
This Dissertation

entitled

Event-triggered distributed algorithms for network optimization

typeset with nddiss2ε v3.0 (2005/07/27) on November 30, 2009 for

Pu Wan

This LATEX2ε classfile conforms to the University of Notre Dame style guide-
lines established in Spring 2004. However it is still possible to generate a non-
conformant document if the instructions in the class file documentation are not
followed!

Be sure to refer to the published Graduate School guidelines
at http://graduateschool.nd.edu as well. Those guide-
lines override everything mentioned about formatting in the
documentation for this nddiss2ε class file.

It is YOUR responsibility to ensure that the Chapter titles and Table caption
titles are put in CAPS LETTERS. This classfile does NOT do that!

This page can be disabled by specifying the “noinfo” option to the class invocation.
(i.e.,\documentclass[...,noinfo]{nddiss2e})

This page is NOT part of the dissertation/thesis, but
MUST be turned in to the proofreader(s) or the

reviwer(s)!

nddiss2ε documentation can be found at these locations:

http://www.gsu.nd.edu

http://graduateschool.nd.edu

Event-triggered distributed algorithms for network optimization

A Dissertation

Submitted to the Graduate School

of the University of Notre Dame

in Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy in Electrical Engineering

by

Pu Wan, M.S. in Electrical Engineering

Michael D. Lemmon, Director

Graduate Program in Department of Electrical Engineering

Notre Dame, Indiana

November 2009

Event-triggered distributed algorithms for network optimization

Abstract

by

Pu Wan

Many existing distributed algorithms for network optimization problems of-

ten rely on the fact that, if the communications between subsystems are frequent

enough, then the state of the network will converge to its optimum asymptotically.

This approach will generally incur large communication cost. This work investi-

gates the use of event-triggered communication schemes in distributed network

optimization algorithms. Under event triggering, each subsystem broadcasts to

its neighbors when a local “error” signal exceeds a state dependent threshold. We

use the network utility maximization (NUM) problem as an example to demon-

strate our idea.

We first present an event-triggered distributed barrier algorithm and prove

its convergence. The algorithm shows significant reduction in the communication

cost of the network. However, the algorithm suffers from several issues which

limit its usefulness. We then propose two different event-triggered distributed

NUM algorithms, the primal, and the primal-dual algorithm. Both algorithms

are based on the augmented Lagrangian methods. We establish state-dependent

event-triggering thresholds under which the proposed algorithms converge to the

solution of NUM. For the primal-dual algorithm, we consider scenarios when the

network has data dropouts or transmission delay, and give an upper bound on the

Pu Wan

largest number of successive data dropouts and the maximum allowable trans-

mission delay, while ensuring the asymptotic convergence of the algorithm. A

state-dependent lower bound on the broadcast period is also given. Simulations

show that all proposed algorithms reduce the number of message exchanges by

up to two orders of magnitude when compared to existing dual decomposition

algorithms, and are scale-free with respect to two measures of network size.

We then use the optimal power flow (OPF) problem in microgrids as a non-

trivial real-life example to demonstrate the effectiveness of event-triggered opti-

mization algorithms. We develop an event-triggered distributed algorithm for the

OPF problem and prove its convergence. We use the CERTS microgrid model as

an example power system to show the effectiveness of our algorithm. The sim-

ulation is done in MATLAB/SimPower and shows that our algorithm solves the

OPF problem in a distributed way, and the communication between neighboring

subsystems is very infrequent.

CONTENTS

FIGURES . iv

TABLES . vi

CHAPTER 1: Introduction . 1
1.1 Motivation . 1
1.2 The Network Utility Maximization (NUM) problem 5
1.3 Prior work: Distributed algorithms for NUM 7

1.3.1 Kelly’s Initial Work . 8
1.3.2 Dual decomposition approach 10
1.3.3 Passivity Approach . 13

1.4 Prior work: Event-triggered control 14
1.5 Outline of thesis . 15

CHAPTER 2: Event-triggered distributed optimization using barrier methods 19
2.1 Introduction . 19
2.2 Barrier Method NUM Algorithm 20
2.3 Event-triggered NUM Barrier Algorithm 23

2.3.1 Fixed Barrier Parameter case 24
2.3.2 The switching barrier parameter case 30

2.4 Simulation . 37
2.4.1 Simulation Setup . 38
2.4.2 Effect of desired solution accuracy 39
2.4.3 Effect of tradeoff coefficient ρ 40
2.4.4 Broadcast periods of the event-triggered barrier algorithm 42
2.4.5 Scalability with respect to S 45
2.4.6 Scalability with respect to L 47
2.4.7 An example considering transmission delay 47
2.4.8 Effect of barrier parameters 49

2.5 Conclusion . 52

ii

CHAPTER 3: Event-triggered distributed optimization using augmented
Lagrangian methods . 53
3.1 Introduction . 53
3.2 The Primal algorithm . 54

3.2.1 Basic Primal Algorithm 54
3.2.2 Event-triggered Distributed Primal Algorithm 57

3.3 The Primal-dual algorithm . 66
3.3.1 Basic Primal-dual Algorithm 67
3.3.2 Event-triggered Distributed Primal-dual Algorithm 69
3.3.3 Event-triggering with data dropouts 76
3.3.4 Broadcast period analysis for the primal-dual algorithm . . 80
3.3.5 Event-triggering with transmission delays 83

3.4 Simulation . 88
3.4.1 Simulation Setup . 88
3.4.2 Broadcast periods of the event-triggered algorithm 90
3.4.3 Data dropout simulation 92
3.4.4 Transmission delay simulation 93
3.4.5 Scalability with respect to S 95
3.4.6 Scalability with respect to L 96

3.5 Conclusion . 97

CHAPTER 4: Optimal power flow in microgrids using event-triggered op-
timization . 99
4.1 Introduction . 99
4.2 The optimal power flow (OPF) problem 101
4.3 The CERTS Microgrid model . 107
4.4 Event-triggered distributed optimization for OPF 109
4.5 Simulation . 119
4.6 Conclusion . 124

CHAPTER 5: Conclusions . 128
5.1 Summary of contributions . 128
5.2 Future work . 131

BIBLIOGRAPHY . 133

iii

FIGURES

1.1 An example network in NUM . 6

2.1 Illustration of the barrier methods 21

2.2 Iteration number K as a function of ed for both algorithms. 41

2.3 Triggered events count as a function of ρ. 42

2.4 Broadcast results for one user . 43

2.5 Broadcast results for an inactive link 44

2.6 Broadcast results for an active link 45

2.7 Iteration number K as a function of S for all algorithms. 46

2.8 Iteration number K as a function of L for all algorithms. 48

2.9 Error e(k) as a function of iteration number k 49

2.10 Iteration number K as a function of α = τ j[k + 1]/τ j[k]. 50

2.11 Iteration number K as a function of β. 51

3.1 Broadcast results for event-triggered algorithms 91

3.2 Error e(k) as a function of iteration number k for different τ . . . 95

3.3 Iteration number K as a function of S for all algorithms. 96

3.4 Iteration number K as a function of L for all algorithms. 97

4.1 Power distribution network and graph abstract 103

4.2 Inverter-based microsource . 108

4.3 UWM microsource controller . 110

4.4 SimPower simulation model . 120

4.5 SimPower generator model . 121

4.6 Three generator simulation model 122

4.7 Measured generator power and generator power set point 123

4.8 Generator frequencies . 124

iv

4.9 Transmission line power flow . 125

4.10 Load power . 126

4.11 Broadcast period of generators . 127

4.12 Total generation cost . 127

v

TABLES

3.1 Simulation results for different ρj and dj 94

vi

CHAPTER 1

Introduction

1.1 Motivation

A networked system is a collection of subsystems where individual subsystems

exchange information over some communication network. Examples of networked

systems include the electrical power grid, wireless sensor networks, and the Inter-

net. In many of these networked systems, we’re interested in optimizing overall

system behavior subject to local constraints generated by limited subsystem re-

sources.

Many problems in such networks can be formulated as optimization problems.

This includes estimation [44] [47] [25], source localization [44], data gathering [13]

[12], routing [35], control [52], resource allocation [43] [65] in sensor networks,

resource allocation in wireless communication networks [64] [14], congestion con-

trol in wired communication networks [27] [34], and optimal power dispatch [29]

in electrical power grid. The consensus problem [39] can also be viewed as a

distributed optimization problem where the objective function is the total state

mismatch between neighboring agents. Due to the large-scale nature and complex-

ity of the system, centralized optimization techniques need an unacceptably large

amount of coordination and signaling. When distributed optimization algorithms

are used, each subsystem communicates with a collection of other subsystems, and

all subsystems collaboratively solve the overall optimization problem.

1

Early distributed algorithms that solve the network optimization problem di-

rectly include [23] [49]. Their results suggest that if the communication between

subsystems is frequent enough, then the state of network will converge to its

optimal point asymptotically. Recently, several other distributed optimization al-

gorithms have been proposed. In [44], a parameter estimation problem for sensor

networks was proposed. A parameter estimate is circulated through the network,

and along the way each node makes a small gradient descent-like adjustment to the

estimate based only on its local data. It was shown that the distributed algorithm

converges to an approximate solution for a broad class of estimation problems. In

[25], a randomized incremental subgradient method was used, where each node

only needs to exchange information with its neighbors. This distributed algorithm

is also shown to converge to a small neighborhood of the optimal solution.

Recent related developments in distributed algorithm has been largely in the

networking community. Most algorithms focused on solving the Network Util-

ity Maximization (NUM) problem. NUM problems maximize a global separable

measure of the networked system’s performance subject to linear inequality con-

straints. It originates in the Internet context [27] [34] as a way to understand

Internet protocols such as TCP. The NUM problem has a rather general form and

many problems in other areas can be formulated as a NUM problem with little

or no variation. As a matter of fact, all the problem we mentioned previously

can be formulated as a NUM problem with little or no variation. It is for this

reason that we will use the general NUM problem formulation as an illustrative

example to demonstrate the idea of our event-triggered algorithm. However, we

must emphasize that our objective is not trying to solve the Internet congestion

control problem in [34] using a better algorithm.

2

A variety of distributed algorithms have been proposed to solve the NUM prob-

lem [27] [34] [63] [42]. We will explain the main results on distributed algorithms

for the NUM problem in detail later in section 1.3. Kelly [27] first proposed two

classes of algorithms by decomposing the NUM problem into a user problem and a

network problem. In these algorithms, the network sets a “shadow-price” for the

user’s consumption of network resources. The user must then balance the utility

it receives by consuming such resources against the actual cost of the resources.

Simultaneously, the network adjusts its price to maximize its total revenue. The

interplay between user consumption and shadow pricing forms a feedback system

in which the users and network play a cooperative game. Kelly showed that this

game could be implemented in a distributed manner in which the locally greedy

actions of resources and users converge to the solution of the global optimization

problem.

The NUM algorithms can be classified as either primal, dual, or primal-dual

algorithms, depending upon whether the user, the link, or both user and link,

respectively, update their states through gradient following recursions. Among

all existing algorithms, the dual decomposition approach proposed by Low et al.

[34] is the most widely used algorithm for the NUM problem. Low et al. showed

that their dual decomposition algorithm was stable for a step size that is inversely

proportional to two important measures of network size: the maximum length

path L, and the maximum number of neighbors S. So as these two measures

get large, the step size required for stability becomes extremely small. Step size,

of course, determines the number of computations required for the algorithm’s

convergence. Under dual decomposition, system agents exchange information at

each iteration, so that step size also determines the message passing complexity of

3

the dual decomposition algorithm. Therefore if we use the “stabilizing” step size,

dual decomposition will have a message complexity (as measured by the number of

iterations) that scales in a super-linear manner with those two measures of network

size, L and S. Similar issues exist in earlier algorithms [23] [49] [25], where the

communications between subsystems are assumed to be ”frequent enough”, which

is equal to choosing a small underlying step size in subsystem state update.

For many networked systems this type of message passing complexity may be

unacceptable. This is particularly true for systems communicating over a wireless

network. In such networked systems, the energy required for communication can

be significantly greater than the energy required to perform computation [21]. As

a result, it would be beneficial if we can somehow separate communication and

computation in distributed algorithms. This should reduce the message passing

complexity of distributed optimization algorithms such as dual decomposition

significantly.

Our work presents one way of reducing the message passing complexity of

distributed optimization algorithms. It has recently been demonstrated [61] that

event-triggering in state feedback control systems can greatly lengthen the aver-

age sampling period of such systems. The result suggests that the use of event-

triggering in a suitable distributed algorithm may significantly reduce the message

passing complexity experienced by such algorithms. Event-triggering eliminates

the need for using a pre-selected constant step size in the distributed algorithm.

Under event triggering each subsystem broadcasts its state information when some

local ‘error’ signal exceeds a certain threshold.

The rest of the chapter reviews the major prior work that is related to our

research. In section 1.2, the Network Utility Maximization (NUM) problem is

4

formally stated. Section 1.3 reviews existing distributed algorithms for solving

the NUM problem. Three of the most representative papers are discussed in more

detail. Section 1.4 reviews some results in event-triggered control. The outline of

the thesis is then presented in section 1.5.

1.2 The Network Utility Maximization (NUM) problem

The network utility maximization (NUM) problem [27] [34] considers a network

consisting of N users and M links. Each user generates a flow with a specified

data rate. Each flow may traverse several links (which together constitute a route)

before reaching its destination. The problem generally takes the form

maximize: U(x) =
∑N

i=1 Ui(xi)

subject to: Ax ≤ c x ≥ 0
(1.1)

where x = [x1, ..., xN]T , xi ∈ R is user i’s data rate, A ∈ R
M×N represents the

routing matrix, and c ∈ R
M is the capacity vector of the M links. Ui(xi) is the

utility function of user i, which has the following properties:

1. Ui(xi) is twice differentiable and strictly increasing, i.e. ∇Ui(xi) > 0.

2. Ui(xi) is strictly concave in xi, i.e. ∇2Ui(xi) < 0.

The utility function Ui(xi) usually represents the reward (i.e. quality-of-service)

[27][34] user i gets by transmitting at rate xi.

For the routing matrix A, if Aji = 1, link j is used by user i; if Aji = 0,

then link j is not used by user i. The jth row of Ax represents the total data

rates that go through link j, which cannot exceed its capacity cj. The constraint c

usually represents the bandwidth capacity of the link. For a large scale network, A

5

usually has sparse structure. People are interested in using a distributed algorithm

to solve the NUM problem. The term ‘distributed’ means each user only knows

the information of the links that it uses, and each link only knows the information

of the users that use it. Figure 1.1 is an example network with the following

constraint:

Ax =

1 0 1 0

1 1 1 0

1 1 0 1

x1

x2

x3

x4

≤

c1

c2

c3

S3

S1

S2

S4

L1 L3L2

x4

x1

x2

x3

Figure 1.1. An example network in NUM

The solution to the NUM problem maximizes the summed utility seen by all

users in the network as a function of the users’ transmission rates. These rates

must clearly be non-negative. Moreover, if Ui(x) = wi log x where wi is a positive

constant, then it can be shown that all of the user rates in the optimal solution

6

must be positive. Such solutions are seen as being “fair”, since no user’s optimal

rate goes to zero.

We use S = {1, ..., N} to denote the set of users, and L = {1, ...,M} to denote

the set of links. For user i, Li = {j ∈ L|i ∈ Sj} is the set of links used by it. For

link j, Sj = {i ∈ S|j ∈ Li} is the set of its users. Note that j ∈ Li if and only if

i ∈ Sj . We also define L = maxi∈S |Li|, S = maxj∈L |Sj|. In other words, L is the

maximum number of links any user i ∈ S uses, and S is the maximum number of

users any link j ∈ L has.

1.3 Prior work: Distributed algorithms for NUM

This section reviews existing distributed algorithms used in solving the NUM

problem. The NUM algorithms can be classified as either primal, dual, or primal-

dual algorithms, depending upon whether the user, the link, or both user and

link, respectively, update their states through gradient following recursions. In

the algorithms given in [27][34], either the user or the link update is a memoryless

penalty function, which corresponds to a dual or primal algorithm, respectively.

In [41][6], a dual algorithm is used, and the link update is implemented by a

second order dynamical equation. The cases when both user and link updates

are dynamic have been analyzed in [31][2][24]. In [31], stability was shown using

singular perturbations, while in [2][24], stability was established only for the single-

bottleneck case (i.e., only one congested link is considered). In [63], the author

used passivity to establish the stability of a broad class of primal-dual algorithms,

and included the primal and dual algorithms of [27][41] as special cases.

Among the existing literature, the NUM problem is mostly solved using a dual

algorithm. The approach was first applied to the NUM problem in [27], and then

7

later widely used in the Internet [34] [15], wireless ad hoc networks [43] [65] [66],

and sensor networks [12].

Next we will review three of the most representative papers in more detail. Ini-

tial work on a distributed solution to the NUM problem is presented in subsection

1.3.1. Subsection 1.3.2 discusses the dual decomposition approach. Passivity-

based primal-dual algorithms are presented in subsection 1.3.3.

1.3.1 Kelly’s Initial Work

Kelly [27] first proposed two classes of algorithms to solve the NUM problem

(equation 1.1) and proved the convergence of these algorithms by constructing a

Lyapunov function. The utility function for user i ∈ S was chosen explicitly as a

logarithm function Ui(xi) = wi log xi, where wi > 0 is a weighting coefficient. For

this utility function, the primal algorithm takes the form

ẋi(t) = γ

(

wi − xi(t)
∑

j∈Li

pj(t)

)

(1.2)

pj(t) = hj

∑

i∈Sj

xi(t)

 (1.3)

where γ > 0 is some gain constant. pj(t) is link j’s feedback signal, which has the

interpretation of the price for using the link. hj(·) is a continuous, non-negative,

increasing function which takes the form

hj(y) = [y − cj + ε]+/ε2 (1.4)

where [z]+ = max{z, 0} and ε is a small positive constant. Equations 1.2-1.3 are

called the primal algorithm because the user’s data rate x (which is the primal

8

variable) is updated using a first order differential equation. On the other hand,

the link’s update is a memoryless function of the user rate. In equation 1.2,

wi/xi(t) can be interpreted as user i’s willingness-to-pay when it transmits at

rate xi(t). Then according to equation 1.2, user i increases its rate if the total

price
∑

j∈Li
pj(t) is less than its willingness-to-pay, and decreases it otherwise. In

equation 1.3, since hj(·) is an increasing function, the price pj(t) increases if the

aggregate rates in link j increases.

It was shown that

V (x) =
∑

i∈S
Ui(xi) −

∑

j∈L

∫

P

i∈Sj
xi(t)

0

hj(y)dy (1.5)

is a Lyapunov function for the system in equations 1.2-1.3. Therefore the system

has an equilibrium point that is globally asymptotically stable. As ε → 0, the

equilibrium of equations 1.2-1.3 approaches arbitrarily close to the optimal solu-

tion of the NUM problem. If we view V (x) as the penalty function of the NUM

problem, then equations 1.2-1.3 can be thought of as a gradient descent algorithm

to solve the problem [15].

The dual algorithm proposed by Kelly takes the form

ṗj(t) = γ

∑

i∈Sj

xi(t) − qj(pj(t))

 (1.6)

xi(t) =
wi

∑

j∈Li
pj(t)

(1.7)

where qj(·) is

qj(η) =
cjη

η + ε
(1.8)

9

for small positive constant ε. In the dual algorithm 1.6-1.7, the user update is

static and the link update is dynamic. Similarly, the function

V (x) =
∑

i∈S
Ui

(

∑

j∈Li

pj(t)

)

−
∑

j∈L

∫ pj(t)

0

qj(η)dη (1.9)

is a Lyapunov function for the system in equations 1.6-1.7. This means the sys-

tem’s equilibrium point is globally asymptotically stable. Again as ǫ → 0, this

equilibrium point approaches the solution of the NUM problem.

We should point out that Kelly in [27] relaxes the nonnegativity constraint on

user rates x and link prices p. This simplifies the stability proof using Lyapunov

techniques.

1.3.2 Dual decomposition approach

Dual decomposition [34] works by considering the dual problem of the NUM

problem, which is given as

minimize: D(p)

subject to: p ≥ 0
(1.10)

where

D(p) = max
x≥0

L(x, p) = max
x≥0

{
N
∑

i=1

Ui(xi) − pT (Ax− c)} (1.11)

p = [p1, ..., pM]T is the Lagrange multiplier (which has the interpretation of price

for using each link [27] [34]) associated with the inequality constraint Ax ≤ c. If

x∗ and p∗ are vectors solving the dual problem, then it can be shown that x∗ also

solves the original NUM problem.

10

Low et al. [34] established conditions under which a pair of recursions would

generate a sequence of user rates, {x[k]}∞k=0, and link prices, {p[k]}∞k=0, that asymp-

totically converge to a solution of the dual problem. Given the initial user rates

x[0] and link prices p[0], then for all i ∈ S and j ∈ L, we let

xi[k + 1] = arg max
xi≥0

{

Ui(xi[k]) − xi[k]
∑

j∈Li

pj[k])

}

(1.12)

pj[k + 1] = max

0, pj[k] + γ

∑

i∈Sj

xi[k] − cj

(1.13)

for k = 0, · · · ,∞. xi[k] and pj[k] will converge to the optimal value x∗ and p∗,

respectively. In equation 1.12, user i only needs to know the aggregate prices of

all the links that user i uses at time k, which is known to user i. In the link

update law in equation 1.13, link j only needs to know the total data rates that

pass through itself, which is also known to link j. The above remarks show that

dual decomposition yields a fully distributed computational solution of the NUM

problem.

The update law in equations 1.12-1.13 is very similar to the dual algorithm

1.6-1.7 in Kelly’s work. In the special case where Ui(xi) = wi log xi, equations

1.12-1.13 reduces to a similar form of 1.6-1.7, provided qj(pj(t)) = cj in equation

1.6. However, this choice of qj(·) does not satisfy certain conditions required for

the stability proof in [27].

The stability of the system in equations 1.12-1.13 is proved by showing that

the dual objective function D(p(t)) can be thought of as a Lyapunov function

for the discrete time system, provided the step size γ is sufficiently small. It was

11

shown in [34] that the stabilizing γ satisfies

0 < γ < γ∗ =
−2 max(i,xi) ∇2Ui(xi)

LS
(1.14)

where L is the maximum number of links any user uses and S is the maximum

number of users any link has. Equation 1.14 requires that the step size be inversely

proportional to both L and S. We can conclude that the computational complexity

of dual decomposition (as measured by the number of algorithm updates) scales

superlinearly with L and S.

If the network is highly congested (large S), or has a long route (large L), then

from equation 1.14, we have to choose small γ to ensure stability [5]. When the

utility function is in the form of a logarithm function Ui(xi) = wi log xi, then the

optimal step size is

γ∗ =
2

LS
min
i∈S

(
wi

x2
i

), (1.15)

This means that the step size will depend on the maximum data rate the users

can transmit.

In real Internet congestion control protocols, the price p is usually implicitly

fed back to the users. Various protocols have been developed, such as RED[19],

REM[6] and RAM[1]. Such mechanism is certainly more practical than explicit

transmission of price information and suffices in the Internet context. However, it

suffers from various errors inherent in its implicit price-notification [36], which lim-

its its applicability. Moreover, in many applications, such as in the consensus[39]

and electrical power grid [29] problem, there is no way we can employ this kind

of implicit pricing feedback scheme. For this reason, explicit feedback scheme is

12

still needed in many applications. Our later presented event-triggered algorithm

uses an explicit feedback scheme. Since we are interested in solving a large class

of optimization problems instead of just the simple NUM problem in the Internet

context, the scheme serves our purposes well.

1.3.3 Passivity Approach

Consider the following primal-dual algorithm, where both the user update and

the link update are dynamic,

ẋi(t) = ki

(

∇Ui(xi) −
∑

j∈Li

pj(t)

)+

xi(t)

(1.16)

ṗj(t) = γj

∑

i∈Sj

xi(t) − cj

+

pj(t)

(1.17)

Given a function f(x), its positive projection is defined as

(f(x))+
x =

f(x), if x > 0,

f(x), if x = 0 and f(x) ≥ 0

0, if x = 0 and f(x) < 0

(1.18)

If we denote y = Ax, then yj(t) =
∑

i∈S(j) xi(t). Denote the optimal value of y

as y∗, and the optimal value of p as p∗. It was shown in [63] that for the user

algorithm 1.16, the system from −(p−p∗) to y−y∗ is strictly passive if we choose

the storage function

V1(x) =
1

2

∑

i∈S

(xi − x∗i)
2

ki

(1.19)

13

Similarly, for the link algorithm 1.17, the system from y − y∗ to p− p∗ is strictly

passive if we choose the storage function

V2(p) =
1

2

∑

j∈L

(pj − p∗j)
2

γj

(1.20)

By the passivity theorem [28, Chap 6], the feedback interconnection of 1.16 and

1.17 is asymptotically stable, and V (x, p) = V1(x) + V2(p) can be used as a Lya-

punov function for the interconnected system. This allows us to use a primal-dual

algorithm, where both the user and link update are dynamic. We should empha-

size here that the classes of algorithms are not restricted to equations 1.16-1.17

only, any algorithms satisfying certain passivity properties can be used here.

