For all j € L, let p; be a constant such that 0 < p; < 1. Assume that for all

jeL,and all 0 =0,--- 00 that

|3 () = 15 (8)] < 6512 (1)] (3.40)

fort € [TF[0), TV +1]), where 6; is defined by

V7,

VS + v,

Then the user rates x(t) asymptotically converge to the unique minimizer of L(x, s; A\, w).

§; = (3.41)
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Proof: By the definition of J; in equation 3.41, equation 3.40 is equivalent to

V5 EBl0) — o)l + Va3 ls(e) — s(0)] < /a3l (1) (3.42)

Therefore, we have

\/ %L—SWJ(t) — ()| < /il ()] — /pilps () — (0] < /psls (0]

for all t € [T}[0), T}[¢+1]), j € L and £ = 0,--- ,00. Since we assume that the
positive projection in equation 3.37 cannot be active unless at the minimizer of
L(z, s; A\, w), all assumptions of theorem 3.3.1 are satisfied. We can thus conclude
that z(t) asymptotically converge to the unique minimizer of L(z, s; A, w). B

The inequalities in equations 3.37 or 3.40 can both be used as the basis for the
event-triggered algorithm. Equation 3.40 is a slightly more conservative condition,
and we will use it in our event-triggered distributed primal-dual algorithm
in the following.

Each user ¢ € § executes the following algorithm.

Algorithm 3.3.1 User ¢’s Update Algorithm

1. Parameter Initialization: Set the initial user rate 9 > 0. Let T = 0.

2. State Initialization: Upon receiving link state p;(T) from j € L;, set
frj = p;(T).

3. Update User Rate: Integrate the user rate equation

2,(t) = / <VUZ-(:CZ-(T))—Z/§L]-) dr

’ i€t/ ayr)
(T) = Y

7
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where t € [T,T%) and T is the time instant when the following condition

18 true

(a) if user i receives a new link state p (T) from link j € L;, set ji; =

i (TF).

4. Increment Time: Set T =T%, 20 = 2] (TT) and go to step 3.

A similar algorithm is executed by all links j € £. The main assumption here

is that link j can continuously monitor the link state j;(t) at any time t € R.

Algorithm 3.3.2 Link j’s Update Algorithm

1. Parameter Initialization: Set T =0, w; > 0, 0 < p; < 1, initial s? >0,

and 6; is defined by
v

0j= —F—— (3.43)
\/ 5 LS + \/ﬁj
2. State Initialization Measure the local link state
1
wi(T) = — > wi(T) —cj+ s (3.44)
J iESj

Transmit j1;(T) to all users i € S; and set fi; = p;(T).

3. Link Update: Integrate the equation

50 = [ s dr (3.45)

pit) = — [ D_wi(t) — ¢ +55(t) (3.46)

s;(T) = s (3.47)
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where t € [T,T%) and T is the time instant when the following condition

18 true

(a) If |p(t) — fi;(t)| > 0;]f1;(t)|, then set ji; = p (T*) and broadcast the

updated link state i (T*) to all users i € S;.

4. Increment Time: Set T =T% and go to step 3.

By corollary 3.3.2, the data rates x(t) generated by algorithms 3.3.1-3.3.2
converge asymptotically to the unique minimizer of L(z, s; A\, w), which is an ap-
proximate solution to the NUM problem.

Similar to the primal algorithm 3.2.1-3.2.2, our primal-dual algorithm is also
fully distributed. Moreover, there are only link events in the algorithm, which
eliminates the need for user event transmissions. This results in a much simpler

event-triggered algorithm.

3.3.3 Event-triggering with data dropouts

The discussion in the previous subsection did not consider data dropouts. To
be specific, whenever the new sampled link state ji;(¢) is obtained by link j, it is
transmitted to the users ¢ € §; successfully. This, however, does not necessarily
happen in large scale networks. In this subsection, we take data dropouts into
consideration, and gives an upper bound on the largest number of successive data
dropouts each link can have, while ensuring the asymptotic convergence of the
event-triggered algorithm in subsection 3.3.2. Using our result, each link can
identify this upper bound for its subsystem in a decentralized way. We assume
that data dropouts only happen when the sampled states /i;(t) are transmitted

across the network.
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First, let us see what happens when there are data dropouts in the network.
Suppose link j detects a local event and obtains a new sampled state ji;. Link
J will then transmit the new fi; to users ¢ € §;. If the transmission fails, then
users ¢ € §; will not receive the new sampled link state. However, link j thinks
the new state has been successfully transmitted, so in equation 3.40, fi;(t) has
been updated to the new fi;. This means users and links have different copies of
the latest sampled link state, which may destabilize the system. Our main idea is
that the event in equation 3.40 is a relatively conservative event if p; is small, so
even if some data dropouts happen, the system may still be stable.

Further discussion needs some additional notations. We use r;[k] to denote
the time instant when link j samples its link state p; for the kth time (but not
necessarily successfully transmitted), and use T[¢] to denote the time instant
when the sampled state of link 7 has been successfully transmitted for the fth
time. It is obvious that {T7}[(]}32, is a subsequence of {r;[k]}z2,. Using these
notations, the user dynamics in equation 3.36 and user’s knowledge of the sampled
link state in equation 3.35 still apply. Define error as e;(t) = p;(t) — fi;(T}[(]) on
te [TjL[ﬁ],TjL[ﬁ + 1]).

Theorem 3.3.3 Consider the Lagrangian in equation 3.30 where the functions
U; are twice differentiable, strictly increasing, and strictly concave and where the
routing matriz A is of full rank. Assume a fized penalty parameter w > 0 and
vector X > 0. For each link j € L, consider the sequences {T}[(]};2, {r;[k]}ro,
and its dynamics satisfy equations 3.33-3.34. For each user i € S, let the user
rate, x;(t), satisfy equation 3.36 with sampled link states defined in equation 3.35.

For all j € L, let p; be a constant such that 0 < p; < 1. Assume that for all
jeL,and allk=0,--- 00 that
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115 (#) — i (ry[kD| < 6515 (ry[K])]| (3.48)

fort € [rjlk], [k + 1]), where 0; is defined by

V7,

VS + 17,

Further assume that link j’s largest number of successive data dropouts, d; € Z,

d; < D;(p;) = log_ ])(1+\/LZS)—1 (3.50)

then the user rates x(t) asymptotically converge to the unique minimizer of L(x, s; A\, w).

satisfies

Proof: Consider link j over the time interval [T*[¢], T} [¢+1]). For notational
convenience, we assume T [(] = r;[0] < 7;[1] < --- < r;[d;] < ry[d;+1] = TF[(+1].
Consider e;(t) for any t € [r;[k], 7;[k + 1]), we have

le; ()] = |pi(t) — i(rilp +1]) — i (rylpD] =+ [ () — 45 (ry[K])]

|Mw

Applying equation 3.48 on the previous equation yields

le; (D] < 65> | (rs[p)] (3.51)

for all t € [r;[k], r;[k + 1]).
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From equation 3.48, we can easily obtain

s kD] < 5 o) (35)

for all t € [r[k],r;[k +1]). Applying equation 3.48 repeatedly on [r;[k — 1], r;[k]),

[rilk = 2],k —=1]), ---, [r;[p], 7j[p + 1]), we know

bl < (125 ) ) (353)

for all t € [r;[k], r;[k + 1]).

Applying equation 3.53 on equation 3.51 yields

0] < @»Zi; (i25) " - [(1_1 o) 1] 1) (350

for all ¢ € [r;[k],r;[k + 1]). This means for all ¢ € [T[(], T[¢ + 1]), we have

0l < [(1_1@.)%—1

Since the above inequality holds for all £ = 0,1, - - - , 0o, we know that for all t > 0

|14 (1)] (3.55)

we have

|1 (1) = (@) < [(1 _15) - 1] | ()] < \/%Iuj(t)l (3.56)

The last inequality holds by applying equation 3.50.
Remember that we assumed the positive projection on y;(t) is not active unless

at the equilibrium, then from the proof of theorem 3.3.1 and apply equation 3.56,
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we know that for all ¢ > 0 we have

—L(z,s;\ w) >

l\DlH

N
> a
i=1

l\DI»—t

Z LS(u; — 1) + Z % Z (3.57)

The convergence then follows easily. Bl

d; is link j’s largest number of successive data dropouts, and D;(p;) represents
the maximum allowable number of successive data dropouts for link j. This
theorem guarantees that algorithm 3.3.1-3.3.2 still converges if each link j’s largest
number of successive data dropouts d; does not exceed D;(p;). However, it says
nothing if this condition is not satisfied. We can easily see that D;(p;) is a
monotone decreasing function in p;, and can be determined by link j itself locally.
However, there is a tradeoff between D,(p;) and the broadcast periods. In general,
small p; results in short broadcast periods and large D,(p;), while large p; results
in long broadcast periods but small D;(p;). Two extreme cases are, as p; — 0,

Dj(p;) — +o00, as p; — 1, D;j(p;) — 0.

