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REAL-TIME SYSTEM DESIGN UNDER

PHYSICAL AND RESOURCE CONSTRAINTS

Abstract

by

Thidapat Chantem

This dissertation presents several design techniques for resource-constrained,

dependable embedded real-time systems, which can be found everywhere from

cellular phones to automotive electronic systems to medical devices. Specifically,

three important challenges in embedded real-time system design are identified and

addressed: temporal overloads, energy concerns, and temperature problem.

Due to cost constraints, as well as our inability to foresee worst-case operating

scenarios, many systems are designed based on average-case scenarios and must

provide graceful performance degradation during occasional system overloads. In

this dissertation, we focus on two types of overloads: processor overloads and

network overloads. Processor overload occurs because of user’s inputs or external

conditions. We present robust algorithms that allow the system to quickly handle

different operating scenarios without requiring advanced knowledge of the situ-

ations based on optimization theory. As a result, fewer resources are needed to

deliver expected performance.

As for network overloads, which can often occur especially now that most

electronic devices have wireless capability, we discuss an energy-aware integrated

framework that allows for the processor and network card to work together to
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transmit the most important information first. This framework is robust against

rapid changes in network conditions, guarantees the transmission of the most

important set of information, and allows the system to save energy.

Finally, as device sizes continue to shrink, physical constraints such as sys-

tem temperature have become a main concern. High temperature can severely

reduce both performance and system lifetime. We first present an optimal volt-

age selection policy to maximize computation without exceeding the temperature

threshold. We then present a method to minimize the peak temperature of a hard

real-time system running on multi-core architectures that help to avoid deadline

misses at run time.
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CHAPTER 1

INTRODUCTION

This chapter introduces readers to some basic concepts in real-time systems as

well as important challenges in designing such systems due to physical and resource

constraints (temporal overloads, energy concerns, and temperature problem). The

chapter concludes with an outline of the main contributions in this dissertation.

1.1 Overview of Real-Time Systems

In a general-purpose computing system, the primary performance requirement

is correct functionality. For instance, if a user wishes to obtain a list of the first

thousand prime numbers, a system meets a functionality requirement if it correctly

outputs such a list to the user.

In a real-time system, which can be thought of as a special case of general-

purpose computing systems, timeliness, along with correct functionality, is also a

requisite. Consider, for example, a train that is attempting to make an emergency

stop within 5 seconds. The fact that the train does stop demonstrates that it

performs its task correctly. However, the completion of this task is not useful, to

say the least, if the train does not stop on time (i.e., within 5 seconds). A train

that does is said to meet the timeliness requirement.

There are three classes of real-time systems: hard, firm, and soft. In a hard

real-time system (e.g., the braking system of our example train), missing a dead-

1



line could result in catastrophic consequences. For such systems, offline analysis

and hardware redundancy are often used to guarantee performance and timing

requirements.

As for firm real-time systems, a few deadline misses are not detrimental to

the overall performance of the system, but tasks that complete their executions

after their deadlines are of no or even negative value. For instance, an out-of-date

sample may trigger a control command that worsens the state of the system.

Finally, in a soft real-time system, deadlines may be missed or tasks may be

completed late, though as many deadlines should be met as possible to maximize

the performance of the entire system. For example, a user who watched a video

clip online may rate his or her experience as mostly positive if he or she noticed

only a few frame freezes during the entire session. The worst consequence that

could result from an extremely unhappy user might be loss of business.

Regardless of the class of the real-time system under consideration, a real-time

task is usually associated with worst-case, average-case, and best-case execution

times. In this dissertation, we focus on tasks that need to be executed in a periodic

manner. An example application might be a control task that needs to sample the

water level in a pipe every 10 ms. For periodic real-time systems, task deadlines

may be implicit (for the same control task just mentioned, the deadlines would be

10, 20, 30, . . . ms), or explicit (e.g., a control task that must execute every 10 ms

with a deadline of 5 ms, which means that the deadlines are 5, 15, 25, . . . ms.

While task worst-case execution times are usually well-defined given that the

physical characteristics of the system are known, acceptable task periods and

deadlines may not be a fixed value. Referring back to our water level sampling

example, the overall performance of the system may in fact be acceptable if a
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sample is taken every 7 ms to 15 ms.

1.2 Design Challenges in Real-Time Systems

This dissertation tackles three important challenges in designing real-time

systems: temporal overloads, power/energy concerns, and temperature problem.

Each of these challenges is briefly discussed below.

1.2.1 Temporal Overload Conditions

For the purpose of this dissertation, we focus on two different types of temporal

overloads: processing overloads and network overloads.

1.2.1.1 Processing Overloads

A real-time system is said to experience a processing overload if the compu-

tation demand exceeds the available computational resources. Consider, for ex-

ample, the city sewer control system, which is responsible for drainage and waste

management. Said system consists of several sensors and actuators, which are

spread throughout the city and are controlled by a central computer. The sensors

report, among other things, the level of water in their respective pipes, while the

actuators may be used to control the flow rate of water in those pipes. Suppose

now that part of the city has been experiencing a heavy rain. Since the water level

in some of the pipes may be increasing at an alarming rate, we may need to sample

the state of the pipes more frequently and send control commands to the relevant

actuators more often to avoid flooding. Because of these new requirements, the

city sewer control system is temporally under an overload situation, as more at-

tention needs to be paid to the part of the city receiving heavy rainfall. For more
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information regarding work in control systems on combined sewer overflow (CSO)

events, the reader is referred to Ruggaber et al. [90] and Wan and Lemmon [103].

While temporal processing overload conditions can be alleviated to some ex-

tent using hardware overprovisioning, this solution is costly and wastes precious

resources, especially since overloads tend to rarely occur and the average-case

system utilization may be quite low. Additionally, in real systems, many factors

are at work and it may be difficult, if not impossible, to predict the worst-case

scenarios. For these reasons, many systems are designed based on the average

operating scenarios and efficient run-time mechanisms to manage occasional over-

loads must be in place to rapidly solve the problem. An example overload man-

agement mechanism to the city sewer system may be to temporarily reduce the

sampling (actuating) rate of sensors (actuators) that are not located in the part of

the city receiving heavy rainfall in order to allocate more resources to managing

the critical area in the city.

1.2.1.2 Network Overloads

A network overload is similar to a processing overload, except that network

communications, and not the processing power, are the bottleneck. As most

electronic devices now have wireless capability, network overloads occur more fre-

quently, especially in sensor network applications where each node may need to

transmit a large amount of data. During a network overload, only a limited

amount of information can be transmitted and it is crucial in terms of performance

maximization to judiciously select which information to send. For example, in a

surveillance system used for intrusion detection, a video frame showing a potential

intruder should take precedence over other information.
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1.2.2 Power/Energy Concerns

As device size continues to shrink, a relatively larger number of transistors can

be packed into a small area, causing an exponential increase in chip power density.

Figure 1.1 shows the projected chip power density as a function of years. High

power density results in high temperature (we will discuss temperature problem

in more detail in the next section) and has several implications.
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Figure 1.1. Power density trends (adapted from Rabaey [86])

.

1. In data centers, which can be considered soft real-time systems since re-

sponse time is usually a main performance metric, about half of the power

is used for cooling [37]. In 2005, about 1.2% of all U.S. electricity use went
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towards total data center power and cost about $4.5 billion [37]. These num-

bers doubled from 2000 to 2005 and the trend is simply unsustainable [37].

2. As wireless nodes become common in a variety of applications, their oper-

ating lifetimes are now an important performance metric. Although battery

technology has advanced over the years, the improvement remains modest

and system designers are expected to use energy-aware methods to increase

battery life without sacrificing performance.

3. Lastly, static or leakage power increases exponentially as supply voltage and

threshold voltage are scaled down. According to Borkar, leakage power now

makes up about 50% of total power consumption [14].

The high cooling cost and exponential increase in leakage power, as well as

wireless and mobility requirements lead to an ever increasing need in designing

power/energy-aware systems. Despite the large amount of existing literature on

this topic, there are still many challenges to be addressed, especially as multicore

systems with networking capabilities become more popular in a wide variety of

real-time applications.

1.2.3 Temperature Problem

To achieve higher performance and better power efficiently, computer archi-

tects have proposed multiprocessor system-on-chips (MPSoCs) as an alternative to

and improvement on uniprocessor architectures. However, as a result of shrinking

device size, increasing transistor counts, and aggressive frequency scaling, MPSoCs

often have high power density and temperature, which causes significant reliabil-

ity concerns. In fact, a 10–15 ◦C difference in operating temperature can result
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in a 2× difference in the lifespan of a device [102]. Even when high temperature

does not immediately lead to permanent failures, it can cause increased intercon-

nect latency and reduction of charge carrier mobility in transistors, which degrade

performance. More importantly, high temperature leads to higher temperature-

dependent leakage power, which in turns increases power consumption and hence

temperature. Clearly, this cycle of dependency must to be broken.

A solution to the temperature problem in MPSoCs would be to design packages

and cooling solutions that can handle worst-case thermal profiles. However, this

solution is extremely expensive, as the cooling cost increases super-linearly in

power consumption [43]. We have also discussed the high cost of cooling data

centers in the previous section.

To reduce temperature, most modern processors use hardware throttling to

control chip temperature at run time. Throttling is automatically activated when

the chip temperature exceeds some prespecified threshold temperature. In addi-

tion to saving energy, techniques such as dynamic voltage and frequency scaling

(DVFS) can also help to reduce temperature. The most difficult challenge that

arises in the design of temperature-constrained real-time system is that processor

throttling can cause real-time deadlines to be missed and therefore specific design

techniques targeted at real-time systems must be used.

1.3 Main Contributions and Organization

This dissertation extends state-of-the-art techniques on managing physical and

resource constrains in real-time systems in several directions.

(1). We present an efficient online technique to solve the temporal processing

overload problem for a more general set of real-time tasks (Chapter 2). Prior
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work assumes task deadlines are fixed and independent of task periods. How-

ever, in many control applications, the relationship between task periods and

task deadlines is tightly coupled. We show in this chapter that by taking

this period-deadline relationship into account, at least 74% of the task sets

previously thought to be infeasible are in fact schedulable. An immediate con-

sequence of this work is that fewer resources are needed to handle temporal

processing overloads.

(2). We propose an energy-aware adaptive framework to address network over-

loads (Chapter 3). Existing work either do not consider job scheduling when

performing packet scheduling or vice versa. As a result, packets that are

meant to be transmitted may in fact miss their deadlines, degrading perfor-

mance. In this chapter, we show that using an integrated, importance-based

job and packet scheduling framework, system performance doubles while pro-

cessing energy consumption is significantly reduced.

(3). We provide an optimal DVFS speed selection policy to maximize the work

completed for temperature-constrained soft real-time systems (Chapter 4).

The proposed policy is practical in that it does not assume that (1) the

system can continuously adjust speed, and (2) a specific set of speed levels is

available. As a consequence, our policy can be easily deployed and is shown

to improve performance by about 47.7% on average and up to about 68%.

(4). We present both optimal and heuristic methods to minimize the peak temper-

ature of a multicore system running hard real-time applications (Chapter 5).

The optimal method reveals that an energy-minimal system is not necessar-

ily a cool system. Specifically, minimizing energy can lead to a system that

is about 9 ◦C hotter on average and up to about 25 ◦C when compared to
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systems in which the maximum temperature is minimized. This is because

energy minimization ignores both temporal and spatial thermal variations.

To solve large problem instances, we propose an efficient heuristic framework

that allows system designers to trade off accuracy against running time and

insert idle times into a schedule to further cool the system down.