As we can see, existing solutions to the NUM problem either rely on conser-

vative choice of step size in order to ensure stability, or otherwise stated as a

continuous-time law, which makes it difficult for us to determine how often the

communication is needed. This inspires us to use an event-triggered scheme which

eliminates the need for pre-selected constant step size in the distributed algorithm.

1.4 Prior work: Event-triggered control

Event-triggered systems are systems in which sensors are sampled in a sporadic

non-periodic manner. Event-triggering has an agent transmit information to its

neighbors when some measure of the ”novelty” in that information exceeds some

specified threshold. In this way, the communication network is only used when

there is an immediate need. Early examples of event-triggering were used in re-

lay control systems[50] and more recent work has looked at event-triggered PID

14

controllers [3]. Much of the early work in event-triggered control assumed event-

triggers in which the triggering thresholds were constant. Recently it was shown

that state-dependent event triggers could be used to enforce stability concepts

such as input-to-state stability [48] or L2 stability [60] in both embedded control

systems and networked control systems [62]. There has been ample experimental

evidence [4, 46] to suggest that event-triggering can greatly reduce communica-

tion bandwidth while preserving overall system performance. Event-triggering

therefore provides a useful approach for reducing an application’s usage of the

communication network.

1.5 Outline of thesis

The outline of the thesis is briefly introduced in the following paragraphs,

sorted by chapter.

Chapter 2 Existing distributed optimization algorithms usually consume a large amount

of communication resources because of the inherent coupling between inter-

subsystem communication and local computation. This chapter addresses

this issue through the use of an event-triggered scheme. In this chapter we

start to study how to use event-triggering to separate communication and

computation in distributed optimization algorithms.

The chapter uses the NUM problem formulation as an example and presents

a distributed algorithm based on barrier methods that uses event-triggered

message passing. Under event triggering, each subsystem broadcasts to its

neighbors when a local “error” signal exceeds a state dependent threshold.

We prove that the proposed algorithm converges to the global optimal so-

lution of the NUM problem. Simulation results suggest that the proposed

15

algorithm reduces the number of message exchanges by up to two orders of

magnitude when compared to dual decomposition algorithms, and is scale-

free with respect to two measures of network size L and S.

Chapter 3 The event-triggered barrier algorithm in chapter 2 is our very first approach

to solve the distributed optimization problems using the event-triggered idea,

and it shows significantly reduction in the communication cost of the net-

work. However, as we show in the chapter, the algorithm suffers from issues

like the need for an initial feasible point, and performance sensitive to pa-

rameter choices. All these issues limit the usefulness the algorithm. This

inspired us to look for alternative algorithms to apply the event-triggered

idea.

This chapter still uses the NUM problem formulation as an example and

presents two distributed algorithms based on the augmented Lagrangian

methods that use event-triggered message passing and proves their conver-

gence. One of the algorithm is a primal algorithm, and the other is a primal-

dual algorithm. For the primal-dual algorithm, we consider scenarios when

the network has data dropouts, and give an upper bound on the largest

number of successive data dropouts each link can have, while ensuring the

asymptotic convergence of the algorithm. A state-dependent lower bound

on the broadcast period and an upper bound on the transmission delay the

network can tolerate while ensuring convergence are also given. Simulation

results show that both algorithms have a message passing complexity that

is up to two orders of magnitude lower than dual decomposition algorithms,

and are scale-free with respect to two measures of network size L and S.

The primal algorithm in this chapter is similar to the algorithm in chapter

16

2. However, in chapter 2, we used the barrier method instead of the aug-

mented Lagrangian method as the basis for the event-triggered algorithm.

In that case, the resulting algorithm suffers from issues like ill-conditioning,

need for an initial feasible point and sensitive to the choice of parameters.

The event-triggered algorithms presented in this chapter do not have these

issues.

Chapter 4 The problems and algorithms developed in the previous chapters are some-

what abstract, and did not explicitly show how we can use those event-

triggered algorithms in real-life applications. This chapter uses the optimal

power flow problem in microgrids as a nontrivial real-life example to demon-

strate the effectiveness of event-triggered optimization algorithms.

The optimal power flow (OPF) problem has been the research subject of

power system community since early 1960’s, and is very similar to the NUM

problem we considered in previous chapters. Various centralized or dis-

tributed optimization algorithms have been proposed to solve the OPF prob-

lem. These algorithms usually made the assumptions that communication

between subsystems was not expensive and reliable, which is unrealistic.

One way around this problem is to make use of low power ad hoc wireless

communication networks that operate independently of the main power grid.

Using event-triggering on those wireless networks therefore may provide a

useful approach for reducing the power grid’s use of the communication net-

work.

In this chapter, we develop an event-triggered distributed optimization algo-

rithm for the OPF problem and prove its convergence. We use the CERTS

microgrid model [32] as an example power system to show the effectiveness

17

of our algorithm. The simulation is done in MATLAB/SimPower and shows

that our algorithm solves the OPF problem in a distributed way, and the

communication between neighboring subsystems is very infrequent.

Chapter 5 This chapter is a summary of the thesis, and also provides suggestions for

future work.

18

CHAPTER 2

Event-triggered distributed optimization using barrier methods

2.1 Introduction

This chapter presents one way of reducing the message passing complexity of

distributed optimization algorithms using event-triggering. The chapter uses the

NUM problem formulation as an example and presents a distributed algorithm

based on barrier methods that uses event-triggered message passing. Under event

triggering, each subsystem broadcasts to its neighbors when a local “error” sig-

nal exceeds a state dependent threshold. We prove that the proposed algorithm

converges to the global optimal solution of the NUM problem. Simulation results

suggest that the proposed algorithm reduces the number of message exchanges by

up to two orders of magnitude, and is scale-free with respect to two measures of

network size L and S.

The rest of the chapter is organized as follows. The event-triggered optimiza-

tion algorithm is based on a barrier method solution to the NUM problem which

is described in section 2.2. Section 2.3 presents our event-triggered distributed al-

gorithm based on barrier methods, and proves its convergence. Simulation results

are shown in section 2.4, and section 2.5 concludes the chapter.

19

2.2 Barrier Method NUM Algorithm

The event-triggered algorithm presented in this chapter is based on a barrier

method for the NUM problem. Barrier type algorithms have only recently been

proposed for use on the NUM problem. This recent work uses a special type

of barrier method known as the interior-point method [67]. Primal-dual interior

point methods, however, do not distribute across the network. We therefore have

to develop a barrier method that easily distributes across the network.

In barrier methods, a constrained problem is converted into a sequence of

unconstrained problems, which involve an added high cost for approaching the

boundary of the feasible region via its interior. The added cost is parameterized

by the barrier parameter. As the barrier parameter decreases to zero, the added

cost becomes increasingly inconsequential. This progressively allows the iterates

to approach the optimal point on the boundary. As the barrier parameter goes to

zero, the optimal point on the boundary is reached. The solutions to the sequence

of unconstrained problems form the central path, which is a 1-D curve connecting

the initial point in the feasible region to the optimal point.

Traditional barrier algorithms [38] have only one barrier parameter. Our al-

gorithms consider a more general case in which a barrier parameter is associated

with each constraint. Let F s = {x : x > 0, Ax < c} denote the strict feasible

region. The Lagrangian associated with the NUM problem is

L(x; τ, λ) = −
∑

i∈S
Ui(xi) −

∑

i∈S
λi log xi −

∑

j∈L
τj log(cj − aT

j x) (2.1)

where τ = [τ1, · · · , τM] is a vector of barrier parameters associated with the links

in L and λ = [λ1, · · · , λN] is a vector of barrier parameters associated with the

20

users in S. The vector aT
j = [Aj1, · · · , AjN] is the jth row of the routing matrix

A.

path of
minimizers

x ∗

0 0(),x τ λ∗

1 1(),x τ λ∗

2 2(),x τ λ∗

0x

SF
0 0(),x τ λ

1 1(),x τ λ

2 2(),x τ λ
approximate

path

Figure 2.1. Illustration of the barrier methods

Let {τ j [k]}∞k=0 and {λi[k]}∞k=0 be sequences of link (j ∈ L) and user (i ∈ S)

barriers, respectively, that are monotone decreasing to zero. The barrier method

solves the NUM problem by approximately minimizing L(x; τ [k], λ[k]) for the bar-

rier sequences defined above. Let x∗[k] denote the approximate minimizer for

L(x; τ [k], λ[k]). By the barrier method in [38], the sequence of approximate min-

imizers {x∗[k]}∞k=0 converges to the optimal point of the NUM problem, which is

illustrated in figure 2.1. The barrier method algorithm for the NUM problem is

formally stated below.

21

1. Initialization: Select an initial user rate x0 ∈ F s and set K = 0. Set

τj = τ j [K], λi = λi[K], i ∈ S, j ∈ L, and ǫ = ǫ[K].

2. Main Recursive Loop:

Do until: ‖∇xL(x0, τ, λ)‖ ≤ ǫd

(a) Approximately Minimize L(x; τ, λ):

Do until: ‖∇xL(x0; τ, λ)‖ ≤ ǫ

x = x0 − γ∇xL(x0; τ, λ) (2.2)

x0 = x

(b) Update Parameters:

Set τj = τ j[K + 1], λi = λi[K + 1], i ∈ S, j ∈ L, and ǫ = ǫ[K + 1]. Set

K = K + 1.

3. Set x∗ = x0.

In the algorithm above, {ǫ[k]}∞k=0 is a sequence of tolerance levels that are

monotone decreasing to zero. ǫd is a terminating tolerance level. γ is a sufficiently

small step size. Note that the inner recursion shown in step 2a is approximately

minimizing L(x; τ, λ) for a fixed set of barrier vectors using a simple gradient

following method.

The computations above can be easily distributed among the users and links.

The primary computations that need to be distributed are the user rate update and

terminating condition in step 2a, as well as the parameter update in step 2b. We

will see how they are distributed in our event-triggered distributed implementation

of the algorithm in section 2.3.

22

In dual decomposition and the barrier algorithm shown above, the exchange

of information between users and links happens each time the gradient follow-

ing update is applied. This means that the number of messages passed between

links and users is equal to the number of updates required for the algorithm’s

convergence. That number is, of course, determined by the step-size. For both

algorithms, these step sizes may be small, so that the number of messages passed

between links and users will be large. The following section presents an event-

triggered implementation of the barrier method NUM algorithm. It reduces the

communication cost of the algorithm significantly.

2.3 Event-triggered NUM Barrier Algorithm

The NUM barrier algorithm solves a sequence of unconstrained optimization

problems that are indexed with respect to the non-negative integers k. In par-

ticular, the algorithm minimizes the Lagrangian L(x; τ [k], λ[k]) where {τ [k]}∞k=0

and {λ[k]}∞k=0 are sequences of link and user barrier vectors, respectively, that are

monotone decreasing to zero.

Implementing the NUM barrier algorithm in a distributed manner requires

communication between users and links. An event-triggered implementation of

the NUM barrier algorithm assumes that the transmission of messages between

users and links is triggered by some local error signal crossing a state-dependent

threshold. The main problem is to determine a threshold condition that results

in message streams ensuring the asymptotic convergence of the NUM barrier al-

gorithm to the problem’s solution.

We begin by considering the minimization of L(x; τ [k], λ[k]) for a fixed set

of barrier vectors (i.e. fixed k). Subsection 2.3.1 determines an event thresh-

23

old condition ensuring the convergence of the local update (equation 2.2) to this

minimizer. Subsection 2.3.2 then considers the case when the barrier vectors are

switched as we change k. In particular, we present a distributed update strategy

for the barrier parameters that ensures the convergence of the algorithm to the

NUM problem’s solution.

2.3.1 Fixed Barrier Parameter case

This subsection considers the problem of finding a minimizer for the La-

grangian L(x; τ, λ) under the assumption that the barrier vectors τ and λ are

constant. We can search for the minimizer using a gradient following algorithm

xi(t) = −
∫ t

0

∇xi
L(x(s); τ, λ)ds

=

∫ t

0

(

∂Ui(xi(s))

∂xi

+
λi

xi(s)
−
∑

j∈Li

µj(s)

)

ds (2.3)

for each user i ∈ S and where

µj(t) =
τj

cj − aT
j x(t)

(2.4)

Equation 2.3 is the continuous-time version of the update in equation 2.2. Note

that in equation 2.3, user i can compute its rate only based on the information

from itself, and the information of µj from those links that are being used by user

i. We can think of µj as the jth link’s local state. From equation 2.4, link j only

needs to be able to measure the total flow that goes through itself. All of this

information is locally available so the update of the user rate can be done in a

distributed manner.

In the above equation, the link state information is available to the user in

24

a continuous manner. We now consider an event-triggered version of equation

2.3. Rather than assuming each user can access the link state µj in a continuous

fashion, we assume that the user accesses a sampled version of the link state. In

particular, let’s associate a sequence of sampling instants, {TL
j [ℓ]}∞ℓ=0 with the jth

link. The time TL
j [ℓ] denotes the instant when the jth link samples its link state

µj for the ℓth time and transmits that state to users i ∈ Sj . We can therefore see

that at any time t ∈ ℜ, the sampled link state is a piecewise constant function of

time in which

µ̂j(t) = µj(T
L
j [ℓ]) (2.5)

for all ℓ = 0, · · · ,∞ and any t ∈ [TL
j [ℓ], TL

j [ℓ + 1]). In this regard, the “event-

triggered” version of equation 2.3 takes the form

xi(t) =

∫ t

0

(

∂Ui(xi(s))

∂xi

+
λi

xi(s)
−
∑

j∈Li

µ̂j(s)

)

ds (2.6)

for all ℓ and any t ∈ [TL
j [ℓ], TL

j [ℓ + 1]).

The sequence {TL
j [ℓ]}∞ℓ=0 represents time instants when the link transmits its

“state” to its users. Under event-triggering, it will be convenient to have a sim-

ilar flow of information from the user to the link. We assume that link j can

directly measure the total flow rate,
∑

i∈Lj
xi(t), in a continuous manner. The

event-triggering scheme proposed below will require that link j have knowledge

of the time derivative of user i’s flow rate. In particular, let zi(t) denote the time

25

derivative of this flow rate. zi(t) therefore satisfies

zi(t) = ẋi(t)

= ∇Ui(xi(t)) +
λi

xi(t)
−
∑

j∈Li

µ̂j(t) (2.7)

for all i ∈ S. We will refer to zi as the ith user state. We associate a sequence

{T S
i [ℓ]}∞ℓ=0 to each user i ∈ S. The time T S

i [ℓ] is the ℓth time when user i transmits

its user state to all links j ∈ Li. We can therefore see that at any time t ∈ ℜ, the

sampled user state is a piecewise constant function of time satisfying

ẑi(t) = zi(T
S
i [ℓ]) (2.8)

for all ℓ = 0, · · · ,∞ and any t ∈ [T S
i [ℓ], T S

i [ℓ+1]). In the proposed event-triggering

scheme, links will use the sampled user state, ẑ, to help determine when they

should transmit their states back to the user.

We are now in a position to state the main theorem of this subsection.

Theorem 2.3.1 Consider the Lagrangian in equation 2.1 where the functions Ui

are twice differentiable, strictly increasing, and strictly concave and where the

routing matrix A is of full rank. Assume a fixed barrier vector λ > 0 and τ > 0

and assume the initial user rates xi(0) lie in the feasible set F s. Consider the

sequences {T S
i [ℓ]}∞ℓ=0 and {TL

j [ℓ]}∞ℓ=0 for each i ∈ S, and each j ∈ L, respectively.

For each i ∈ S, let the user rate, xi(t), satisfy equation 2.6 with sampled link states

given by equation 2.5. For each i ∈ S let the user state zi(t) satisfy equation 2.7

and assume link j’s measurement of the user state satisfies equation 2.8.

Let ρ be a constant such that 0 < ρ < 1. Assume that for all i ∈ S and all

26

ℓ = 0, · · · ,∞, that

z2
i (t) − ρẑ2

i (t) ≥ 0 (2.9)

for t ∈ [T S
i [ℓ], T S

i [ℓ + 1]). Further assume that for all j ∈ L and all ℓ = 0, · · · ,∞

that

ρ
∑

i∈Sj

1

L
ẑ2

i (t) − LS (µj(t) − µ̂j(t))
2 ≥ 0 (2.10)

for t ∈ [TL
j [ℓ], TL

j [ℓ + 1]). Then the user rates x(t) asymptotically converge to the

unique minimizer of L(x; τ, λ).

Proof: For convenience, we do not explicitly include the time dependence of

xi(t), x̂i(t), zi(t), ẑi(t), µj(t), µ̂j(t) in most part of the proof.

For all t ≥ 0 we have

−L̇(x; τ, λ) = −
N
∑

i=1

∂L

∂xi

dxi

dt
(2.11)

=
N
∑

i=1

zi[∇Ui(xi) +
λi

xi

−
M
∑

j=1

µjAji] (2.12)

≥
N
∑

i=1

{

1

2
z2

i −
1

2
[

M
∑

j=1

(µj − µ̂j)Aji]
2

}

(2.13)

Remember there are only |Li| nonzero terms in the sum
∑M

j=1(µj − µ̂j)Aji, then

by using the inequality

−
[

M
∑

j=1

(µj − µ̂j)Aji

]2

≥ −|Li|
M
∑

j=1

[(µj − µ̂j)Aji]
2 (2.14)

27

we have

−L̇(x; τ, λ) (2.15)

≥ 1

2

N
∑

i=1

z2
i −

1

2

N
∑

i=1

{

|Li|
M
∑

j=1

[(µj − µ̂j)Aji]
2

}

(2.16)

=
1

2

N
∑

i=1

z2
i −

1

2

M
∑

j=1

{

(µj − µ̂j)
2

N
∑

i=1

|Li|A2
ji

}

(2.17)

≥ 1

2

N
∑

i=1

z2
i −

1

2

M
∑

j=1

LS(µj − µ̂j)
2 (2.18)

Consider the term 1
2
ρ
∑N

i=1 ẑ
2
i , we have

1

2
ρ

N
∑

i=1

ẑ2
i (2.19)

=
1

2
ρ

N
∑

i=1

L
1

L
ẑ2

i (2.20)

=
1

2
ρ

M
∑

j=1

N
∑

i=1

1

L
ẑ2

iAji +
1

2
ρ

N
∑

i=1

(L− |Li|)
1

L
ẑ2

i (2.21)

Remember |Li| ≤ L for i ∈ S, this means

−L̇(x; τ, λ)

≥ 1

2

N
∑

i=1

z2
i −

1

2
ρ

N
∑

i=1

ẑ2
i +

1

2
ρ

N
∑

i=1

ẑ2
i −

1

2

M
∑

j=1

LS(µj − µ̂j)
2 (2.22)

≥ 1

2

N
∑

i=1

[z2
i − ρẑ2

i] +
1

2

M
∑

j=1

{

ρ

N
∑

i=1

1

L
ẑ2

iAji − LS(µj − µ̂j)
2

}

(2.23)

≥ 1

2

N
∑

i=1

[z2
i − ρẑ2

i] +
1

2

M
∑

j=1

ρ
∑

i∈Sj

1

L
ẑ2

i − LS(µj − µ̂j)
2

(2.24)

which immediately suggests us if the sequences of sampling instants {T S
i [ℓ]}∞ℓ=0 and

28

{TL
j [ℓ]}∞ℓ=0 satisfy the inequalities in equation 2.9 and 2.10 for all ℓ = 0, 1, 2, ...,∞,

and any i ∈ S, j ∈ L, then L̇(x; τ, λ) ≤ 0 is guaranteed for all t.

By using the properties of Ui(xi), it is easy to show that for any fixed λ and

τ , L(x; τ, λ) has a unique minimizer. Suppose x∗(τ, λ) is this minimizer, and the

corresponding Lagrangian is L(x∗; τ, λ). Define V (x) = L(x; τ, λ)−L(x∗; τ, λ). It

is trivial to see V (x) is a Lyapunov function for the system. Moreover, V̇ (x) = 0

means L̇(x; τ, λ) = 0. The only scenario this can happen is

zi = ẑi = 0, ∀i ∈ S, µj = µ̂j, ∀j ∈ L (2.25)

which corresponds to x∗(τ, λ). As a result, the equilibrium x∗(τ, λ) is asymptoti-

cally stable. Proof complete. �

Theorem 2.3.1 provides the basis for constructing an event-triggered message-

passing protocol. This theorem essentially asserts that we need to select the

transmit times {T S
i [ℓ]} and {TL

j [ℓ]} so that the inequalities in equations 2.9 and

2.10 always hold. One obvious way to do this is to use the violation of these

inequalities to trigger the sampling and transmission of link/user states across

the network. At time t = T S
i [ℓ], we see that z2

i − ρẑ2
i is nonnegative so that the

inequality in equation 2.9 is automatically satisfied. After this sampling instant,

zi(t) continues to change until the inequality is violated. We let that time instant

be T S
i [ℓ+ 1] and transmit the sampled user state to the link.

In a similar way, link j compares the square of the error between the last

transmitted link state µ̂j and the current link state µj. At the sampling time

TL
j [ℓ], this difference is zero and the inequality is trivially satisfied. After that

time, µj(t) continues to change or the link may receive an updated user state ẑi

that may result in the violation of the inequality. We let that time be the next

29

sampling instant, TL
j [ℓ + 1] and then transmit the sampled link state µ̂j to the

user.

The threshold conditions shown in equations 2.9-2.10 therefore provide the

basis for an event-triggered scheme to solve the local minimization problem in

step 2a of the NUM barrier algorithm presented earlier.

2.3.2 The switching barrier parameter case

Recall that the solution to the fixed-barrier case finds an approximate mini-

mizer to the Lagrangian L(x; τ, λ) in step 2a of the NUM barrier algorithm. We

now consider what happens when we systematically reduce the barrier parameters

to zero. In particular, we need to identify a distributed strategy for updating these

barrier parameters so that the sequence of approximate minimizers asymptoti-

cally approach the global solution of the NUM problem. This subsection presents

such an updating strategy and proves that the resulting event-triggered algorithm

asymptotically converges to the desired solution.

The discussion of the algorithms needs an additional notation. For a function

f(t) defined on t ∈ [0, T), we denote f+(T) as the limit value of f(t) when t

approaches T from the left hand side.

Each user i ∈ S executes the following algorithm. The main assumption here

is that user i is continuously transmitting data at rate xi(t) at time t. For each

user i, we assume there exists a monotone decreasing sequence of user barrier

parameters, {λi[k]}∞k=0, that asymptotically approaches zero. For each user i, we

also assume there exists another monotone decreasing sequence of tolerance levels,

{ǫi[k]}∞k=0 that asymptotically approaches zero.

Algorithm 2.3.1 User i’s Update Algorithm

30

1. Parameter Initialization: Set the initial user rate x0
i so that x0 lies in

the feasible set F s. Let K = 0, T = 0, λi = λi[K], and ǫi = ǫi[K].

2. State Initialization: Upon receiving link state µj(T) from j ∈ Li, set

µ̂j = µj(T). Initialize user state to

zi(T) = ∇Ui(x
0
i) +

λi

x0
i

−
∑

j∈Li

µ̂j (2.26)

set ẑi = zi(T) and transmit zi(T) to all links in j ∈ Li.

3. Update User Rate: Integrate the user rate equation

xi(t) =

∫ t

T

zi(s)ds (2.27)

zi(t) = ∇Ui(xi(t)) +
λi

xi(t)
−
∑

j∈Li

µ̂j (2.28)

xi(T) = x0
i (2.29)

where t ∈ [T, T+) and T+ is the time instant when one of the following

conditions is true

(a) If z2
i (t) − ρẑ2

i ≤ 0 then broadcast z+
i (T+) to all links j ∈ Li, and set

ẑi = z+
i (T+).

(b) Or if user i receives a new link state µ+
j (T+) from link j ∈ Li, set

µ̂j = µ+
j (T+).

(c) Or if |zi(t)| ≤ ǫi, then set λi = λi[K + 1] and ǫi = ǫi[K + 1]. Set

K = K + 1 and notify link j ∈ Li that user i performed a barrier

update.

4. Increment Time: Set T = T+, x0
i = x+

i (T+) and go to step 3.

31

A similar algorithm is executed by all links j ∈ L. The main assumption here

is that link j can continuously monitor the link state µj(t) at any time t ∈ ℜ. For

each link j we assume there exists a monotone decreasing sequence of link barrier

parameters, {τ j[k]}∞k=0 that asymptotically approaches zero.

Algorithm 2.3.2 Link j’s Update Algorithm

1. Parameter Initialization: Set K = 0, T = 0, τj = τ j[K] and set the

switching indicator Ii = 0 for each i ∈ Sj.

2. State Initialization Measure the local link state

µj(T) =
τj

cj −
∑

i∈Sj
xi(T)

(2.30)

Transmit µj(T) to all users i ∈ Sj and set µ̂j = µj(T). Upon receiving user

state zi(T) from i ∈ Sj, set ẑi = zi(T).