3.3.4 Broadcast period analysis for the primal-dual algorithm

This subsection presents results on the link broadcast period of the event-
triggered primal-dual algorithm. We lower bound it as a function of the local link
state in the network.

Since in corollary 3.3.2 the algorithm asymptotically converges to the equilib-
rium, we can thus conclude that the state trajectory of the system always lies

within some compact set. Therefore, there always exists a constant p; > 0 such
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that
1) = (M -y m@)) <n (3.58)

forany t >0 and i € S.
We can then derive a lower bound on the broadcast period of each link. Note

that we assume there is no data dropouts in the following discussion.

Corollary 3.3.4 Suppose all the assumptions in corollary 3.3.2 hold, and there
is no data dropouts in the system. Also ¥Vt > 0,Vi € S, assume that there exists a
positive constant p; > 0, such that z;(t) < p;, then the (th broadcast period of link
j, Bill] = T}[€+1] = T}[0], is lower bounded by

il (TH10))]
B;[{] > w;1In <1 + mj(TjL[ﬁ])‘ + ZieSj pi)

Proof: Since all the assumptions in corollary 3.3.2 hold, this means link j will
obtain a new sample of y;(t) when the inequality in equation 3.40 is about to be
violated.

Define error as e;(t) = p;(t) — j;(TF[]) on t € [TF[(], TF[¢ 4 1]). We can

then study the behavior of error e;(¢) over the time interval. Define Q = {t €
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(THE. THE+ 1) les (5] = 0} On t € [TF{6) THE + 1]) — . we have

des] _ |des(t)
dt - dt
| dp(t)
dt
]_ .
_ ds;(t) 1 _
w; dt i s,
1 1
N R g
J wj iESj
< Loy + Sl TH) + — 3 (3.50)
N Ay - bi .
wj ’ wj ’ ’ wj iESj

where we use the right-hand sided derivative when ¢ = T}[¢ 4 1]. We can then

solve the differential inequality in equation 3.59, which gives us

(=T (0) 7 =T 1)
le;(t)] < e le; (T [4])] + <|ug (THDI+ > pi [6 — 1| (3.60)

i€S;

for all ¢ € [TF[{], T}[¢ + 1]) since |e;(t)] = 0 for all t € Q.
Since link j’s next broadcast will be triggered when the inequality in equation

3.40 is about to be violated. This will happen at time T}/ [¢ + 1] when
le; (T3 (€ + 1| = 6515 (T [4))] (3.61)

We can use the bound on |e;(t)| in equation 3.60 to solve for T[¢+ 1] in equation
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3.61. This gives us a lower bound of the broadcast period of link j

Bl = THE+1 - THY

(6 + DIA(TH)| + Cies, pi
= o \q(TfM)\+mj<Tfm>\+ziesjpi> (3:62)
ot 1 ST~ e (THA)
: e T+ s (T + Sies, 2
~ wln 01 (T} [4])]
— wyl 1+ |/:Lj(TjL[€])‘_|_Ziesjpi> (3.63>

This completes the proof. Il

The above corollary provides a state-dependent lower bound for link j’s broad-
cast period, B;[¢]. Since p; is a known constant, then B;[{] is only a function of
link j’s local state, which means link j could predict when the next broadcast will

happen. However, this bound seems to be rather conservative.

3.3.5 Event-triggering with transmission delays

The data dropout analysis in subsection 3.3.3 guarantees the convergence of the
algorithm when the feedback information is not ‘too out of date’. In this subsection
we study the effect of transmission delay on the stability of the algorithm. In
particular, we gives an upper bound on the maximum tolerable delay while ensuing
the convergence of the event-triggered algorithm.

To study the effect of transmission delay on the stability of the algorithm,
let us first see what happens when there are transmission delays in the network.
Suppose link j detects a local event and obtains a new sampled state fi;(t) at time
t. Link j then transmits the new f[i;(¢) to users i € S;, where user 7 receives the

new state after some time 7;(¢) > 0. Here 7;(¢) denotes the transmission delay
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from link j € £ to user ¢ € §; when the broadcasted link state is sampled at time
t. It is obvious to see that 7;;(tf) may be different for each user i. We define a
maximum delay

7;(t) = Ilré%i( 7;i(t) (3.64)
In the following analysis, we assume that 7;;(t) = 7;(¢), Vt > 0, Vj € L, Vi €
S;. So our analysis focuses on the worst-case scenario, where each link-user pair
experiences the maximum possible transmission delay. It is not difficult to see
that, when not all link-user pairs experience the maximum transmission delay,
the result of our analysis will apply as well. What’s left to determine is the
maximum possible 7;(¢) at time ¢ for link j.

The following theorem gives an upper bound on the maximum allowable delay

as a function of the local link state assuming there is no data dropouts.

Theorem 3.3.5 Suppose all the assumptions in corollary 3.53.2 hold except that
link j’s (th sampled link state fi;(T}[(]) is broadcasted to the users i € S; with
a nonzero transmission delay 7;(T}[(]). Assume that there is no data dropouts
in the system. Also ¥Vt > 0,Vi € S, assume that there exists a positive constant

pi > 0, such that z;(t) < p;. Assume the transmission delay satisfies

(11— 60 (110

Tj(TjL[ﬁ]) <w;jln |1+ ﬂj(TL[£]>‘ S o
7 1ES; ?

where kj = 0,1,2,--- is the number of link j’s broadcast between the broadcast
and successful receipt of the (th sampled state [i;(T}[(]), then the user rates x(t)

asymptotically converge to the unique minimizer of L(x,s; A\, w).
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Proof: Consider link 57 € L, it samples its state for the /th time at time TjL 1],
and then broadcasts the sampled state fi;(T}[(]) to users i € S;. The packet will
experience a delay of 7; (T]L [(]). For notation convenience, we simply use 7; in the
proof here. Consider the time interval t € [T}[(], T}[(] + 7;), it is possible that
link j will have additional broadcasts besides the broadcast at time ¢ = T}[(].
Suppose the number of additional broadcast is k;, where k; =0,1,2,---.

Define error as e;(t) = p;(t) — f;(TF[C]) on t € [TF[0), T} ] + 7;). We can
study the behavior of the error e;(¢) over the time interval. Similar to the proof

of corollary 3.3.4, we can show that

A (4L 1oy
|€j(t)| S 6wj(t Tg [Z])| ( [ ])| —|— < | + sz |:€ J(t Z]) _ 1 (365)

i€S;

for all t € [TF[], TF[(] + 7).

From equation 3.40, we know
()] > (1= 0) i1 (T [€ + k)| (3.66)

for all t € [T}[¢+ k], TF[¢] +7;). Apply the above equation repeatedly on [T}[¢+
k—1], T+ E]),-- - [T][0), T/ + 1)), we know

1 (8)] > (1= 6;)"* |y (T [4))) (3.67)

for all t € [TF[0 + k], T} [(] + ;).

If we can ensure

(3.68)



ont € [TF[(+E], T}[(]+7;), and since we have assumed that the positive projection
on ji; is not active, then from theorem 3.3.1, we know that the system will be

asymptotic stable. This can be achieved by ensuring

o (=T 1e) =Tr1)
" |ej<wa1>\+<|u]TL N+ Yop | [ 1]

1€S;

—_

<

(1= 6) iy (TFID] (3.69)

L

)

N[

Remember e;(T}[(]) = 0 and solve the above inequality, we get

(1 — 0;) 4y (T 1))

/l
t—=TF < wjln 1+ ZLS
}_'_ZZES Di

This means if

(1 —0;) 4|y (T 1))
(TH) < wiln |14 Y22
’ TL }_I_ZZES Di

then asymptotic stability of the system is guaranteed. W

The above theorem gives a state-dependent upper bound for the maximum
allowable delay of the broadcasted state. However, the upper bound is also a
function of an unknown variable k;, which is somewhat undesirable. An upper
bound or exact form of k; turns out to be difficult to obtain. However, we can

show that under certain conditions, we can have an estimate of k;’s upper bound.