The dissertation concludes in Chapter 6 with some recommendations on future

research directions.
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CHAPTER 2

PERIOD AND DEADLINE SELECTION FOR SCHEDULABILITY IN

REAL-TIME SYSTEMS

To alleviate occasional overload conditions in real-time control systems, some

control tasks are executed less often to reduce computational demands on the

processor. Since control tasks are usually activated periodically, their periods

can be used as a tuning knob to determine how often these tasks should execute

without compromising control system stability. Existing frameworks assume that

only task periods are adjustable and that task deadlines remain unchanged at

all times. This chapter formally introduces a more general real-time task model

where task deadlines are functions of task periods. This tight coupling between

task deadlines and task periods has been discussed in a recent work in control

systems and presents a novel real-time scheduling challenge.

Because of the aforementioned task period and deadline relationship, an over-

load management mechanism must now not only determine suitable task periods,

but also consider the impact of the newly changed task deadlines on system schedu-

lability. To solve this problem, which we shall refer to as the period and deadline

selection problem, this chapter identifies a feasible period-deadline combination

and proposes a heuristic, which iteratively adjusts task periods and deadlines in

such a way that the task set becomes schedulable. Experimental results show that
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the heuristic finds a solution to the period and deadline selection problem over

73% of the time, using less than three search iterations.

2.1 Introduction

In this section, we provide an overview of the problem, review related work,

state our contributions, and present the organization of this chapter.

2.1.1 Problem Overview

Task scheduling has long been an important research topic in real-time systems.

As stated in Chapter 1, missing a deadline in a hard real-time system may lead

to catastrophic consequences, such as failure to stop an automatically controlled

train on time [67].

Despite having been traditionally treated as hard real-time systems, many

control systems are quite robust in the presence of certain timing perturbations.

Generally speaking, depending on the system state, the sampling rate of a con-

trol system can vary within some interval without causing significant performance

degradation. This observation is very useful when temporal overload situations

occur. A real-time system is said to experience an overload when it cannot finish

executing one or more tasks on time due to resource constraints. Although ro-

bust, if too many deadlines have been missed or if such misses occur in a highly

unpredictable manner, a control system may no longer stabilize, even if all system

resources are now dedicated to it.

In this chapter, we focus on alleviating temporal overload conditions in real-

time control systems by increasing some (or all) task periods in such a way that

all task deadlines can be met. As stated previously, we exploit the knowledge
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that control tasks are quite robust, which allows their periods to vary within some

intervals. As an added challenge, whenever a task period changes, its deadline

also varies according to some prespecified function. In other words, task deadlines,

which are less than or equal to task periods, are also a function of the periods.

This interdependency between task periods and task deadlines is not merely an

academic exercise; the work in [108] shows that such a relationship is indeed real

(we will explain this novel task model later on in this chapter). In summary, we

are interested in solving the period and deadline selection problem for real-time

systems under overload conditions.

2.1.2 Related Work

There are two main approaches to dealing with overloads in real-time sys-

tems: (i) dropping some instances of tasks (i.e., jobs) in a controlled manner, and

(ii) increasing task periods, equivalently decreasing the sampling rates, in such

a way that no deadlines are missed and the performance of the system remains

acceptable.

Many algorithms have been proposed to control job dropping patterns. Some

examples are the (m, k) scheduling algorithms [44], the Dynamic Window-Constrained

Scheduling (DWCS) algorithm [109], the skip-over algorithms [54], and the algo-

rithms for weakly hard real-time systems [11]. In other work such as the imprecise

computation model [29] and reward-based model [6], the aim is to maximize sys-

tem workload, which is assumed to be proportional to the quality of service (QoS).

Since it is sometimes more suitable to execute jobs less often instead of drop-

ping them or allocating fewer cycles [4], we focus on such an approach in this chap-

ter. Many previous research papers can be found on the management of overloads
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in real-time systems based on task period adjustments (e.g., [58]). The works

in [94], [93] and [12] solve the period selection problem for the earliest-deadline

first (EDF), rate-monotone (RM), and fixed-priority scheduling algorithms, re-

spectively. Cervin et al. propose an online period adjustment mechanism with

varying task computation times [55]. In [23], Caccamo et al. consider scenar-

ios where the worst-case task execution times can be large but the normal task

execution times tend to be very small. To efficiently use system resources while

avoiding overruns, the idea of task rate adaptations is combined with the use of

a constant bandwidth server to guarantee hard real-time deadlines. Buttazzo et

al. propose an optimal period selection algorithm in [20] based on the elastic task

model. Many extensions to the elastic task model can be found in [17, 18, 21, 22].

In terms of schedulability tests for task sets with deadlines less than periods,

Baruah et al. proposed an exact test with pseudo-polynomial running time [10].

For efficiency, we will use the sufficient test provided in [24, 25]. However, there

exist other sufficient conditions for schedulability when task deadlines are less than

task periods. For instance, Devi proposed a set of sufficient schedulability tests

in [34]. The main difference between this set of tests and the one in [24] is that the

former requires N checks while the latter requires only one check. Some extensions

to Devi’s work include, but are not limited to, an approximate schedulability

test [1], an adaptation to fixed-priority systems [38], and novel feasibility tests

that are shown to outperform Devi’s schedulability conditions [71].

Most previous works on overload management assume that only task periods

can change. In [95], task deadlines vary with time, but the tasks do not have

periods (i.e., tasks are non-periodic). There has also been work on determining

the lower bound on task deadlines using sensitivity analysis in a periodic task

13



model [7]. However, to the best of our knowledge, there has been no work that

allows task periods and deadlines to change simultaneously.

2.1.3 Contributions

Our first main contribution is the introduction of a more general and realistic

task model where both task deadlines and task periods can vary within some

intervals. The deadline of a task in a real-time system really denotes the maximum

allowable delay that task can tolerate. As shown by the authors in [108], different

sampling rates for a control system lead to different acceptable maximum delays

(deadlines). Specifically, a higher sampling rate means that the corresponding

control task executes more often, which, in turns, allows the system to be more

tolerant to a relatively larger delay. Conversely, a larger sampling period could

make the system more susceptible to delays and thus a relatively smaller deadline

may be required. In other words, the deadline of a task is a function of its period.

The relationship between task periods and task deadlines poses an interesting

scheduling problem, as one can no longer assume that increasing task periods

will always improve schedulability. Although it is possible to set task deadlines

to be the smallest deadlines (specified by the applications) and only vary task

periods, doing so may significantly worsen schedulability. As our second main

contribution, we study some interesting relationships between task periods and

task deadlines that will help to solve the period and deadline selection problem.

We then propose an efficient heuristic that can be used to find a set of feasible

task periods and deadlines and alleviate an overload situation in a timely manner.

Our heuristic can be applied to any real-time task set where task deadlines are less

than or equal to task periods and where task deadlines are piecewise first-order
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differentiable functions of their respective periods. Experimental results indicate

that our heuristic finds a solution to the period and deadline selection problem

over 73% of the time.

2.1.4 Organization

We introduce the system model and formally define the problem in Section 2.2.

Section 2.3 provides a motivating example to highlight the importance and use-

fulness of our work. We present our formal analysis and heuristic in Sections 2.4.

Section 2.5 summarizes some experimental results and the chapter concludes with

Section 2.6.

2.2 System Model and Problem Definition

In this section, we describe the system model and review some relevant schedu-

lability tests. We also give a formal definition of the period and deadline selection

problem.

2.2.1 Task Model

Our system consists of a set of N periodic, synchronous tasks specified by the

following 5-tuple: (Ci, Ti, Timin , Timax , Di), i = 1, . . . , N , where Ci is the worst-

case execution time of task τi, and Ti is τi’s period (to be decided), which must

lie somewhere between Timin and Timax . The parameter Timin denotes the most

desirable period of τi, as specified by the application, whereas Timax represents the

maximum period beyond which the system performance is no longer acceptable.

The parameter Di is the deadline of τi, and is dependent on the actual task

period Ti. That is, the deadline of a task is a function of its period. Specifically,
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Di ≤ Ti, Ti ∈ [Timin , Timax ] and Di is some function that is piecewise first-order

differentiable.

The utilization of each task τi is defined as Ui = Ci/Ti and denotes system

resources dedicated to τi. Since the period of τi, i = 1, . . . , N , can vary between

Timin and Timax , the minimum utilization of τi, Uimin = Ci/Timax , and its maximum

(desired) utilization, Uimax = Ci/Timin , are also defined, for i = 1, . . . , N .

2.2.2 Schedulability Tests

Throughout this chapter, we will assume that the Earliest Deadline First

(EDF) scheduling algorithm [66] is used. When one or more tasks need to de-

crease their period and/or deadline in response to either internal (e.g., change in

sampling rate of one or more tasks in the system) or external (e.g., network traffic)

factors, a schedulability test must be performed to assess whether the task set is

still schedulable. A schedulability test may also provide some guidance on how

to adjust task parameters in such a way that a feasible task set can be obtained.

Based on the assumption that the EDF scheduling algorithm is used, there exist

some useful schedulability conditions that are briefly reviewed here.

A necessary condition for schedulability of any given task set is stated in the

following lemma.

Lemma 2.1 [24] Consider a task set Γ, let Ci and Di be the execution time and

the deadline of task τi, i = 1, . . . , N , respectively. In addition, let all tasks start

at time 0 and let the tasks in Γ be ordered in a non-decreasing order of deadlines.

Regardless of the choices of periods, any task set that is schedulable must satisfy

the following property
j∑

i=1

Ci ≤ Dj, j = 1, . . . , N. (2.1)
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Since task deadlines can be less than or equal to periods, there exist an exact,

albeit complex, schedulability test for EDF as specified by Baruah et al [10]. Said

test is restated in the following theorem.

Theorem 2.1 [10] Consider a periodic task set with Ci, Di, and Ti as the execu-

tion time, deadline, and period of task τi, i = 1, . . . , N , respectively. Let Di ≤ Ti,

i = 1, . . . , N , the task set is schedulable if and only if the following constraint is

satisfied ∀L ∈ {kTi +Di ≤ min(Bp, H)} and k ∈ N (the set of natural numbers

including 0), where Bp and H denote the busy period and hyperperiod as defined

in [16], respectively,

L ≥
N∑
i=1

(⌊
L−Di

Ti

⌋
+ 1

)
Ci. (2.2)

Verifying that (2.2) is satisfied for all L is the main source of complexity in the

above schedulability test. To reduce the complexity of the test in Theorem 2.1,

the authors in [24] proposed the following sufficient condition for schedulability.

Theorem 2.2 [24] Given a set Γ of N tasks that satisfy Lemma 2.1. Let Ci,

Di, and Ti be the execution time, deadline, and period of task τi, i = 1, . . . , N ,

respectively. In addition, let the tasks in Γ be sorted in a non-decreasing order of

deadlines. The task set Γ is schedulable if

L∗ ≥
N∑
i=1

(
L∗ −Di

Ti
+ 1

)
Ci (2.3)

where

L∗ =

 D2 : D1 + T1 ≤ D2

minN
i=1 (Ti +Di) : otherwise.

For completeness, we include another existing sufficient condition for EDF

schedulability.
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Theorem 2.3 [67] Consider a set Γ of N tasks where Ci and Di are the execu-

tion time and deadline of task τi, i = 1, . . . , N , respectively. The task set Γ is

schedulable by the EDF policy if

N∑
i=1

Ci

Di

≤ 1. (2.4)

We will use some of these schedulability conditions in Section 2.4.

2.2.3 Problem Definition

Given an initially infeasible set Γ of N real-time tasks where the period Ti

of task τi must lie somewhere between [Timin , Timax ], and the deadline Di of τi is

some piecewise first-order differentiable function of its period, determine a period-

deadline combination (Ti, Di), i = 1, . . . , N , such that the task set Γ becomes

schedulable. In other words, we wish to find (Ti, Di), i = 1, . . . , N , such that

N∑
i=1

(⌊
L−Di

Ti

⌋
+ 1

)
Ci ≤ L (2.5)

Ti ≥ Timin for i = 1, 2, · · · , N (2.6)

Ti ≤ Timax for i = 1, 2, · · · , N, (2.7)

where L is defined as in Theorem 2.1, Ci is the worst-case execution time of τi,

and both Timin and Timax are specified by the applications under consideration.