3. Link Update: Continuously monitor the link state µj(t) for all t ∈ [T, T+)

where T+ is the time instant when one of the following events occur

(a) If

ρ
∑

i∈Sj

1

L
ẑ2

i ≤ LS (µj(t) − µ̂j)
2

then set µ̂j = µ+
j (T+) and broadcast the updated link state µ+

j (T+) to

all users i ∈ Sj.

(b) Or if link j receives a new user state z+
i (T+) for any i ∈ Sj, then set

ẑi = z+
i (T+).

32

(c) Or if link j receives notification that user i performed a barrier update,

set Ii = 1.

4. Update Barrier Parameter: If Ii = 1 for all i ∈ Sj, then set τj =

τ j [K + 1], reset Ii = 0 for all i ∈ Sj. Set K = K + 1.

5. Increment Time: Set T = T+ and go to step 3.

In the preceding algorithms, the parameters λi, τj , and ǫi are switched accord-

ing to the parameter sequences {λi[k]}, {τ j [k]}, and {ǫi[k]}, respectively. These

switches occur at discrete instants in time. Provided an infinite number of switches

occur, we can guarantee that the sequence of parameters used by the algorithm

also asymptotically approach zero. The following lemma establishes that this

actually occurs.

Lemma 2.3.2 Consider algorithms 2.3.1 and 2.3.2. For each i ∈ S, let {T λ
i [k]}MS

i

k=0

denote the sequences of all time instants when λi and ǫi switch values. For each

j ∈ L, let {T τ
j [k]}ML

j

k=0 denote the sequence of all time instants when τj switches

values. Then MS
i and ML

j are infinite for all i, j.

Proof: We will first show that MS
i is infinite for all i ∈ S, then show ML

j is

infinite for all j ∈ L.

Remember λi and ǫi are switched according to the monotone decreasing se-

quences {λi[k]}∞k=0 and {ǫi[k]}∞k=0 which are lower bounded by zero. This means

after an finite or infinite number of switches, they will converge to their equilibria

λ∗i , ǫ
∗
i respectively [51]. Next we will show ǫ∗i = λ∗i = 0 by contradiction.

Assume λi and ǫi are at the equilibrium, then by the algorithm, for each link j,

τj is also at its equilibrium. This means we now have fixed τ ∗, λ∗, ǫ∗, which satisfy

33

all the assumptions in theorem 2.3.1. Suppose at least one user r has a nonzero

equilibrium ǫ∗r . From theorem 2.3.1, we know zr(t) also asymptotically converges

to zero and enters the |zr(t)| ≤ ǫr neighborhood in finite time for any ǫr > 0. If we

choose ǫr to be any element in the sequence {ǫr[k]}∞k=0 that is smaller than ǫ∗r , then

a user switch will occur for user r according to the algorithm, which contradicts

the assumption that ǫr is already at its equilibrium. This means ǫ∗i = 0, ∀i ∈ S.

As a result, we know for each user i, MS
i is infinite.

Next we will show for each link j,ML
j is also infinite. Define T (0) = maxi∈S T λ

i [0].

Then on t ∈ [0, T (0)], each user i ∈ S has completed at least one switch. By

algorithm 2.3.2, this means each link j ∈ L also has completed at least one

switch. Starting from T (0), we can use the same argument again. As a re-

sult, we can partition the time axis [0,+∞) into the union of time intervals

[0, T (0)]
⋃

(T (0), T (1)]
⋃

(T (1), T (2)] · · · . On each time interval, each link j ∈ L has

completed at least one switch. Since MS
i is infinite for each i, we can construct an

infinite number of such intervals. This means ML
j is also infinite for each j ∈ L.

Proof complete. �

The following lemma provides a lower bound on L̇(x; τ, λ) for fixed barrier

parameters. This bound will be later used in the proof of theorem 2.3.4.

Lemma 2.3.3 Under the assumptions of theorem 2.3.1, for all t ≥ 0,

−5

2

∑

i∈S
z2

i (t) ≤
dL(x(t); τ, λ)

dt
≤ 0 (2.31)

34

Proof: Remember

−L̇(x; τ, λ)

=
N
∑

i=1

zi[∇Ui(xi) +
λi

xi

−
M
∑

j=1

µjAji] (2.32)

≤ 1

2

N
∑

i=1

{

z2
i + [zi +

M
∑

j=1

µ̂jAji −
M
∑

j=1

µjAji]
2

}

(2.33)

≤ 3

2

N
∑

i=1

z2
i +

N
∑

i=1

{

[

M
∑

j=1

µ̂jAji −
M
∑

j=1

µjAji]
2

}

(2.34)

As a result of the events in theorem 2.3.1, the right-hand side of equation 2.13 in

the proof is nonnegative, which is

N
∑

i=1

z2
i −

N
∑

i=1

{

[
M
∑

j=1

µ̂jAji −
M
∑

j=1

µjAji]
2

}

≥ 0 (2.35)

This means

−L̇(x; τ, λ) ≤ 3

2

N
∑

i=1

z2
i +

N
∑

i=1

z2
i =

5

2

N
∑

i=1

z2
i (2.36)

which completes the proof. �

We can now show that algorithms 2.3.1-2.3.2 asymptotically converge to the

solution of the NUM problem. The main idea is to divide the entire time axis

into an infinite number of mutually disjoint time intervals. On each interval,

we have fixed barrier parameters. Since there are an infinite number of barrier

parameter switches, we can show that the bound in lemma 2.3.3 asymptotically

converges to zero, thereby showing that L̇ converges to zero and thus establishing

the convergence of the algorithm.

35

Theorem 2.3.4 Under the assumptions of Ui, A, and ρ in theorem 2.3.1, the

data rates x(t) generated by algorithms 2.3.1- 2.3.2 converge asymptotically to the

unique solution of the NUM problem.

Proof: By lemma 2.3.2, there are infinite user switches for each user. Let

{T [k]}∞k=0 be the nondecreasing sorted sequence of all the elements in {T λ
i [k]}MS

i

k=0

for all i ∈ S. This means we can partition the time axis [0,+∞) into the union

of infinite number of time intervals, [0, T [1])
⋃

[T [1], T [2])
⋃

[T [2], T [3]) · · · . Here

T [k] is the time instant when a user barrier switch occurs for any user. On

[T [k], T [k + 1]), we have fixed parameter τ, λ, ǫ. By lemma 2.3.3, we have

|zi(t)| ≤ ǫ̃i(t),−
5

2

N
∑

i=1

ǫ̃2i (t) ≤ −5

2

N
∑

i=1

z2
i (t) ≤ L̇(x; τ, λ) ≤ 0

where ǫ̃i(t) is defined as

ǫ̃i(t) = ǫi[k − 1], t ∈ [T λ
i [k], T λ

i [k + 1]) (2.37)

Since T λ
i [k] is the time instant when the kth barrier switch occurs for user i. At

any time t, ǫ̃i(t) is the tolerance for user i right before the latest switch occurs.

Define f(t) = −5
2

∑N

i=1 ǫ̃
2
i (t), we know f(t) is a nondecreasing function of t that

converges to 0. Also for each user i ∈ S, define gi(t) = ǫ̃i(t). Then gi(t) is also a

nondecreasing function of t that converges to 0. This means |zi(t)| converges to

zero as t→ ∞. Similarly, L̇(x; τ, λ) also converges to zero as t→ ∞.

Remember equation 2.24 and the user and link events in algorithms 2.3.1-2.3.2,

36

this immediately implies ∀i ∈ S, ∀j ∈ L

lim
t→∞

{z2
i (t) − ρẑ2

i (t)} = 0 (2.38)

lim
t→∞

{ρ
∑

i∈Sj

1

L
ẑ2

i (t) − LS(µj(t) − µ̂j(t))
2} = 0 (2.39)

From equation 2.38 and the fact that limt→∞ zi(t) = 0, we have limt→∞ ẑi(t) = 0

for i ∈ S. When combined with equation 2.39, we obtain limt→∞ |µj(t)−µ̂j(t)| = 0.

This means

lim
t→∞

{− ∂L

∂xi

} = lim
t→∞

{∇Ui(xi(t)) +
λi(t)

xi(t)
−
∑

j∈Li

µj(t)}

= lim
t→∞

zi(t) − lim
t→∞

∑

j∈Li

(µj(t) − µ̂j(t)) = 0

So as t→ ∞, rate x(t) comes closer and closer to satisfying the Karush-Kuhn-

Tucker conditions of the original NUM problem. Since ∂L
∂xi

is a continuous function

of x, we have limt→∞ xi(t) = x∗i ,∀i ∈ S. This completes the proof. �

2.4 Simulation

This section presents simulation results. We compare the number of message

exchanges of our event-triggered barrier algorithm against the dual decomposi-

tion algorithm and our event-triggered augmented Lagrangian algorithm in [57].

Simulation results show that our event-triggered barrier algorithm reduces the

number of message exchanges by up to two order magnitude when compared to

dual decomposition, and has comparable performance as the algorithm in [57].

Moreover, our algorithm is scale free with respect to network size. The remainder

of this section is organized as follows: Subsection 2.4.1 discusses the simulation

37

setup. Subsection 2.4.2 discusses the effect of the desired precision of the solution

on the performance of the algorithm. The effect of different tradeoff parameter

ρ is discussed in subsection 2.4.3. Simulation results on broadcast periods of our

event-triggered algorithm are shown in subsection 2.4.4. The scalability results

with respect to S and L are presented in subsection 2.4.5 and 2.4.6, respectively.

An example where communication delay is taken into consideration is shown in

subsection 2.4.7. Finally in subsection 2.4.8 we discuss the effect of different bar-

rier parameters on the performance of the algorithm.

2.4.1 Simulation Setup

Denote s ∈ U [a, b] if s is a random variable uniformly distributed on [a, b].

GivenM , N , L and S, the network used for simulation is generated in the following

way. We randomly generate a network with M links and N users, where |Sj | ∈

U [1, S], j ∈ L, |Li| ∈ U [1, L], i ∈ S. We make sure that at least one link has

S users, and at least one user uses L links. After the network is generated, we

assign utility function Ui(xi) = αi log xi for each user i, where αi ∈ U [0.8, 1.2].

Link j is assigned capacity cj ∈ U [0.8, 1.2]. Once the network is generated, all

three algorithms are simulated. The optimal rate x∗ and its corresponding utility

U∗ are calculated using a global optimization technique.

Define error as (for both algorithms)

e(k) =
∣

∣

∣

U(x(k)) − U∗

U∗

∣

∣

∣
(2.40)

where x(k) is the rate at the kth iteration. e(k) is the ‘normalized deviation’ from

the optimal point at the kth iteration. In all algorithms, we count the number of

iterations K for e(k) to decrease to and stay in the neighborhood {e(k)|e(k) ≤ ed}.

38

In dual decomposition, message passings from the links to the users occur at

each iteration synchronously. So K is a measure of the total number of message

exchanges. In the event-triggered algorithm, link events and user events occur in

a totally asynchronous way. We add the total number of triggered events and the

number of message passings associated with the barrier parameter updates, and

divide this number by the link number M . This works as an equivalent iteration

number K for our event-triggered algorithm, and is a measure of the total number

of message exchanges. We should point out that since we are comparing a primal

algorithm (our event-triggered algorithm) with a dual algorithm, and they run

at different time-scales, iteration number is then a more appropriate measure of

convergence than time [15] [26].

The default settings for simulation are as follows: For all algorithms, the initial

condition xi(0) = 0.95 minj∈L cj/N , ∀i ∈ S, which is kept in F s. Choosing the

initial conditions can be done in a distributed way through message passings,

however, we will not discuss this issue here. In dual decomposition, initial price

pj = 0 for j ∈ L, and the step size γ is calculated using equation 1.14. In our event-

triggered algorithm, {λi[k]}∞k=0, {ǫi[k]}∞k=0, {τ j[k]}∞k=0 are chosen as {0.1k}∞k=0,

{5×0.1k}∞k=0, {0.1k}∞k=0, respectively. Other parameters include ρ = 0.5, ed = 1%,

M = 60, N = 150, L = 8, S = 15.

2.4.2 Effect of desired solution accuracy

This subsection discusses the effect of the desired precision of the solution on

the performance of the algorithm.

Since our event-triggered algorithm is based on the barrier method, it is rea-

sonable to expect that the algorithm will not have good performance if we require

39

high precision solution, i.e., ed extremely small. To see the effect of ed on the

algorithm, we vary ed from 0.1% to 10%, while keeping all other parameters un-

changed. The resulting figure 2.2 plots K as a function of ed (in logarithm scale)

for both dual decomposition and our event-triggered algorithm. The dotted line

represents the dual decomposition algorithm, and the circled line corresponds to

our event-triggered algorithm.

As we can see, the event-triggered scheme has a much smaller K than its

competitor when ed ≥ 1%. As ed increases from 1% to 10%, K decreases from 3075

to 351 for the dual decomposition algorithm, while for the event-triggered scheme,

K decreases from 186 to 25. Over this region, the event-triggered algorithm is

about 15 times faster than dual decomposition. However, as expected, when ed is

extremely small, i.e., in this case less than 0.2%, the event-triggered scheme does

not show significant advantage over dual decomposition. When ed < 0.15%, the

dual decomposition works even better than event-triggering. This is a result of

the underlying barrier methods used.

2.4.3 Effect of tradeoff coefficient ρ

In this subsection we discuss the effect of the tradeoff coefficient ρ on the

performance of our event-triggered algorithm.

In our event-triggered algorithm, we only require the parameter ρ to be in the

region (0, 1). Recall ρ is a tradeoff between triggering the user event and link

event. It is then natural to ask what impact ρ will have on the number of user

events and link events, as well as the total number of triggered events.

To see the effect of different ρ on the algorithm, we vary ρ from 0.01 to 0.99,

while keeping all other parameters unchanged. The resulting figure 2.3 plots the

40

10
−3

10
−2

10
−1

0

2000

4000

6000

8000

10000

12000

e
d

K

DD
triggered

Figure 2.2. Iteration number K as a function of ed for both algorithms.

triggered events count as a function of ρ. The dotted line at the bottom represents

the triggered events count for all users, the middle dotted line represents the

triggered events count for all links, while the solid line above corresponds to the

total triggered events count.

There are two things we can see in figure 2.3. First, the user events count

is much less than the link events count over the entire region ρ ∈ (0, 1). This

means in our event-triggered algorithm, the major message exchanges are the

links broadcasting their new feedback signal µ̂j back to the users. Second, the

user events count shows almost linear increase with respect to ρ, while the link

events count variation is insensitive to the changes in ρ. Since the link events count

contributes to the major part in the total events count, we believe our algorithm

is rather insensitive to the choice of ρ, as shown in the figure.

41

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

4

ρ

tr
ig

ge
re

d
co

un
t

link
user
total

Figure 2.3. Triggered events count as a function of ρ.

2.4.4 Broadcast periods of the event-triggered barrier algorithm

In this subsection we present simulation results on the broadcast periods of

our event-triggered algorithm. The simulation ran for 3.12s. For reference, for the

same network, the average broadcast period for the dual decomposition is 0.0010,

and the average broadcast period for the distributed barrier method without trig-

gering is 0.0017. In our event-triggered algorithm, there are a total of 9273 link

events, and 1916 user events. So the links have an average broadcast period of

0.0202, and the users have an average broadcast period of 0.2443. To see how the

broadcast periods vary for each user or link, we pick a user and two links in the

network, and their broadcast results are shown in the following figures.

Figure 2.4 shows the broadcast periods results of one user. The left plot in

figure 2.4 is the time history of broadcast periods generated by its user event. The

right plot is the histogram of the broadcast periods. The broadcast periods range

between 0.0132 and 0.8900. This user was triggered 16 times, with an average

42

broadcast period of 0.1926.

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
broadcast period history

t

br
oa

dc
as

t p
er

io
d

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

7

8
histogram of broadcast period

broadcast period

tr
ig

ge
re

d
fr

eq
ue

nc
y

Figure 2.4. Broadcast results for one user

We also generate such figures for an inactive link and an active link. Figure 2.5

shows the broadcast periods results of an inactive link, while figure 2.6 corresponds

to an active link.

For the inactive link in figure 2.5, The sampling periods range between 0.0131

and 0.7300. This link was triggered 15 times, with an average broadcast period

of 0.1869.

For the active link in figure 2.6, The sampling periods range between 0.0033

and 0.5500. This link was triggered 239 times, with an average broadcast period

43

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
broadcast period history

t

br
oa

dc
as

t p
er

io
d

0 0.2 0.4 0.6 0.8
0

1

2

3

4

5

6

7

8
histogram of broadcast period

broadcast period

tr
ig

ge
re

d
fr

eq
ue

nc
y

Figure 2.5. Broadcast results for an inactive link

of 0.0130.

As we can see from the above three figures, for the users and inactive links,

the number of triggered events are relatively small, and they have long average

broadcast periods. For the active links, the number of triggered events are large,

which result in short average broadcast periods. The active links broadcasting

their link feedback signals to their users contribute to the major part of the number

of message exchanges. We can also see that the broadcast periods in figure 2.6

are ‘clustered’. Each ‘cluster’ here usually corresponds to an time interval over

which the barrier parameters do not change for this link or its users. When the

broadcast periods move from one ‘cluster’ to another, it usually corresponds to

some change in the barrier parameters.

44

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
broadcast period history

t

br
oa

dc
as

t p
er

io
d

0 0.2 0.4 0.6 0.8
0

50

100

150

200

250
histogram of broadcast period

broadcast period

tr
ig

ge
re

d
fr

eq
ue

nc
y

Figure 2.6. Broadcast results for an active link

2.4.5 Scalability with respect to S

In this simulation, we fixM , N , L and vary S from 7 to 26. For each S, all three

algorithms were run 1000 times, and each time a random network which satisfies

the above specification is generated. The mean mK and standard deviation σK of

K are computed for each S. mk works as our criteria for comparing the scalability

of the algorithms.

Figure 2.7 plots the iteration number K (in logarithm scale) as a function of S

for all three algorithms. The asterisks above represent mK for dual decomposition,

the circles in the middle correspond to our event-triggered barrier algorithm, while

the diamonds below aremK for the event-triggered augmented Lagrangian method

in [57]. The dotted vertical line around each asterisk and circle corresponds to the

interval [mK − σK , mK + σK] for each different S denoted by the x-axis.

For our event-triggered barrier algorithm, when S increases from 7 to 26,

45

6 8 10 12 14 16 18 20 22 24 26
10

1

10
2

10
3

10
4

10
5

S

K

barrier

DD

augment

Figure 2.7. Iteration number K as a function of S for all algorithms.

similar to the event-triggered augmented Lagrangian algorithm, mK does not show

noticeable increase, and it varies between 90 and 189. The standard deviation σK

varies between 22 and 78. For dual decomposition, mK increases from 1.3103×103

to 9.5412×103. σK at the same time increases from 0.187×103 to 1.171×103. Our

event-triggered barrier algorithm is up to two order magnitude faster than the dual

decomposition. We can also see that, unlike the dual decomposition algorithm,

which scales superlinearly with respect to S, our event-triggered algorithm on

the other hand is virtually scale-free. For comparison, in the event-triggered

augmented Lagrangian algorithm, mK varies between 35 and 50, and σK at the

same time varies between 6 and 33. This means although the event-triggered

barrier algorithm is significantly faster than dual decomposition, it is slower than

our later algorithm in [57].

46

2.4.6 Scalability with respect to L

This simulation is similar to subsection 2.4.5 except that we vary L from 4 to

18 instead of S.

Figure 2.8 plots K (in logarithm scale) as a function of L for all algorithms.

For our event-triggered algorithm, when L increases from 4 to 18, mK does not

show noticeable increase, and it varies between 93 and 228. σK varies between 22

and 86. We notice that, however, our event-triggered algorithm has worse perfor-

mance when L is small. For dual decomposition, mK increases from 1.8074× 103

to 8.6312 × 103. σK at the same time increases from 0.173 × 103 to 1.143 × 103.

Our event-triggered algorithm is up to two order magnitude faster than the dual

decomposition. We can also see that, unlike the dual decomposition algorithm,

which scales superlinearly with respect to L, our event-triggered algorithm on the

other hand is virtually scale-free. For comparison, in the event-triggered aug-

mented Lagrangian algorithm, mK varies between 35 and 68, and σK at the same

time varies between 12 and 34. Similar to the previous subsection, although the

event-triggered barrier algorithm is significantly faster than dual decomposition,

it is slower than our later algorithm in [57].

The reason that the event-triggered barrier algorithm has worse performance

at small L is because the parameters we choose work poorly for those cases. The

choice of barrier parameters can sometimes greatly affect the performance of our

algorithm, as we will show in subsection 2.4.8.

2.4.7 An example considering transmission delay

Transmission delays usually exist in networked systems. In our event-triggered

algorithm presented in the previous section, we did not consider transmission

47

2 4 6 8 10 12 14 16 18
10

1

10
2

10
3

10
4

L

K

barrier

DD

augment

Figure 2.8. Iteration number K as a function of L for all algorithms.

delays in the network. Due to the complexity of the algorithm, it is difficult to

analyze the effect of delays analytically. However, simulation results show that

the algorithm still converges when the delay is not too big.

In this subsection we consider the scenario when each ẑi or µ̂j packet expe-

riences a random transmission delay ranging from 0.002s to 0.02s. The system

reaches the ed neighborhood in 4.3s. Figure 2.9 has two plots. The dotted plot

above corresponds to the case when transmission delays are taken into consider-

ation, and the solid plot below corresponds to the case when there is no trans-

mission delay. As we see, the algorithm converges in both cases. However, in the

case without delay, there are only 180 iterations, and in the case with delay, there

are 310 iterations. The increase in iteration number is expected with the use of

outdated information. The simulation clearly demonstrated the effectiveness of

our event-triggered algorithm with the presence of transmission delay.

48

0 50 100 150 200 250 300 350
10

−2

10
−1

10
0

k

er
ro

r

No delay
With delay

Figure 2.9. Error e(k) as a function of iteration number k

2.4.8 Effect of barrier parameters

In this subsection we consider the effect of different barrier parameters on

the performance of our event-triggered algorithm. Remember by default, the

sequences {λi[k]}∞k=0, {ǫi[k]}∞k=0, {τ j [k]}∞k=0 are chosen as {0.1k}∞k=0, {5×0.1k}∞k=0,

{0.1k}∞k=0, respectively. Here we consider two different scenarios from the default

setup. In the first scenario, we choose {τ j[k]}∞k=0 as {αk}∞k=0, where α = τ j[k +

1]/τ j [k] varies from 0.02 to 0.5, while keeping all other parameters unchanged.

α measures how fast we lower the barrier level, and let the trajectory of iterates

approach the boundary of the feasible set. The smaller α is, the faster we lower

the barrier level. In the second scenario, we choose {ǫi[k]}∞k=0 as {β × 0.1k}∞k=0,

where β varies from 0.1 to 30, while keeping all other parameters unchanged. β

measures how far away we allow the iterates to stay off-course from the primal

central path. The smaller β is, the less off-course the iterates are allowed to be.

Figure 2.10 plots K as a function of α in the first scenario. Over the region

[0.05, 0.25], K is relatively small, and varies from 186 to 580. On region [0.25, 0.5],

49

K increases dramatically, from 440 to 8000 as α increases. On region (0, 0.05], K

increases as α decreases.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

α

K

number of iterations

Figure 2.10. Iteration number K as a function of α = τ j [k + 1]/τ j[k].

Figure 2.11 plots K as a function of β in the second scenario. Over the region

[0.4, 6], K is relatively small, and varies from 147 to 470. On region [6, 30], K

shows linear increase in the trend. On region [0.1, 0.4], K increases dramatically

as β decreases. When β = 0.1, K = 1155.

The phenomenon in both figure 2.10 and 2.11 can be explained by the barrier

method itself. In figure 2.10, when α increases, we are slowing down the speed of

lowering the barrier level, so the algorithm will in general converge slower, which

results in larger K. However, if we choose α too small, then the next desired point

on the central path might be very far away from the current iterate, which results

50

0 5 10 15 20 25 30
0

500

1000

1500

2000

2500

β

K

number of iterations

Figure 2.11. Iteration number K as a function of β.

in slow convergence as well. This means α can neither be too large nor too small,

which is shown in figure 2.10. In figure 2.11, when β increases, we are allowing the

iterates to stay further away from the primal central path, which may result in

landing on the boundaries of the feasible set prematurely. In this case, the barrier

methods will then progress very slowly. This also explains why in region [6, 30]

of figure 2.11, we do not have a large K in all cases. Because in some cases, the

iterates may not have premature landing. However, as β increases, the possibility

of premature landing increases as well. When β is chosen too small, the iterates

are then forced to stay very close to the primal central path, which may result in

large number of iterations for each set of barrier parameters. This will slow down

the convergence of the algorithm as well. So just like α, β can not be too large or

too small either.