Corollary 3.3.6 In theorem 3.3.5, if

i (TH)| < Y pi and LI > 2p; (3.70)
’iESj
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forallj €S and all ¢ =0,1,---, then an upper bound of k; can be approximated
1

by N
Proof: Recall that if x < 1, the Taylor series of In(1 + x) can be written as

[e.e]

In(1+2) = Z(—m“‘”—: (3.71)

This means if * < 1, we have In(1 + z) ~ x.
If we combine the result in theorem 3.3.5 on transmission delay 7;(7"[(]) and
the result in corollary 3.3.4 on broadcast period Bj;[¢], we know that an upper

bound of £; is approximately given by

T (TEe
b % (3.72)
15 (=05 THDIN 71, (THO) + T,
215 Hs\ L i€S; Di
< ,&j(TJLM)} + Ziesj D ( 5j|ﬂj(TJL[£])‘ ) (3.73)
- gl .
1LS i
— kj
iLS 1
- (3.75)
s vm) VP
~ (3.76)

VPi

Here the first approximation follows easily. The first inequality follows by using
the first assumption in equation 3.70 and the fact that In(1 4+ z) ~ x. The two
equalities follow by using applying the definition of ¢;. The last approximation
follows by using the LS > 2p; assumption. B

The corollary basically says that if p; is small, then we should expect a large

k;, and vice versa. This certainly makes sense since when p; is small, the link
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broadcasts more often, and as a result we would expect a larger k;. The two
assumptions in equation 3.70 are reasonable. The first assumption holds since
our estimate of p; is usually rather conservative, and the second assumption holds

since p; < 1, and LS > 1 holds for most real-life networks.

3.4 Simulation

This section presents simulation results. We compare the number of message
exchanges of our two event-triggered algorithms against the dual decomposition al-
gorithm. Simulation results show that both event-triggered algorithms reduce the
number of message exchanges by up to two orders of magnitude when compared
to dual decomposition. Moreover, our event-triggered algorithms are scale free
with respect to network size. The robustness to data dropouts and transmission
delays of the event-triggered primal-dual algorithm are also demonstrated.

The remainder of this section is organized as follows: Subsection 3.4.1 discusses
the simulation setup. Simulation results on broadcast periods of both event-
triggered algorithms are shown in subsection 3.4.2. Subsection 3.4.3 and 3.4.4
present simulation results of the event-triggered primal-dual algorithm when data
dropouts and transmission delays are taken into considerations respectively. The
scalability results with respect to S and L are presented in subsection 3.4.5 and

3.4.6, respectively.

3.4.1 Simulation Setup

Denote s € Ula,b] if s is a random variable uniformly distributed on [a, b].
Given M, N, L and S, the network used for simulation is generated in the following

way. We randomly generate a network with M links and N users, where |S;| €
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U[L,S], 5 € L, |L;] € U1, L], i € S. We make sure that at least one link has
S users, and at least one user uses L links. After the network is generated, we
assign a utility function U;(z;) = o, logx; to each user i, where «; € U[0.8,1.2].
Link j is assigned capacity ¢; € U[0.8,1.2]. Once the network is generated, all
three algorithms are simulated. The optimal rate x* and its corresponding utility
U* are calculated using a global optimization technique.

Define error as (for all algorithms)

e(k) = | == (3.77)

where z(k) is the rate at the kth iteration. e(k) is the ‘normalized deviation’
from the optimal point at the kth iteration. In all algorithms, we count the
number of iterations K for e(k) to decrease to and stay in the neighborhood
{e(k)|e(k) < eq}. In dual decomposition, message passings from the links to the
users occur at each iteration synchronously. So K is a measure of the total number
of message exchanges. In our event-triggered algorithms, events occur in a totally
asynchronous way. We add the total number of triggered events, and divide this
number by the link number M. This works as an equivalent iteration number
K for our event-triggered algorithms, and is a measure of the total number of
message exchanges. We should point out that since we are comparing a primal
algorithm and a primal-dual algorithm (our event-triggered algorithms) with a
dual algorithm, and they run at different time-scales, iteration number is then a
more appropriate measure of convergence than time [15] [26].

The default settings for simulation are as follows: M = 60, N = 150, L =
8, S = 15, e = 3%. For all three algorithms, the initial condition z;(0) €

U[0.01,0.05], Vi € S. In dual decomposition, initial price p; = 0 for j € £, and
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the step size 7 is calculated using equation 1.14. In our event-triggered primal
algorithm, p = 0.5, A\; = 0, w; = 0.01 for j € L. In the event-triggered primal-dual

algorithm, p; = 0.9, \; =0, w; = 0.01 for 5 € L.

3.4.2 Broadcast periods of the event-triggered algorithm

In this subsection we present simulation results on the broadcast periods of our
event-triggered algorithms. Simulation shows that both event-triggered algorithms
have much longer average broadcast period than dual decomposition.

This simulation uses the default settings in subsection 3.4.1 and ran for 3.60s.
The error in all three algorithms entered the e; neighborhood in 3.60s. For ref-
erence, with the same settings, the average broadcast period for the dual decom-
position is 0.0026. In our event-triggered primal algorithm, there are a total of
295 link events, and 1059 user events. So the links have an average broadcast
period of 0.7332, which is 282 times longer than in dual decomposition. However,
unlike in dual decomposition, the users in the primal algorithm have to broadcast
their states occasionally as well, and their average broadcast period is 0.5099. For
the event-triggered primal-dual algorithm, there are a total of 2106 link events.
The links have an average broadcast period of 0.1026, which is 39 times longer
than in dual decomposition. As we can easily see, the primal algorithm has the
longest average link broadcast period among three algorithms. However, the algo-
rithm need users to broadcast their states as well, which does not happen in the
primal-dual algorithm and dual decomposition. Both the primal and primal-dual
algorithms enjoy much longer broadcast periods than dual decomposition.

To see how the broadcast periods vary for a particular user or link in our

event-triggered algorithms, we pick one user and one link in the network, and
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Figure 3.1. Broadcast results for event-triggered algorithms

their broadcast results are shown in figure 3.1. The four plots above correspond
to the user and link broadcast in the primal algorithm, and the two plots below
correspond to the link broadcast in the primal-dual algorithm. The top left plot
in figure 3.1 is the time history of broadcast periods generated by the user’s local
event in the primal algorithm. The top right plot is the histogram of those user
broadcast periods. This user’s broadcast periods range between 0.0600 and 0.6300,
with the minimum broadcast period 23 times longer than in dual decomposition.
This user was triggered 10 times, with an average broadcast period of 0.3600. The
middle left plot is the time history of broadcast periods generated by the link’s
local event in the primal algorithm. The middle right plot is the histogram of
those link broadcast periods. This link’s broadcast periods range between 0.0300

and 2.0400, with the minimum broadcast period 11 times longer than in dual
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decomposition. This link was triggered 9 times, with an average broadcast period
of 0.4000. The above broadcast period results was generated for an active link.
For all the inactive links, it is interesting to see that they never broadcasted in
the primal algorithm. This means only active links need to send their feedback
signals to the users in the primal algorithm.

Finally, the lower left plot is time history of broadcast periods generated by
the link’s local event in the primal-dual algorithm. The lower right plot is the
histogram of those link broadcast periods. The link’s broadcast periods range
between 0.0020 and 0.3070. The link was triggered 30 times, with an average
broadcast period of 0.1150. Unlike in the primal algorithm, the inactive links also
need to send their feedback signals to the users in the primal-dual algorithm.

Based on the above discussion, we know that in the primal algorithm, the
users and active links need to broadcast their states. In the primal-dual algorithm
and dual decomposition, all links need to broadcast their states. Despite differ-
ent broadcast strategies, both event-triggered algorithms generate much longer

broadcast periods than dual decomposition.

3.4.3 Data dropout simulation

In this subsection we present simulation results on the primal-dual algorithm
when data dropouts are taken into consideration.