The constraint in (2.5) ensures the schedulability of the task set. The con-

straints in (2.6) and (2.7) bound the period of τi, i = 1, . . . , N , to ensure perfor-

mance.
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2.3 Motivations

In control systems, an advantage in using the traditional periodic task model

where task deadlines are fixed is that these systems can be treated as discrete-time

systems for which there exists a variety of mature controller synthesis methods.

However, when the periodic task model is used, task periods and deadlines are

often chosen conservatively to guarantee stability. This leads to wasted resources

and system over-provisioning. For these reasons, there has been a recent move-

ment in the control system community to investigate alternative approaches to

the periodic task model.

The work in [108] is such an example. Each task determines its next release

time based on the current system state as sampled by the current job. This type

of control systems is known as state-based self-triggering systems. Self-triggering

can be viewed as a closed-loop form of releasing tasks for execution, whereas the

traditional periodic task model is considered open-loop. Since each control task

is aware of its system state, it can adjust its period and deadline in such a way

that only the required system resource is requested. More precisely, with a small

period, a task is executed relatively often and the system is thus more tolerant to

delays, permitting the task deadline to be relatively larger (e.g., perhaps almost as

large as the task period itself). On the other hand, when the task period is large,

the system is more susceptible to disturbances, requiring that the task deadline

be relatively smaller (compared to the task period) to reduce jitters.

To understand how the deadline as a function of the period affects schedula-

bility, let us consider a simple task set, which consists of two identical tasks whose

attributes are shown in Table 2.1. The deadline of each task can be computed as

shown in the last column of Table 2.1 (all units are in milliseconds). Figure 2.1
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plots the task deadlines as a function of task periods where the vertical dotted

lines limit the acceptable period range for the example tasks. Initially, the task set

is not schedulable with T1 = T2 = 0.5 ms, since the initial deadlines D1 = D2 =

0.303 ms and the aggregate execution time required is 0.36 ms. If we simply set

T1 = T2 = 3.5 ms, which is the maximum allowable periods, then the correspond-

ing deadlines will be D1 = D2 = 0.106 ms. The task set is, again, not schedulable

and one may wrongly conclude that the task set cannot be made feasible. How-

ever, there exists many feasible period-deadline combinations. For example, when

T1 = T2 = 1 ms and D1 = D2 = 0.368 ms, the task set is schedulable.

TABLE 2.1

TASK SET FOR MOTIVATING EXAMPLE ILLUSTRATING THE

IMPORTANCE OF THE PERIOD AND DEADLINE SELECTION

PROBLEM

Task Ci Timin Timax Di

τ1 0.18 0.5 3.5 T1e
−T1 , T1 ∈ [0.5, 3.5]

τ2 0.18 0.5 3.5 T2e
−T2 , T2 ∈ [0.5, 3.5]

In the traditional periodic task model, since task deadlines are considered

fixed, system designers must use the smallest possible deadlines to ensure that,

given a specific range of task periods, the system will always meet the minimum
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Figure 2.1. Task deadlines in milliseconds as a function of task periods,
also in milliseconds. The area inside the vertical dotted lines denotes the

acceptable period ranges for the task set in Table 2.1.

performance requirements. For the above example, the smallest deadline for both

tasks is 0.106 ms, which means that the task set can never be made schedula-

ble using existing techniques. It is not difficult to see in this example that the

task deadlines can be set to 0.36 ms for the task set to be feasible, regardless of

the resultant periods. In general, however, both task periods and task deadlines

must be considered simultaneously, since different tasks may have different timing

requirements.
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2.4 Period and Deadline Selection Heuristic

As shown in the previous section, since a task deadline is a function of its pe-

riod, adjusting the period affects both the corresponding deadline and the schedu-

lability of the entire task set. Due to the condition in (2.5), the problem defined in

Section 2.2.3 is nonlinear, non-convex, and non-continuous because of the variable

L. Solving the above problem directly using a nonlinear solver is inefficient and the

solver cannot guarantee that a solution will be found, even if one exists. (Non-

linear solvers usually employ interior-point methods [39] or branch-and-bound

techniques [13, 30] to solve the problem.) For these reasons, we propose using

an efficient heuristic to find a solution. In a nutshell, the heuristic starts by per-

forming some simple schedulability tests to determine a feasible period-deadline

combination. Such tests also serve to eliminate some infeasible period and dead-

line values should they fail to identify a feasible task set. The heuristic then uses

this knowledge to conduct an efficient search process.

2.4.1 Identifying Infeasible Regions Using Simple Tests

We now describe our idea of using the simple tests in more detail. We first

determine the minimum and maximum deadlines, Dimin and Dimax , respectively,

for each task τi, i = 1, . . . , N . The maximum deadline of τi, Dimax can directly be

solved by finding the maximum of Di. (Recall that the maximum of a function

can be obtained by taking its derivative and subsequently finding the root(s) of

said derivative.) The corresponding period value is denoted TDmax
i , i = 1, . . . , N .

To determine the lower bound on the deadline of a task τi, i = 1, . . . , N ,

we would ideally use Lemma 2.1. However, Lemma 2.1 requires that tasks be

sorted in a non-decreasing order of deadlines. Since a task deadline is a variable
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to be determined, we cannot directly use Lemma 2.1 to compute the minimum

deadline. Instead, let D̃i be the smallest deadline of task τi, i.e., D̃i ≤ D(Ti),

Ti ∈ [Timin , Timax ], i = 1, . . . , N . We say that task τi dominates task τj (denoted by

τi � τj) if D̃i > Djmax . Otherwise, we say that τi and τj are non-comparable. Using

the above dominance definition, a partial order can be built for a given set of tasks.

It is easy to see that Lemma 2.1 holds true for tasks with deadlines as variables if

we sort the tasks using the partial order established above. For example, consider

a simple task set consisting of task τj and τk. If τj � τk then Dkmin = Ck and

Djmin = Ck + Cj. In general, for a task τi, Dimin = max{DS} + Ci, where DS

is the set of deadlines of tasks that are dominated by τi. Since Dimin set in this

way is a lower bound on the minimum task deadline for task τi, i = 1, . . . , N , we

can eliminate some infeasible period-deadline combinations (shown by the right-

slanted pattern in Figure 2.2). The task period that corresponds to when the

task deadline is Dimin is referred to as TDmin
i , i = 1, . . . , N . Clearly, if Dimin ,

i = 1, . . . , N , satisfy the condition in Lemma 2.1, but if Dimax < Dimin for some

i = 1, . . . , N , then the task set cannot be made schedulable.

Once we have found the minimum and maximum deadlines for each task in the

task set, we can apply a series of efficient schedulability tests to avoid searching

for a solution, if possible. We start with the sufficient condition from Theorem 2.3

using Dimax , i = 1, . . . , N , as the task deadlines. The following lemma helps

to explain why only Dimax , i = 1, . . . , N , need to be considered when applying

Theorem 2.3 on the current task set.

Lemma 2.2 Consider a set Γ of N tasks. Let Ci and Di be the execution time

and deadline of task τi, i = 1, . . . , N , respectively. If the schedulability condition

from Theorem 2.3 is not satisfied for Dimax, i = 1, . . . , N , then it is not satisfied
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Figure 2.2. Task deadline in milliseconds as a function of task periods,
also in milliseconds. The left-slanted and right-slanted areas denote

infeasible period and deadline combinations. The unpatterned region
represents possibly feasible period and deadline combinations and is

where the search process is conducted.

for any Di < Dimax, i = 1, . . . , N .

Proof: If the task set Γ fails the schedulability test in Theorem 2.3, then

N∑
i=1

Ci

Dimax

> 1. (2.8)

Using any Di < Dimax , i = 1, . . . , N , would yield

N∑
i=1

Ci

Di

>
N∑
i=1

Ci

Dimax

> 1. (2.9)

Therefore, the lemma holds.
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2

Note that if the condition from Theorem 2.3 is satisfied for Dimax , i = 1, . . . , N ,

then we have identified a feasible solution. Otherwise, we apply the schedulabil-

ity test from Theorem 2.2 for a special point (TDmax
i , Dimax), i = 1, . . . , N (see

Figure 2.2). (To use Theorem 2.2, we order the tasks in a non-decreasing order of

deadlines using Di = Dimax and Ti = TDmax
i , i = 1, . . . , N , whenever L needs to be

determined). We choose to test the point (TDmax
i , Dimax), i = 1, . . . , N , because if

the task set is not schedulable at this point according to Theorem 2.2, then it is

not schedulable for any (T i, Di), T i ≤ TDmax
i and Di ≤ Dimax , i = 1, . . . , N . The

following theorem proves this claim and explains why the left-slanted region in Fig-

ure 2.2 can be eliminated from further consideration if the point (TDmax
i , Dimax),

i = 1, . . . , N , is found to be unschedulable according to Theorem 2.2.

Lemma 2.3 Consider a set Γ of N tasks. Let Ci and Di be the execution time

and deadline of task τi, i = 1, . . . , N , respectively. Let Ti be the period obtained

when Di = Dimax, i = 1, . . . , N . If the condition in Theorem 2.2 is not satisfied for

(Ti, Di), i = 1, . . . , N , then it is not satisfied for any (T i, Di), Di ≤ Di, T i ≤ Ti,

i = 1, . . . , N .

Proof: Since the task set is not schedulable at (Ti, Di), i = 1, . . . , N , we have

L <

N∑
i=1

(
L−Di

Ti
+ 1

)
Ci. (2.10)
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In addition, since Di ≤ Di and T i ≤ Ti, i = 1, . . . , N ,

L <

N∑
i=1

(
L−Di

Ti
+ 1

)
Ci

<

N∑
i=1

(
L−Di

T i

+ 1

)
Ci, (2.11)

since L−Di > L−Di and T i < Ti, i = 1, . . . , N . Finally, as L > L, where L = D2

if D1 + T 1 ≤ D2 and L = minN
i=1(T i +Di) otherwise,

L <
N∑
i=1

(
L−Di

Ti
+ 1

)
Ci. (2.12)

2

Observe that we use the schedulability conditions in Theorems 2.2 and 2.3 in

conjunction to one another. This is because a task set that is feasible according

to one of the aforementioned schedulability conditions is not necessarily feasible

according to the other (and vice versa).

The left-slanted region in Figure 2.2 is a result of Lemma 2.3 and can be elimi-

nated from further consideration. (Note that since we test the point (TDmax
i , Dimax)

using the schedulability test from Theorem 2.2, which presents only a sufficient

condition, such a point may in fact be feasible. However, to exactly determine

schedulability, the condition in Theorem 2.1 needs to be satisfied and is often too

time consuming to be used during an overload situation.) In any case, the area

with no pattern indicates the remaining search region. Note that for a specific

period Ti, i = 1, . . . , N , any deadline 0 < Di < Di is also acceptable from the

system performance point of view. However, since using Di will worsen schedula-

bility, we only consider Di. All the simple tests described thus far appear as part
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of our heuristic and are shown in Algorithm 1. Lines 1–3 show the first simple test

discussed in Lemma 2.2. The second simple test from Lemma 2.3 is shown in Lines

4–7. Finally, Lines 8–11 show that we perform an additional schedulability test

for (TDmin
i , Dimin), i = 1, . . . , N , since this point has already been computed and

such an additional test does not incur a significant amount of additional overhead.