51

2.5 Conclusion

This chapter presents an event-triggered distributed optimization algorithm

based on the barrier methods. We use the NUM problem as an example to il-

lustrate the idea of event-triggering in distributed optimization. The chapter

establishes state-dependent event-triggering thresholds under which the proposed

algorithm converges to the optimal solution of the NUM problem. Simulation

results suggest that the proposed algorithm is scale-free with respect to two mea-

sures of network size, and reduces the number of message exchanges by up to two

orders of magnitude when compared to existing dual decomposition algorithms.

This is our very first approach to solve the distributed optimization problems

using the event-triggered idea, and it shows significantly reduction in the commu-

nication cost of the network. However, as we show in the chapter, the algorithm

suffers from issues like the need for an initial feasible point, and performance sen-

sitive to parameter choices. All these issues limit the usefulness the algorithm.

In our later work (which will be discussed in chapter 3), we propose an event-

triggered algorithm based on the augmented Lagrangian method, which does not

suffer from the issues mentioned above, while exhibiting even better performance.

52

CHAPTER 3

Event-triggered distributed optimization using augmented Lagrangian methods

3.1 Introduction

This chapter uses the NUM problem formulation as an example and presents

two distributed algorithms based on the augmented Lagrangian methods that use

event-triggered message passing and proves their convergence. One of the algo-

rithm is a primal algorithm, and the other is a primal-dual algorithm. For the

primal-dual algorithm, we consider scenarios when the network has data dropouts,

and give an upper bound on the largest number of successive data dropouts each

link can have, while ensuring the asymptotic convergence of the algorithm. A

state-dependent lower bound on the broadcast period and an upper bound on

the transmission delay the network can tolerate while ensuring convergence are

also given. Simulation results show that both algorithms have a message passing

complexity that is up to two orders of magnitude lower than dual decomposition

algorithms, and are scale-free with respect to two measures of network size L and

S. The primal algorithm in this chapter is similar to the algorithm in chapter

2. However, in chapter 2, we used the barrier method instead of the augmented

Lagrangian method as the basis for the event-triggered algorithm. In that case,

the resulting algorithm suffers from issues like ill-conditioning , need for an ini-

tial feasible point and sensitive to the choice of parameters. The event-triggered

algorithms presented in this chapter do not have these issues.

53

The rest of the chapter is organized as follows. Two event-triggered algorithms,

the primal algorithm, and the primal-dual algorithm, will be presented in section

3.2 and section 3.3, respectively. Simulation results are shown in section 3.4, and

section 3.5 concludes the chapter.

3.2 The Primal algorithm

This section presents the event-triggered distributed primal algorithm. The

algorithm is based on the augmented Lagrangian method for the NUM problem,

which will be first discussed in subsection 3.2.1. Subsection 3.2.2 then presents

the event-triggered distributed primal algorithm, and proves its convergence.

3.2.1 Basic Primal Algorithm

In the augmented Lagrangian method, a constrained problem is converted into

a sequence of unconstrained problems by adding to the cost function a penalty

term that prescribes a high cost to infeasible points.

To apply the augmented Lagrangian method on our NUM problem, we need

to introduce the slack variable s ∈ R
M and replace the inequalities cj − aT

j x ≥ 0,

∀j ∈ L by

aT
j x− cj + sj = 0, sj ≥ 0, ∀j ∈ L (3.1)

The augmented cost is then

L(x, s;λ, w) = −
∑

i∈S
Ui(xi) +

∑

j∈L
λj(a

T
j x− cj + sj) +

1

2

∑

j∈L

1

wj

(aT
j x− cj + sj)

2(3.2)

Here a penalty parameter wj is associated with each link constraint, and w =

54

[w1, · · · , wM] is the vector of penalty parameters. Suppose λ∗j is the Lagrange mul-

tiplier associated with link j’s constraint cj −aT
j x ≥ 0 in the Karush-Kuhn-Tucker

conditions of the NUM problem. λj is an estimate of λ∗j and λ = [λ1, · · · , λM].

The vector aT
j = [Aj1, · · · , AjN] is the jth row of the routing matrix A.

L(x, s;λ, w) is a continuous function of x and s for fixed λ and w. It is shown

[8] that

min
x≥0,s≥0

L(x, s;λ, w) = min
x≥0

min
s≥0

L(x, s;λ, w) = min
x≥0

Lp(x;λ, w)

where we define the augmented Lagrangian function associated with the NUM

problem as

Lp(x;λ, w) = −
∑

i∈S
Ui(xi) +

∑

j∈L
ψj(x;λ, w) (3.3)

Here we have

ψj(x;λ, w) =

−1
2
wjλ

2
j , if cj − aT

j x− wjλj ≥ 0

λj(a
T
j x− cj) + 1

2wj
(aT

j x− cj)
2, otherwise

The primal algorithm based on the augmented Lagrangian method solves

the NUM problem by approximately minimizing Lp(x;λ[k], w[k]) for sequences

of {w[k]}∞k=0 and {λ[k]}∞k=0. Let x∗[k] denote the approximate minimizer for

Lp(x;λ[k], w[k]). The method in [8, Chap 4.2] can be used to show that for appro-

priately chosen sequences {w[k]}∞k=0 and {λ[k]}∞k=0, the sequence of approximate

minimizers {x∗[k]}∞k=0 converges to the optimal point of the NUM problem. The

choices are as follows. {wj [k]}∞k=0 are sequences of link (j ∈ L) penalty parame-

ters that are monotone decreasing to zero. {λj[k]}∞k=0 are sequences of Lagrange

55

multiplier estimates, where λj [k + 1] = max{0, λj[k] + 1
wj [k]

(aT
j x

∗[k] − cj)}.

In our work in [57], we gave a primal algorithm based on the augmented

Lagrangian method for the NUM problem that converges to the exact minimizer

of the NUM problem. However, in many scenarios, it usually suffices to obtain an

approximate minimizer to the problem. So instead of minimizing Lp(x;λ[k], w[k])

for sequences of {w[k]}∞k=0 and {λ[k]}∞k=0, we are only considering the problem of

minimizing Lp(x;λ, w) for fixed λ and w in the discussion here. If λj = 0 and wj

is sufficiently small, the minimizer of Lp(x;λ, w) will be a good approximation to

the solution of the original NUM problem. We can choose wj to be small enough

such that the approximation lies within the desirable neighborhood of the solution

of NUM.

The basic primal algorithm for the NUM problem is given as follows:

1. Initialization: Select any initial user rate x0 > 0. Set λj = 0 and suffi-

ciently small wj > 0, j ∈ L.

2. Recursive Loop: Minimize Lp(x;λ, w)

x = max
{

0, x0 − γ∇xLp(x
0;λ, w)

}

(3.4)

x0 = x

The above algorithm converges to an approximate solution of the original NUM

problem. The smaller w is, the more accurate the approximation is. The recursion

shown in step 2 is minimizing Lp(x;λ, w) using a simple gradient following method.

γ is a sufficiently small step size.

The computations above can be easily distributed among the users and links.

We will see how they are distributed in our event-triggered distributed implemen-

56

tation of the algorithm in section 3.2.2.

In dual decomposition and the algorithm shown above, the exchange of infor-

mation between users and links happens each time the gradient following update

is applied. This means that the number of messages passed between users and

links is equal to the number of updates required for the algorithm’s convergence.

That number is determined by the step size. For both algorithms, these step sizes

may be small, so that the number of messages passed will be large.

The following subsection presents an event-triggered distributed implementa-

tion of the basic primal algorithm presented in this subsection.

3.2.2 Event-triggered Distributed Primal Algorithm

Implementing the primal algorithm in section 3.2.1 in a distributed manner

requires communication between users and links. An event-triggered implementa-

tion of the algorithm assumes that the transmission of messages between users and

links is triggered by some local error signal crossing a state-dependent threshold.

The main problem is to determine a threshold condition that results in message

streams ensuring the asymptotic convergence of the algorithm to the NUM prob-

lem’s approximate solution. This subsection determines such an event threshold

condition and gives an event-triggered distributed primal algorithm for solving

problem 1.1.

We can search for the minimizer of the Lagrangian Lp(x;λ, w) using a gradient

57

following algorithm where

xi(t) = −
∫ t

0

(∇xi
Lp(x(τ);λ, w))+

xi(τ) dτ

=

∫ t

0

(

∂Ui(xi(τ))

∂xi

−
∑

j∈Li

µj(τ)

)+

xi(τ)

dτ (3.5)

for each user i ∈ S and

µj(t) = max

0, λj +
1

wj

∑

i∈Sj

xi(t) − cj

(3.6)

Here given a function f : R+ → R, its positive projection is defined as

(f(x))+
x =

0, if x = 0 and f(x) < 0

f(x), otherwise

(3.7)

The positive projection used in equation 3.5 guarantees the user rate xi(t) is always

nonnegative along the trajectory.

Equation 3.5 is the continuous-time version of the update in equation 3.4. Note

that in equation 3.5, user i can compute its rate only based on the information

from itself, and the information of µj from those links that are being used by user

i. We can think of µj as the jth link’s local state. From equation 3.6, link j only

needs to be able to measure the total flow that goes through itself. All of this

information is locally available so the update of the user rate can be done in a

distributed manner.

In the above equation, this link state information is available to the user in a

continuous manner. We now consider an event-triggered version of equation 3.5.

Here we assume that the user accesses a sampled version of the link state. In

58

particular, let’s associate a sequence of sampling instants, {TL
j [ℓ]}∞ℓ=0 with the jth

link. The time TL
j [ℓ] denotes the instant when the jth link samples its link state

µj for the ℓth time and transmits that state to users i ∈ Sj . We can see that at

any time t ∈ ℜ, the sampled link state is a piecewise constant function of time in

which

µ̂j(t) = µj(T
L
j [ℓ]) (3.8)

for all ℓ = 0, · · · ,∞ and any t ∈ [TL
j [ℓ], TL

j [ℓ + 1]). In this regard, the “event-

triggered” version of equation 3.5 takes the form

xi(t) =

∫ t

0

(

∂Ui(xi(τ))

∂xi

−
∑

j∈Li

µ̂j(τ)

)+

xi(τ)

dτ (3.9)

for all ℓ and any t ∈ [TL
j [ℓ], TL

j [ℓ + 1]).

The sequence {TL
j [ℓ]}∞ℓ=0 represents time instants when the link transmits its

“state” to its users. In the event-triggered primal algorithm, it will be conve-

nient to have a similar flow of information from the user to the link. We assume

that link j can directly measure the total flow rate,
∑

i∈Lj
xi(t), in a continuous

manner. The event-triggering scheme proposed below will require that link j have

knowledge of the time derivative of user i’s flow rate. In particular, let zi(t) denote

the time derivative of this flow rate. zi(t) therefore satisfies

zi(t) = ẋi(t) =

(

∇Ui(xi(t)) −
∑

j∈Li

µ̂j(t)

)+

xi(t)

(3.10)

for all i ∈ S. We will refer to zi as the ith user state. We associate a sequence

{T S
i [ℓ]}∞ℓ=0 to each user i ∈ S. The time T S

i [ℓ] is the ℓth time when user i transmits

59

its user state to all links j ∈ Li. We can therefore see that at any time t ∈ ℜ, the

sampled user state is a piecewise constant function of time satisfying

ẑi(t) = zi(T
S
i [ℓ]) (3.11)

for all ℓ = 0, · · · ,∞ and any t ∈ [T S
i [ℓ], T S

i [ℓ+1]). In the proposed event-triggering

primal algorithm, links will use the sampled user state, ẑi, to help determine when

they should transmit their states back to the user. Here we assume that there is

no transmission delay in each µ̂j(t) or ẑi(t) broadcast.

Next we will state the main theorem of this subsection.

Theorem 3.2.1 Consider the Lagrangian in equation 3.3 where the functions Ui

are twice differentiable, strictly increasing, and strictly concave and where the

routing matrix A is of full rank. Assume a fixed penalty parameter w > 0 and

vector λ ≥ 0. Consider the sequences {T S
i [ℓ]}∞ℓ=0 and {TL

j [ℓ]}∞ℓ=0 for each i ∈ S,

and each j ∈ L, respectively. For each i ∈ S, let the user rate, xi(t), satisfy

equation 3.9 with sampled link states given by equation 3.8. For each i ∈ S let the

user state zi(t) satisfy equation 3.10 and assume link j’s measurement of the user

state satisfies equation 3.11.

Let ρ be a constant such that 0 < ρ < 1. Assume that for all i ∈ S and all

ℓ = 0, · · · ,∞, that

z2
i (t) − ρẑ2

i (t) ≥ 0 (3.12)

for t ∈ [T S
i [ℓ], T S

i [ℓ + 1]). Further assume that for all j ∈ L and all ℓ = 0, · · · ,∞

60

that

ρ
∑

i∈Sj

1

L
ẑ2

i (t) − LS (µj(t) − µ̂j(t))
2 ≥ 0 (3.13)

for t ∈ [TL
j [ℓ], TL

j [ℓ + 1]). Then the user rates x(t) asymptotically converge to the

unique minimizer of Lp(x;λ, w). �

Proof: For convenience, we do not explicitly include the time dependence of

xi(t), x̂i(t), zi(t), ẑi(t), µj(t), µ̂j(t) in most part of the proof. For all t ≥ 0 we

have

−L̇p(x;λ, w) = −
N
∑

i=1

∂Lp

∂xi

dxi

dt

=

N
∑

i=1

zi[∇Ui(xi) −
M
∑

j=1

µjAji] (3.14)

≥
N
∑

i=1

{

1

2
z2

i −
1

2
[

M
∑

j=1

µjAji −
M
∑

j=1

µ̂jAji]
2

}

(3.15)

≥
N
∑

i=1

{

1

2
z2

i −
1

2
[

M
∑

j=1

(µj − µ̂j)Aji]
2

}

(3.16)

The last inequality holds whether the positive projection is active or not for each

user i. Also remember there are only |Li| nonzero terms in the sum
∑M

j=1(µj −

µ̂j)Aji, then by using the inequality

−
[

M
∑

j=1

(µj − µ̂j)Aji

]2

≥ −|Li|
M
∑

j=1

[(µj − µ̂j)Aji]
2 (3.17)

we have

61

−L̇p(x;λ, w) ≥ 1

2

N
∑

i=1

z2
i −

1

2

N
∑

i=1

{

|Li|
M
∑

j=1

[(µj − µ̂j)Aji]
2

}

=
1

2

N
∑

i=1

z2
i −

1

2

M
∑

j=1

{

(µj − µ̂j)
2

N
∑

i=1

|Li|A2
ji

}

(3.18)

≥ 1

2

N
∑

i=1

z2
i −

1

2

M
∑

j=1

LS(µj − µ̂j)
2 (3.19)

Consider the term 1
2
ρ
∑N

i=1 ẑ
2
i , we have

1

2
ρ

N
∑

i=1

ẑ2
i =

1

2
ρ

N
∑

i=1

L
1

L
ẑ2

i =
1

2
ρ

M
∑

j=1

N
∑

i=1

1

L
ẑ2

iAji +
1

2
ρ

N
∑

i=1

(L− |Li|)
1

L
ẑ2

i (3.20)

The last equality holds since

N
∑

i=1

|L(i)| 1
L
ẑ2

i =

N
∑

i=1

M
∑

j=1

1

L
ẑ2

iAji =

M
∑

j=1

N
∑

i=1

1

L
ẑ2

iAji (3.21)

Remember |Li| ≤ L for i ∈ S, this means

−L̇p(x;λ, w)

≥ 1

2

N
∑

i=1

z2
i −

1

2
ρ

N
∑

i=1

ẑ2
i +

1

2
ρ

N
∑

i=1

ẑ2
i −

1

2

M
∑

j=1

LS(µj − µ̂j)
2 (3.22)

≥ 1

2

N
∑

i=1

[z2
i − ρẑ2

i] +
1

2

M
∑

j=1

ρ
∑

i∈Sj

1

L
ẑ2

i − LS(µj − µ̂j)
2

(3.23)

which immediately suggests that if the sequences of sampling instants {T S
i [ℓ]}∞ℓ=0

and {TL
j [ℓ]}∞ℓ=0 satisfy the inequalities in equation 3.12 and 3.13 for all ℓ =

0, 1, 2, ...,∞, and any i ∈ S, j ∈ L, then L̇p(x;λ, w) ≤ 0 is guaranteed for all

t.

By using the properties of Ui(xi) and ψj(x;λ, w), it is easy to show that for

62

any fixed λ and w, Lp(x;λ, w) is strictly convex in x. It thus has a unique min-

imizer. Suppose x∗(λ, w) is this minimizer, and the corresponding Lagrangian is

Lp(x
∗;λ, w). Define V (x) = Lp(x;λ, w) − Lp(x

∗;λ, w). It is trivial to see V (x) is

a Lyapunov function for the system. Moreover, V̇ (x) = 0 means L̇p(x;λ, w) = 0.

The only scenario this can happen is

zi = ẑi = 0, ∀i ∈ S, µj = µ̂j, ∀j ∈ L (3.24)

which corresponds to x∗(λ, w). As a result, the equilibrium x∗(λ, w) is asymptot-

ically stable. Proof complete. �

Theorem 3.2.1 provides the basis for constructing an event-triggered message-

passing protocol. This theorem essentially asserts that we need to select the

transmit times {T S
i [ℓ]} and {TL

j [ℓ]} so that the inequalities in equations 3.12 and

3.13 always hold. One obvious way to do this is to use the violation of these

inequalities to trigger the sampling and transmission of link/user states across

the network. At time t = T S
i [ℓ], the inequality in equation 3.12 is automatically

satisfied. After this sampling instant, zi(t) continues to change until the inequality

is violated. We let that time instant be T S
i [ℓ + 1] and transmit the sampled user

state to the links j ∈ Li. Similarly, link j compares the square of the error between

the last transmitted link state µ̂j and the current link state µj . At the sampling

time TL
j [ℓ], this difference is zero and the inequality is trivially satisfied. After

that time, µj(t) continues to change or the link may receive an updated user state

ẑi that may result in the violation of the inequality. We let that time be the next

sampling instant, TL
j [ℓ + 1] and then transmit the sampled link state µ̂j to the

users i ∈ Sj .

In theorem 3.2.1, ρ models the tradeoff between triggering the user events and

63

triggering the link events. When ρ is large, we would expect more user events

and less link events. On the contrary, when ρ is small, we would expect more link

events and less user events.

The threshold conditions shown in equations 3.12-3.13 provide the basis for an

event-triggered implementation of the basic primal algorithm presented earlier in

subsection 3.2.1. Next we will present such an event-triggered distributed primal

algorithm.

Future discussion needs an additional notation. For a function f(t) defined on

t ∈ [0, T), denote f+(T) as the limit of f(t) when t approaches T from the left

hand side.

Each user i ∈ S executes the following algorithm. The main assumption here

is that user i is continuously transmitting data at rate xi(t) at time t.

Algorithm 3.2.1 User i’s Update Algorithm

1. Parameter Initialization: Set the initial user rate x0
i > 0. Let T = 0.

2. State Initialization: Upon receiving link state µj(T) from j ∈ Li, set

µ̂j = µj(T). Initialize user state to

zi(T) =

(

∇Ui(x
0
i) −

∑

j∈Li

µ̂j

)+

xi(T)

(3.25)

set ẑi = zi(T) and transmit zi(T) to all links in j ∈ Li.

64

3. Update User Rate: Integrate the user rate equation

xi(t) =

∫ t

T

zi(τ)dτ (3.26)

zi(t) =

(

∇Ui(xi(t)) −
∑

j∈Li

µ̂j

)+

xi(t)

(3.27)

xi(T) = x0
i (3.28)

where t ∈ [T, T+) and T+ is the time instant when one of the following

conditions is true

(a) If z2
i (t) − ρẑ2

i ≤ 0 then broadcast z+
i (T+) to all links j ∈ Li, and set

ẑi = z+
i (T+).

(b) Or if user i receives a new link state µ+
j (T+) from link j ∈ Li, set

µ̂j = µ+
j (T+).

4. Increment Time: Set T = T+, x0
i = x+

i (T+) and go to step 3.

A similar algorithm is executed by all links j ∈ L. The main assumption here

is that link j can continuously monitor the link state µj(t) at any time t ∈ ℜ.

Algorithm 3.2.2 Link j’s Update Algorithm

1. Parameter Initialization: Set T = 0, wj > 0.

2. State Initialization Measure the local link state

µj(T) = max

0,
1

wj

∑

i∈Sj

xi(T) − cj

(3.29)

Transmit µj(T) to all users i ∈ Sj and set µ̂j = µj(T). Upon receiving user

state zi(T) from i ∈ Sj, and set ẑi = zi(T).

65

3. Link Update: Continuously monitor the link state µj(t) for all t ∈ [T, T+)

where T+ is the time instant when one of the following events occur

(a) If

ρ
∑

i∈Sj

1

L
ẑ2

i ≤ LS (µj(t) − µ̂j)
2

then set µ̂j = µ+
j (T+) and broadcast the updated link state µ+

j (T+) to

all users i ∈ Sj.

(b) Or if link j receives a new user state z+
i (T+) for any i ∈ Sj, then set

ẑi = z+
i (T+).

4. Increment Time: Set T = T+ and go to step 3.

By theorem 3.2.1, the data rates x(t) generated by algorithms 3.2.1-3.2.2 con-

verge asymptotically to the unique minimizer of Lp(x;λ, w), which is an approxi-

mate solution to the NUM problem.

In our work in [57], we gave an event-triggered distributed primal algorithm

that converges to the exact minimizer of the NUM problem. To be specific, we

included a distributed update strategy for the penalty parameters w. So as w

goes to zero, the sequence of approximate minimizers asymptotically approach

the solution of the NUM problem. However, in this chapter, we only consider

fixed penalty scenarios.

3.3 The Primal-dual algorithm

In the algorithm in chapter 2 and the primal algorithm in section 3.2.2, there

is an event associated with each user and link. The interactions between the user

events and link events complicate the event-triggered algorithm significantly, and

66

make the analysis of the algorithm very difficult. This section presents a different

event-triggered algorithm, namely, the primal-dual algorithm. In the primal-dual

algorithm, there are only link events. The algorithm has comparable performance

as the primal algorithm, but the simplicity in the event structure enables us to

obtain some additional analytical results. Moreover, the primal-dual algorithm in

this section is much easier to implement.

The event-triggered distributed primal-dual algorithm is based on the basic

primal-dual algorithm for the NUM problem, which will be first discussed in

subsection 3.3.1. Subsection 3.3.2 then presents the event-triggered distributed

primal-dual algorithm, and proves its convergence. Subsection 3.3.3 considers

scenarios when the network has data dropouts, and gives an upper bound on the

largest number of successive data dropouts each link can have, while ensuring

the asymptotic convergence of the event-triggered algorithm in subsection 3.3.2.

Subsection 3.3.4 analyzes the broadcast period of the event-triggered primal-dual

algorithm, and lower bounds it as a function of the local link state in the network.

Finally subsection 3.3.5 studies the effect of transmission delay on the algorithm,

and gives an upper bound on the maximum tolerable delay while ensuring the

convergence of the event-triggered algorithm.

3.3.1 Basic Primal-dual Algorithm

The event-triggered distributed primal-dual algorithm in this section is also

based on the augmented Lagrangian method for the NUM problem. However, it

uses the augmented Lagrangian method in a slightly different way than in section

3.2.

67

Recall that the augmented cost for the NUM problem in equation 3.2 is

L(x, s;λ, w) = −
∑

i∈S
Ui(xi) +

∑

j∈L
λj(a

T
j x− cj + sj) +

1

2

∑

j∈L

1

wj

(aT
j x− cj + sj)

2(3.30)

In the primal algorithm in section 3.2, we eliminate the dual variable s, and

rewrite the augmented cost in equation 3.2 as equation 3.3, which is only a function

of the primal variable x for fixed λ and w. That approach gives us the resulting

basic primal algorithm in section 3.2. In this section, we are adopting a slightly

different approach. To be specific, we deal with the augmented cost in equation

3.30 directly. L(x, s;λ, w) is a function of both the primal variable x and dual

variable s. We deal with them simultaneously and similarly obtain a basic primal-

dual algorithm.

The basic primal-dual algorithm is given as follows:

1. Initialization: Select any initial data rate x0 > 0, initial dual variable

s0 ≥ 0. Set λj = 0 and sufficiently small wj > 0, j ∈ L.

2. Recursive Loop: Minimize L(x, s;λ, w)

x = max
{

0, x0 − γ∇xL(x0, s0;λ, w)
}

(3.31)

s = max
{

0, s0 − γ∇sL(x0, s0;λ, w)
}

(3.32)

(x0, s0) = (x, s)

Again the computations above in equations 3.31-3.32 can be easily distributed

among the users and links. We will see how they are distributed in our event-

triggered distributed implementation of the algorithm next.

68

3.3.2 Event-triggered Distributed Primal-dual Algorithm

This subsection presents an event-triggered distributed implementation of the

basic primal-dual algorithm in subsection 3.3.1. The idea is similar to subsec-

tion 3.2.2, where we apply event-triggering to an underlying gradient following

algorithm.