From the discussion of the data dropout in subsection 3.3.3, we know that
each link j’s largest number of successive data dropout d; needs to satisfy the
inequality in equation 3.50 to ensure stability. Given a network, the max allowable
number of successive data dropouts D;(p;) is a monotone decreasing function in

p;. If we want the system to be robust to possible large data dropouts, then
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we need to choose a small p;. For references, when p = 0.9,0.218,0.102, 0.025,
Dj(p;) = 0,1.0034,2.0052, 5.0089 respectively. Table 3.1 summarizes simulation
results for three different choices of p;. For each given p;, we use the same p;, d;
for every link in the network. In the simulation, we assume that the number of
successive data dropouts are always equal to the largest number of successive data
dropouts, d;. When p; = 0.102 and p; = 0.025, d; is chosen so that the stability
condition in equation 3.50 is satisfied. When p; = 0.9, we intentionally choose
d; = 10 so that it violates the condition. The system is asymptotically stable in
all three scenarios. This means that the bound on data dropout in equation 3.50
is indeed a sufficient condition for stability, but is a rather conservative bound.
Remember in subsection 3.4.2, when p; = 0.9 and no data dropouts, the average
broadcast period is 0.1096. This is very close to the average successful broadcasts
period in table 3.1 in all three cases. However, with no surprise, when data
dropouts occurs, the average triggered broadcasts period is much shorter than

0.1096, which is clearly shown in table 3.1.

3.4.4 Transmission delay simulation

In this subsection we present simulation results on the primal-dual algorithm
when transmission delays are taken into consideration. Simulation shows that the
algorithm still converges to the equilibrium when the delay is not too long.

We consider the scenario that when each fi; packet is broadcasted, it expe-
riences a uniform random transmission delay ranging from Oms to 7ms, and we
choose different values of 7 in the simulation. To be specific, 7 is chosen to be
Oms, 10ms, 20ms, 50ms, 100ms, respectively. Note that here in the simulation,

the transmission delay of each link-user pair can be different and is independent
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P; 0.102 | 0.025 0.9

D;(p;) 2.0052 | 5.0089 | 0

d 2 5 10

Number of triggered broadcasts 7490 | 18336 | 27765

Number of successful broadcasts 2474 3029 2497

Average triggered broadcasts period | 0.0288 | 0.0118 | 0.0078

Average successful broadcasts period | 0.0873 | 0.0713 | 0.0865

TABLE 3.1

Simulation results for different p; and d;

of each other. The user always uses the latest received ji; packet regardless of
the sending time. The simulation uses the default settings in subsection 3.4.1 and
ran for 3.60s. The error in all three algorithms entered the e; neighborhood in
3.60s. We plot the error e(k) as a function of the iteration number £ for different
7 in figure 3.2. From bottom to top, the five plots correspond to 7 = Oms, 10ms,
20ms, 50ms, 100ms, respectively. As we can see, the error enters the e; neigh-
borhood in all five scenarios. Of course, when 7 increase, the iteration number
k it takes to converge increases as well. For each different 7, iteration number
k = 33,35,41,105, 148, respectively. The increase in iteration number is expected
with the use of delayed information. This simulation clearly demonstrated the
effectiveness of our event-triggered algorithm with the presence of transmission

delay.
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3.4.5 Scalability with respect to S

In this simulation, we fix M, N, L and vary S from 7 to 26. For each S, all
algorithms were run 1500 times, and each time a random network which satisfies
the above specification is generated. The mean myg and standard deviation oy of
K are computed for each S. my works as our criteria for comparing the scalability
of the three algorithms. Figure 3.3 plots the iteration number K (in logarithm
scale) as a function of S for all algorithms. The asterisks above represent my for
dual decomposition, the crosses in the middle denote our primal-dual algorithm,
while the circles below correspond to the primal algorithm. The dotted vertical line
around each asterisk, cross and circle corresponds to the interval [myg — o, mg +
ox] for each different S denoted by the z-axis.

For both the primal and primal-dual algorithm, when S increases from 7 to
26, my does not show noticeable increase. For the primal algorithm, my varies

between 15.1 and 21.1, and ok varies between 1.1 and 1.6. For the primal-dual
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Figure 3.3. Iteration number K as a function of S for all algorithms.

algorithm, my increases from 30.5 to 36.6, and ok increases from 0.7 and 1.9. As
for dual decomposition, my increases from 0.3856 x 10 to 5.0692 x 103. ok at
the same time increases from 0.4695 x 102 to 6.4627 x 10%. Our event-triggered
algorithms are up to two orders of magnitude faster than the dual decomposi-
tion. We can also see that, unlike the dual decomposition algorithm, which scales
superlinearly with respect to S, both the primal and primal-dual event-triggered

algorithms on the other hand are scale-free.

3.4.6 Scalability with respect to L

This simulation is similar to subsection 3.4.5 except that we vary L from 4 to
18 instead of S. Figure 3.4 plots K (in logarithm scale) as a function of L for all
algorithms.

For both the primal and primal-dual algorithm, when L increases from 4 to
18, mg increases slowly. For the primal algorithm, m,, increases from 15.0 to 18.2,

and oy varies between 1.0 and 1.4. For the primal-dual algorithm, my increases
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from 31.1 to 48.5, and oy varies between 1.1 and 3.8. As for dual decomposition,
mp increases from 0.9866 x 10 to 3.5001 x 10, and o at the same time increases
from 0.9991 x 10% to 6.0232 x 102. Our event-triggered algorithms again are up to
two orders of magnitude faster than the dual decomposition. We can also see that,
unlike the dual decomposition algorithm, which scales superlinearly with respect

to L, our event-triggered algorithms on the other hand are scale-free.
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Figure 3.4. Iteration number K as a function of L for all algorithms.

3.5 Conclusion

This chapter presents a primal and a primal-dual event-triggered distributed
NUM algorithms based on the augmented Lagrangian methods. The chapter
establishes state-dependent event-triggering thresholds under which the proposed

algorithms converge to the approximate solution of the NUM problem. For the
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primal-dual algorithm, bounds on the maximum allowable data dropouts and
maximum allowable transmission delays are given. A state-dependent lower bound
on the broadcast period is presented as well. Simulation results suggest that
both algorithms are scale-free with respect to two measures of network size, and
reduce the number of message exchanges by up to two orders of magnitude when

compared to existing dual decomposition algorithms.
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CHAPTER 4

Optimal power flow in microgrids using event-triggered optimization

This chapter uses the optimal power flow problem in microgrids as a nontrivial

real-life example to demonstrate the effectiveness of event-triggered optimization.

4.1 Introduction

Microgrids [33] [22] [18] are power generation/distribution systems in which
users and generators are in close proximity. This results in relatively low voltage
grids (few hundred kVA). Generation is often done using renewable generation
sources such as photovoltaic cells or wind turbines. Power generation can also
be accomplished through small microturbines and gas/diesel generators. Storage
devices such as battery banks represent another important power source for mi-
crogrids. These units can be used in places such as office buildings, parks, homes
and battle fields as distributed power sources. They are modular in the sense
that, if needed, new unit can be added to the network in an easy way. All the
microgrids in the network can work in a cooperative way to meet the overal load
demand in the network.

Active/reactive power dispatch problems have been the research subject of
power system community since in the early 1960’s. The problem is usually formu-

lated as an optimal power flow (OPF) problem. The OPF problem [40] [20] is an

99



important class of problems in the power industry. The problem is to determine
generator power set points so that the overall cost of power generation is mini-
mized, while respecting limits on the generator’s capacity and transmission power
flow constraints. This chapter examines the optimal active power flow problem
[40], which we will simply denote as the OPF problem in the remainder of the
chapter.

Various centralized or distributed optimization algorithms have been proposed
to solve the OPF problem, including network flow approach [11], interior point
method [40] [20], multi-area decomposition [17] [9] [29], etc. These algorithms
usually made the assumptions that communication between subsystems was not
expensive and reliable. This assumption, however, is not always realistic since
one of the first things to go down during power disruptions is the communication
network. One way around this problem is to make use of low power ad hoc wireless
communication networks that operate independently of the main power grid.

Ad hoc wireless sensor networks have recently been used in the reliable op-
eration and control of various civil infrastructure systems [45][37]. The nodes in
these networks are usually powered by batteries or solar arrays, so they would be
unaffected by fluctuations in the main power grid. These networks, however, have
severe throughput limitations that make it impractical to send a large amount of
information across the network. Moreover, it may be impractical to send periodi-
cally sampled data across the network as the nodes in these networks have limited
power due to their reliance on batteries. As a result of these considerations, ad hoc
communication networks can provide a power grid’s communication infrastructure
only if we can greatly limit the amount of information that needs to be transmitted

across the network. One way of doing this is to adopt an event-triggered approach
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to information transmission.