Algorithm 1 SimpleTests(Γ)

1: result ←
∑N

i=1
Ci

Dimax
2: if result ≤ 1 then
3: return

[
Dimax , T

Dmax
i

]
, for i = 1, . . . , N

4: compute L as in (2.14) using Dimax and TDmax
i ,

1 ≤ i ≤ N

5: result ←
∑N

i=1

(
L−Dimax
TDmaxi

+ 1
)
· Ci

6: if result ≤ L then
7: return

[
Dimax , T

Dmax
i

]
, for i = 1, . . . , N

8: compute L as in (2.14) using Dimin and TDmin
i ,

1 ≤ i ≤ N

9: result ←
∑N

i=1

(
L−Dimin
TDmini

+ 1
)
· Ci

10: if result ≤ L then
11: return

[
Dimin , T

Dmin
i

]
, for i = 1, . . . , N

12: return ∅

2.4.2 Efficiently Conducting the Search Process

If all the aforementioned simple tests fail, we will have to search along the

unpatterned region of Figure 2.2 to find a feasible period-deadline combination,

(Ti, Di), i = 1, . . . , N . Since the main source of complexity of the problem defined

in Section 2.2.3 is that (2.5) must be satisfied for all possible values of L, the
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search process will instead use the schedulability test from Theorem 2.2. In other

words, the problem in Section 2.2.3 is modified to

N∑
i=1

(
L−Di

Ti

)
Ci ≤ L−

N∑
i=1

Ci (2.13)

L =

 D2 : D1 + T1 ≤ D2

min (Ti +Di) : otherwise
(2.14)

Ti ≤ min
{
Timax , T

Dmin
i

}
, i = 1, 2, · · · , N (2.15)

Ti ≥ max
{
Timin , T

Dmax
i

}
, i = 1, 2, · · · , N, (2.16)

where TDmin
i and TDmax

i , i = 1, . . . , N are as defined previously.

Given an initially infeasible task set, one can compute the corresponding value

of L as in (2.14). Let us first assume that the value of L is fixed once it has been

computed. To satisfy the condition in (2.13), observe that since the right-hand

side of (2.13) can be treated as a constant, one way to solve the above problem is

to adjust task periods and deadlines such that the left-hand side becomes as small

as possible. We can express this idea mathematically as the following constrained

optimization problem.

min :
N∑
i=1

(
L− D̂i

)
· Ui (2.17)

s.t. : Ui ≤ Uimax for i = 1, 2, · · · , N (2.18)

Ui ≥ Uimin for i = 1, 2, · · · , N, (2.19)

where D̂i is the task deadline function that depends on Ui, i.e., D̂i ≡ D̂i(Ui) =

Di(Ci/Ui). (For notational simplicity, Di always refers to Di(Ti) and D̂i to

Di(Ui).) Ui = Ci/Ti, Uimax = Ci
max{Timin ,TDmaxi } , and Uimin = Ci

min{Timax ,TDmini } .
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Solving the above constrained optimization problem is attractive because if

a solution to the problem in (2.13)–(2.16) exists for a fixed value of L, then we

will find it by solving the above constrained optimization problem. This claim is

formally stated in the following lemma.

Lemma 2.4 Consider an initially infeasible task set Γ where Ci, Ui, and D̂i de-

note the execution time, utilization, and deadline (as a function of the utilization)

of task τi, i = 1, . . . , N , respectively. For a fixed value of L, if there exists a

solution to the problem in (2.13)–(2.16), it will be found by solving the problem

defined in (2.17)–(2.19).

Proof: The lemma can be trivially proved by observing that (2.13) can be rewrit-

ten as
N∑
i=1

(
L− D̂i

)
· Ui ≤ L−

N∑
i=1

Ci. (2.20)

The constrained optimization problem in (2.13)–(2.16) minimizes the left-hand

side of the above equation. Thus, if we can adjust task periods and deadlines such

that (2.20) is true, then the solution to the optimization problem in (2.17)–(2.19)

will also be a solution to the problem in (2.13)–(2.16).

2

The following theorem presents a globally optimal solution to the problem in

(2.17)–(2.19) and hence a solution to the problem in (2.13)–(2.16), for a fixed

value of L.

Theorem 2.4 Consider the constrained optimization problem as specified in (2.17)–

(2.19). Let Ui be the utilization of task τi, i = 1, . . . , N . Let D̂i be the deadline of
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τi where D̂i is a function of the Ui, i.e., D̂i ≡ D̂i(Ui) = Di(Ci/Ui), and let

Gi(Ui) = (L− D̂i) · Ui. (2.21)

For a fixed value of L, the solution, Ui, is optimal if and only if

Ui = argmin
Ui∈

{
Ui ∪Umini ∪Umaxi

}{Gi(Ui)}, (2.22)

where Ui is a set of U i such that L− D̂i − D̂
′
i · U i = 0.

Proof: We prove that if Ui, i = 1, . . . , N , is an optimal solution to the constrained

optimization problem in (2.17)–(2.19), then (2.22) must be true by utilizing the

Kuhn-Tucker (KKT) necessary conditions for optimality for constrained optimiza-

tion problem, which can be written in terms of the Lagrangian function for the

problem as

Ja(U, µ) =
N∑
i=1

(L− D̂i) · Ui +
N∑
i=1

µi(U
min
i − Ui) +

N∑
i=1

λi(Ui − Umax
i ) (2.23)

where µi’s and λi’s are Lagrange multipliers, µi ≥ 0 and λi ≥ 0, i = 1, . . . , N .

The necessary conditions for the existence of a relative minimum at Ui are, for

i = 1, . . . , N ,

0 = L− D̂
′
i · Ui − D̂i − µi + λi (2.24)

0 = µi(U
min
i − Ui) (2.25)

0 = λi(Ui − Umax
i ) (2.26)
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From (2.24)

L− D̂
′
i · Ui − D̂i = µi − λi (2.27)

If L − D̂
′
i · Ui − D̂i < 0 for Ui ∈ [Umin

i , Umax
i ], then µi must be 0 and λi > 0.

Hence, Ui = Umax
i . If L − D̂

′
i · Ui − D̂i > 0 for Ui ∈ [Umin

i , Umax
i ] then λi = 0

and µi > 0. Therefore, Ui = Umin
i . Otherwise, L− D̂

′
i · Ui − D̂i = 0 at least once

when Ui ∈ [Umin
i , Umax

i ]. In such a case, we can find the value(s) of Ui by finding

all the extreme points in the interval [Umin
i , Umax

i ], which is equivalent to solving

the equation L− D̂i− D̂
′
i ·Ui = 0 for Ui. Note that since the KKT conditions are

necessary for optimality, we have completed the proof for this part.

Now, we prove that if Ui, i = 1, . . . , N , is determined as in (2.22), then it

is an optimal solution to the constrained optimization problem in (2.17)–(2.19).

We start by observing that, given a piecewise differentiable function Gi(Ui), the

global minimum of Gi(Ui) in the interval [Umin
i , Umax

i ] must either be at one of

the extreme points inside [Umin
i , Umax

i ] or at the boundaries, i.e., at Umin
i or Umax

i .

This is indeed captured by the expression in (2.22).

Finally, since the objective function in (2.17) can be rewritten as minN
i=1 Gi(Ui),

minimizing each individual Gi(Ui), i = 1, . . . , N , is equivalent to minimizing

(2.17).

2

Remark: If the left-hand side of (2.17) is a convex function, then the KKT

necessary conditions for optimality also become sufficient conditions. In such a

case, a global optimal solution to the optimization problem in (2.17)–(2.19) for a

non-fixed L can be found using Theorem 2.4.

We use the result from the above theorem directly in the main part of our

heuristic (Line 22 in Algorithm 2). Although the heuristic can optimally solve the
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problem in (2.17)–(2.19) for a fixed value of L, it needs to iteratively search for a

feasible task set. This is because the value of L may either increase or decrease as

Di and Ti, i = 1, . . . , N , change. Consider two consecutive iterations h and h+ 1.

If the task set with periods T
(h)
i and deadlines D

(h)
i , i = 1, . . . , N , satisfies the

constraints in (2.13)–(2.16) given some fixed value of L(h) and L(h+1) ≥ L(h), then

the task set is guaranteed to be schedulable (as shown in the following lemma)

and the search process ends.

Algorithm 2 FindFeasiblePeriodsDeadlines(Γ, maxIter)

1: for each τi ∈ Γ do
2: Dimax ← maxTi∈[Timin ,Timin ]Di

3: TDmax
i ← period when deadline is Dimax

4: Dimin ← Ci

5: TDmin
i ← period when deadline is Dimin

6: result← SimpleTests(Γ)
7: if result 6= ∅ then
8: return result
9: Di ← Dimax , i = 1, . . . , N

10: Ti ← TDmax
i , i = 1, . . . , N

11: done ← false
12: iterNum ← 0
13: while not done do
14: iterNum ← iterNum + 1
15: compute L as in (2.14) using Di and Ti, 1 ≤ i ≤ N

16: result ←
∑N

i=1

(
L−Di
Ti

+ 1
)
· Ci

17: if result ≤ L then
18: return [Di, Ti], i = 1, . . . , N
19: if iterNum > maxIter then
20: done ← true
21: for each τi ∈ Γ do
22: compute Ui as in Theorem 2.4
23: Ti ← Ci

Ui
24: determine Di accordingly
25: return ∅
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Lemma 2.5 Consider a set Γ of N tasks, and let Ci, Ti, and Di be the execution

time, period, and deadline of task τi, i = 1, . . . , N , respectively. If the task set sat-

isfies the condition in Theorem 2.2 for some L, then it also satisfies the condition

in Theorem 2.2 for any L ≥ L.

Proof: We have

L ≥
N∑
i=1

(
L−Di

Ti
+ 1

)
· Ci (2.28)

L−
N∑
i=1

L · Ci

Ti
≥

N∑
i=1

Ci −
Di · Ci

Ti
(2.29)

L

(
1−

N∑
i=1

Ci

Ti

)
≥

N∑
i=1

Ci −
Di · Ci

Ti
(2.30)

which clearly holds for any L ≥ L.

2

Now, if L(h+1) < L(h), the schedulability condition in Theorem 2.2 must ex-

plicitly be checked (Lines 16–17 in Algorithm 2). In this way, the heuristic will

either return a feasible task set or continue searching until the number of maxi-

mum iterations, maxIter, has been reached (Lines 19–20). The value maxIter is a

user-defined constant and, from our experiments in the next section, can be set

to some small number such as 100.

The time complexity of our heuristic is dominated by the while loop on Line

13 of Algorithm 2. Inside the while loop, the most time consuming operations

appear inside the for-loop on Line 21. Let |Ui| be the maximum size of Ui as

defined in Theorem 2.4 over all iterations and let O(G′) be the worst-case time

complexity required to find all solutions to the equation L − D̂i − D̂
′
i · Ui = 0,

33



also from Theorem 2.4. The running time of our heuristic is then O(maxIter ·N ·

(|Ui|+O(G′))), where N is the number of tasks in the task set.

Remark: In our approach, we assume that when a task set is infeasible, each task

is equally responsible for reducing its processor demand (if possible) to alleviate

the overload situation. In practice, however, some tasks may be more important

than the others. As a result, a weight may be associated with each task to denote

its importance. In such a case, our approach can be extended by factoring in

the weight of each task when deciding the amount of processor demand reduction

that each task should be responsible for. Specifically, the problem formulation in

Section 2.2.3 can be modified to the following constrained optimization problem

min :
N∑
i=1

wi(Timin − Ti)2 (2.31)

s.t. :
N∑
i=1

(⌊
L−Di

Ti

⌋
+ 1

)
Ci ≤ L (2.32)

Ti ≥ Timin for i = 1, 2, · · · , N (2.33)

Ti ≤ Timax for i = 1, 2, · · · , N, (2.34)

where wi is the weight of the task τi, i = 1, . . . , N , and all other parameters retain

their meaning as previously defined. Again, the modified problem can be too time

consuming (and perhaps too difficult) to solve using a nonlinear solver and thus

the use of a heuristic similar to the one presented earlier is recommended.

2.5 Experimental Results

In this section, we explain the experimental setup and discuss the performance

of our proposed heuristic.
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2.5.1 Experimental Setup

Since directly solving the period and deadline selection problem in Section 2.2.3

using a commercial non-linear solver can be very time consuming and it cannot

be guaranteed that a solution will be found, even if one exists, we proposed an

efficient heuristic in Section 2.4. In this section, we evaluate the performance of

our approach.