For each link j ∈ L, we have

sj(t) = −
∫ t

0

(

∇sj
L(x(τ), s(τ);λ, w)

)+

sj(τ)
dτ

=

∫ t

0

(−µj(τ))
+
sj(τ) dτ (3.33)

where

µj(t) = λj +
1

wj

∑

i∈Sj

xi(t) − cj + sj(t)

 (3.34)

Unlike in the primal algorithm in subsection 3.2.2, here link j ∈ L is associated

with a dynamical system which is characterized by equations 3.33-3.34. This first-

order dynamical system takes the total flow rate that goes through link j as the

input, and outputs µj. To make our notations consistent, we still call µj as the

jth link’s local state, which serves as the feedback signal to the users in i ∈ Sj.

Similar to subsection 3.2.2, we associate a sequence of sampling instants,

{TL
j [ℓ]}∞ℓ=0 with the jth link. The time TL

j [ℓ] denotes the instant when the jth

link samples its link state µj in equation 3.34 for the ℓth time and transmits that

state to users i ∈ Sj . At any time t ∈ ℜ, the sampled link state satisfies

µ̂j(t) = µj(T
L
j [ℓ]) (3.35)

69

for all ℓ = 0, · · · ,∞ and any t ∈ [TL
j [ℓ], TL

j [ℓ+ 1]).

For each user i ∈ S we have

xi(t) =

∫ t

0

(

∂Ui(xi(τ))

∂xi

−
∑

j∈Li

µ̂j(τ)

)+

xi(τ)

dτ (3.36)

for all ℓ and any t ∈ [TL
j [ℓ], TL

j [ℓ+1]). Here we assume that there is no transmission

delay in each µ̂j(t) broadcast.

Similar to the primal algorithm, the user rate update and the link state com-

putation above can again be done in a distributed manner.

In the primal-dual algorithm in this section, links do not need knowledge of

the time derivative of users’ flow rate, and only link events are needed in the

algorithm. Next we will state the main theorem of this subsection.

Theorem 3.3.1 Consider the Lagrangian in equation 3.30 where the functions

Ui are twice differentiable, strictly increasing, and strictly concave and where the

routing matrix A is of full rank. Assume a fixed penalty parameter w > 0 and

vector λ ≥ 0. For each link j ∈ L, consider the sequence {TL
j [ℓ]}∞ℓ=0, and its

dynamics satisfy equations 3.33-3.34. For each user i ∈ S, let the user rate, xi(t),

satisfy equation 3.36 with sampled link states defined in equation 3.35.

For all j ∈ L, let ρj be a constant such that 0 < ρj ≤ 1. Assume that for all

j ∈ L, and all ℓ = 0, · · · ,∞ that

ρj

[

(−µj(t))
+
sj(t)

]2

− 1

2
LS [µj(t) − µ̂j(t)]

2 ≥ 0 (3.37)

for t ∈ [TL
j [ℓ], TL

j [ℓ + 1]). Then the user rates x(t) asymptotically converge to the

unique minimizer of L(x, s;λ, w). �

70

Proof: Define zi(t) in the same way as in equation 3.10, where µ̂j(t) is given

in equation 3.35. For all t ≥ 0 we have

−L̇(x, s;λ, w)

= −
N
∑

i=1

∂L

∂xi

dxi

dt
−

M
∑

j=1

∂L

∂sj

dsj

dt

=

N
∑

i=1

zi

[

∇Ui(xi) −
M
∑

j=1

µjAji

]

+

M
∑

j=1

(−µj)
+
sj

(−µj)

≥
N
∑

i=1

{

1

2
z2

i −
1

2
[

M
∑

j=1

(µj − µ̂j)Aji]
2

}

+
M
∑

j=1

[

(−µj)
+
sj

]2

≥ 1

2

N
∑

i=1

z2
i −

1

2

M
∑

j=1

LS(µj − µ̂j)
2 +

M
∑

j=1

[

(−µj)
+
sj

]2

(3.38)

=
1

2

N
∑

i=1

z2
i +

M
∑

j=1

(1 − ρj)
[

(−µj)
+
sj

]2

+

M
∑

j=1

{

ρj

[

(−µj)
+
sj

]2

− 1

2
LS(µj − µ̂j)

2

}

(3.39)

The above inequalities are easy to check using the proof of theorem 3.2.1 and the

definition of positive projection in equation 3.7. This immediately suggests us that

if the sequences of sampling instants {TL
j [ℓ]}∞ℓ=0 satisfy the inequality in equation

3.37 for all ℓ = 0, 1, 2, ...,∞, and j ∈ L, then L̇(x, s;λ, w) ≤ 0 is guaranteed for all

t. Using a similar argument as the proof of theorem 3.2.1, we immediately know

that x(t) and s(t) asymptotically converge to the unique minimizer of L(x, s;λ, w).

�

The threshold condition in equation 3.37 provides the basis for an event-

triggered distributed implementation of the basic primal-dual algorithm presented

earlier in subsection 3.3.1.

Remember that in the primal algorithm in section 3.2, ρ is a constant for the

71

entire network that tradeoffs between triggering the user events and triggering

the link events. Here in theorem 3.3.1, we have a similar parameter ρj . ρj can

be different for each link j ∈ L. One may wonder why we do not simply choose

ρj = 1 in equation 3.37. For stability consideration in theorem 3.3.1, it is correct

that we can simply choose ρj = 1. However, as we will see in the next subsection,

choosing a smaller ρj makes the network more robust to data dropouts. For this

reason, we keep it as a parameter here.

We should point out that, in equation 3.37, if the positive projection stays

active, in other words, sj(t) = 0 and µj(t) > 0 for t over some time interval,

then the link dynamical system in equations 3.33-3.34 reduces to a memoryless

function. In those situations, if we still use the inequality in equation 3.37 to

trigger the link event, it would require that µ̂j(t) = µj(t) over the interval. This is

highly undesirable since it requires link j to sample and transmit its state infinitely

fast. Fortunately, this turns out to be not a serious problem here since we are

more interested in how fast the primal-dual algorithm enters some neighborhood

of the optimal point. This neighborhood can be chosen large enough so that the

positive projections will not become active before entering the neighborhood. In

all our simulations, this neighborhood is chosen to be within 3% relative error

(refer to equation 3.77) around the optimal point, which is rather small. The

positive projections are not active before entering this 3% neighborhood in all

of our simulations. If we insist on obtaining a more accurate solution, what we

can do is, once the projection stays active, then we no longer use the primal-dual

algorithm. Instead, we switch to the primal algorithm 3.2.1-3.2.2 in subsection

3.2.2. This will enable us to get a more accurate solution.

In the remaining part of the chapter, we will assume that the positive projec-

72

tion in equation 3.37 cannot be active unless at the minimizer of L(x, s;λ, w). In

general this assumption is only true with certain choice of penalty coefficient wj

for each link j. However, it is reasonable if we are only interested in converging

to some neighborhood of the optimal point, because our analysis only focuses on

the behavior of the system before entering this neighborhood. This assumption

enables us to present and analyze the primal-dual algorithm in a much clearer

way.

In the following work, we will find it convenient to use a slightly more conser-

vative event than equation 3.37.

Corollary 3.3.2 Consider the Lagrangian in equation 3.30 where the functions

Ui are twice differentiable, strictly increasing, and strictly concave and where the

routing matrix A is of full rank. Assume a fixed penalty parameter w > 0 and

vector λ ≥ 0. For each link j ∈ L, consider the sequence {TL
j [ℓ]}∞ℓ=0, and its

dynamics satisfy equations 3.33-3.34. For each user i ∈ S, let the user rate, xi(t),

satisfy equation 3.36 with sampled link states defined in equation 3.35.

For all j ∈ L, let ρj be a constant such that 0 < ρj ≤ 1. Assume that for all

j ∈ L, and all ℓ = 0, · · · ,∞ that

|µj(t) − µ̂j(t)| ≤ δj |µ̂j(t)| (3.40)

for t ∈ [TL
j [ℓ], TL

j [ℓ+ 1]), where δj is defined by

δj =

√
ρ

j
√

1
2
LS +

√
ρ

j

(3.41)

Then the user rates x(t) asymptotically converge to the unique minimizer of L(x, s;λ, w).

�

73

Proof: By the definition of δj in equation 3.41, equation 3.40 is equivalent to

√

1

2
LS|µj(t) − µ̂j(t)| + √

ρj |µj(t) − µ̂j(t)| ≤ √
ρj |µ̂j(t)| (3.42)

Therefore, we have

√

1

2
LS|µj(t) − µ̂j(t)| ≤

√
ρj|µ̂j(t)| −

√
ρj |µj(t) − µ̂j(t)| ≤

√
ρj |µj(t)|

for all t ∈ [TL
j [ℓ], TL

j [ℓ + 1]), j ∈ L and ℓ = 0, · · · ,∞. Since we assume that the

positive projection in equation 3.37 cannot be active unless at the minimizer of

L(x, s;λ, w), all assumptions of theorem 3.3.1 are satisfied. We can thus conclude

that x(t) asymptotically converge to the unique minimizer of L(x, s;λ, w). �

The inequalities in equations 3.37 or 3.40 can both be used as the basis for the

event-triggered algorithm. Equation 3.40 is a slightly more conservative condition,

and we will use it in our event-triggered distributed primal-dual algorithm

in the following.

Each user i ∈ S executes the following algorithm.

Algorithm 3.3.1 User i’s Update Algorithm

1. Parameter Initialization: Set the initial user rate x0
i > 0. Let T = 0.

2. State Initialization: Upon receiving link state µj(T) from j ∈ Li, set

µ̂j = µj(T).

3. Update User Rate: Integrate the user rate equation

xi(t) =

∫ t

T

(

∇Ui(xi(τ)) −
∑

j∈Li

µ̂j

)+

xi(τ)

dτ

xi(T) = x0
i

74

where t ∈ [T, T+) and T+ is the time instant when the following condition

is true

(a) if user i receives a new link state µ+
j (T+) from link j ∈ Li, set µ̂j =

µ+
j (T+).

4. Increment Time: Set T = T+, x0
i = x+

i (T+) and go to step 3.

A similar algorithm is executed by all links j ∈ L. The main assumption here

is that link j can continuously monitor the link state µj(t) at any time t ∈ ℜ.

Algorithm 3.3.2 Link j’s Update Algorithm

1. Parameter Initialization: Set T = 0, wj > 0, 0 < ρj ≤ 1, initial s0
j ≥ 0,

and δj is defined by

δj =

√
ρ

j
√

1
2
LS +

√
ρ

j

(3.43)

2. State Initialization Measure the local link state

µj(T) =
1

wj

∑

i∈Sj

xi(T) − cj + s0
j

 (3.44)

Transmit µj(T) to all users i ∈ Sj and set µ̂j = µj(T).

3. Link Update: Integrate the equation

sj(t) =

∫ t

T

(−µj(τ))
+
sj(τ) dτ (3.45)

µj(t) =
1

wj

∑

i∈Sj

xi(t) − cj + sj(t)

 (3.46)

sj(T) = s0
j (3.47)

75

where t ∈ [T, T+) and T+ is the time instant when the following condition

is true

(a) If |µj(t) − µ̂j(t)| ≥ δj |µ̂j(t)|, then set µ̂j = µ+
j (T+) and broadcast the

updated link state µ+
j (T+) to all users i ∈ Sj.

4. Increment Time: Set T = T+ and go to step 3.

By corollary 3.3.2, the data rates x(t) generated by algorithms 3.3.1-3.3.2

converge asymptotically to the unique minimizer of L(x, s;λ, w), which is an ap-

proximate solution to the NUM problem.

Similar to the primal algorithm 3.2.1-3.2.2, our primal-dual algorithm is also

fully distributed. Moreover, there are only link events in the algorithm, which

eliminates the need for user event transmissions. This results in a much simpler

event-triggered algorithm.

3.3.3 Event-triggering with data dropouts

The discussion in the previous subsection did not consider data dropouts. To

be specific, whenever the new sampled link state µ̂j(t) is obtained by link j, it is

transmitted to the users i ∈ Sj successfully. This, however, does not necessarily

happen in large scale networks. In this subsection, we take data dropouts into

consideration, and gives an upper bound on the largest number of successive data

dropouts each link can have, while ensuring the asymptotic convergence of the

event-triggered algorithm in subsection 3.3.2. Using our result, each link can

identify this upper bound for its subsystem in a decentralized way. We assume

that data dropouts only happen when the sampled states µ̂j(t) are transmitted

across the network.

76

First, let us see what happens when there are data dropouts in the network.

Suppose link j detects a local event and obtains a new sampled state µ̂j. Link

j will then transmit the new µ̂j to users i ∈ Sj . If the transmission fails, then

users i ∈ Sj will not receive the new sampled link state. However, link j thinks

the new state has been successfully transmitted, so in equation 3.40, µ̂j(t) has

been updated to the new µ̂j. This means users and links have different copies of

the latest sampled link state, which may destabilize the system. Our main idea is

that the event in equation 3.40 is a relatively conservative event if ρj is small, so

even if some data dropouts happen, the system may still be stable.

Further discussion needs some additional notations. We use rj[k] to denote

the time instant when link j samples its link state µj for the kth time (but not

necessarily successfully transmitted), and use TL
j [ℓ] to denote the time instant

when the sampled state of link j has been successfully transmitted for the ℓth

time. It is obvious that {TL
j [ℓ]}∞ℓ=0 is a subsequence of {rj[k]}∞k=0. Using these

notations, the user dynamics in equation 3.36 and user’s knowledge of the sampled

link state in equation 3.35 still apply. Define error as ej(t) = µj(t)− µ̂j(T
L
j [ℓ]) on

t ∈ [TL
j [ℓ], TL

j [ℓ+ 1]).

Theorem 3.3.3 Consider the Lagrangian in equation 3.30 where the functions

Ui are twice differentiable, strictly increasing, and strictly concave and where the

routing matrix A is of full rank. Assume a fixed penalty parameter w > 0 and

vector λ ≥ 0. For each link j ∈ L, consider the sequences {TL
j [ℓ]}∞ℓ=0, {rj [k]}∞k=0,

and its dynamics satisfy equations 3.33-3.34. For each user i ∈ S, let the user

rate, xi(t), satisfy equation 3.36 with sampled link states defined in equation 3.35.

For all j ∈ L, let ρj be a constant such that 0 < ρj ≤ 1. Assume that for all

j ∈ L, and all k = 0, · · · ,∞ that

77

|µj(t) − µj(rj [k])| ≤ δj |µj(rj[k])| (3.48)

for t ∈ [rj[k], rj [k + 1]), where δj is defined by

δj =

√
ρ

j
√

1
2
LS +

√
ρ

j

(3.49)

Further assume that link j’s largest number of successive data dropouts, dj ∈ Z,

satisfies

dj ≤ Dj(ρj) = log(1

1−δj
)(1 +

√

2

LS
) − 1 (3.50)

then the user rates x(t) asymptotically converge to the unique minimizer of L(x, s;λ, w).

�

Proof: Consider link j over the time interval [TL
j [ℓ], TL

j [ℓ+1]). For notational

convenience, we assume TL
j [ℓ] = rj [0] < rj [1] < · · · < rj [dj] < rj [dj+1] = TL

j [ℓ+1].

Consider ej(t) for any t ∈ [rj[k], rj [k + 1]), we have

|ej(t)| = |µj(t) − µ̂j(T
L
j [ℓ])| ≤

k−1
∑

p=0

|µj(rj[p + 1]) − µj(rj [p])| + |µj(t) − µj(rj[k])|

Applying equation 3.48 on the previous equation yields

|ej(t)| ≤ δj

k
∑

p=0

|µj(rj [p])| (3.51)

for all t ∈ [rj [k], rj[k + 1]).

78

From equation 3.48, we can easily obtain

|µj(rj[k])| ≤
1

1 − δj
|µj(t)| (3.52)

for all t ∈ [rj[k], rj [k+ 1]). Applying equation 3.48 repeatedly on [rj [k− 1], rj[k]),

[rj[k − 2], rj[k − 1]), · · · , [rj [p], rj[p+ 1]), we know

|µj(rj[p])| ≤
(

1

1 − δj

)k+1−p

|µj(t)| (3.53)

for all t ∈ [rj [k], rj[k + 1]).

Applying equation 3.53 on equation 3.51 yields

|ej(t)| ≤ δj

k
∑

p=0

(

1

1 − δj

)k+1−p

|µj(t)| =

[

(

1

1 − δj

)k+1

− 1

]

|µj(t)| (3.54)

for all t ∈ [rj [k], rj[k + 1]). This means for all t ∈ [TL
j [ℓ], TL

j [ℓ+ 1]), we have

|ej(t)| ≤
[

(

1

1 − δj

)dj+1

− 1

]

|µj(t)| (3.55)

Since the above inequality holds for all ℓ = 0, 1, · · · ,∞, we know that for all t ≥ 0

we have

|µj(t) − µ̂j(t)| ≤
[

(

1

1 − δj

)dj+1

− 1

]

|µj(t)| ≤
√

2

LS
|µj(t)| (3.56)

The last inequality holds by applying equation 3.50.

Remember that we assumed the positive projection on µj(t) is not active unless

at the equilibrium, then from the proof of theorem 3.3.1 and apply equation 3.56,

79

we know that for all t ≥ 0 we have

−L̇(x, s;λ, w) ≥ 1

2

N
∑

i=1

z2
i −

1

2

M
∑

j=1

LS(µj − µ̂j)
2 +

M
∑

j=1

µ2
j ≥

1

2

N
∑

i=1

z2
i (3.57)

The convergence then follows easily. �

dj is link j’s largest number of successive data dropouts, and Dj(ρj) represents

the maximum allowable number of successive data dropouts for link j. This

theorem guarantees that algorithm 3.3.1-3.3.2 still converges if each link j’s largest

number of successive data dropouts dj does not exceed Dj(ρj). However, it says

nothing if this condition is not satisfied. We can easily see that Dj(ρj) is a

monotone decreasing function in ρj , and can be determined by link j itself locally.

However, there is a tradeoff between Dj(ρj) and the broadcast periods. In general,

small ρj results in short broadcast periods and large Dj(ρj), while large ρj results

in long broadcast periods but small Dj(ρj). Two extreme cases are, as ρj → 0,

Dj(ρj) → +∞, as ρj → 1, Dj(ρj) → 0.

3.3.4 Broadcast period analysis for the primal-dual algorithm

This subsection presents results on the link broadcast period of the event-

triggered primal-dual algorithm. We lower bound it as a function of the local link

state in the network.

Since in corollary 3.3.2 the algorithm asymptotically converges to the equilib-

rium, we can thus conclude that the state trajectory of the system always lies

within some compact set. Therefore, there always exists a constant pi > 0 such

80

that

zi(t) =

(

∂Ui(xi(t))

∂xi

−
∑

j∈Li

µ̂j(t)

)+

xi(t)

≤ pi (3.58)

for any t ≥ 0 and i ∈ S.

We can then derive a lower bound on the broadcast period of each link. Note

that we assume there is no data dropouts in the following discussion.

Corollary 3.3.4 Suppose all the assumptions in corollary 3.3.2 hold, and there

is no data dropouts in the system. Also ∀t ≥ 0, ∀i ∈ S, assume that there exists a

positive constant pi > 0, such that zi(t) ≤ pi, then the ℓth broadcast period of link

j, Bj[ℓ] = TL
j [ℓ + 1] − TL

j [ℓ], is lower bounded by

Bj[ℓ] ≥ wj ln

(

1 +
δj|µ̂j(T

L
j [ℓ])|

|µ̂j(TL
j [ℓ])| +∑i∈Sj

pi

)

Proof: Since all the assumptions in corollary 3.3.2 hold, this means link j will

obtain a new sample of µj(t) when the inequality in equation 3.40 is about to be

violated.

Define error as ej(t) = µj(t) − µ̂j(T
L
j [ℓ]) on t ∈ [TL

j [ℓ], TL
j [ℓ + 1]). We can

then study the behavior of error ej(t) over the time interval. Define Ω = {t ∈

81

[TL
j [ℓ], TL

j [ℓ+ 1])||ej(t)| = 0} On t ∈ [TL
j [ℓ], TL

j [ℓ+ 1]) − Ω, we have

d|ej(t)|
dt

≤
∣

∣

∣

∣

dej(t)

dt

∣

∣

∣

∣

=

∣

∣

∣

∣

dµj(t)

dt

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

1

wj

dsj(t)

dt
+

1

wj

∑

i∈Sj

zi(t)

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

− 1

wj

µj(t) +
1

wj

∑

i∈Sj

zi(t)

∣

∣

∣

∣

∣

∣

≤ 1

wj

|ej(t)| +
1

wj

|µ̂j(T
L
j [ℓ])| + 1

wj

∑

i∈Sj

pi (3.59)

where we use the right-hand sided derivative when t = TL
j [ℓ + 1]. We can then

solve the differential inequality in equation 3.59, which gives us

|ej(t)| ≤ e
1

wj
(t−T L

j [ℓ])|ej(T
L
j [ℓ])| +

(

|µ̂j(T
L
j [ℓ])| +

∑

i∈Sj

pi

[

e
1

wj
(t−T L

j [ℓ]) − 1
]

(3.60)

for all t ∈ [TL
j [ℓ], TL

j [ℓ+ 1]) since |ej(t)| = 0 for all t ∈ Ω.

Since link j’s next broadcast will be triggered when the inequality in equation

3.40 is about to be violated. This will happen at time TL
j [ℓ+ 1] when

|ej(T
L
j [ℓ + 1])| ≥ δj |µ̂j(T

L
j [ℓ])| (3.61)

We can use the bound on |ej(t)| in equation 3.60 to solve for TL
j [ℓ+1] in equation

82

3.61. This gives us a lower bound of the broadcast period of link j

Bj[ℓ] = TL
j [ℓ+ 1] − TL

j [ℓ]

≥ wj ln

(

(δj + 1)|µ̂j(T
L
j [ℓ])| +∑i∈Sj

pi

|ej(TL
j [ℓ])| + |µ̂j(TL

j [ℓ])| +∑i∈Sj
pi

)

(3.62)

= wj ln

(

1 +
δj |µ̂j(T

L
j [ℓ])| − |ej(T

L
j [ℓ])|

|ej(TL
j [ℓ])| + |µ̂j(TL

j [ℓ])| +∑i∈Sj
pi

)

= wj ln

(

1 +
δj |µ̂j(T

L
j [ℓ])|

|µ̂j(TL
j [ℓ])| +∑i∈Sj

pi

)

(3.63)

This completes the proof. �

The above corollary provides a state-dependent lower bound for link j’s broad-

cast period, Bj [ℓ]. Since pi is a known constant, then Bj[ℓ] is only a function of

link j’s local state, which means link j could predict when the next broadcast will

happen. However, this bound seems to be rather conservative.

3.3.5 Event-triggering with transmission delays

The data dropout analysis in subsection 3.3.3 guarantees the convergence of the

algorithm when the feedback information is not ‘too out of date’. In this subsection

we study the effect of transmission delay on the stability of the algorithm. In

particular, we gives an upper bound on the maximum tolerable delay while ensuing

the convergence of the event-triggered algorithm.

To study the effect of transmission delay on the stability of the algorithm,

let us first see what happens when there are transmission delays in the network.

Suppose link j detects a local event and obtains a new sampled state µ̂j(t) at time

t. Link j then transmits the new µ̂j(t) to users i ∈ Sj , where user i receives the

new state after some time τji(t) > 0. Here τji(t) denotes the transmission delay

83

from link j ∈ L to user i ∈ Sj when the broadcasted link state is sampled at time

t. It is obvious to see that τji(t) may be different for each user i. We define a

maximum delay

τj(t) = max
i∈Sj

τji(t) (3.64)

In the following analysis, we assume that τji(t) = τj(t), ∀t > 0, ∀j ∈ L, ∀i ∈

Sj . So our analysis focuses on the worst-case scenario, where each link-user pair

experiences the maximum possible transmission delay. It is not difficult to see

that, when not all link-user pairs experience the maximum transmission delay,

the result of our analysis will apply as well. What’s left to determine is the

maximum possible τj(t) at time t for link j.

The following theorem gives an upper bound on the maximum allowable delay

as a function of the local link state assuming there is no data dropouts.

Theorem 3.3.5 Suppose all the assumptions in corollary 3.3.2 hold except that

link j’s ℓth sampled link state µ̂j(T
L
j [ℓ]) is broadcasted to the users i ∈ Sj with

a nonzero transmission delay τj(T
L
j [ℓ]). Assume that there is no data dropouts

in the system. Also ∀t ≥ 0, ∀i ∈ S, assume that there exists a positive constant

pi > 0, such that zi(t) ≤ pi. Assume the transmission delay satisfies

τj(T
L
j [ℓ]) ≤ wj ln

1 +

1√
1

2
LS

(1 − δj)
kj+1

∣

∣µ̂j(T
L
j [ℓ])

∣

∣

∣

∣µ̂j(T
L
j [ℓ])

∣

∣+
∑

i∈Sj
pi

where kj = 0, 1, 2, · · · is the number of link j’s broadcast between the broadcast

and successful receipt of the ℓth sampled state µ̂j(T
L
j [ℓ]), then the user rates x(t)

asymptotically converge to the unique minimizer of L(x, s;λ, w).