In event-triggered systems, sensors are sampled in a sporadic non-periodic
manner. Our work in chapter 2 and 3 has shown that event-triggering can greatly
reduce (by several orders of magnitude) the message passing required in the so-
lution of network utility maximization problems. Event-triggering therefore may
provide a useful approach for reducing the power grid’s use of the communication
network.

The OPF problem is similar to the NUM problem we considered in previous
chapters. In this chapter, we develop an event-triggered distributed optimization
algorithm for the OPF problem and prove its convergence. We use the CERTS
microgrid model [32] as an example power system to show the effectiveness of our
algorithm. The simulation is done in MATLAB/SimPower and shows that our
algorithm solves the OPF problem in a distributed way, and the communication
between neighboring subsystems is very infrequent. The rest of the chapter is
organized as follows. Section 4.2 formally states the OPF problem. Section 4.3
briefly introduces the main components and mechanisms of the CERTS microgrid
model. Section 4.4 presents an event-triggered scheme to solve the OPF in a
distributed way. Simulation and conclusions are in section 4.5 and section 4.6,

respectively.

4.2 The optimal power flow (OPF) problem

This section derives the DC flow model [16], which is widely used to character-
ize a power system’s behavior around the normal steady state operation. It then
uses the DC flow model to formally state the OPF problem, which we will solve

later in section 4.4.
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The power system can be modeled as a directed graph, which is shown in
figure 4.1. Consider a connected directed graph G = (V,€) as an abstraction
of an electrical power network. The system consists of N buses. For simplicity
of discussion, we assume that each bus has a local generator and a local load
connected to it in our model. More general scenarios where a certain bus does not
have a local generator or has multiple local loads can be treated similarly without
much difficulty. V = {vy,...,vn} is the set of nodes, and each node represents a
bus (with a local generator and load). &€ C V x V is the set of directed edges,
which corresponds to the power transmission lines. Suppose the network has
M = |&| edges, and they are ordered 1,2,..., M. An edge from node 7 to node j
is denoted as e;; = (v;,v;). 2zi; = ri; + jx;; is the impedance of the transmission
line corresponding to edge e;;. Since r;; is often negligible compared to x;;, we
can assume 7;; = 0 in our DC flow model. Suppose the incidence matrix [10] of
graph G is I, and define a diagonal matrix D € RM™*M whose diagonal entries
are the reactances x of M transmission lines. Then the weighted incidence matrix
A € RM*N is defined as A = DI. The set of neighbors of node i is defined
as N (i) = {v; € V|(v;,v;) € £}, and node ¢ has [N ()| neighbors. The set of
transmission lines that leave bus i is defined as L(i) = {e;; € E]j € N(i)}.

In the power system analysis, complex powers are extensively used [7] [30].
Remember power can be defined as P = Re{wi*}, where u and i represents the
voltage and current, respectively. Re{a} and Im{a} is the real and imaginary
part of a complex number a. Complex power S and reactive power () are defined

as

S =wi*, Q= Im{ui} (4.1)
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Figure 4.1. Power distribution network and graph abstract

It is trivial to see S = P + j(@.
Let S;; denote the complex power flow from node ¢ to node j, and u; denote the

generator voltage at node i. Use the following magnitude-phase representation,
up = lwile’®, uy = |uyle’® (4.2)
and remember z;; = jx;;, we have

L) = Pji+ jQjs (4.4)
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where

Py =~y = il g, ) (1.5)
Iij
Q" _ |ul|2 . |ul||u]| OS(H' . ‘9) (4 6)
i gl
Qi = le — ;ji cos(0; — 0;) (4.7)

Under normal operating conditions, we have |u;| ~ |u;|, and 6; — 6; is typically
small. In this case, there is reasonably good decoupling between the control of
active power flow F;;, Pj; and reactive power flow Q;;, @;;. The active power flow
is mainly dependent on 6; — 0;, and the reactive power flow is mainly dependent
on [u — ] [7].

The DC flow model we are using further assumes that only the voltage phases
0;, 0; vary, and that variation is small. Voltage magnitudes |u;|, |u;| are assumed
to be constant (Ju;| = |u;| = 1 here). In this case, the reactive power flow Q;;
is negligible, and we are only considering the active power flow P;;. With the
assumptions and simplifications above, the power flow from node i to node j is

given by

Py = —(6,—6)) (15)

xij

The total power flowing into bus i, P;, must equal the power generated by
generator ¢ minus the power absorbed by the local load at the bus. P;, therefore,

must equal the the sum of the power flowing away from bus ¢ on all transmission
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lines. This means

P= Y Py= Y —(6i-6) (4.9

JEN (i) JEN () T

which can be expressed in a matrix form
P = B0 (4.10)

where P = [Py, ..., Py]T, 0 = [01,...,0n]7, and B is defined as
Zje,/\/’(i) %ju if = .j7

Bij=q-L, if e;e€E, (4.11)

Tij’

O, if €ij ¢ E

\

B is a singular matrix, which can be thought as a weighted Laplacian matrix [10]
of the graph. The weight here is 1/z;; for edge e;;.
Based on our DC flow model in equation 4.8, we can formulate the General

OPF problem as follows :

minimize C(Pg) =Y~ Ci(Pg,) (4.12)
w.r.t Pg (4.13)
subject to: BO = P; — Py, (4.14)
Py < P; <Pg (4.15)

P<AILP (4.16)

Here Pg = [Pg,, ..., Pay|" is the vector of generated active powers for all gener-
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ators, and P, = [Py, ..., P, ]7 is the vector of total local loads for all buses. A and
B are sparse matrices and have been defined previously. Pg = {& v Pay }
and Pg = {Pg,, -+, Pgy} represent the lower and upper limits of the genera-
tors’ power generating constraints. P = {P,---, Py} and P = {Py,---, Py}
represent the lower and upper limits of the power flows on the transmission lines.
Here P, Pg, Pg, P and P are known constants in the problem formulation, and
A and B are known constant matrices. The objective function in equation 4.12
represents the total generation cost of all the generators, and generator ¢’s cost of

generating Pg, unit of active power is usually in the form of

where a;, b; and ¢; are constant coefficients. The constraint in equation 4.14 is
the power flow balance equation. Constraints in equation 4.15 and 4.16 represent
the generation limits of the generators, and power flow limits on the transmission
lines, respectively. The General OPF problem seeks to find the optimal generated
active power Pg such that the total generation cost is minimized, subject to the
power flow equation and physical constraints of the generation and transmission
systems.

To apply the idea of event-triggered optimization, we need to reformulate the
previous General OPF problem to fit into the NUM problem formulation and
adopt a similar approach we have used in chapter 3. This is done by recognizing
that the constraint in equation 4.15 is a power balance relation that is always

maintained within the system. We can therefore remove Py as a control variable
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to obtain the following revised OPF problem.

minimize C(Pg) = S, Ci((B6); + Pr,) (4.18)
w.r.t 0 (4.19)
subject to: Po— P, < B0 < P, — P, (4.20)
P< AP (4.21)

where (B#); is the ith element of Bf. Note that the new optimization problem is
solved with respect to the phase angle # instead of Pg. The revised OPF problem
also has the same solution as the General OPF problem. We will solve the revised

OPF problem later in section 4.4 using an event-triggered distributed algorithm.

4.3 The CERTS Microgrid model

This section briefly describes the CERTS microgrid model and the microsource
controller developed by the University of Wisconsin, Madison (UWM). A detailed
account of the microsource controllers can be found in [32]. Since we are using
the CERTS microgrid model in our MATLAB/SimPower simulation, the basic
operation of the model and the controller is described below.