Due to the lack of realistic benchmarks suitable for the intended experiment, we

randomly generated 80 task sets consisting of 5 tasks each. In order to scrutinize

the search aspect of the heuristic, each task set is chosen such that it is initially

infeasible with the guarantee that all three simple tests from Algorithm 1 will

fail. In addition, given a task set, there exists at least one feasible period-deadline

combination, (T ∗i , D
∗
i ), for each task τi, i = 1, . . . , N , using the schedulability test

from Theorem 2.2 (and hence satisfies the necessary and sufficient condition from

Theorem 2.1).

In our experiment, we use the following deadline function, whose curve is

representative of the relationship between task periods and task deadlines of the

type of control systems under consideration. (It is worth noting, however, that any

deadline function can be used, as long as it is piecewise first-order differentiable.)

Di =
k1i

Ti − k2i

, (2.35)

for i = 1, . . . , N , where k1i and k2i, i = 1, . . . , N , are some constants that depend

on the specific task under consideration.

The following steps were taken to generate a task set. First of all, the following

parameters were specified: utilization, maximum hyperperiod, minimum period,

maximum period, precision, and maximum number of tries. Based on these pa-
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rameters, task periods are generated in such a way that the hyperperiod is no

larger than the maximum hyperperiod. (This could take a number of tries.) In

our experiment, we set the maximum hyperperiod, minimum period, and maxi-

mum period to 500,000, 10,000, and 40,000 time units, respectively. The precision

was specified to be 100, whereas the maximum number of tries was set to 10,000.

The precision denotes the minimum increment in any task period. For example,

if the precision is set to 100, a task period could be 5200 time units, but not 5010

time units. Finally, for the task sets used in our experiment, the range for the

utilization was between 0.5 and 0.7.

Afterwards, the point (TDmax
i , Dimax), i = 1, . . . , N , which denotes the max-

imum deadline value for task τi, is randomly generated. In addition, we ensure

that the point (TDmax
i , Dimax), i = 1, . . . , N , is not schedulable according to Theo-

rems 2.2 and 2.3. (Recall that the purpose of the experiment is to test the search

aspect of the heuristic and therefore we have to ensure that the simple tests

fail.) Note that the deadline function in (2.35) is defined only for Ti ≥ TDmax
i ,

i = 1, . . . , N , since according to Lemma 2.3, any task set that is not schedu-

lable for (TDmax
i , Dimax), i = 1, . . . , N , will not be schedulable for any (Ti, Di),

Ti ≤ TDmax
i , Di ≤ Dimax , i = 1, . . . , N . In other words, any period Ti < TDmax

i ,

i = 1, . . . , N , can be ignored by the search process.

Each task is randomly assigned an execution time such that the total utilization

equals that specified by the user. No task will have a utilization that is greater

than half of the specified total utilization. Then, each task is randomly assigned

a deadline Di that ensures that
∑N

i=1
Ci
Di

> 1. As a final step, the random task

set generator tests the schedulability of the task set using the sufficient condition

from Theorem 2.2. If the task set is unschedulable, task deadlines are randomly
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increased while ensuring that
∑N

i=1
Ci
Di

is still greater than 1. This final step is

repeated until either a feasible task set has been found or the maximum number

of tries has been reached.

After the generation of the aforementioned random points, each task set will

be associated with two points: (TDmax
i , Dimax) and (T ∗i , D

∗
i ), i = 1, . . . , N , where

the former point is not schedulable according to Theorem 2.2, but the latter point

is. Using these two points, the constants k1i and k2i, i = 1, . . . , N , can be found.

Finally, the point (TDmin
i , Dimin), i = 1, . . . , N can be determined as described in

Section 2.4.

2.5.2 Heuristic Performance

We implemented the heuristic proposed in the last section in C++. The user-

defined parameters maxIter was set to 100, which means that at most 100 search

iterations were conducted for each task set (benchmark). The proposed heuristic

found a feasible period-deadline combination for 59 out of the 80 task sets. For

these benchmarks, if we were to use existing techniques where task deadlines are

fixed (which do not directly apply to the system model under consideration),

then no solution will be found for any of these task sets because such techniques

assume that if the task set is not schedulable for (TDmin
i , Dimin), i = 1, . . . , N ,

then it cannot be made feasible. (In other words, the schedulability test from

Theorem 2.2 is performed for (TDmin
i , Dimin), i = 1, . . . , N . This test is referred

to as the “fixed deadline technique” in Table 2.2.) Clearly, due to the dependency

between task periods and task deadlines, the fixed deadline technique is shown to

be too pessimistic. Table 2.2 summarizes the results which show that our heuristic

has an overall success rate of over 73% while the fixed deadline technique has a
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success rate of 0%. Further, since the left-hand side of (2.17) is a convex function

(due to the deadline function used), the solutions found by the heuristic are also

optimal solutions to the optimization problem in (2.17)–(2.19).

TABLE 2.2

PERFORMANCE COMPARISON: PERIOD AND DEADLINE

SELECTION HEURISTIC VS. FIXED DEADLINE TECHNIQUE

Method Number of solutions found % solutions found

Fixed deadline technique 0/80 0%

Our heuristic 59/80 73.8%

Table 2.3 shows the number of iterations needed by the proposed heuristic

to find a solution for each task set. As can be seen from the table, the task

sets that the heuristic could find a feasible solution to took fewer than 3 search

iterations. On the other hand, 100 search iterations were not enough to find a

feasible period-deadline combination for 13 task sets.

2.6 Summary

In this chapter, we proposed a more general and realistic real-time task model

where each task deadline is a function of the corresponding period. This task
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TABLE 2.3

PERIOD AND DEADLINE SELECTION HEURISTIC: NUMBER OF

ITERATIONS REQUIRED

Number of task sets Number of iterations needed

37 (solution found) < 3

13 (solution not found) > 100

model facilitates the feasibility analysis of the real-time control systems where

task deadlines reflect the maximum allowable delays as tolerated by any given

system and vary according to the sampling periods. Since existing techniques

cannot adequately be used to determine schedulability for this novel task model,

we also proposed a heuristic to identify a schedulable task period-deadline combi-

nation. Our heuristic minimizes the search region and iteratively finds a feasible

period-deadline combination. Experimental results show that our method is much

less pessimistic than existing techniques that consider task deadlines to be fixed

parameters; our heuristic found a solution to the problem over 73% of the time

using fewer than 3 search iterations.

As future work, we intend on (i) obtaining more experimental results, par-

ticularly using benchmarks derived from real applications, and (ii) implementing

the proposed heuristic on a real-time operating system such as the S.Ha.R.K.

kernel [41].
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CHAPTER 3

A HOLISTIC SCHEDULING FRAMEWORK FOR ENERGY-CONSTRAINED

WIRELESS REAL-TIME APPLICATIONS

We consider wireless nodes that execute computationally-intensive applica-

tions and must transmit packets over the network in a timely manner. Existing

methods do not consider the importance (i.e., urgency) of a packet as perceived by

end users in conjunction with energy consumption, real-time task deadlines, and

packet deadlines, inadvertently causing packet priority inversion during transmis-

sions and possibly starvation of some streams. We present a holistic scheduling

framework that explicitly considers packet importance to select packets to trans-

mit and guarantee their deadline requirements using both packet and energy-aware

job assignment and scheduling. Our framework is applicable to wireless nodes

equipped with either a single processor or a multicore system. Based on extensive

simulations, we show that our proposed method allows for timely transmissions of

the most important packets, which helps to control packet urgency, while saving

processor(s) energy.

3.1 Introduction

In this section, we provide an overview of the problem to be solved, review key

existing work, summarize our main contributions, and outline the organization of

this chapter.
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3.1.1 Problem Overview

Wireless networks are now common in a variety of applications such as habitat

monitoring [69] and surveillance [45]. While many wireless sensor nodes typically

require minimum hardware to perform lightweight tasks (e.g., periodically waking

up to sense and transmit data), powerful processing nodes can also be found in

certain applications for executing computationally intensive tasks and transmit-

ting packets over the network. Some typical example applications are surveillance

and mobile gaming systems. In a surveillance system, a wireless node periodically

captures a video, processes frames and transmits them to clients. For the gaming

system, the processor is kept busy with a large number of tasks (e.g., rendering

graphics), while a large amount of data is sent to the user’s opponents.

Typically, the performance focus of the systems described above is the quality

of service (QoS) perceived by end users. For example, in a surveillance system, if

an intruder enters a premise, it is crucial that not only the equipment captures the

intruder on tape, but also that the information is sent to appropriate personnel

in a timely manner so necessary actions can be taken. Similarly, gamers in a

shooting game would want to see what their opponents are attempting to do from

their screen within a certain time window.

For the types of systems described above, there are some important factors to

be considered. Due to the time-sensitive nature of these systems, they are usually

implemented using real-time tasks, which generate packets to be transmitted over

the network. These packets, in turn, often contain time-sensitive materials. The

systems have periodic access to send and receive packets, although the time and

duration of access may depend on current network conditions (e.g., less often

if there are many nodes in the network). Finally, energy consumption of these
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wireless systems must be minimized since only occasional battery recharge may

be possible.

The usual implementation of the systems under consideration is as follows. The

processor executes the periodic real-time tasks using some real-time scheduling

algorithm. Offline analysis based on task worst-case execution times can be used

to guarantee that all deadlines will be met. When a packet is generated by a real-

time task, it is sent by the processor to the network queue. A network scheduler

then takes over and decides which packets to send and when. The main problem

with this setup is that the decision to execute tasks and transmit packets are made

independently and changing performance requirements are not communicated.

Specifically, since a node’s access to the network may sometimes be limited (due

to event storms in sensor networks, high levels of interferences, and varying degrees

of network density, for example), fewer packets can be transmitted during that

time. While the network scheduler can select the most important packets to send

first, the task scheduler, unaware of the situation, may not execute tasks that

generate these important packets until later (e.g., when the node no longer has

network access). To fully exploit periodic network access, a holistic scheduling

approach, which considers packet importance levels and deadlines, as well as real-

time task timing constraints, is needed.

3.1.2 Related Work

There is a large body of research on energy minimization for real-time applica-

tions, both for uniprocessors (e.g., [82, 113]) and multiprocessors (e.g., [3, 5, 27]).

The majority of the work solely focuses on optimizing real-time task performance

without any consideration for packet deadlines. At the same time, network-aware
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work usually focuses on trading network energy with packet latency using packet

scheduling and ignores task deadlines, e.g., [62, 101]. The problem of energy-aware

scheduling of multiple components has been studied in the past, e.g., [46]. The

most relevant papers propose some type of network-aware energy-minimization

algorithms for real-time task scheduling [74, 83], which are still task-centric in

that packet deadlines are not explicitly considered.

To the best of our knowledge, the work by Yi et al. is the only energy-aware

solution that explicitly considers packet deadlines for systems executing real-time

tasks [114]. However, this approach treats each packet as equally important,

possibly resulting in scenarios where some tasks consistently get their packets

transmitted while the packets of other tasks starve. In addition, it is unclear

whether or how the work in [114] can be extended to multiprocessor architectures.

One way to ensure that both task and packet deadlines are met is to perform

offline analysis to determine how much and when a node requires network access

for all packets to be transmitted by their deadlines. However, network conditions

unavoidably change and it cannot be guaranteed that each and every node will

receive network access as requested. Also, while it is possible to model the re-

lationship between tasks and packets using a directed acyclic graph (DAG), this

solution is not viable as solving scheduling problems involving DAGs are usually

performed offline due to the high time complexity.

3.1.3 Contributions

We address the gap in existing research by proposing a holistic scheduling

framework that considers packet importance and current network conditions to

make assignment and scheduling decisions. The proposed framework provides a
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method to select and schedule the more important packets for transmission to

control packet urgency. The packet schedule is then used to derive job deadlines.