84

Proof: Consider link j ∈ L, it samples its state for the ℓth time at time TL
j [ℓ],

and then broadcasts the sampled state µ̂j(T
L
j [ℓ]) to users i ∈ Sj . The packet will

experience a delay of τj(T
L
j [ℓ]). For notation convenience, we simply use τj in the

proof here. Consider the time interval t ∈ [TL
j [ℓ], TL

j [ℓ] + τj), it is possible that

link j will have additional broadcasts besides the broadcast at time t = TL
j [ℓ].

Suppose the number of additional broadcast is kj, where kj = 0, 1, 2, · · · .

Define error as ej(t) = µj(t) − µ̂j(T
L
j [ℓ]) on t ∈ [TL

j [ℓ], TL
j [ℓ] + τj). We can

study the behavior of the error ej(t) over the time interval. Similar to the proof

of corollary 3.3.4, we can show that

|ej(t)| ≤ e
1

wj
(t−T L

j [ℓ])|ej(T
L
j [ℓ])| +

(

|µ̂j(T
L
j [ℓ])| +

∑

i∈Sj

pi

[

e
1

wj
(t−T L

j [ℓ]) − 1
]

(3.65)

for all t ∈ [TL
j [ℓ], TL

j [ℓ] + τj).

From equation 3.40, we know

|µj(t)| ≥ (1 − δj)|µ̂j(T
L
j [ℓ + k])| (3.66)

for all t ∈ [TL
j [ℓ+ k], TL

j [ℓ] + τj). Apply the above equation repeatedly on [TL
j [ℓ+

k − 1], TL
j [ℓ+ k]),· · · ,[TL

j [ℓ], TL
j [ℓ+ 1]), we know

|µj(t)| ≥ (1 − δj)
kj+1|µ̂j(T

L
j [ℓ])| (3.67)

for all t ∈ [TL
j [ℓ + k], TL

j [ℓ] + τj).

If we can ensure

|ej(t)| ≤
1

√

1
2
LS

∣

∣µj(t)
∣

∣ (3.68)

85

on t ∈ [TL
j [ℓ+k], TL

j [ℓ]+τj), and since we have assumed that the positive projection

on µj is not active, then from theorem 3.3.1, we know that the system will be

asymptotic stable. This can be achieved by ensuring

e
1

wj
(t−T L

j [ℓ])|ej(T
L
j [ℓ])| +

(

|µ̂j(T
L
j [ℓ])| +

∑

i∈Sj

pi

[

e
1

wj
(t−T L

j [ℓ]) − 1
]

≤ 1
√

1
2
LS

(1 − δj)
kj+1|µ̂j(T

L
j [ℓ])| (3.69)

Remember ej(T
L
j [ℓ]) = 0 and solve the above inequality, we get

t− TL
j [ℓ] ≤ wj ln

1 +

1√
1

2
LS

(1 − δj)
kj+1

∣

∣µ̂j(T
L
j [ℓ])

∣

∣

∣

∣µ̂j(TL
j [ℓ])

∣

∣+
∑

i∈Sj
pi

This means if

τj(T
L
j [ℓ]) ≤ wj ln

1 +

1√
1

2
LS

(1 − δj)
kj+1

∣

∣µ̂j(T
L
j [ℓ])

∣

∣

∣

∣µ̂j(T
L
j [ℓ])

∣

∣ +
∑

i∈Sj
pi

then asymptotic stability of the system is guaranteed. �

The above theorem gives a state-dependent upper bound for the maximum

allowable delay of the broadcasted state. However, the upper bound is also a

function of an unknown variable kj , which is somewhat undesirable. An upper

bound or exact form of kj turns out to be difficult to obtain. However, we can

show that under certain conditions, we can have an estimate of kj’s upper bound.

Corollary 3.3.6 In theorem 3.3.5, if

|µ̂j(T
L
j [ℓ])| ≪

∑

i∈Sj

pi and LS ≫ 2ρj (3.70)

86

for all j ∈ S and all ℓ = 0, 1, · · · , then an upper bound of kj can be approximated

by 1√
ρj

.

Proof: Recall that if x ≤ 1, the Taylor series of ln(1 + x) can be written as

ln(1 + x) =
∞
∑

n=1

(−1)n+1x
n

n
(3.71)

This means if x≪ 1, we have ln(1 + x) ≈ x.

If we combine the result in theorem 3.3.5 on transmission delay τj(T
L
j [ℓ]) and

the result in corollary 3.3.4 on broadcast period Bj [ℓ], we know that an upper

bound of kj is approximately given by

kj ≈ τj(T
L
j [ℓ])

Bj [ℓ]
(3.72)

≤

1√
1

2
LS

(1 − δj)
kj+1

∣

∣µ̂j(T
L
j [ℓ])

∣

∣

∣

∣µ̂j(TL
j [ℓ])

∣

∣ +
∑

i∈Sj
pi

(

|µ̂j(T
L
j [ℓ])| +∑i∈Sj

pi

δj|µ̂j(TL
j [ℓ])|

)

(3.73)

=
1

√

1
2
LS

(1 − δj)
kj+1 1

δj
(3.74)

=

√

1
2
LS

√

1
2
LS +

√
ρj

kj

1√
ρj

(3.75)

≈ 1
√
ρj

(3.76)

Here the first approximation follows easily. The first inequality follows by using

the first assumption in equation 3.70 and the fact that ln(1 + x) ≈ x. The two

equalities follow by using applying the definition of δj . The last approximation

follows by using the LS ≫ 2ρj assumption. �

The corollary basically says that if ρj is small, then we should expect a large

kj, and vice versa. This certainly makes sense since when ρj is small, the link

87

broadcasts more often, and as a result we would expect a larger kj. The two

assumptions in equation 3.70 are reasonable. The first assumption holds since

our estimate of pi is usually rather conservative, and the second assumption holds

since ρj ≤ 1, and LS ≫ 1 holds for most real-life networks.

3.4 Simulation

This section presents simulation results. We compare the number of message

exchanges of our two event-triggered algorithms against the dual decomposition al-

gorithm. Simulation results show that both event-triggered algorithms reduce the

number of message exchanges by up to two orders of magnitude when compared

to dual decomposition. Moreover, our event-triggered algorithms are scale free

with respect to network size. The robustness to data dropouts and transmission

delays of the event-triggered primal-dual algorithm are also demonstrated.

The remainder of this section is organized as follows: Subsection 3.4.1 discusses

the simulation setup. Simulation results on broadcast periods of both event-

triggered algorithms are shown in subsection 3.4.2. Subsection 3.4.3 and 3.4.4

present simulation results of the event-triggered primal-dual algorithm when data

dropouts and transmission delays are taken into considerations respectively. The

scalability results with respect to S and L are presented in subsection 3.4.5 and

3.4.6, respectively.

3.4.1 Simulation Setup

Denote s ∈ U [a, b] if s is a random variable uniformly distributed on [a, b].

GivenM , N , L and S, the network used for simulation is generated in the following

way. We randomly generate a network with M links and N users, where |Sj | ∈

88

U [1, S], j ∈ L, |Li| ∈ U [1, L], i ∈ S. We make sure that at least one link has

S users, and at least one user uses L links. After the network is generated, we

assign a utility function Ui(xi) = αi log xi to each user i, where αi ∈ U [0.8, 1.2].

Link j is assigned capacity cj ∈ U [0.8, 1.2]. Once the network is generated, all

three algorithms are simulated. The optimal rate x∗ and its corresponding utility

U∗ are calculated using a global optimization technique.

Define error as (for all algorithms)

e(k) =
∣

∣

∣

U(x(k)) − U∗

U∗

∣

∣

∣
(3.77)

where x(k) is the rate at the kth iteration. e(k) is the ‘normalized deviation’

from the optimal point at the kth iteration. In all algorithms, we count the

number of iterations K for e(k) to decrease to and stay in the neighborhood

{e(k)|e(k) ≤ ed}. In dual decomposition, message passings from the links to the

users occur at each iteration synchronously. So K is a measure of the total number

of message exchanges. In our event-triggered algorithms, events occur in a totally

asynchronous way. We add the total number of triggered events, and divide this

number by the link number M . This works as an equivalent iteration number

K for our event-triggered algorithms, and is a measure of the total number of

message exchanges. We should point out that since we are comparing a primal

algorithm and a primal-dual algorithm (our event-triggered algorithms) with a

dual algorithm, and they run at different time-scales, iteration number is then a

more appropriate measure of convergence than time [15] [26].

The default settings for simulation are as follows: M = 60, N = 150, L =

8, S = 15, ed = 3%. For all three algorithms, the initial condition xi(0) ∈

U [0.01, 0.05], ∀i ∈ S. In dual decomposition, initial price pj = 0 for j ∈ L, and

89

the step size γ is calculated using equation 1.14. In our event-triggered primal

algorithm, ρ = 0.5, λj = 0, wj = 0.01 for j ∈ L. In the event-triggered primal-dual

algorithm, ρj = 0.9, λj = 0, wj = 0.01 for j ∈ L.

3.4.2 Broadcast periods of the event-triggered algorithm

In this subsection we present simulation results on the broadcast periods of our

event-triggered algorithms. Simulation shows that both event-triggered algorithms

have much longer average broadcast period than dual decomposition.

This simulation uses the default settings in subsection 3.4.1 and ran for 3.60s.

The error in all three algorithms entered the ed neighborhood in 3.60s. For ref-

erence, with the same settings, the average broadcast period for the dual decom-

position is 0.0026. In our event-triggered primal algorithm, there are a total of

295 link events, and 1059 user events. So the links have an average broadcast

period of 0.7332, which is 282 times longer than in dual decomposition. However,

unlike in dual decomposition, the users in the primal algorithm have to broadcast

their states occasionally as well, and their average broadcast period is 0.5099. For

the event-triggered primal-dual algorithm, there are a total of 2106 link events.

The links have an average broadcast period of 0.1026, which is 39 times longer

than in dual decomposition. As we can easily see, the primal algorithm has the

longest average link broadcast period among three algorithms. However, the algo-

rithm need users to broadcast their states as well, which does not happen in the

primal-dual algorithm and dual decomposition. Both the primal and primal-dual

algorithms enjoy much longer broadcast periods than dual decomposition.

To see how the broadcast periods vary for a particular user or link in our

event-triggered algorithms, we pick one user and one link in the network, and

90

0 1 2 3
0

0.5

1
user broadcast period history: primal algorithm

t

br
oa

dc
as

t p
er

io
d

0 0.2 0.4 0.6 0.8
0

0.5

1

1.5

2
histogram of broadcast period

broadcast period

tr
ig

ge
re

d
fr

eq
ue

nc
y

0 1 2 3
0

1

2

3

4
link broadcast period history: primal algorithm

t

br
oa

dc
as

t p
er

io
d

0 0.5 1 1.5 2 2.5
0

5

10
histogram of broadcast period

broadcast period

tr
ig

ge
re

d
fr

eq
ue

nc
y

0 1 2 3
0

0.1

0.2

0.3

0.4
link broadcast period history: p−d algorithm

t

br
oa

dc
as

t p
er

io
d

0 0.1 0.2 0.3 0.4
0

5

10
histogram of broadcast period

broadcast period

tr
ig

ge
re

d
fr

eq
ue

nc
y

Figure 3.1. Broadcast results for event-triggered algorithms

their broadcast results are shown in figure 3.1. The four plots above correspond

to the user and link broadcast in the primal algorithm, and the two plots below

correspond to the link broadcast in the primal-dual algorithm. The top left plot

in figure 3.1 is the time history of broadcast periods generated by the user’s local

event in the primal algorithm. The top right plot is the histogram of those user

broadcast periods. This user’s broadcast periods range between 0.0600 and 0.6300,

with the minimum broadcast period 23 times longer than in dual decomposition.

This user was triggered 10 times, with an average broadcast period of 0.3600. The

middle left plot is the time history of broadcast periods generated by the link’s

local event in the primal algorithm. The middle right plot is the histogram of

those link broadcast periods. This link’s broadcast periods range between 0.0300

and 2.0400, with the minimum broadcast period 11 times longer than in dual

91

decomposition. This link was triggered 9 times, with an average broadcast period

of 0.4000. The above broadcast period results was generated for an active link.

For all the inactive links, it is interesting to see that they never broadcasted in

the primal algorithm. This means only active links need to send their feedback

signals to the users in the primal algorithm.

Finally, the lower left plot is time history of broadcast periods generated by

the link’s local event in the primal-dual algorithm. The lower right plot is the

histogram of those link broadcast periods. The link’s broadcast periods range

between 0.0020 and 0.3070. The link was triggered 30 times, with an average

broadcast period of 0.1150. Unlike in the primal algorithm, the inactive links also

need to send their feedback signals to the users in the primal-dual algorithm.

Based on the above discussion, we know that in the primal algorithm, the

users and active links need to broadcast their states. In the primal-dual algorithm

and dual decomposition, all links need to broadcast their states. Despite differ-

ent broadcast strategies, both event-triggered algorithms generate much longer

broadcast periods than dual decomposition.

3.4.3 Data dropout simulation

In this subsection we present simulation results on the primal-dual algorithm

when data dropouts are taken into consideration.

From the discussion of the data dropout in subsection 3.3.3, we know that

each link j’s largest number of successive data dropout dj needs to satisfy the

inequality in equation 3.50 to ensure stability. Given a network, the max allowable

number of successive data dropouts Dj(ρj) is a monotone decreasing function in

ρj . If we want the system to be robust to possible large data dropouts, then

92

we need to choose a small ρj . For references, when ρ = 0.9, 0.218, 0.102, 0.025,

Dj(ρj) = 0, 1.0034, 2.0052, 5.0089 respectively. Table 3.1 summarizes simulation

results for three different choices of ρj . For each given ρj , we use the same ρj , dj

for every link in the network. In the simulation, we assume that the number of

successive data dropouts are always equal to the largest number of successive data

dropouts, dj. When ρj = 0.102 and ρj = 0.025, dj is chosen so that the stability

condition in equation 3.50 is satisfied. When ρj = 0.9, we intentionally choose

dj = 10 so that it violates the condition. The system is asymptotically stable in

all three scenarios. This means that the bound on data dropout in equation 3.50

is indeed a sufficient condition for stability, but is a rather conservative bound.

Remember in subsection 3.4.2, when ρj = 0.9 and no data dropouts, the average

broadcast period is 0.1096. This is very close to the average successful broadcasts

period in table 3.1 in all three cases. However, with no surprise, when data

dropouts occurs, the average triggered broadcasts period is much shorter than

0.1096, which is clearly shown in table 3.1.

3.4.4 Transmission delay simulation

In this subsection we present simulation results on the primal-dual algorithm

when transmission delays are taken into consideration. Simulation shows that the

algorithm still converges to the equilibrium when the delay is not too long.

We consider the scenario that when each µ̂j packet is broadcasted, it expe-

riences a uniform random transmission delay ranging from 0ms to τms, and we

choose different values of τ in the simulation. To be specific, τ is chosen to be

0ms, 10ms, 20ms, 50ms, 100ms, respectively. Note that here in the simulation,

the transmission delay of each link-user pair can be different and is independent

93

ρj 0.102 0.025 0.9

Dj(ρj) 2.0052 5.0089 0

dj 2 5 10

Number of triggered broadcasts 7490 18336 27765

Number of successful broadcasts 2474 3029 2497

Average triggered broadcasts period 0.0288 0.0118 0.0078

Average successful broadcasts period 0.0873 0.0713 0.0865

TABLE 3.1

Simulation results for different ρj and dj

of each other. The user always uses the latest received µ̂j packet regardless of

the sending time. The simulation uses the default settings in subsection 3.4.1 and

ran for 3.60s. The error in all three algorithms entered the ed neighborhood in

3.60s. We plot the error e(k) as a function of the iteration number k for different

τ in figure 3.2. From bottom to top, the five plots correspond to τ = 0ms, 10ms,

20ms, 50ms, 100ms, respectively. As we can see, the error enters the ed neigh-

borhood in all five scenarios. Of course, when τ increase, the iteration number

k it takes to converge increases as well. For each different τ , iteration number

k = 33, 35, 41, 105, 148, respectively. The increase in iteration number is expected

with the use of delayed information. This simulation clearly demonstrated the

effectiveness of our event-triggered algorithm with the presence of transmission

delay.

94

0 50 100 150
10

−2

10
−1

10
0

k

e
rr

o
r

e
(k

)

τ=0
τ=10ms
τ=20ms
τ=50ms
τ=100ms

Figure 3.2. Error e(k) as a function of iteration number k for different τ

3.4.5 Scalability with respect to S

In this simulation, we fix M , N , L and vary S from 7 to 26. For each S, all

algorithms were run 1500 times, and each time a random network which satisfies

the above specification is generated. The mean mK and standard deviation σK of

K are computed for each S. mk works as our criteria for comparing the scalability

of the three algorithms. Figure 3.3 plots the iteration number K (in logarithm

scale) as a function of S for all algorithms. The asterisks above represent mK for

dual decomposition, the crosses in the middle denote our primal-dual algorithm,

while the circles below correspond to the primal algorithm. The dotted vertical line

around each asterisk, cross and circle corresponds to the interval [mK −σK , mK +

σK] for each different S denoted by the x-axis.

For both the primal and primal-dual algorithm, when S increases from 7 to

26, mK does not show noticeable increase. For the primal algorithm, mK varies

between 15.1 and 21.1, and σK varies between 1.1 and 1.6. For the primal-dual

95

6 8 10 12 14 16 18 20 22 24 26
10

1

10
2

10
3

10
4

S

K

primal

dual decompose

primal−dual

Figure 3.3. Iteration number K as a function of S for all algorithms.

algorithm, mK increases from 30.5 to 36.6, and σK increases from 0.7 and 1.9. As

for dual decomposition, mK increases from 0.3856 × 103 to 5.0692 × 103. σK at

the same time increases from 0.4695 × 102 to 6.4627 × 102. Our event-triggered

algorithms are up to two orders of magnitude faster than the dual decomposi-

tion. We can also see that, unlike the dual decomposition algorithm, which scales

superlinearly with respect to S, both the primal and primal-dual event-triggered

algorithms on the other hand are scale-free.

3.4.6 Scalability with respect to L

This simulation is similar to subsection 3.4.5 except that we vary L from 4 to

18 instead of S. Figure 3.4 plots K (in logarithm scale) as a function of L for all

algorithms.

For both the primal and primal-dual algorithm, when L increases from 4 to

18, mK increases slowly. For the primal algorithm, mk increases from 15.0 to 18.2,

and σK varies between 1.0 and 1.4. For the primal-dual algorithm, mK increases

96

from 31.1 to 48.5, and σK varies between 1.1 and 3.8. As for dual decomposition,

mK increases from 0.9866×103 to 3.5001×103, and σK at the same time increases

from 0.9991×102 to 6.0232×102. Our event-triggered algorithms again are up to

two orders of magnitude faster than the dual decomposition. We can also see that,

unlike the dual decomposition algorithm, which scales superlinearly with respect

to L, our event-triggered algorithms on the other hand are scale-free.

2 4 6 8 10 12 14 16 18
10

1

10
2

10
3

10
4

L

K

primal

dual decompose

primal−dual

Figure 3.4. Iteration number K as a function of L for all algorithms.

3.5 Conclusion

This chapter presents a primal and a primal-dual event-triggered distributed

NUM algorithms based on the augmented Lagrangian methods. The chapter

establishes state-dependent event-triggering thresholds under which the proposed

algorithms converge to the approximate solution of the NUM problem. For the

97

primal-dual algorithm, bounds on the maximum allowable data dropouts and

maximum allowable transmission delays are given. A state-dependent lower bound

on the broadcast period is presented as well. Simulation results suggest that

both algorithms are scale-free with respect to two measures of network size, and

reduce the number of message exchanges by up to two orders of magnitude when

compared to existing dual decomposition algorithms.

98

CHAPTER 4

Optimal power flow in microgrids using event-triggered optimization

This chapter uses the optimal power flow problem in microgrids as a nontrivial

real-life example to demonstrate the effectiveness of event-triggered optimization.

4.1 Introduction

Microgrids [33] [22] [18] are power generation/distribution systems in which

users and generators are in close proximity. This results in relatively low voltage

grids (few hundred kVA). Generation is often done using renewable generation

sources such as photovoltaic cells or wind turbines. Power generation can also

be accomplished through small microturbines and gas/diesel generators. Storage

devices such as battery banks represent another important power source for mi-

crogrids. These units can be used in places such as office buildings, parks, homes

and battle fields as distributed power sources. They are modular in the sense

that, if needed, new unit can be added to the network in an easy way. All the

microgrids in the network can work in a cooperative way to meet the overal load

demand in the network.

Active/reactive power dispatch problems have been the research subject of

power system community since in the early 1960’s. The problem is usually formu-

lated as an optimal power flow (OPF) problem. The OPF problem [40] [20] is an

99

important class of problems in the power industry. The problem is to determine

generator power set points so that the overall cost of power generation is mini-

mized, while respecting limits on the generator’s capacity and transmission power

flow constraints. This chapter examines the optimal active power flow problem

[40], which we will simply denote as the OPF problem in the remainder of the

chapter.

Various centralized or distributed optimization algorithms have been proposed

to solve the OPF problem, including network flow approach [11], interior point

method [40] [20], multi-area decomposition [17] [9] [29], etc. These algorithms

usually made the assumptions that communication between subsystems was not

expensive and reliable. This assumption, however, is not always realistic since

one of the first things to go down during power disruptions is the communication

network. One way around this problem is to make use of low power ad hoc wireless

communication networks that operate independently of the main power grid.

Ad hoc wireless sensor networks have recently been used in the reliable op-

eration and control of various civil infrastructure systems [45][37]. The nodes in

these networks are usually powered by batteries or solar arrays, so they would be

unaffected by fluctuations in the main power grid. These networks, however, have

severe throughput limitations that make it impractical to send a large amount of

information across the network. Moreover, it may be impractical to send periodi-

cally sampled data across the network as the nodes in these networks have limited

power due to their reliance on batteries. As a result of these considerations, ad hoc

communication networks can provide a power grid’s communication infrastructure

only if we can greatly limit the amount of information that needs to be transmitted

across the network. One way of doing this is to adopt an event-triggered approach

100

to information transmission.

In event-triggered systems, sensors are sampled in a sporadic non-periodic

manner. Our work in chapter 2 and 3 has shown that event-triggering can greatly

reduce (by several orders of magnitude) the message passing required in the so-

lution of network utility maximization problems. Event-triggering therefore may

provide a useful approach for reducing the power grid’s use of the communication

network.

The OPF problem is similar to the NUM problem we considered in previous

chapters. In this chapter, we develop an event-triggered distributed optimization

algorithm for the OPF problem and prove its convergence. We use the CERTS

microgrid model [32] as an example power system to show the effectiveness of our

algorithm. The simulation is done in MATLAB/SimPower and shows that our

algorithm solves the OPF problem in a distributed way, and the communication

between neighboring subsystems is very infrequent. The rest of the chapter is

organized as follows. Section 4.2 formally states the OPF problem. Section 4.3

briefly introduces the main components and mechanisms of the CERTS microgrid

model. Section 4.4 presents an event-triggered scheme to solve the OPF in a

distributed way. Simulation and conclusions are in section 4.5 and section 4.6,

respectively.

4.2 The optimal power flow (OPF) problem

This section derives the DC flow model [16], which is widely used to character-

ize a power system’s behavior around the normal steady state operation. It then

uses the DC flow model to formally state the OPF problem, which we will solve

later in section 4.4.

101

The power system can be modeled as a directed graph, which is shown in

figure 4.1. Consider a connected directed graph G = (V, E) as an abstraction

of an electrical power network. The system consists of N buses. For simplicity

of discussion, we assume that each bus has a local generator and a local load

connected to it in our model. More general scenarios where a certain bus does not

have a local generator or has multiple local loads can be treated similarly without

much difficulty. V = {v1, ..., vN} is the set of nodes, and each node represents a

bus (with a local generator and load). E ⊆ V × V is the set of directed edges,

which corresponds to the power transmission lines. Suppose the network has

M = |E| edges, and they are ordered 1, 2, ...,M . An edge from node i to node j

is denoted as eij = (vi, vj). zij = rij + jxij is the impedance of the transmission

line corresponding to edge eij. Since rij is often negligible compared to xij , we

can assume rij = 0 in our DC flow model. Suppose the incidence matrix [10] of

graph G is I, and define a diagonal matrix D ∈ R
M×M , whose diagonal entries

are the reactances x of M transmission lines. Then the weighted incidence matrix

A ∈ R
M×N is defined as A = DI. The set of neighbors of node i is defined

as N (i) = {vj ∈ V|(vi, vj) ∈ E}, and node i has |N (i)| neighbors. The set of

transmission lines that leave bus i is defined as L(i) = {eij ∈ E|j ∈ N (i)}.

In the power system analysis, complex powers are extensively used [7] [30].