The inverter-based microsource consists of a D.C. source whose outputs are
transformed into an A.C. voltage through an inverter. The actions of the inverter
are guided by a controller that uses sensed feeder currents and voltages to de-
termine how best to control the operation of the inverter. Figure 4.2 shows that
the output of the inverter is passed through a low pass filter to remove switching
transients to produce a three phase 480V voltage. A transformer then steps this

down to 208 V (120 volts rms).
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Figure 4.2. Inverter-based microsource

The UWM microsource controller is shown in figure 4.3. The inputs are mea-
surements of inverter current, load voltage and line current. The controller also
takes as reference inputs the requested voltage level E,., the requested power set
point Py, and the desired frequency f..q (usually 60 Hz). The controller takes
the measured inputs and computes the instantaneous reactive power, (), the volt-
age magnitude, F/, and the real power P. These computed values are low pass
filtered. The reactive power, (), and the requested voltage E,., are input to the
@ vs E droop controller to determine the desired voltage level. This is compared
against the measured voltage level and the output V' is then given to the gate pulse

generator. Another channel in the controller uses the measured real power and
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implements another droop control that balances the system’s frequency against
the requested power level, P,. The output of the P vs frequency droop con-
troller is used to adjust the phase angle, dy,, which is also fed into the gate pulse
generator. The output of the gate pulse generator goes directly into the inverter.

The action of this controller is, essentially, to mimic the droop controls seen
in traditional synchronous generators. This means that if a load begins drawing
a great deal of real power, then the line frequency will “droop” as an indicator
of the extra stress on the system. The controller automatically tries to restore
that frequency to its desired levels. But it will be unable to restore the droop if
the power being pulled if the power drawn by the load exceeds the generator’s
capacity. This drop in frequency can be sensed at the load and may be used to
help decide if the load should disconnect from the microgrid. A similar scenario
occurs if the load begins drawing too much reactive power. In this case, there will
be a droop in the voltage that can again be used by the load to determine if it
should disconnect from the grid. These droop controllers are well understood and
they can be easily interfaced to price-based power control methods through the
requested power and voltage set points shown in figure 4.3. The event-triggered
control inputs developed in this chapter will interface to this controller through

the requested power input.

4.4 Event-triggered distributed optimization for OPF

This section develops an event-triggered distributed algorithm to solve the re-
vised OPF problem in section 4.2, and proves its convergence. The event-triggered
algorithm can be easily integrated into the CERTS microgrid model by dynami-

cally adjusting the power set point of each generator.
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Figure 4.3. UWM microsource controller

The revised OPF problem is a constrained problem, which can be converted
into a sequence of unconstrained problems by adding to the cost function a penalty
term that prescribes a high cost to infeasible points.

Take the A < P constraint for example, we can introduce a slack variable

s € RM and replace the inequalities P; —al6 >0, Vj € £ by

aj0 —Pi+s;=0, s;>0, Vje& (4.22)
Here the vector a] = [Aj1, -+, A;n] is the jth row of matrix A.
Define
- 1 -
b;(0;0°) = min o e 20t s(a;0 — Py +s5)° (4.23)

where a penalty parameter wf is associated with each transmission line j and

w® = [wf, e ,wi/[} is the vector of transmission line penalty parameters.
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It is easy to show that

_ 0, if P;—al0>0
b, (0;w) = ’

1 (T 2 -
W(aj 6 — P;)?, otherwise

Similarly we can define

0, if P.—af0<0
0y (6;0%) = —

ie(aj 0 — P;)?, otherwise
z 4i

which corresponds to the inequality constraint P; — a]TH <0,Vjel.

Define b} = By, - - - , Byy] as the kth row of matrix B and let w” = [w}

denote the vector of generator penalty parameters. This gives us
0, if Pn — P, —b'0>0
e (0 w) = e
2@%\}(()}59 — Pg, + Pr,)?,  otherwise
k
for constraint b} — Pg, + Py, <0, Vk € V and
0, if Po — P, —bl0<0
&(9; wV> _ ~ Gk k k
2@%\}((){9 — Pg, + P1,)?, otherwise
k _ -k

for constraint b{é’ — @ + P, >0, Vk e V.

Let us define the the augmented cost as

LO;w® wY) = 3" C((BO)i + Pr) + Y 0(0;u%) +

=y je€

D di(0:uF) + ) X0 wY) + ) w0 wY) (4.24)

jeE i€V i€V
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L(6; wf,wY) is a continuous function of @ for fixed w® and wY. Let 6*[k] denote
the approximate minimizer of L(0;w®[k], wY[k]). It was shown in [8] that by ap-
proximately minimizing L(0; w®, wY) for sequences of {w®[k]|}32, and {wY[k]}32,,
the sequence of approximate minimizers {6*[k]}72, converges to the optimal point
of the OPF problem. We only require that {w?[k]};2, and {w)[k]}2,, Vj € &,
Vi € V are sequences of transmission line/generator penalty parameters that are
monotone decreasing to zero.

Instead of minimizing L(0; w®, wY) for sequences of penalty parameters, we are
only considering the problem of minimizing L(6;w¢, wY) for fixed w® and w" in
this chapter. If w and w) are sufficiently small, the minimizer of L(6;w®, wY)
will be a good approximation to the solution of the original OPF problem. We
should note that in our work in [57], we gave an event-triggered algorithm that
converges to the exact minimizer of the NUM problem. Interested reader can refer
to that paper to see how we can decrease the penalty parameters in a distributed
way to accomplish that.

We can search for the minimizer of L(#;w?, w") using a gradient descent al-

gorithm where
t
0;(t) = —/ Vo, L(0(7); w, wY)dr
0

for each generator i € V. The derivative of L(6;w¢,wY) with respect to 6; can be
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shown to be

szL(‘97 wga wV)
1

= Z max{0, E(afe — P)}A;
JEL(D) J
i 1
+ Z min{0, E(af@ — Pj)} Ay
JEL(D) J
1 _
+ Z max{0, W(bg@ — P, + Pr,)} B
keN (i)+i k
. 1
+ Z min{0, —V(bgﬁ — @ + Pr,)} B
kEN(3)+i W
+ Y VCi(bi0+ Pr,)By
keN (i)+i

For each transmission line, let us define

() = max{O,%(ajrﬁ(t) —?j)}+min{0,%(a]r9(t) —P)} (4.25)

Here al 0(t) is simply the power flow on transmission line j € £ at time ¢. w$ > 0
is a constant penalty coefficients that penalizes the violation of the transmission
line flow limits. It is easy to see that f;(¢) is nonzero if and only if the flow
on the jth transmission line exceeds the line flow limits. f;(¢) summarizes the
information of the jth transmission line at time ¢ and can be viewed as its state.

Similarly for each generator k € V we define

er(t) = VOLbLOt) + Pr,)

1 S ) 1
+ max{0, —;(b;6(t) + Pr, — Fa,)} + min{0, =5 (b;6(t) + Fr, — Pa,)}
k k

Here w) is a constant penalty coefficient that penalizes the violation of the gen-
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erating limits for generator & € V. Recall the power balance equation in 4.14 and

we can thus rewrite ¢ () as

oult) = VCy(Po, (1)) + max{0, 1k (P, (t) — o)}

+ min{0, U}k (Po,(t) — Pg,)}

It is then easy to see that ¢ (f) is determined by the gradient of the current
generation cost of the kth generator, and whether the kth generator’s generation
limit is satisfied. In other words, ¢ (t) summarizes the information of the kth
generator at time ¢ and can be viewed as its state.

We can now rewrite the derivative of L(6;w®, w) with respect to 6; as

Vo, L(0; w®, wY) Z,ujAﬂ—i- Z o Bri (4.26)

JEL(4) keN (i)+i

and the gradient descent algorithm takes the form

0;(t) = — /0 S owi(nAu+ > ou(r)Br| dr (4.27)

JEL() kEN (i)+i

Note that in equation 4.27, generator ¢ can compute its phase angle only based
on the state ¢; from itself and its neighboring generators, as well as the state f;
from its outgoing transmission lines. The update of #; can be done in a distributed
manner.

However, in the above equation, this neighboring generator’s state information
is available to generator 7 in a continuous manner, which would require continuous
communications between neighboring generators. This is highly undesirable. An

event-triggered version of equation 4.27 assumes that generator i accesses a sampled
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version of its neighboring generator’s state. In particular, let’s associate a sequence
of sampling instants, {T;[¢]}72, with the ith generator. The time 7;[¢| denotes the
instant when the ith generator samples its state ; for the /th time and transmits
that state to neighboring generators k € N (i). We can see that at any time t € R,

the sampled generator state is a piecewise constant function of time in which

pi(t) = (T3 [4]) (4.28)

for all £ = 0,---,00 and any t € [T;[(],T;[¢ + 1]). In this regard, the “event-

triggered” version of equation 4.27 takes the form

0:;(t) = — / t > (M A; + > @u(T)Bri +9i(7)Bii | dr - (4.29)
O |jech) kEN (i)
for all ¢ and any t € [T;[(], T;[¢ + 1]).