An LpEDF [113] based scheduling algorithm is used for nodes consisting of a sin-

gle processor to save energy. For multicore nodes, a collection of energy-aware job

assignment algorithms is studied. The solutions obtained by each of the compo-

nents in the framework are evaluated against the optimal solutions and are shown

to be a viable alternative to exhaustive search approaches. Comparison with an

existing work reveals that the proposed framework improves on a specific QoS

metric by about 30% on average using about 37% less energy. In addition, our

approach reduces window constraint violations [109] by about 57.7%.

3.1.4 Organization

This chapter is organized as follows. We start by describing the system model

and formally define the problem in Section 3.2. Section 3.2.3 serves to motivate

the need for this work. Section 3.3 presents the holistic scheduling framework

while the technical details are given in Sections 3.4 and 3.5. Section 3.6 discusses

extensions to the framework. Simulation results are given in Section 3.7 and

Section 3.8 concludes the chapter.

3.2 Preliminaries

We now describe our system model and provide some motivations for our work.

3.2.1 Task and Packet Model

We consider a set of n independent periodic real-time tasks. Each task τi is

described by its worst-case execution time Ci, period Ti, implicit deadline Di = Ti.
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All tasks are synchronous. The j-th instance (job) of task τi is denoted by Ji,j.

The absolute release time and deadline of Ji,j are ri,j and di,j, respectively. Jobs

are executed using EDF [66]. For the rest of the chapter, we simply use Ji to

denote any individual job of τi when it is irrelevant to distinguish between, say,

Ji,j and Ji,k.

Without loss of generality, we assume that every job generates a packet at

the end of its execution. Packets have firm real-time deadlines, i.e., they must

be transmitted by their deadlines or they will be dropped. Packets from different

instances of the same task are equal in size while packets from different tasks may

vary in size. A packet Si,j is generated by Ji,j. We simply use Si to denote a

packet generated by any job of τi when it is irrelevant to distinguish between,

say, Si,j and Si,k. A packet Si is described by its deadline offset Xi, worst-case

transmission time Zi, and importance Wi. Packet importance is a dynamically

changing value that is used to capture the the urgency of a given packet. The

actual importance of a packet depends on its content as well as past transmission

history of earlier packets from the same stream. The job Ji, which generates

Si, also inherits that importance level. That is, Ji is more important than Jk

if Wi > Wk. It is important to note that the importance of a task may be

different from one instance to another. Finally, the absolute deadline of packet Si

is Yi = di +Xi where di is the absolute deadline of the job that generates Si.

3.2.2 Hardware and Power Model

For the uniprocessor case, the processor runs at k discrete frequency levels.

Note that the maximum frequency level fmax = fk. Each frequency level fj is

described by tuple (Pj, Vj), where Pj and Vj denote the power and voltage when
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running the processor at frequency level fj, respectively. For the multicore case,

cores are homogeneous and can independently change frequency levels. For now,

we assume Pj, j = 1, . . . , k, only consists of dynamic power, which is a function

of the frequency level, i.e., Pj = f 3
j · Pnom , where Pnom is the nominal power

consumption. In other words, we ignore leakage power for now. This assumption

will be relaxed in Section 3.6.2. The processor energy consumption is defined to

be a product of power and time. Transition overheads associated with switching

from one frequency level to another have been included in the task worst-case

execution times.

There is a network card for each node. We assume packet transmissions cannot

be preempted (so that transmission overheads are reduced). As in [114], each

node uses TDMA-like periodic time slots to send and receive packets (Figure 3.1).

Such a network communication model allows for contention-free communication

among nodes. No network communication for a particular node takes place outside

of its designated TDMA-like time slots. We assume that incoming packets are

buffered at the sender and arrive at the beginning of each transmission window

(denoted by the RX boxes in Figure 3.1). The time slots, described by a period Tts

and transmission window of length Cts , may change over time to reflect different

network usage levels given by the MAC layer protocol. For instance, event storms

in sensor networks, high levels of interferences, and varying degrees of network

density and traffic due to mobility may cause a node to be temporarily granted

less network access (e.g., larger Tts or smaller Cts).

Since a node may be granted less network access due to situations described

above, some of its packets may need to be dropped. Note that since packets have

firm real-time deadlines, jobs that generate them must meet their deadlines or
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Tts Tts 

RX TX RX TX 

Cts Cts 

Figure 3.1. Network communication model.

there is no point in executing them. While it is possible to have scenarios where a

job may miss its deadline but its packet is transmitted on time, we do not consider

them in this work since we make an implicit assumption that job deadlines are

required to ensure data freshness.

The system must minimize its energy consumption to stay alive for as long as

possible. In this work, we will focus on the energy used to execute tasks since the

energy consumption at the network card is already inherently considered via the

periodic time slots (i.e., the network card is turned off or put to sleep outside of

Cts) and will not be further discussed.

3.2.3 Motivation

We use some simple examples to motivate the need for a holistic approach to

job scheduling and packet transmission and highlight some key challenges. As-

sume that we have a set of three tasks (Table 3.1) running on a processor with

the maximum normalized frequency level fmax = 1. Task (and packet) importance

levels are as shown in the last column of Table 3.1, with τ3 being the most im-

portant and τ1 being the least important. For the sake of clarity, we assume task

and packet importance levels are fixed for this example. Recall that the absolute

deadline of a packet Si,j generated by Ji,j is di,j + Xi, where di,j and Xi are the
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TABLE 3.1

EXAMPLE TASK SET

Task C T D X Z W

τ1 1 2 2 3 1 1

τ2 1 3 3 3 1 2

τ3 1 6 6 4 1 3

absolute deadline of Ji and the packet deadline offset of Si,j, respectively.

To ease explanation, we assume in this example that jobs always require their

worst-case execution times. Since the total utilization of the system is 1, the

processor executes at the maximum frequency level for the entire duration. The

job schedule is shown in Figure 3.2.

0 7654321 time 

J2,1 J1,1 J1,2 J2,2 J1,3 J3,1 … 

Figure 3.2. EDF job schedule.
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Let us assume that the system has network access from time 3 to 6 (and will

not get access again until time 12). Using EDF [66], the network schedule is as

shown in Figure 3.3. Observe that S3,1, despite being the most important packet,

is not transmitted.

0 7654321 time 

S1,1 S1,2 S2,1 

Figure 3.3. EDF packet schedule.

One solution is to modify the network scheduler to consider packet importance.

If the network scheduler were to select the most important packet to schedule

first, the resultant packet transmissions are as shown in Figure 3.4. Since the job

scheduler is unaware of the needs at the network side, it does not give J3,1 a higher

priority over the less important jobs. In addition, in both scenarios described so

far, many jobs were executed in hope that their packets would be transmitted.

This unnecessarily wastes energy.

There exist value-based scheduling algorithms such as [19] in literature. Using

a job scheduler that selects the most important job to schedule first, the resul-

tant job and network schedules are as shown in Figures 3.5 and 3.6, respectively.
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0 7654321 time 

S2,1 S2,2 S1,3 

Figure 3.4. Importance-based packet schedule.

Here, given the network restriction, the value-based job scheduler performs well.

However, if the system is granted more access time, say from time 1 to 7, the value-

based job scheduler no longer leads to the best packet schedule (Figure 3.7). In

this case, it is possible to transmit all packets in the interval under consideration.

Note that scheduling algorithms that exploit skip models (e.g., [44] and [109])

suffer from similar shortcomings as value-based scheduling algorithms.

0 7654321 time 

J2,1 J3,1 J1,2 J2,2 J1,3 … 

Figure 3.5. Value-based job schedule.
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0 7654321 time 

S3,1 S2,1 S2,2 

Figure 3.6. Resulting packet schedule.

0 7654321 time 

S3,1 S2,1 S1,2 S2,2 S1,3 

Figure 3.7. Resulting packet schedule with longer network access time.

To summarize, without specifically considering packet transmission schedule

and network conditions while performing job scheduling, it is not possible to

control actual packet transmissions. The situation is even more complicated when

packet priority dynamically changes due to past transmission history. A scheduling

approach that considers both job scheduling and packet transmission is needed to

provide a holistic view of the system and allows for more processor energy to be

saved.
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3.3 Holistic Scheduling Framework

The interdependencies between job scheduling and packet scheduling, as well

as their combined effect on meeting packet deadlines, make the goals stated earlier

very difficult to solve exactly during run-time. We therefore resort to an adaptive

approach. In contrast to traditional job scheduling techniques, we propose se-

lecting and pre-scheduling more important packets to determine the latest packet

release times (which is equivalent to determining the deadlines of correspond-

ing jobs) and use these release times to make energy-aware job assignment and

scheduling decisions.

The flow of our framework is shown in Figure 3.8 and is especially designed

for systems in volatile networks. In the proposed framework, there are four main

steps: (i) dynamically assigning packet importance based on past transmission

history, (ii) pre-scheduling packets based on current network conditions, (iii) as-

signing and scheduling jobs, and (iv) actual job execution and packet transmission.

The primary goal in assigning packet importance is to associate packets with

priorities. Assigning importance (i.e., priority) to a packet (or a job) is an old

problem that has received significant research attention, e.g., [50, 104, 109]. In

general, packets are assigned priorities dynamically based on several considera-

tions such as the usefulness of its content as well as past transmission history.

Specifically, whenever a packet misses its deadline, the importance (i.e., urgency)

of subsequent packets in the same stream is increased to denote the urgency in

servicing these packets and to avoid starvation [109]. As an example, consider

the following scenario. Assume there are two surveillance tasks, τA and τB, in the

system. Task τA monitors the door while task τB monitors the safe. In general,

packets sent by τA may be considered more important than the ones generated
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Packet Importance Assignment  

Packet Pre-Scheduling 

Job Assignment & Scheduling 
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Job Assignment & Schedule 

Tts & Cts 

Figure 3.8. Proposed framework.

by τB, since the door is the first line of defense against intruders. However, once

it is known that the door has been breached, the packets generated by τB likely

becomes more important. Also, the importance of a packet may depend on past

transmission history. For instance, even if packets generated by τA are generally

considered more important than the ones generated by τB, it would be a poor

use of the network if all of τA’s packets and none of τB’s packets are successfully

transmitted in, say, the last 30 minutes.

The work in [109] provides a way to dynamically and adaptively determine how
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important a packet is based on both its contents and past transmission history.

Therefore, for the rest of this work, we will assume the method proposed in [109]

is used to determine packet importance. Specifically, the current importance level

of a task τi is defined to be

Wi =
yi − xi
yi

, (3.1)

where xi is the maximum number of packets that can be dropped within a fixed

window of yi packets to ensure that the window constraint is not violated [109].

Both xi and yi are adjusted over time [109]. It is crucial to note, however, that

our framework can be used in conjunction with any scheme that assigns packet

importance.

Since we use existing work to assign packet importance, we focus on packet

pre-scheduling and job assignment and scheduling. In the packet pre-scheduling

step, given a set of available packets, the most important packets (possibly all) are

selected for transmission and are scheduled in a way that maximizes the schedu-

lability of the corresponding job set. As a result of this step, job deadlines may

be modified. In the job assignment and scheduling steps, the jobs that generated

selected packets are assigned and scheduled in an energy-aware manner.

3.4 Pre-Scheduling Packets

In this step, the objective is to select and schedule the most important packets

for transmission. One main challenge is that the job schedule is undetermined

at this point and since jobs generate packets, it is difficult to guarantee that the

resultant packet schedule is indeed achievable. To address this challenge, there are

two goals in pre-scheduling packets. First, we wish to select the most important

packets to transmit. Second, we would like to schedule the selected packets in
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such a way that packet release times are maximized in order to increase job laxity,

which is defined to be the maximum time a task can be delayed once it has

been released to complete within its deadline [16]. The latter objective helps to

increase schedulability and provide more opportunities to reduce processor energy

consumption.