Remember power can be defined as P = Re{ui∗}, where u and i represents the

voltage and current, respectively. Re{a} and Im{a} is the real and imaginary

part of a complex number a. Complex power S and reactive power Q are defined

as

S = ui∗, Q = Im{ui∗} (4.1)

102

source load source load

source load

source load

source load

transmission line

Bus 1 Bus 2

Bus 3
Bus 4

Bus 5

P1 , L1 P2 , L2

P3 , L3 P4 , L4

P5 , L5

Power Distribution Network

Graph of Power Distribution Network

Pi = Power Generated at Node i

Li = Load at Node i

Figure 4.1. Power distribution network and graph abstract

It is trivial to see S = P + jQ.

Let Sij denote the complex power flow from node i to node j, and ui denote the

generator voltage at node i. Use the following magnitude-phase representation,

ui = |ui|ejθi, uj = |uj|ejθj (4.2)

and remember zij = jxij , we have

Sij = ui(
ui − uj

zij

)∗ = Pij + jQij (4.3)

Sji = uj(
uj − ui

zji

)∗ = Pji + jQji (4.4)

103

where

Pij = −Pji =
|ui||uj|
xij

sin(θi − θj) (4.5)

Qij =
|ui|2
xij

− |ui||uj|
xij

cos(θi − θj) (4.6)

Qji =
|uj|2
xji

− |uj||ui|
xji

cos(θi − θj) (4.7)

Under normal operating conditions, we have |ui| ≈ |uj|, and θi − θj is typically

small. In this case, there is reasonably good decoupling between the control of

active power flow Pij , Pji and reactive power flow Qij, Qji. The active power flow

is mainly dependent on θi − θj , and the reactive power flow is mainly dependent

on |ui| − |uj| [7].

The DC flow model we are using further assumes that only the voltage phases

θi, θj vary, and that variation is small. Voltage magnitudes |ui|, |uj| are assumed

to be constant (|ui| = |uj| = 1 here). In this case, the reactive power flow Qij

is negligible, and we are only considering the active power flow Pij . With the

assumptions and simplifications above, the power flow from node i to node j is

given by

Pij =
1

xij

(θi − θj) (4.8)

The total power flowing into bus i, Pi, must equal the power generated by

generator i minus the power absorbed by the local load at the bus. Pi, therefore,

must equal the the sum of the power flowing away from bus i on all transmission

104

lines. This means

Pi =
∑

j∈N (i)

Pij =
∑

j∈N (i)

1

xij

(θi − θj) (4.9)

which can be expressed in a matrix form

P = Bθ (4.10)

where P = [P1, ..., PN]T , θ = [θ1, ..., θN]T , and B is defined as

Bij =

∑

j∈N (i)
1

xij
, if i = j,

− 1
xij
, if eij ∈ E,

0, if eij /∈ E

(4.11)

B is a singular matrix, which can be thought as a weighted Laplacian matrix [10]

of the graph. The weight here is 1/xij for edge eij .

Based on our DC flow model in equation 4.8, we can formulate the General

OPF problem as follows :

minimize C(PG) =
∑N

i=1Ci(PGi
) (4.12)

w.r.t PG (4.13)

subject to: Bθ = PG − PL (4.14)

PG ≤ PG ≤ PG (4.15)

P ≤ Aθ ≤ P (4.16)

Here PG = [PG1
, ..., PGN

]T is the vector of generated active powers for all gener-

105

ators, and PL = [PL1
, ..., PLN

]T is the vector of total local loads for all buses. A and

B are sparse matrices and have been defined previously. PG = {PG1
, · · · , PGN

}

and PG = {PG1
, · · · , PGN

} represent the lower and upper limits of the genera-

tors’ power generating constraints. P = {P1, · · · , PM} and P = {P1, · · · , PM}

represent the lower and upper limits of the power flows on the transmission lines.

Here PL, PG, PG, P and P are known constants in the problem formulation, and

A and B are known constant matrices. The objective function in equation 4.12

represents the total generation cost of all the generators, and generator i’s cost of

generating PGi
unit of active power is usually in the form of

Ci(PGi
) = ai + biPGi

+ ciP
2
Gi

(4.17)

where ai, bi and ci are constant coefficients. The constraint in equation 4.14 is

the power flow balance equation. Constraints in equation 4.15 and 4.16 represent

the generation limits of the generators, and power flow limits on the transmission

lines, respectively. The General OPF problem seeks to find the optimal generated

active power PG such that the total generation cost is minimized, subject to the

power flow equation and physical constraints of the generation and transmission

systems.

To apply the idea of event-triggered optimization, we need to reformulate the

previous General OPF problem to fit into the NUM problem formulation and

adopt a similar approach we have used in chapter 3. This is done by recognizing

that the constraint in equation 4.15 is a power balance relation that is always

maintained within the system. We can therefore remove PG as a control variable

106

to obtain the following revised OPF problem.

minimize C(PG) =
∑N

i=1Ci((Bθ)i + PLi
) (4.18)

w.r.t θ (4.19)

subject to: PG − PL ≤ Bθ ≤ PG − PL (4.20)

P ≤ Aθ ≤ P (4.21)

where (Bθ)i is the ith element of Bθ. Note that the new optimization problem is

solved with respect to the phase angle θ instead of PG. The revised OPF problem

also has the same solution as the General OPF problem. We will solve the revised

OPF problem later in section 4.4 using an event-triggered distributed algorithm.

4.3 The CERTS Microgrid model

This section briefly describes the CERTS microgrid model and the microsource

controller developed by the University of Wisconsin, Madison (UWM). A detailed

account of the microsource controllers can be found in [32]. Since we are using

the CERTS microgrid model in our MATLAB/SimPower simulation, the basic

operation of the model and the controller is described below.

The inverter-based microsource consists of a D.C. source whose outputs are

transformed into an A.C. voltage through an inverter. The actions of the inverter

are guided by a controller that uses sensed feeder currents and voltages to de-

termine how best to control the operation of the inverter. Figure 4.2 shows that

the output of the inverter is passed through a low pass filter to remove switching

transients to produce a three phase 480V voltage. A transformer then steps this

down to 208 V (120 volts rms).

107

D.C. Voltage

Source

Inverter

Low Pass Filter

Controller

480 V

208 V sensed

current and voltage

Feeder Lines

sensed feeder

line current

DC voltage

3 phase

waveform

sw
it

ch
in

g
si

g
n

a
ls

Figure 4.2. Inverter-based microsource

The UWM microsource controller is shown in figure 4.3. The inputs are mea-

surements of inverter current, load voltage and line current. The controller also

takes as reference inputs the requested voltage level Ereq, the requested power set

point Preq, and the desired frequency freq (usually 60 Hz). The controller takes

the measured inputs and computes the instantaneous reactive power, Q, the volt-

age magnitude, E, and the real power P . These computed values are low pass

filtered. The reactive power, Q, and the requested voltage Ereq are input to the

Q vs E droop controller to determine the desired voltage level. This is compared

against the measured voltage level and the output V is then given to the gate pulse

generator. Another channel in the controller uses the measured real power and

108

implements another droop control that balances the system’s frequency against

the requested power level, Preq. The output of the P vs frequency droop con-

troller is used to adjust the phase angle, δV , which is also fed into the gate pulse

generator. The output of the gate pulse generator goes directly into the inverter.

The action of this controller is, essentially, to mimic the droop controls seen

in traditional synchronous generators. This means that if a load begins drawing

a great deal of real power, then the line frequency will “droop” as an indicator

of the extra stress on the system. The controller automatically tries to restore

that frequency to its desired levels. But it will be unable to restore the droop if

the power being pulled if the power drawn by the load exceeds the generator’s

capacity. This drop in frequency can be sensed at the load and may be used to

help decide if the load should disconnect from the microgrid. A similar scenario

occurs if the load begins drawing too much reactive power. In this case, there will

be a droop in the voltage that can again be used by the load to determine if it

should disconnect from the grid. These droop controllers are well understood and

they can be easily interfaced to price-based power control methods through the

requested power and voltage set points shown in figure 4.3. The event-triggered

control inputs developed in this chapter will interface to this controller through

the requested power input.

4.4 Event-triggered distributed optimization for OPF

This section develops an event-triggered distributed algorithm to solve the re-

vised OPF problem in section 4.2, and proves its convergence. The event-triggered

algorithm can be easily integrated into the CERTS microgrid model by dynami-

cally adjusting the power set point of each generator.

109

Q Calculation Low Pass

Filter

Q vs E

Droop

Voltage

Control

P vs Freq

Droop

Low Pass

Filter

Low Pass

Filter

Magnitude

 Calculation

P Calculation

Gate Pulse

Generator

Inverter

Current

Load Voltage

(measured)

Line Current

Q

P

E

Requested

Voltage, Ereq

Requested

Power, Preq

Requested

frequency, freq

δv

V

Figure 4.3. UWM microsource controller

The revised OPF problem is a constrained problem, which can be converted

into a sequence of unconstrained problems by adding to the cost function a penalty

term that prescribes a high cost to infeasible points.

Take the Aθ ≤ P constraint for example, we can introduce a slack variable

s ∈ R
M and replace the inequalities Pj − aT

j θ ≥ 0, ∀j ∈ E by

aT
j θ − Pj + sj = 0, sj ≥ 0, ∀j ∈ E (4.22)

Here the vector aT
j = [Aj1, · · · , AjN] is the jth row of matrix A.

Define

ψj(θ;w
E) = min

sj≥0

1

2wE
j

(aT
j θ − Pj + sj)

2 (4.23)

where a penalty parameter wE
j is associated with each transmission line j and

wE =
[

wE
1 , · · · , wE

M

]

is the vector of transmission line penalty parameters.

110

It is easy to show that

ψj(θ;w
E) =

0, if Pj − aT
j θ ≥ 0

1
2wE

j

(aT
j θ − Pj)

2, otherwise

Similarly we can define

ψj(θ;w
E) =

0, if Pj − aT
j θ ≤ 0

1
2wE

j

(aT
j θ − Pj)

2, otherwise

which corresponds to the inequality constraint Pj − aT
j θ ≤ 0, ∀j ∈ E .

Define bTk = [Bk1, · · · , BkN] as the kth row of matrixB and let wV =
[

wV
1 , · · · , wV

N

]

denote the vector of generator penalty parameters. This gives us

χk(θ;w
V) =

0, if PGk
− PLk

− bTk θ ≥ 0

1
2wV

k

(bTk θ − PGk
+ PLk

)2, otherwise

for constraint bTk θ − PGk
+ PLk

≤ 0, ∀k ∈ V and

χk(θ;w
V) =

0, if PGk
− PLk

− bTk θ ≤ 0

1
2wV

k

(bTk θ − PGk
+ PLk

)2, otherwise

for constraint bTk θ − PGk
+ PLk

≥ 0, ∀k ∈ V.

Let us define the the augmented cost as

L(θ;wE , wV) =
∑

i∈V
Ci((Bθ)i + PLi

) +
∑

j∈E
ψj(θ;w

E) +

∑

j∈E
ψj(θ;w

E) +
∑

i∈V
χi(θ;w

V) +
∑

i∈V
χi(θ;w

V) (4.24)

111

L(θ;wE , wV) is a continuous function of θ for fixed wE and wV . Let θ∗[k] denote

the approximate minimizer of L(θ;wE [k], wV [k]). It was shown in [8] that by ap-

proximately minimizing L(θ;wE , wV) for sequences of {wE [k]}∞k=0 and {wV [k]}∞k=0,

the sequence of approximate minimizers {θ∗[k]}∞k=0 converges to the optimal point

of the OPF problem. We only require that {wE
j [k]}∞k=0 and {wV

i [k]}∞k=0, ∀j ∈ E ,

∀i ∈ V are sequences of transmission line/generator penalty parameters that are

monotone decreasing to zero.

Instead of minimizing L(θ;wE , wV) for sequences of penalty parameters, we are

only considering the problem of minimizing L(θ;wE , wV) for fixed wE and wV in

this chapter. If wE
j and wV

i are sufficiently small, the minimizer of L(θ;wE , wV)

will be a good approximation to the solution of the original OPF problem. We

should note that in our work in [57], we gave an event-triggered algorithm that

converges to the exact minimizer of the NUM problem. Interested reader can refer

to that paper to see how we can decrease the penalty parameters in a distributed

way to accomplish that.

We can search for the minimizer of L(θ;wE , wV) using a gradient descent al-

gorithm where

θi(t) = −
∫ t

0

∇θi
L(θ(τ);wE , wV)dτ

for each generator i ∈ V. The derivative of L(θ;wE , wV) with respect to θi can be

112

shown to be

∇θi
L(θ;wE , wV)

=
∑

j∈L(i)

max{0, 1

wE
j

(aT
j θ − Pj)}Aji

+
∑

j∈L(i)

min{0, 1

wE
j

(aT
j θ − Pj)}Aji

+
∑

k∈N (i)+i

max{0, 1

wV
k

(bTk θ − PGk
+ PLk

)}Bki

+
∑

k∈N (i)+i

min{0, 1

wV
k

(bTk θ − PGk
+ PLk

)}Bki

+
∑

k∈N (i)+i

∇Ck(b
T
k θ + PLk

)Bki

For each transmission line, let us define

µj(t) = max{0, 1

wE
j

(aT
j θ(t) − Pj)} + min{0, 1

wE
j

(aT
j θ(t) − Pj)} (4.25)

Here aT
j θ(t) is simply the power flow on transmission line j ∈ E at time t. wE

j > 0

is a constant penalty coefficients that penalizes the violation of the transmission

line flow limits. It is easy to see that µj(t) is nonzero if and only if the flow

on the jth transmission line exceeds the line flow limits. µj(t) summarizes the

information of the jth transmission line at time t and can be viewed as its state.

Similarly for each generator k ∈ V we define

ϕk(t) = ∇Ck(b
T
k θ(t) + PLk

)

+ max{0, 1

wV
k

(bTk θ(t) + PLk
− PGk

)} + min{0, 1

wV
k

(bTk θ(t) + PLk
− PGk

)}

Here wV
k is a constant penalty coefficient that penalizes the violation of the gen-

113

erating limits for generator k ∈ V. Recall the power balance equation in 4.14 and

we can thus rewrite ϕk(t) as

ϕk(t) = ∇Ck(PGk
(t)) + max{0, 1

wV
k

(PGk
(t) − PGk

)}

+ min{0, 1

wV
k

(PGk
(t) − PGk

)}

It is then easy to see that ϕk(t) is determined by the gradient of the current

generation cost of the kth generator, and whether the kth generator’s generation

limit is satisfied. In other words, ϕk(t) summarizes the information of the kth

generator at time t and can be viewed as its state.

We can now rewrite the derivative of L(θ;wE , wV) with respect to θi as

∇θi
L(θ;wE , wV) =

∑

j∈L(i)

µjAji +
∑

k∈N (i)+i

ϕkBki (4.26)

and the gradient descent algorithm takes the form

θi(t) = −
∫ t

0

∑

j∈L(i)

µj(τ)Aji +
∑

k∈N (i)+i

ϕk(τ)Bki

 dτ (4.27)

Note that in equation 4.27, generator i can compute its phase angle only based

on the state ϕi from itself and its neighboring generators, as well as the state µj

from its outgoing transmission lines. The update of θi can be done in a distributed

manner.

However, in the above equation, this neighboring generator’s state information

is available to generator i in a continuous manner, which would require continuous

communications between neighboring generators. This is highly undesirable. An

event-triggered version of equation 4.27 assumes that generator i accesses a sampled

114

version of its neighboring generator’s state. In particular, let’s associate a sequence

of sampling instants, {Ti[ℓ]}∞ℓ=0 with the ith generator. The time Ti[ℓ] denotes the

instant when the ith generator samples its state ϕi for the ℓth time and transmits

that state to neighboring generators k ∈ N (i). We can see that at any time t ∈ ℜ,

the sampled generator state is a piecewise constant function of time in which

ϕ̂i(t) = ϕi(Ti[ℓ]) (4.28)

for all ℓ = 0, · · · ,∞ and any t ∈ [Ti[ℓ], Ti[ℓ + 1]). In this regard, the “event-

triggered” version of equation 4.27 takes the form

θi(t) = −
∫ t

0

∑

j∈L(i)

µj(τ)Aji +
∑

k∈N (i)

ϕ̂k(τ)Bki + ϕi(τ)Bii

 dτ (4.29)

for all ℓ and any t ∈ [Ti[ℓ], Ti[ℓ + 1]).

The sequence {Ti[ℓ]}∞ℓ=0 represents time instants when generator i transmits its

“state” to its neighboring generators. Here we assume that there is no transmission

delay in each ϕ̂i(t) broadcast.

Next we will state the main theorem of this subsection, which states the con-

dition under which each generator should sample and broadcast its state.

Theorem 4.4.1 Consider the Lagrangian in equation 4.24 where the functions

Ci are differentiable, strictly increasing, and convex. Assume fixed generator and

transmission line penalty parameters wE > 0, wV > 0. ∀i ∈ V, define

zi(t) =
∑

j∈L(i)

µj(τ)Aji +
∑

k∈N (i)

ϕ̂k(τ)Bki + ϕi(τ)Bii

115

and

ρi = 1/

√

√

√

√

N
∑

k=1

|N (k)|B2
ik (4.30)

Consider the sequences {Ti[ℓ]}∞ℓ=0 for each i ∈ V. For each generator i ∈ V, let

its phase angle, θi(t), satisfy equation 4.29 with sampled neighboring state given

by equation 4.28. Assume that for all i ∈ V and all ℓ = 0, · · · ,∞, that

|ϕi(t) − ϕ̂i(t)| ≤ ρi|zi(t)| (4.31)

for t ∈ [Ti[ℓ], Ti[ℓ + 1]). Then the phase angle θ(t) asymptotically converge to the

unique minimizer of L(θ;wE , wV). �

Proof: For convenience, we do not explicitly include the time dependence in

the proof.

116

For all t ≥ 0 we have

−L̇(θ;wE , wV)

= −
N
∑

i=1

∂L

∂θi

dθi

dt

=
N
∑

i=1

zi

∑

j∈L(i)

µjAji +
∑

k∈N (i)

ϕkBki + ϕiBii

≥ 1

2

N
∑

i=1

z2
i −

∑

k∈N (i)

(ϕk − ϕ̂k)Bki

2

≥ 1

2

N
∑

i=1

z2
i −

1

2

N
∑

i=1

|N (i)|
∑

k∈N (i)

[(ϕk − ϕ̂k)Bki]
2

=
1

2

N
∑

i=1

z2
i −

1

2

N
∑

i=1

|N (i)|
N
∑

k=1

[(ϕk − ϕ̂k)Bki]
2

=
1

2

N
∑

i=1

z2
i −

1

2

N
∑

k=1

(ϕk − ϕ̂k)
2

N
∑

i=1

|N (i)|B2
ki

=
1

2

N
∑

i=1

z2
i −

1

2

N
∑

i=1

(

N
∑

k=1

|N (k)|B2
ik

)

(ϕi − ϕ̂i)
2

which immediately suggests that if the sequences of sampling instants {Ti[ℓ]}∞ℓ=0

satisfy the inequality in equation 4.31 for all ℓ = 0, 1, 2, ...,∞, and any i ∈ V, then

L̇(θ;wE , wV) ≤ 0 is guaranteed for all t.

By using the properties of Ci and ψj(θ;w
E), ψj(θ;w

E), χk(θ;w
V), χk(θ;w

V),

it is easy to show that for any fixed wE and wV , L(θ;wE , wV) is strictly convex

in θ. It thus has a unique minimizer. Suppose θ∗(wE , wV) is this minimizer, and

the corresponding Lagrangian is L(θ∗;wE , wV). Define V (θ) = L(θ;wE , wV) −

L(θ∗;wE , wV). It is trivial to see V (θ) is a Lyapunov function for the system.

Moreover, V̇ (θ) = 0 means L̇(θ;wE , wV) = 0. The only scenario this can happen

is at the equilibrium. As a result, the equilibrium θ∗(wE , wV) is asymptotically

117

stable. Proof complete. �

Theorem 4.4.1 basically states an event-triggered distributed algorithm. This

theorem asserts that each generator i’s phase angle θi(t) needs to follow the direc-

tion suggested by equation 4.29. When the inequality in equation 4.31 is violated,

generator i will trigger the sampling and transmission of generator state ϕi to its

neighboring generators. Generator i compares the error between the last transmit-

ted state ϕ̂i and the current state ϕi. At the sampling time Ti[ℓ], this difference

is zero and the inequality is trivially satisfied. After that time, the difference

increases and when the inequality in equation 4.31 is violated, we let that time

be the next sampling instant, Ti[ℓ + 1] and then transmit the sampled generator

state ϕ̂i to the neighboring generators k ∈ Ni. The theorem asserts that if all the

generators behave in the above way, then the generated power of all generators

will approach the solution of the OPF problem.

It turns out that the above algorithm can be easily integrated into the CERTS

microgrid controller. It is achieved by dynamically adjusting the requested power

Preq for each generator. In the microsource controller in [32], generator i’s phase

angle θi is adjusted by comparing the measured active power PGi
and the requested

power Preq,i, where θi follows

θ̇i(t) = π(Preq,i − PGi
(t)) (4.32)

This suggests that if instead of fixing Preq,i, which is what has been done in [32],

we can adjust Preq,i so that the direction suggested by equation 4.32 matches the

direction suggested by our event-triggered scheme in equation 4.29. This can be

118

easily done by setting

Preq,i(t) = PGi
(t) − γzi(t)

π
(4.33)

Here γ > 0 is a constant that controls how fast we adjust the phase angle. This

constant is necessary because if zi(t) is large, the adjustment in θi may be too

fast, which as a result may destabilize the system. Since generator i can compute

both PGi
and zi locally, Preq,i can be easily computed by generator i itself. This

suggests that each generator only needs to adjust its power set point according

to equation 4.33. It samples and then broadcasts its state ϕi to its neighboring

generators when the inequality in equation 4.31 is violated. If every generator

follows this action, then by theorem 4.4.1, the generated power PG of all generators

will approach the solution of OPF.

4.5 Simulation

This section presents simulation results. The simulation is done in MAT-

LAB/SimPower and shows that our algorithm indeed solves the OPF problem

in a distributed way, and the communication between neighboring subsystems is

very infrequent.

We built a simulation model in MATLAB/SimPower for the UWM CERTS

microgrid controller in [32]. The system model (which consists of three buses) is

shown in figure 4.4, and the generator model is shown in figure 4.5, which mimics

the droop characteristics in traditional synchronous generators. We use a three

bus example, which is shown in figure 4.6. The network consists of three generators

with power set point 0.4, 0.8, 0.6 (pu) respectively. There are three active loads

which request 0.96, 0.72, 0.48 (pu) active power, respectively. Transmission lines

119

current into device as positive

powergui

Continuous

load3 a1 b1 c1

load2 a2 b2 c2

load1

a1

b1

c1

Three−Phase Breaker

A

B

C

a

b

c

Measurements

Main grid

A

B

C

Line31

a1 b1 c1

a3 b3 c3

Line23

a3

b3

c3

a2

b2

c2

Line12

a2 b2 c2

a1 b1 c1

L3

A B C

a b c

L2

A B C

a b c

L1

A

B

C

a

b

c

Generator3

a1

b1

c1

Generator2

a1

b1

c1

Generator1

a1 b1 c1
Breaker1

A B C

a b c

 G3

A

B

C

a

b

c

 G2

A

B

C

a

b

c

 G1

A B C

a b c

Figure 4.4. SimPower simulation model

are assumed to have zero resistance and all have impedances of z = 0.0039j.

Each generator has generating limits between 0pu and 1pu. Each transmission

line has power flow limits between −0.4pu to 0.4pu. The cost functions of the

three generators are: 2.0 + 0.1p + 0.1p2, 3.0 + 1.8p + 0.1p2, 1.0 + 0.5p + 0.1p2.

All generators come online at t = 0s with their initial fixed power set points. At

t = 3s, we switch from the fixed power set point scheme to our event-triggered set

point scheme. At t = 10s, the third load is added to bus 2.