The sequence {T;[¢]}7°, represents time instants when generator ¢ transmits its
“state” to its neighboring generators. Here we assume that there is no transmission
delay in each ¢;(t) broadcast.

Next we will state the main theorem of this subsection, which states the con-

dition under which each generator should sample and broadcast its state.

Theorem 4.4.1 Consider the Lagrangian in equation 4.24 where the functions
C; are differentiable, strictly increasing, and conver. Assume fized generator and

transmission line penalty parameters w® >0, wY > 0. Vi € V, define

a(t)= Y wi(r) A+ Y @k(r)Bii+ @i(7)Bi

JEL(D) keN (i)
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and

N

pi =1/ Z N (k)| B, (4.30)

k=1

Consider the sequences {T;[(]}32, for each i € V. For each generatori € V), let
its phase angle, 0;(t), satisfy equation 4.29 with sampled neighboring state given
by equation 4.28. Assume that for allt € V and all £ =0, --- , 00, that

|0i(t) = Gi()] < pilzi(t)] (4.31)

fort € [T;[0), T;[¢ + 1]). Then the phase angle 0(t) asymptotically converge to the

unique minimizer of L(0;w®, wY). B

Proof: For convenience, we do not explicitly include the time dependence in

the proof.
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For all t > 0 we have

—L(0; w®, wY)
2 96, di
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which immediately suggests that if the sequences of sampling instants {7;[¢]}72,
satisfy the inequality in equation 4.31 for all £ = 0,1, 2, ..., 00, and any 7 € V, then
L(6; wE, wY) <0 is guaranteed for all ¢.

By using the properties of C; and v;(8; w®), %(G;wg), X (0; wY), xi(0;wY),
it is easy to show that for any fixed w® and wY, L(#;w¢, wY) is strictly convex
in 6. Tt thus has a unique minimizer. Suppose #*(w?®, w") is this minimizer, and
the corresponding Lagrangian is L(0*;w® wY). Define V(0) = L(0;w® wY) —
L(0%;w®, wY). It is trivial to see V(0) is a Lyapunov function for the system.
Moreover, V() = 0 means L(f;w?,wY) = 0. The only scenario this can happen

is at the equilibrium. As a result, the equilibrium #*(w®, wY) is asymptotically
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stable. Proof complete. l

Theorem 4.4.1 basically states an event-triggered distributed algorithm. This
theorem asserts that each generator i’s phase angle 6;(t) needs to follow the direc-
tion suggested by equation 4.29. When the inequality in equation 4.31 is violated,
generator ¢ will trigger the sampling and transmission of generator state ¢; to its
neighboring generators. Generator ¢ compares the error between the last transmit-
ted state ¢; and the current state ¢;. At the sampling time T;[¢], this difference
is zero and the inequality is trivially satisfied. After that time, the difference
increases and when the inequality in equation 4.31 is violated, we let that time
be the next sampling instant, 7;[¢ + 1] and then transmit the sampled generator
state ¢; to the neighboring generators k € N;. The theorem asserts that if all the
generators behave in the above way, then the generated power of all generators
will approach the solution of the OPF problem.

It turns out that the above algorithm can be easily integrated into the CERTS
microgrid controller. It is achieved by dynamically adjusting the requested power
P,., for each generator. In the microsource controller in [32], generator i’s phase
angle 0; is adjusted by comparing the measured active power P, and the requested

power P,..,;, where 0; follows

9,(25) = (Preqi — Fa,(t)) (4.32)

This suggests that if instead of fixing P, ;, which is what has been done in [32],
we can adjust P, so that the direction suggested by equation 4.32 matches the

direction suggested by our event-triggered scheme in equation 4.29. This can be
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easily done by setting

v2i(t)

Preq,i(t) = PGi (t> - (433>

Here v > 0 is a constant that controls how fast we adjust the phase angle. This
constant is necessary because if z;(t) is large, the adjustment in 6; may be too
fast, which as a result may destabilize the system. Since generator ¢ can compute
both Pg, and z; locally, P,.,; can be easily computed by generator ¢ itself. This
suggests that each generator only needs to adjust its power set point according
to equation 4.33. It samples and then broadcasts its state ¢; to its neighboring
generators when the inequality in equation 4.31 is violated. If every generator
follows this action, then by theorem 4.4.1, the generated power Pg of all generators

will approach the solution of OPF.

4.5 Simulation

This section presents simulation results. The simulation is done in MAT-
LAB/SimPower and shows that our algorithm indeed solves the OPF problem
in a distributed way, and the communication between neighboring subsystems is
very infrequent.

We built a simulation model in MATLAB/SimPower for the UWM CERTS
microgrid controller in [32]. The system model (which consists of three buses) is
shown in figure 4.4, and the generator model is shown in figure 4.5, which mimics
the droop characteristics in traditional synchronous generators. We use a three
bus example, which is shown in figure 4.6. The network consists of three generators
with power set point 0.4,0.8,0.6 (pu) respectively. There are three active loads

which request 0.96,0.72,0.48 (pu) active power, respectively. Transmission lines
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Figure 4.4. SimPower simulation model

are assumed to have zero resistance and all have impedances of z = 0.00397.
Each generator has generating limits between Opu and 1pu. Each transmission
line has power flow limits between —0.4pu to 0.4pu. The cost functions of the
three generators are: 2.0 + 0.1p + 0.1p?, 3.0 + 1.8p + 0.1p?, 1.0 + 0.5p + 0.1p?.
All generators come online at ¢ = 0s with their initial fixed power set points. At
t = 3s, we switch from the fixed power set point scheme to our event-triggered set
point scheme. At ¢t = 10s, the third load is added to bus 2.

Figure 4.7 plots the generator power as a function of time. The left three plots
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Figure 4.5. SimPower generator model

correspond to generators’ measured power, and the right three plots correspond
to the set points computed by equation 4.33 for three generators. We can see
that the actual measured power tracks the computed set point very well. After
switching to the event-triggered scheme at ¢ = 3s, generator 1 quickly increases
its generation to full capacity, because it has the lowest generation cost. At the
same time, generator 2’s generation drops to minimum, because it is the most
expensive generator. When the new load is added at ¢ = 10s, generator 1 cannot
increase its generation further since it is already at full capacity, so generator 2

picks up the additional load. Figure 4.7 shows that our event-triggered scheme
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Figure 4.6. Three generator simulation model

does adjust the power set point in a way that favors the low cost generator. Also
the generating limit constraint is satisfied when using our new controller to adjust
set point.

Figure 4.8 plots the instantaneous frequencies of the generators as a function
of time for all three generators. We can easily notice that the frequencies are
maintained at around 60Hz, which is highly desirable. This means the power
generated by the generators are of high quality.

Figure 4.9 plots the power flow on the transmission line as a function of time
for all three transmission lines. The important thing to notice here is that in the
middle plot, the power flow on the transmission line is kept below 0.4pu, the flow
limit of the line. At ¢ = 10s, because of the addition of a load, the flow limit
on the second transmission line is violated for less than 1s, but the power flow
quickly adjusts back to within the limit. Both figure 4.7 and figure 4.9 show that

our algorithm reacts very quickly to the changes in the network.
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Figure 4.7. Measured generator power and generator power set point

Figure 4.10 plots the load power as a function of time for all three loads. All
loads are well served. At t = 10s, the oscilliation brought by the addition of a
load stabilizes in less than a second. The algorithm ensures that the load demand
in the network is met and reacts quickly to the change in load demand.

Figure 4.11 plots the broadcast periods of the generators as a function of
time. The y-axis represents the time passed since the last broadcast. This figure
shows some very interesting result. Both the second and the third generator have
broadcasted only twice, and the first generator broadcasted 9 times. If we compare
figure 4.11 with figure 4.7, we will find out that only the first generator’s generating
limit constraint is active. This explains why it triggers much more often. For
generator 2 and 3, they only need to broadcast their states occasionally or when

some network condition changes. For generator 1, it has an active generating limit
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Figure 4.8. Generator frequencies

constraint, so it is more likely to broadcast its state. As we can see from the figure,
most of the time the generators do not need to communicate with their neighbors
at all (almost 5 secs for generator 2), this is highly desirable and has the potential
to significantly reduce the communicate costs of a large scale power system.
Finally in figure 4.12 we plot the total generation cost as a function of time.
Without any surprise, our scheme reduces the initial generation cost of 7.8 when
using fixed set point scheme to about 6.6. This is a reduction of about 15%, which

is significant.