Let t be the start time of next network access time interval Cts . In addition, let

t+ tRX be the time instant when the node may start transmitting packets, where

tRX denotes the network access time reserved for receiving packets as shown in

Figure 3.1. We set the current time interval I = [t+ tRX , t+ Cts ]. During I, we

consider a set of packets Ψ, where ∀Si ∈ Ψ, the corresponding job release time

occurs before the end of I and the absolute deadline of Si occurs before the start

of the next I. Also, for Si ∈ Ψ, ∀Si, if the original absolute deadline of Si is

greater than t + Cts , then it will be set to t + Cts . Note that this selection of

the time interval I it is reasonable since the value of Tts is usually in the order

of several milliseconds, which tends to be much larger than typical real-time task

periods (which are in the order of microseconds). That said, if the value of Tts

is comparable to task periods, I can be set to encompass several transmission

windows of length Cts each.

To determine Ψ′ ⊆ Ψ such that Ψ′ contains the most important packets and is

schedulable, we observe that to minimize the maximum value of dropped packets,

the least important packets should be dropped first. However, finding a feasible

packet set that minimize the value of the most important packet dropped is not

our only goal. Recall that we also wish to increase the laxity of corresponding

jobs. Let Ω′ be the job set containing all jobs that generate the selected packets

in Ψ′. Given a packet schedule, the transmission start time TXSi of a packet Si,
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∀Si ∈ Ψ′ is known. This transmission start time in fact coincides with the latest

time that job Ji must finish executing. In other words, for packet Si, ∀Si ∈ Ψ′, to

be transmitted on time, the new absolute deadline d′i of Ji is

d′i = min{di,TXS i}. (3.2)

We also define the transmission finish time TXF i = TXS i + Zi.

As mentioned earlier, since a packet schedule, and hence packet transmission

start times, is yet to be derived, it is not possible to determine if the job set Ω′

is schedulable. However, we observe that from the job scheduling perspective, a

job set is more likely to be feasible if its jobs have more laxity (i.e., more time to

finish from the time they are released). For this reason, we attempt to schedule

the packets in the select set Ψ′ in such a way that TXSi , and hence d′i, of selected

packets is maximized in order to increase the laxity of the jobs in Ω′. As an added

benefit, more energy savings can potentially be achieved when schedulable jobs

have large laxities.

The goals in the packet pre-scheduling step can be formally stated as follows.

Given the packet set Ψ, select Ψ′ and schedule the packets Si ∈ Ψ′, ∀Si such that

for the corresponding job set Ω′,

α = min
Ji∈Ω′
{d′i − ri − Ci} (3.3)

is maximized and Si meets its transmission deadline, ∀Si ∈ Ψ′. Note that if

d′i < ri + Ci, for some Ji ∈ Ω′, then Ji cannot meet its deadline.

Given some packet set, one way to find a packet schedule that optimizes (3.3) is

to formulate the problem as two mathematical programming instances, as shown
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in Algorithm 3.

Algorithm 3 Optimal Packet Schedule(Ψ, Ω)

1: [Ψ′,Ω′]← MILP 1(Ψ, Ω) // Determine optimal Ψ′

2: MILP 2(Ψ′, Ω′) // Schedule packets in Ψ′ to maximize minimum laxity

The first mixed-integer linear programming (MILP 1) problem can be ex-

pressed as follows. The variables we would like to solve for is the modified absolute

job deadlines d′j, ∀Jj ∈ Ω. We first define some variables.

1.

χi =


1 if Si is not dropped

0 otherwise.

(3.4)

2.

ηi,j =


1 if d′j ≥ d′i

0 otherwise.

(3.5)

3.

σi,j =


1 if TXS i ≤ TXS j

0 otherwise

(3.6)
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The objective function of the optimization problem is as follows.

minimize : maxDropped (3.7)

where

maxDropped ≥ Wi · (1− χi),∀Si ∈ Ψ. (3.8)

The value of the actual deadline of each job must satisfy the following two

constraints.

d′j ≤ dj,∀Jj ∈ Ω, (3.9)

rj + Cj ≤ d′j,∀Jj ∈ Ω. (3.10)

Each packet must meet its deadline and cannot start until its release time at

the earliest. That is,

∀Sj ∈ Ψ

TXF j = TXS j + Zj · χj, (3.11)

Yj ≥ TXF j, (3.12)

d′j ≤ TXS j + (1− χj) · Λ, (3.13)

where Λ is some large constant.

The following constraints are used to ensure that packet transmissions do not
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overlap.

∀Si, Sj ∈ Ψ, Si 6= Sj

TXF i ≤ TXS j + (1− σi,j) · Λ + (1− χj) · Λ + (1− χi) · Λ, (3.14)

TXF j ≤ TXS i + σi,j · Λ + (1− χj) · Λ + (1− χi) · Λ. (3.15)

The following constraints are needed to ensure that the variables ηi,j, and σi,j,

∀Si, Sj ∈ Ψ, are as defined.

∀Si, Sj ∈ Ψ

1 ≤ ηi,j + ηj,i, (3.16)

d′i ≤ d′j + (1− ηi,j) · Λ, (3.17)

d′j ≤ d′i + ηi,j · Λ− ε, (3.18)

ε ≤ d′j − d′i + ηj,i · Λ, (3.19)

1 ≤ σi,j + σj,i, (3.20)

TXS i ≤ TXS j + (1− σi,j) · Λ, (3.21)

TXS j ≤ TXS i + σi,j · Λ, (3.22)

where ε is some small constant.

The second MILP formulation (MILP 2) is very similar, except that the ob-

jective function now becomes

maximize : minLax (3.23)
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where

minLax ≤ d′j − rj − Cj, ∀Jj ∈ Ω′, (3.24)

and the variables χi, ∀Si ∈ Ψ, are removed.

While the MILP solver is guaranteed to return an optimal solution, it is not

suitable for online use when the problem size is large since it is too computationally

intensive. However, Algorithm 3 can be used to assess the performance of our

simple heuristic, which we now introduce. To maximize (3.3), packets should be

scheduled as late as possible. We propose scheduling packets with later deadlines

first to maximize laxity. If two or more packets share the same deadline, ties

are broken in favor of the packet Si with the largest ri + Ci, again, to maximize

laxity. We keep track of the end of the current schedule using the variable tend .

That is, a packet cannot be scheduled after tend . However, if a packet deadline

occurs before tend , then its transmission finish time will be set to its deadline.

Algorithm 4 shows the steps required to select Ψ′ and derive a packet schedule

that is guaranteed to be feasible and that attempts to maximize (3.3).

When two or more packets share the same deadline, the packet Si, which has a

larger ri+Ci, will start later than the packet Sj with a smaller rj +Cj to maximize

laxity. Note that Algorithm 4 ensures that the constraints in (3.9) and (3.10) are

satisfied to ensure that the resultant packet transmission start times, and hence

the deadlines of the corresponding jobs, are valid. Specifically, the constraint in

(3.9) is ensured by Lines 7–8 of Algorithm 4. On the other hand, the constraint

in (3.10) is ensured by Line 16. That is, if there exists a packet Si which is set to

be transmitted before the job that generates it can possibly finish executing, the

least important packet is dropped and the schedule is reconstructed.

One problem that may arise with the above method of finding a packet sched-
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Algorithm 4 Packet Schedule(Ψ)

1: sort Ψ in non-increasing order of deadlines, ties broken in favor of the packet
Si with the largest ri + Ci

2: droppedSet ← ∅
3: done ← false
4: while done = false do
5: tend ← Y0 // Y0 is the absolute deadline of the first packet in Ψ
6: for each Si ∈ Ψ do
7: if tend ≥ Yi then
8: TXS i ← Yi − Zi // schedule Si by Yi
9: TXF i ← Yi

10: else // Other packets have been scheduled later on so schedule Si now
11: TXS i ← tend − Zi

12: TXF i ← tend
13: tend ← TXS i

14: flag ← false
15: for each Si ∈ Ψ do
16: if ri +Ci > TXS i then // ri +Ci is the earliest time Si can be generated
17: flag ← true
18: if flag = true then
19: Ψ← Ψ− Sq // Sq is the packet of lowest importance
20: droppedSet ← droppedSet ∪ Sq

21: else
22: done ← true
23: Υ ← packet schedule represented by a linked list sorted in non-increasing

order of transmission start times // The node for packet Si is tagged with
TXS i and TXF i

24: sort droppedSet in a non-increasing order of importance
25: for Si ∈ droppedSet do
26: for each node Nj ∈ Υ do
27: Nk ← Nj.nextNode
28: if Nk 6= ∅ then
29: s← Nk.TXF
30: else
31: s← t+ tRX

32: f ← Nj.TXS
33: if f ≤ Yi and f − s ≥ Zi and s ≥ ri + Ci then
34: TXS i ← s
35: TXF i ← f
36: Ψ← Ψ ∪ Si

37: break

61



ule is that packets with lower importance may be dropped, even when it is not

necessary. Specifically, consider two packets Si and Sj where Wi < Wj. If Sj is

dropped, then Si is also dropped. While this dropping technique does not affect

the maximum value of the most important packet dropped (see (3.8)), it is still

desirable to execute Si in the current time interval (if possible) since doing so may

prevent an increase in Wi in the next time interval. For this reason, after a packet

schedule has been obtained, we test to see if some of the dropped packets can be

restored, as shown in Lines 23–37 of Algorithm 4. The worst-case running time

of Algorithm 4 is in O(|Ψ|2).

It is important to note that our approach requires a small modification to

the network packet scheduler, which will use the packet schedule generated by

Algorithm 4 instead of its default scheduling algorithm.

3.5 Energy-Aware Job Assignment and Scheduling

In the next step of our framework, energy-aware job assignment and schedul-

ing algorithms are proposed in order to meet as many job deadlines as possible to

minimize the maximum value of the most important packet that is dropped (equa-

tion (3.8)) while saving energy. We start by considering uniprocessor architectures

before moving on to multicore systems.

3.5.1 Uniprocessors

In a single processor system, there is no need to consider how to assign jobs,

only how to schedule them (i.e., there is only one processor that can execute these

jobs). Recall that from the last section, we are provided with a job set Ω′, which

generate the packets that we would like to transmit. Our goal in this section is
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to schedule as many jobs in Ω′ as possible by their deadlines while minimizing

energy.

While our tasks are originally periodic (Section 3.2), job deadlines may be

modified (i.e., shortened) in the previous step of the framework. In other words, for

the job set under consideration, each job has a release time, worst-case execution

time, and deadline. To schedule these jobs, we propose using LpEDF [113], which

has been proved to be optimal in terms of minimizing energy consumption of

ideal processors. (For discrete-speed processors, two speed levels can be used to

approximate the desired speed level, if the latter is not available [59]). LpEDF

determines a frequency schedule for a given job set. Observe, however, that the

job set Ω′ is not necessarily schedulable, i.e., the resultant frequency schedule after

applying LpEDF may contain frequency levels that are higher than fmax. In such

a case, some jobs will need to be dropped.

Since jobs inherit the importance of the packets they generate, determining

which jobs (and therefore packets) to drop in this step can be accomplished in the

same manner as selecting the most important packets in Algorithm 4. Therefore,

we omit the repeated explanation but provide our job scheduling algorithm in

Algorithm 5.

Algorithm 5 Uniprocessor Job Sched(Ω′)

1: Π ← job schedule obtained from Ω′ using LpEDF [113] // each entry in Π
is tuple (ei, Ji) where ei and Ji denote the frequency level to be used for
executing job Ji

2: while ∃ej ∈ Π : ej > fmax do
3: Ω′ ← Ω′ − Jq // Jq is the job whose packet is of lowest importance
4: Π← job schedule obtained from Ω′ using LpEDF [113]
5: return Π
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We now discuss the performance of Algorithm 5 in the following theorem. The

proof is trivial and is thus omitted.