Figure 4.7 plots the generator power as a function of time. The left three plots

120

Vpk(internal voltage)Vo

Po

base frequency

Pmm

2

Pmeas

1

vrms_gen_1

vrms_gen_1

vflit1

1

0.001s+1

vflit

1

0.03s+1

var calc1

f(u)

vabc_out_1

vabc_out_1

vabc_1

vabc_1

pu convert1

−K−

pu convert S

−K−

pu convert Q

−K−

pu convert

−K−
pu conv

−K−

power calc

f(u)

mp

mP

k

−K−

irms_gen1

irms_gen_1

freqgen_1

freqgen_1

freq1_plot

freq1_plot

droop

mQ
calc rms cur

MATLAB
Function

Switch

Scope6

Saturation1

Saturation

Qmeas_1

Qmeas_1

Q filt

1

tauf.s+1

Product

Pmeas_1

Pmeas_1

Pmeas
Filt

1

tauf.s+1

PI_out_1

PI_out_1

PI−Control

In1 Out1

Ks 2

MATLAB
Function

Ks

MATLAB
Function

Integrator3

1
s

Integrator2

1
s

Integrator

1
s

Gain5

−K−

Gain4

−K−

Gain3

−K−

Gain2

−K−

Gain1

−K−

Fcn3 f(u)

Fcn2

cos(u+2*pi/3)

Fcn1

f(u)

Fcn

cos(u)

Constant1

Pmin

Constant

Pmax

Clock

i_meas

5

w0

4

P_req

3

E_req

2

v_bus_meas

1

Figure 4.5. SimPower generator model

correspond to generators’ measured power, and the right three plots correspond

to the set points computed by equation 4.33 for three generators. We can see

that the actual measured power tracks the computed set point very well. After

switching to the event-triggered scheme at t = 3s, generator 1 quickly increases

its generation to full capacity, because it has the lowest generation cost. At the

same time, generator 2’s generation drops to minimum, because it is the most

expensive generator. When the new load is added at t = 10s, generator 1 cannot

increase its generation further since it is already at full capacity, so generator 2

picks up the additional load. Figure 4.7 shows that our event-triggered scheme

121

G

L

Bus 1

Bus 2 Bus 3

i12

i23

i31

L

G G

L

t=3, start event-triggering scheme

t=10, switch close, add a new load

Figure 4.6. Three generator simulation model

does adjust the power set point in a way that favors the low cost generator. Also

the generating limit constraint is satisfied when using our new controller to adjust

set point.

Figure 4.8 plots the instantaneous frequencies of the generators as a function

of time for all three generators. We can easily notice that the frequencies are

maintained at around 60Hz, which is highly desirable. This means the power

generated by the generators are of high quality.

Figure 4.9 plots the power flow on the transmission line as a function of time

for all three transmission lines. The important thing to notice here is that in the

middle plot, the power flow on the transmission line is kept below 0.4pu, the flow

limit of the line. At t = 10s, because of the addition of a load, the flow limit

on the second transmission line is violated for less than 1s, but the power flow

quickly adjusts back to within the limit. Both figure 4.7 and figure 4.9 show that

our algorithm reacts very quickly to the changes in the network.

122

0 5 10 15
0

0.5

1

t(sec)

po
w

er
(p

u)

Gen 1: measured P power

0 5 10 15
0

0.5

1

t(sec)

po
w

er
(p

u)

Gen 2: measured P power

0 5 10 15
0

0.5

1

t(sec)

po
w

er
(p

u)

Gen 3: measured P power

0 5 10 15
0

0.5

1

t(sec)

po
w

er
(p

u)

Gen 1: setpoint P power

0 5 10 15
0

0.5

1

t(sec)

po
w

er
(p

u)

Gen 2: setpoint P power

0 5 10 15
0

0.5

1

t(sec)

po
w

er
(p

u)

Gen 3: setpoint P power

Figure 4.7. Measured generator power and generator power set point

Figure 4.10 plots the load power as a function of time for all three loads. All

loads are well served. At t = 10s, the oscilliation brought by the addition of a

load stabilizes in less than a second. The algorithm ensures that the load demand

in the network is met and reacts quickly to the change in load demand.

Figure 4.11 plots the broadcast periods of the generators as a function of

time. The y-axis represents the time passed since the last broadcast. This figure

shows some very interesting result. Both the second and the third generator have

broadcasted only twice, and the first generator broadcasted 9 times. If we compare

figure 4.11 with figure 4.7, we will find out that only the first generator’s generating

limit constraint is active. This explains why it triggers much more often. For

generator 2 and 3, they only need to broadcast their states occasionally or when

some network condition changes. For generator 1, it has an active generating limit

123

0 5 10 15
59.9

60

t(sec)

fr
eq

(H
z)

Gen 1: frequency

0 5 10 15
59.9

60

t(sec)

fr
eq

(H
z)

Gen 2: frequency

0 5 10 15
59.9

60

t(sec)

fr
eq

(H
z)

Gen 3: frequency

Figure 4.8. Generator frequencies

constraint, so it is more likely to broadcast its state. As we can see from the figure,

most of the time the generators do not need to communicate with their neighbors

at all (almost 5 secs for generator 2), this is highly desirable and has the potential

to significantly reduce the communicate costs of a large scale power system.

Finally in figure 4.12 we plot the total generation cost as a function of time.

Without any surprise, our scheme reduces the initial generation cost of 7.8 when

using fixed set point scheme to about 6.6. This is a reduction of about 15%, which

is significant.

4.6 Conclusion

This chapter uses the optimal power flow problem in microgrids as a nontrivial

real-life example to demonstrate the effectiveness of event-triggered optimization

124

0 5 10 15

−0.4

−0.2

0

0.2

t(sec)

po
w

er
(p

u)

Line 12: P Power

0 5 10 15

0.2

0.4

0.6

t(sec)

po
w

er
(p

u)

Line 23: P Power

0 5 10 15

−0.4

−0.2

0

t(sec)

po
w

er
(p

u)

Line 31: P Power

Figure 4.9. Transmission line power flow

algorithms. The chapter first formally states the OPF problem and introduces

the UWM CERTS microgrid controller. It then presents an event-triggered dis-

tributed optimization algorithm for the OPF problem and proves its convergence.

The MATLAB/SimPower simulation we bulit uses the CERTS microgrid model,

and shows that the algorithm indeed solves the OPF problem while keeping com-

munication between neighboring subsystems very infrequent.

There are several future directions we will pursue. First, the simulation consid-

ered in this chapter is a rather small example, and we would like to exploit more

realistic larger scale simulations. Second, in our integration with the CERTS

model, we simply ‘replace’ the existing controller in the model with our new

event-triggered controller. Our new controller does guarantee the convergence to

the solution of OPF, however, it does not provide guarantees of the transient sta-

125

0 5 10 15
0.9

0.95

1

t(sec)

po
w

er
(p

u)

Load 1: P Power

0 5 10 15
0.6

0.7

0.8

t(sec)

po
w

er
(p

u)

Load 2: P Power

0 5 10 15
0

0.5

t(sec)

po
w

er
(p

u)

Load 3: P Power

Figure 4.10. Load power

bility of the system. Future research will address this issue. Third, the algorithm

we used in this chapter assumes that each generator adjusts the requested power

input continuously, and also has continuous measurement of the power flowing

away from each outgoing transmission lines. This however is not very realistic in

most scenarios. Finally, we believe the load shedding problem can be viewed as a

dual problem of the OPF problem, and we believe it can be solved using the same

technique shown in this chapter.

126

0 5 10 15
0

2

4

t(sec)

tim
e

si
nc

e
la

st
 b

ro
ad

ca
st

(s
ec

)

Gen 1: broadcast period

0 5 10 15
0

2

4

6

t(sec)

tim
e

si
nc

e
la

st
 b

ro
ad

ca
st

(s
ec

)

Gen 2: broadcast period

0 5 10 15
0

5

10

t(sec)

tim
e

si
nc

e
la

st
 b

ro
ad

ca
st

(s
ec

)

Gen 3: broadcast period

Figure 4.11. Broadcast period of generators

0 5 10 15
6

6.2

6.4

6.6

6.8

7

7.2

7.4

7.6

7.8

t(sec)

co
st

total generation cost

Figure 4.12. Total generation cost

127

CHAPTER 5

Conclusions

5.1 Summary of contributions

In this work, we are interested in reducing the message passing complexity of

distributed optimization algorithms using event-triggering. The motivation comes

from the fact that existing distributed optimization algorithms usually rely on

some conservative choice of step size to ensure the convergence of the algorithm.

The tight coupling between inter-subsystem communication and local computa-

tion brings in unnecessarily large message passing complexity in the algorithm.

For many networked systems this type of message passing complexity may be un-

acceptable. This is particularly true for systems communicating over a wireless

network. In such networked systems, the energy required for communication can

be significantly greater than the energy required to perform computation [21].

As a result, it would be beneficial if we can somehow separate communication

and computation in distributed algorithms. This should reduce the message pass-

ing complexity of distributed optimization algorithms such as dual decomposition

significantly.

In chapter 2 we start to study how to use event-triggering to separate com-

munication and computation in distributed optimization algorithms. The chapter

uses the NUM problem formulation as an example and presents a distributed algo-

rithm based on barrier methods that uses event-triggered message passing. Under

128

event triggering, each subsystem broadcasts to its neighbors when a local “error”

signal exceeds a state dependent threshold. We prove that the proposed algorithm

converges to the global optimal solution of the NUM problem. The proof is done

in two steps. First, we prove the algorithm converges to the local minimizer when

the barrier parameters are fixed. We then prove that when the barrier parameters

are monotone decreasing, the sequence of approximate local minimizers indeed

converge to the global minimizer, which is the solution of the NUM problem.

Simulation results suggest that the proposed algorithm reduces the number of

message exchanges by up to two orders of magnitude when compared to dual de-

composition algorithms, and is scale-free with respect to two measures of network

size L and S. The work in this chapter appears in [58] [54].

The event-triggered barrier algorithm in chapter 2 is our very first approach

to solve the distributed optimization problems using the event-triggered idea, and

it shows significantly reduction in the communication cost of the network. How-

ever, as we show in the chapter, the algorithm suffers from issues like the need

for an initial feasible point, and performance sensitive to parameter choices. All

these issues limit the usefulness the algorithm. This inspired us to look for al-

ternative algorithms to apply the event-triggered idea. We choose the augmented

Lagrangian method instead of the barrier method in our following work.

Chapter 3 still uses the NUM problem formulation as an example and presents

two distributed algorithms based on the augmented Lagrangian methods that

use event-triggered message passing and proves their convergence. One of the

algorithm is a primal algorithm, and the other is a primal-dual algorithm. We

could present algorithms that converge to the exact minimizer instead of the

approximate solution, as we have shown in [57]. However, we feel it unnecessary

129

to present it here since the proof techniques are very similar to what we have

shown in chapter 2. For this reason, both algorithms in this chapter only converge

to an approximate minimizer to the NUM problem, which is enough for most

applications.

For the primal-dual algorithm, we consider scenarios when the network has

data dropouts, and give an upper bound on the largest number of successive data

dropouts each link can have, while ensuring the asymptotic convergence of the

algorithm. A state-dependent lower bound on the broadcast period and an upper

bound on the transmission delay the network can tolerate while ensuring conver-

gence are also given. Simulation results show that both algorithms have a message

passing complexity that is up to two orders of magnitude lower than dual decom-

position algorithms, and are scale-free with respect to two measures of network

size L and S. The primal algorithm in this chapter is similar to the algorithm

in chapter 2. However, in chapter 2, we used the barrier method instead of the

augmented Lagrangian method as the basis for the event-triggered algorithm. In

that case, the resulting algorithm suffers from issues like ill-conditioning, need

for an initial feasible point and sensitive to the choice of parameters. The event-

triggered algorithms presented in this chapter do not have these issues. Also,

both algorithms have slightly better performance than the barrier method based

algorithm in chapter 2 in terms of message passing complexity. The work in this

chapter appears in [57] [59] [53] [55].

The problems and algorithms developed in the previous chapters are some-

what abstract, and did not explicitly show how we can use those event-triggered

algorithms in real-life applications. Chapter 4 then uses the optimal power flow

problem in microgrids as a nontrivial real-life example to demonstrate the effec-

130

tiveness of event-triggered optimization algorithms.

The optimal power flow (OPF) problem has been the research subject of power

system community since early 1960’s, and is very similar to the NUM problem we

considered in previous chapters. Various centralized or distributed optimization

algorithms have been proposed to solve the OPF problem. These algorithms

usually made the assumptions that communication between subsystems was not

expensive and reliable, which is unrealistic. One way around this problem is

to make use of low power ad hoc wireless communication networks that operate

independently of the main power grid. Using event-triggering on those wireless

networks therefore may provide a useful approach for reducing the power grid’s

use of the communication network.

In chapter 4, we develop an event-triggered distributed optimization algorithm

for the OPF problem and prove its convergence. We use the CERTS microgrid

model [32] as an example power system to show the effectiveness of our algorithm.

The simulation is done in MATLAB/SimPower and shows that our algorithm

solves the OPF problem in a distributed way, and the communication between

neighboring subsystems is very infrequent. The work in this chapter appears in

[56].

To our best knowledge, our work is the first examination of using the event-

triggered idea to separate communication and computation in distributed opti-

mization algorithms.

5.2 Future work

In this section, we discuss several possible future research directions for the

work.

131

For the work in chapter 2 and 3, it would be useful quantify what penalty

parameters w we need to choose in order to converge to a given desirable neigh-

borhood of the optimal point. It would also be interesting to see the complexity

and convergence time of both event-triggered algorithms analytically.

For the work in chapter 4, there are also several possible future directions

we will pursue. First, the simulation considered in this chapter is a rather small

example, and we would like to exploit more realistic larger scale simulations.

Second, in our integration with the CERTS model, we simply ‘replace’ the existing

controller in the model with our new event-triggered controller. Our new controller

does guarantee the convergence to the solution of OPF, however, it does not

provide guarantees of the transient stability of the system. Future research will

address this issue. Third, the algorithm we used in this chapter assumes that each

generator adjusts the requested power input continuously, and also has continuous

measurement of the power flowing away from each outgoing transmission lines.

This however is not very realistic in most scenarios. Finally, we believe the load

shedding problem can be viewed as a dual problem of the OPF problem, and we

believe it can be solved using the same technique shown in this chapter.

132

BIBLIOGRAPHY

1. M. Adler, J.Y. Cai, JK Shapiro, and D. Towsley. Estimation of congestion
price using probabilistic packet marking. In IEEE INFOCOM 2003. Twenty-
Second Annual Joint Conference of the IEEE Computer and Communications
Societies, volume 3.

2. E. Altman, T. Basar, R. Srikant, and S.A. INRIA. Robust rate control for
ABR sources. INFOCOM’98. Proceedings. IEEE, 1.

3. K.E. Årzén. A simple event based PID controller. In Proc. 14th IFAC World
Congress, 1999.

4. K.J. Astrom and B.M. Bernhardsson. Comparison of riemann and lebesgue
sampling for first order stochastic systems. In Proceedings of the IEEE Con-
ference on Decision and Control, volume 2, pages 2011–2016, 2002.

5. S. Athuraliya and S.H. Low. Optimization Flow Control, II: Implementation.

6. S. Athuraliya, SH Low, VH Li, and Q. Yin. REM: Active queue management.
IEEE network, 15(3):48–53, 2001.

7. AR Bergen. Power Systems Analysis. Englewood Cliffs, NJ.

8. D.P. Bertsekas. Nonlinear programming. Athena Scientific, 1999.

9. PN Biskas, AG Bakirtzis, NI Macheras, and NK Pasialis. A decentralized
implementation of DC optimal power flow on a network of computers. IEEE
Transactions on Power Systems, 20(1):25–33, 2005.

10. B. Bollobás. Modern Graph Theory. Springer, 1998.

11. MF Carvalho, S. Soares, and T. Ohishi. Optimal active power dispatch by
network flow approach. IEEE Transactions on Power Systems, 3(4):1640–
1647, 1988.

12. W.P. Chen, J.C. Hou, L. Sha, and M. Caccamo. A distributed, energy-
aware, utility-based approach for data transport in wireless sensor networks.
Proceedings of the IEEE Milcom, 2005.

133

13. W.P. Chen and L. Sha. An energy-aware data-centric generic utility based
approach in wireless sensor networks. IPSN, pages 215–224, 2004.

14. M. Chiang and J. Bell. Balancing supply and demand of bandwidth in wireless
cellular networks: utility maximization over powers and rates. Proc. IEEE
INFOCOM, 4:2800–2811, 2004.

15. M. Chiang, S.H. Low, A.R. Calderbank, and J.C. Doyle. Layering as op-
timization decomposition: A mathematical theory of network architectures.
Proceedings of the IEEE, 95(1):255–312, 2007.

16. RD Christie, BF Wollenberg, and I. Wangensteen. Transmission management
in the deregulated environment. Proceedings of the IEEE, 88(2):170–195, 2000.

17. AJ Conejo and JA Aguado. Multi-area coordinated decentralized DC optimal
power flow. IEEE Transactions on Power Systems, 13(4):1272–1278, 1998.

18. AL Dimeas and ND Hatziargyriou. Operation of a Multiagent System for
Microgrid Control. Power Systems, IEEE Transactions on, 20(3):1447–1455,
2005.

19. S. Floyd and V. Jacobson. Random early detection gateways for congestion
avoidance. IEEE/ACM Transactions on networking, 1(4):397–413, 1993.

20. S. Granville, E. CEPEL, P.R. Center, and R. de Janeiro. Optimal reactive
dispatch through interior point methods. Power Systems, IEEE Transactions
on, 9(1):136–146, 1994.

21. W.R. Heinzelman, A. Chandrakasan, and H. Balakrishnan. Energy-efficient
Communication Protocol for Wireless Microsensor Networks. In Proceedings
of the 33rd Annual Hawaii International Conference on System Sciences, vol-
ume 2, 2000.

22. CA Hernandez-Aramburo, TC Green, N. Mugniot, and I.C. London. Fuel con-
sumption minimization of a microgrid. Industry Applications, IEEE Transac-
tions on, 41(3):673–681, 2005.

23. YC Ho, L. Servi, and R. Suri. A CLASS OF CENTER-FREE RESOURCE
ALLOCATION ALGORITHMS’. In Large Scale Systems Theory and Appli-
cations: Proceedings of the IFAC Symposium, Toulouse, France, 24-26 June
1980, page 475. Franklin Book Co, 1981.

24. CV Hollot and Y. Chait. Nonlinear stability analysis for a class of TCP/AQM
networks. Decision and Control, 2001. Proceedings of the 40th IEEE Confer-
ence on, 3, 2001.

134

25. B. Johansson, M. Rabi, and M. Johansson. A simple peer-to-peer algorithm
for distributed optimization in sensor networks. In Proceedings of the 46th
IEEE Conference on Decision and Control, pages 4705–4710, 2007.

26. B. Johansson, P. Soldati, and M. Johansson. Mathematical Decomposition
Techniques for Distributed Cross-Layer Optimization of Data Networks. Se-
lected Areas in Communications, IEEE Journal on, 24(8):1535–1547, 2006.

27. F.P. Kelly, A.K. Maulloo, and D.K.H. Tan. Rate control for communication
networks: shadow prices, proportional fairness and stability. Journal of the
Operational Research Society, 49(3):237–252, 1998.

28. H.K. Khalil. Nonlinear systems. Prentice Hall Upper Saddle River, NJ, 2002.

29. BH Kim and R. Baldick. A comparison of distributed optimal power flow
algorithms. IEEE Transactions on Power Systems, 15(2):599–604, 2000.

30. P. Kundur. Power System Stability and Control. McGraw-Hill Professional,
1994.

31. S. Kunniyur and R. Srikant. A time scale decomposition approach to adaptive
ECN marking. INFOCOM 2001. Proceedings. IEEE, 3, 2001.

32. R. Lasseter. Control and design of microgrid components. Final Project
Report - Power Systems Engineering Research Center (PSERC-06-03), 2006.

33. R.H. Lasseter and P. Piagi. Microgrid: A Conceptual Solution. Proc. of 35th
Annual IEEE Power Electronics Specialists Conference PESC04, 6:4285–4290.

34. S.H. Low and D.E. Lapsley. Optimization flow control, I: basic algorithm and
convergence. IEEE/ACM Transactions on Networking (TON), 7(6):861–874,
1999.

35. R. Madan and S. Lall. Distributed algorithms for maximum lifetime routing
in wireless sensor networks. In IEEE GLOBECOM’04, volume 2.

36. M. Mehyar, D. Spanos, and SH Low. Optimization flow control with estima-
tion error. In INFOCOM 2004. Twenty-third AnnualJoint Conference of the
IEEE Computer and Communications Societies, volume 2, 2004.

37. L. Montestruque and M. Lemmon. Csonet: a metropolitan scale wireless
sensor-actuator network. Proceedings of the International Workshop on Mobile
Device and Urban Sensing (MODUS), 2008.

38. J. Nocedal and S.J. Wright. Numerical Optimization. Springer, 1999.

135

39. R. Olfati-Saber, JA Fax, and RM Murray. Consensus and cooperation in
networked multi-agent systems. Proceedings of the IEEE, 95(1):215–233, 2007.

40. ARL Oliveira, S. Soares, and L. Nepomuceno. Optimal active power dispatch
combining network flow and interior point approaches. Power Systems, IEEE
Transactions on, 18(4):1235–1240, 2003.

41. F. Paganini. A global stability result in network flow control. Systems and
Control Letters, 46(3):165–172, 2002.

42. DP Palomar and M. Chiang. Alternative Distributed Algorithms for Network
Utility Maximization: Framework and Applications. IEEE Transactions on
Automatic Control, 52(12):2254–2269, 2007.

43. Y. Qiu and P. Marbach. Bandwidth allocation in ad hoc networks: A price-
based approach. In Proceedings of IEEE INFOCOM 2003, volume 2, pages
797–807.

44. M. Rabbat and R. Nowak. Distributed optimization in sensor networks. Pro-
ceedings of the third international symposium on Information processing in
sensor networks, pages 20–27, 2004.

45. T. Ruggaber, J. Talley, and L. Montestruque. Using embedded sensor net-
works to monitor, control, and reduce CSO events: A pilot study. Environ-
mental Engineering Science, 24(2):172–182, 2007.

46. J. Sandee, W. Heemels, and P. van den Bosch. Case studies in event-
driven control. In Hybrid Systems: Computation and Control, pages 762–765.
Springer, 2007.

47. A. Speranzon, C. Fischione, and K.H. Johansson. Distributed and Collabo-
rative Estimation over Wireless Sensor Networks. Proceedings of the IEEE
Conference on Decision and Control, pages 1025–1030, 2006.

48. P. Tabuada. Event-triggered real-time scheduling of stabilizing control tasks.
IEEE Transactions on Automatic Control, 52(9):1680–1685, 2007.

49. J. Tsitsiklis, D. Bertsekas, and M. Athans. Distributed asynchronous deter-
ministic and stochastic gradient optimization algorithms. IEEE Transactions
on Automatic Control, 31(9):803–812, 1986.

50. Y.Z. Tsypkin. Relay Control Systems. Cambridge University Press, 1984.

51. R. Walter. Principles of mathematical analysis. McGraw-Hill, 1976.

136

52. P. Wan and M. Lemmon. Distributed Flow Control using Embedded Sensor-
Actuator Networks for the Reduction of Combined Sewer Overflow (CSO)
Events. In Proceedings of the 46th IEEE Conference on Decision and Control,
pages 1529–1534, 2007.

53. P. Wan and M. Lemmon. An event-triggered distributed primal-dual algo-
rithm for Network Utility Maximization. In Proceedings of the 48th IEEE
Conference on Decision and Control, 2009.

54. P. Wan and M. Lemmon. Distributed network optimization using event-
triggerd barrier methods. Submitted to European Journal of Control, Aug
2009.

55. P. Wan and M. Lemmon. Distributed network optimization using event-
triggered algorithms. Submitted to IEEE Transactions on Automatic Control,
Mar 2009.

56. P. Wan and M. Lemmon. Optimal power flow in microgrid using event-
triggered optimization algorithm. In Submitted to 2010 American Control
Conference, Sep 2009.

57. P. Wan and M. D. Lemmon. Distributed Network Utility Maximization using
Event-triggered augmented Lagrangian methods. In Proceedings of American
Control Conference, 2009.

58. P. Wan and M. D. Lemmon. Distributed Network Utility Maximization using
Event-triggered Barrier Methods. In Proceedings of European Control Con-
ference, 2009.

59. P. Wan and M.D. Lemmon. Event-triggered distributed optimization in sensor
networks. In Proceedings of the 2009 ACM/IEEE International Conference
on Information Processing in Sensor Networks, pages 49–60, 2009.

60. X. Wang and M. Lemmon. Self-triggered feedback control systems with finite-
gain L 2 stability. IEEE Transactions on Automatic Control, 54:452–467,
2009.

61. X. Wang and M.D. Lemmon. State based Self-triggered Feedback Control
Systems with L2 Stability. In Proceedings of the 17 IFAC World Congress,
2008.

62. X. Wang and M.D. Lemmon. Event-triggering in distributed networked sys-
tems with data dropouts and delays. In Proceedings of Hybrid Systems: com-
putation and control, 2009.

137

63. JT Wen and M. Arcak. A unifying passivity framework for network flow
control. IEEE Transactions on Automatic Control, 49(2):162–174, 2004.

64. L. Xiao, M. Johansson, and SP Boyd. Simultaneous routing and resource
allocation via dual decomposition. IEEE Transactions on Communications,
52(7):1136–1144, 2004.

65. Y. Xue, B. Li, and K. Nahrstedt. Optimal resource allocation in wireless ad
hoc networks: a price-based approach. IEEE Transactions on Mobile Com-
puting, 5(4):347–364, 2006.

66. Y. Yi and S. Shakkottai. Hop-by-hop congestion control over a wireless multi-
hop network. IEEE/ACM Transactions on Networking, 15(1):133–144, 2007.

67. A. Zymnis, N. Trichakis, S. Boyd, and D. O’Neill. An interior-point method
for large scale network utility maximization.

138