4.6 Conclusion

This chapter uses the optimal power flow problem in microgrids as a nontrivial

real-life example to demonstrate the effectiveness of event-triggered optimization

124



Line 12: P Power

power(pu)

-0.4 V
0 5 10 15
t(sec)
Line 23: P Power
T
g N
e
© 041
: |
o
= 0.2k
L
0 5 10 15
t(sec)
Line 31: P Power
s Or
a
@ -0.2
2
o
= -0.4
L
0 5 10 15

t(sec)

Figure 4.9. Transmission line power flow

algorithms. The chapter first formally states the OPF problem and introduces
the UWM CERTS microgrid controller. It then presents an event-triggered dis-
tributed optimization algorithm for the OPF problem and proves its convergence.
The MATLAB/SimPower simulation we bulit uses the CERTS microgrid model,
and shows that the algorithm indeed solves the OPF problem while keeping com-
munication between neighboring subsystems very infrequent.

There are several future directions we will pursue. First, the simulation consid-
ered in this chapter is a rather small example, and we would like to exploit more
realistic larger scale simulations. Second, in our integration with the CERTS
model, we simply ‘replace’ the existing controller in the model with our new
event-triggered controller. Our new controller does guarantee the convergence to

the solution of OPF, however, it does not provide guarantees of the transient sta-
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bility of the system. Future research will address this issue. Third, the algorithm
we used in this chapter assumes that each generator adjusts the requested power
input continuously, and also has continuous measurement of the power flowing
away from each outgoing transmission lines. This however is not very realistic in
most scenarios. Finally, we believe the load shedding problem can be viewed as a
dual problem of the OPF problem, and we believe it can be solved using the same

technique shown in this chapter.
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CHAPTER 5

Conclusions

5.1 Summary of contributions

In this work, we are interested in reducing the message passing complexity of
distributed optimization algorithms using event-triggering. The motivation comes
from the fact that existing distributed optimization algorithms usually rely on
some conservative choice of step size to ensure the convergence of the algorithm.
The tight coupling between inter-subsystem communication and local computa-
tion brings in unnecessarily large message passing complexity in the algorithm.
For many networked systems this type of message passing complexity may be un-
acceptable. This is particularly true for systems communicating over a wireless
network. In such networked systems, the energy required for communication can
be significantly greater than the energy required to perform computation [21].
As a result, it would be beneficial if we can somehow separate communication
and computation in distributed algorithms. This should reduce the message pass-
ing complexity of distributed optimization algorithms such as dual decomposition
significantly.

In chapter 2 we start to study how to use event-triggering to separate com-
munication and computation in distributed optimization algorithms. The chapter
uses the NUM problem formulation as an example and presents a distributed algo-

rithm based on barrier methods that uses event-triggered message passing. Under
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event triggering, each subsystem broadcasts to its neighbors when a local “error”
signal exceeds a state dependent threshold. We prove that the proposed algorithm
converges to the global optimal solution of the NUM problem. The proof is done
in two steps. First, we prove the algorithm converges to the local minimizer when
the barrier parameters are fixed. We then prove that when the barrier parameters
are monotone decreasing, the sequence of approximate local minimizers indeed
converge to the global minimizer, which is the solution of the NUM problem.
Simulation results suggest that the proposed algorithm reduces the number of
message exchanges by up to two orders of magnitude when compared to dual de-
composition algorithms, and is scale-free with respect to two measures of network
size L and S. The work in this chapter appears in [58] [54].

The event-triggered barrier algorithm in chapter 2 is our very first approach
to solve the distributed optimization problems using the event-triggered idea, and
it shows significantly reduction in the communication cost of the network. How-
ever, as we show in the chapter, the algorithm suffers from issues like the need
for an initial feasible point, and performance sensitive to parameter choices. All
these issues limit the usefulness the algorithm. This inspired us to look for al-
ternative algorithms to apply the event-triggered idea. We choose the augmented
Lagrangian method instead of the barrier method in our following work.

Chapter 3 still uses the NUM problem formulation as an example and presents
two distributed algorithms based on the augmented Lagrangian methods that
use event-triggered message passing and proves their convergence. One of the
algorithm is a primal algorithm, and the other is a primal-dual algorithm. We
could present algorithms that converge to the exact minimizer instead of the

approximate solution, as we have shown in [57]. However, we feel it unnecessary
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to present it here since the proof techniques are very similar to what we have
shown in chapter 2. For this reason, both algorithms in this chapter only converge
to an approximate minimizer to the NUM problem, which is enough for most
applications.

For the primal-dual algorithm, we consider scenarios when the network has
data dropouts, and give an upper bound on the largest number of successive data
dropouts each link can have, while ensuring the asymptotic convergence of the
algorithm. A state-dependent lower bound on the broadcast period and an upper
bound on the transmission delay the network can tolerate while ensuring conver-
gence are also given. Simulation results show that both algorithms have a message
passing complexity that is up to two orders of magnitude lower than dual decom-
position algorithms, and are scale-free with respect to two measures of network
size L and S. The primal algorithm in this chapter is similar to the algorithm
in chapter 2. However, in chapter 2, we used the barrier method instead of the
augmented Lagrangian method as the basis for the event-triggered algorithm. In
that case, the resulting algorithm suffers from issues like ill-conditioning, need
for an initial feasible point and sensitive to the choice of parameters. The event-
triggered algorithms presented in this chapter do not have these issues. Also,
both algorithms have slightly better performance than the barrier method based
algorithm in chapter 2 in terms of message passing complexity. The work in this
chapter appears in [57] [59] [53] [55].

The problems and algorithms developed in the previous chapters are some-
what abstract, and did not explicitly show how we can use those event-triggered
algorithms in real-life applications. Chapter 4 then uses the optimal power flow

problem in microgrids as a nontrivial real-life example to demonstrate the effec-
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tiveness of event-triggered optimization algorithms.

The optimal power flow (OPF) problem has been the research subject of power
system community since early 1960’s, and is very similar to the NUM problem we
considered in previous chapters. Various centralized or distributed optimization
algorithms have been proposed to solve the OPF problem. These algorithms
usually made the assumptions that communication between subsystems was not
expensive and reliable, which is unrealistic. One way around this problem is
to make use of low power ad hoc wireless communication networks that operate
independently of the main power grid. Using event-triggering on those wireless
networks therefore may provide a useful approach for reducing the power grid’s
use of the communication network.

In chapter 4, we develop an event-triggered distributed optimization algorithm
for the OPF problem and prove its convergence. We use the CERTS microgrid
model [32] as an example power system to show the effectiveness of our algorithm.
The simulation is done in MATLAB/SimPower and shows that our algorithm
solves the OPF problem in a distributed way, and the communication between
neighboring subsystems is very infrequent. The work in this chapter appears in
[56].

To our best knowledge, our work is the first examination of using the event-
triggered idea to separate communication and computation in distributed opti-

mization algorithms.

5.2  Future work

In this section, we discuss several possible future research directions for the

work.
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For the work in chapter 2 and 3, it would be useful quantify what penalty
parameters w we need to choose in order to converge to a given desirable neigh-
borhood of the optimal point. It would also be interesting to see the complexity
and convergence time of both event-triggered algorithms analytically.

For the work in chapter 4, there are also several possible future directions
we will pursue. First, the simulation considered in this chapter is a rather small
example, and we would like to exploit more realistic larger scale simulations.
Second, in our integration with the CERTS model, we simply ‘replace’ the existing
controller in the model with our new event-triggered controller. Our new controller
does guarantee the convergence to the solution of OPF, however, it does not
provide guarantees of the transient stability of the system. Future research will
address this issue. Third, the algorithm we used in this chapter assumes that each
generator adjusts the requested power input continuously, and also has continuous
measurement of the power flowing away from each outgoing transmission lines.
This however is not very realistic in most scenarios. Finally, we believe the load
shedding problem can be viewed as a dual problem of the OPF problem, and we

believe it can be solved using the same technique shown in this chapter.
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