Theorem 3.1 For a given job set Ω′ running on an ideal processor, Algorithm 5

minimizes the value of the most important packet that is dropped.

The worst-case time complexity of Algorithm 5 isO(|Ω′|3 log2|Ω′|) since LpEDF

requires O(|Ω′|2 log2|Ω′|) to run in the worst-case [113] and there can be at most

|Ω′| iterations of the while loop. The time complexity of Algorithm 5 can be

reduced to O(|Ω′|2 log3|Ω′|) if binary search is used in the while loop instead of

linear search. As with Algorithm 4, to prevent jobs with lower importance from

being dropped even when it is unnecessary, a test can be performed to see if some

of the dropped jobs can be restored. This addition is very similar to Lines 23–

37 of Algorithm 4 and increases the worst-case running time of Algorithm 5 to

O(|Ω′|3 log3|Ω′|).

3.5.2 Multicore Systems

In a multicore system, we first need to assign Ji ∈ Ω′, ∀Ji, to cores before

scheduling can take place. The problem of task assignment (sometimes called

partitioning) is NP-hard in general, except for frame-based tasks where all tasks

share a common deadline [27]. Most existing work assume periodic tasks and

fixed deadlines (e.g., [75]). Recall that the jobs under consideration have release

times, worst-case execution times, and deadlines. In addition, job deadlines may

be smaller than their implicit deadlines and the deadlines are not necessarily

constant from one task instance to another. There exist research results on job-

level assignment, e.g., [96], but they do not consider energy.
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We focus on the energy-aware job assignment phase since once it is complete,

the scheduling technique discussed in the last section can be straightforwardly

applied on each processor. The state-of-the-art approach to assigning jobs to cores

is to perform load balancing, as in [27]. To reduce energy, jobs should be assigned

to cores in such a way so as to balance the energy consumption among cores. In the

absence of significant leakage power, it is well-known that less energy is consumed

if the processor runs as slow as possible (i.e., using the lowest possible frequency

levels). We propose to study a collection of heuristics (three of which are our own

designs) whose performance will be assessed in Section 3.7.2. In Section 3.6.2, we

discuss how our approach can be extended to processors in which leakage power

is significant.

• Largest-Job First (LJF) [27]: Sort jobs in a non-decreasing order of

worst-case computation time and send a given job to the core with the least

aggregated computation time.

• Largest-Density First (LDF) [27]: Same as LJF except that job densi-

ties are used instead of job worst-case computation times. The density of a

job Ji is defined as δ = Ci
Di−ri .

• Most-Important First v.1 (MIF-1): Sort jobs in a non-decreasing order

of importance and send a given job to the core with the least intensity during

the job’s active interval, which starts at the job’s release time and ends at

the job deadline. The intensity of the active interval of length a of a job

Ji is
∑
Jk∈Π Ck·ovk

a
, where Π is a set of jobs currently scheduled on the core

under consideration and ovk is the the ratio of the overlap between Jk and

Ji over the active interval of Ji.
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• Most-Important First v.2 (MIF-2): Same as MIF-1 except that a given

job is sent to the core with the least aggregated densities (similar to LDF).

• Most-Important First v.3 (MIF-3): Same as MIF-1 except that a given

job is sent to the core with the least aggregated importance.

Except for MIF-1, which runs in O(|Ω′|2 · M), where M is the number of

cores in the system, all the algorithms presented above have a worst-case time

complexity of O(|Ω′| · log |Ω′|+ |Ω′| ·M).

Once all the jobs in Ω′ have been assigned, Algorithm 5 can be used on each

core to determine job schedules (and possibly drop some jobs).

3.6 Notes on Framework

We now discuss some generalizations and limitations of the proposed frame-

work.

3.6.1 Extensions to Task and Packet Models

In Section 3.2, we made some simplifying assumptions with regards to the

system model to make the proposed framework and technical details easier to

digest. Specifically, we assumed that all jobs generate packets and packets are

generated at the end of job execution. We first discuss the inclusion of non-packet

generating tasks in our framework. If there are non-packet generating soft real-

time tasks in the system, they can be assigned and scheduled when the system is

idle and during the times where the node has no network access. On the other

hand, the inclusion of hard real-time non-packet generating tasks in the system is

part of our ongoing investigation.
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The assumption that each packet is generated at the end of job execution is in

fact not required in our framework. All analyses from the previous sections hold

with regards to packet feasibility and job schedules; if a job generates a packet

before it finishes executing, that packet arrives to the network queue earlier and

has no adverse effect on the packet schedule (although it may increase the network

buffer size). That said, more energy can be saved if it is known exactly when a

job will generate a packet since job deadlines set in Section 3.4 can be extended

accordingly.

Similarly, though all the algorithms implicitly assume that jobs (packets) re-

quire their worst-case execution times (transmission times), all the analyses in

this chapter remain valid. Obviously, more energy can be saved if some type of

slack reclamation is used but this topic is beyond the scope of this work.

3.6.2 Leakage Considerations

Due to shrinking device sizes and aggressive voltage scaling, subthreshold leak-

age current increases exponentially as the supply voltage is reduced, causing en-

ergy to be wasted when the system runs at very low frequency levels [49]. For

such systems, running the processor below the critical frequency fcritical is sub-

optimal [49] and can cause the system to consume more energy than necessary.

While it is possible to adjust an existing frequency schedule by substituting any

frequency level fj < fcritical with fcritical , a more energy-efficient schedule may

exist.

There is a wealth of research on leakage-aware energy minimization for real-

time systems, e.g., [49, 79]. In particular, the work by Niu and Quan [79] can be

used on each processor after Algorithm 5 to obtain a leakage-aware schedule.
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3.6.3 Applicable Network Types

Our framework can be used in both single-hop and multi-hop networks. In

a multi-hop network, some types of deadline decomposition methods (e.g., [51])

can be applied to determine local packet deadlines at each hop and used in our

framework.

3.7 Evaluation

This section presents simulation results to demonstrate the effectiveness of

our framework. We discuss the performance of the packet pre-scheduling and job

assignment and scheduling steps, and compare our framework with an existing

work that solves a similar problem.

3.7.1 Pre-Scheduling Packets

Recall that the primary goals of Algorithm 4 are to select the most important

packets to schedule and derive a schedule that maximizes (3.3). We compared the

performance of our heuristic (Algorithm 4) with that of the MILP (Algorithm 3),

which was solved using CPLEX with AMPL. The time limit was set to 1 minute

for the CPLEX solver, which means that if an optimal solution has not been found

within that time, the best feasible solution found so far will be returned.

For our benchmarks, 100 tasks sets consisting of between 10-45 tasks each were

randomly generated for 10 different utilizations (U = 0.5, 0.75, . . . , 2.75) with a

total of 1000 task sets overall. The utilization is defined to be
∑n′

i=1
Ci
Ti

where n′ is

the total number of tasks in the system. Task periods ranged from 50 to 300 time

units, with the worst-case execution time being set between 30-60% of the period.

The absolute deadline of a packet is set to be equal to the absolute deadline of
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the corresponding job. Packet sizes vary randomly between 1-3.5% of Cts , which

is set to 300 time units. Packet importance is randomly generated and is between

[0, 1]. Finally, |I| = 300.

The first set of results are summarized in Figure 3.9, which shows the value of

the most important packet dropped (i.e., the value of equation (3.8)) on the y-axis

as a function of system utilization. When the utilization is low, there are fewer

tasks in the system and hence fewer packets. On the other hand, more packets are

generated when the utilization is high because there are more tasks in the system.

Algorithm 3 was able to keep every packet while our heuristic approach dropped

some of them. That said, Algorithm 4 dropped very few packets and only the

least important ones. On average, the normalized value of the most important

packet dropped is 0.0073 (0.73% deviation on average in other words).

In terms of maximizing the minimum job laxity (Figure 3.10), Algorithm 4

performs very well when the total task utilization is low (and fewer packets are

generated). As the total task utilization increases, Algorithm 4 deviates more

from the results obtained using Algorithm 3. Specifically, the average minimum

laxity from Algorithm 4 is about 17.68% smaller than that of Algorithm 3 and

up to 47.59%. It must be emphasized, however, that Algorithm 4 performs very

well in terms of minimizing the value of the most important packet dropped. In

addition, while the MILP solver can be used for very small problem instances, it

is too computationally intensive for solving medium to large problem instances

online (and it cannot guarantee that any feasible solution will be found within

some time limit). Algorithm 4, which is very efficient, can be used to bridge the

gap.
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Figure 3.9. Value of most important packet dropped from different
packet scheduling algorithms.

3.7.2 Job Assignment & Scheduling

In this section, we assess the performance of the proposed energy-aware job

assignment and scheduling algorithms presented in Section 3.5.2. We compared

our solutions with the optimal solutions obtained by a brute-force algorithm. In

the brute-force approach, all possible job assignments are explored and the job

assignment that is both feasible and results in the least amount of energy consumed

is identified.

In the simulations, we assume a multicore system consisting of two identical

cores. Each core is modeled after the Intel Core 2 Duo [47], with a maximum

power consumption of 65 W and seven normalized frequency levels: 0.462, 0.615,

0.692, 0.769, 0.846, 0.923, and 1. System utilization ranges from 1.0, 1.1, . . . , 1.9.

A total of 100 task sets were generated for each utilization (2000 task sets in total).
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Figure 3.10. Minimum job laxity of different packet scheduling
algorithms.

The same method and parameters as in the last section were used to generate the

task sets. Since the total number of job assignment combinations is |M ||Ω| where

|M | is the number of cores and |Ω| is the number of jobs, we limit the number of

jobs to 20 to stay within the range of a long integer (this is also the reason why

we limit the number of cores to only two). Specifically, we discarded any task sets

containing more than 20 jobs during I and regenerate them until 100 task sets

were found for each utilization.

Figure 3.11 shows the percentage of schedulable task sets as a function of

system utilization. With only two cores and at most 20 jobs, LJF yields the best

results, with 100% of the task sets found as feasible, followed by MIF-2 (97%).

MIF-1 shows the worst performance, with only 83% of the task sets determined

as feasible. In terms of energy consumption, LJF again yields the best results,
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followed closely by MIF-2 and LDF (Figure 3.12).
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Figure 3.11. Number of dropped jobs by different job assignment
algorithms for the two-core case.

To assess the performance of the different job assignment algorithms when the

problem size is larger, we performed an additional set of simulations. The system

is assumed to have four identical cores, which are again modeled after the Intel

Core 2 Duo [47]. The system utilization ranges from 2.5, 2.75, . . . , 5. A total of

100 task sets were generated for each of the utilization (1100 task sets in total).

Figure 3.13 shows the maximum importance level of dropped jobs as a func-

tion of system utilization for the five job assignment algorithms discussed in Sec-

tion 3.5.2. Overall, MIF-2 and MIF-3 yield the best results, though they can
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Figure 3.12. Energy consumption of different job assignment algorithms
for the two-core case.

be outperformed by LJF and LDF in some cases. MIF-2 and MIF-3 improve on

the value of most important job dropped by about 1.08-2.67% on average when

compared to LJF and LDF. In terms of energy consumption, MIF-2 and MIF-3

once again outperform LJF and LDF on average (though not by much, as shown

in Figure 3.14).

Based on the simulation data, MIF-2 provides the best performance for a given

energy consumption level, although the performance of all five algorithms are close,

which may suggest the limits of this type of job assignment algorithms. In any

case, since the brute-force approach takes several minutes to find the optimal

solution for even a small benchmark, it cannot be used online. Based on the

results given above, MIF-2 performs well enough (and is very efficient) to be a

viable alternative.
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Figure 3.13. Value of most important job dropped from different job
assignment algorithms for the four-core case.

3.7.3 Entire Framework

We compare the effectiveness of our proposed framework with the most closely

related work, which is by Yi et al. [114]. In Yi’s algorithm, both packet and job

deadlines are considered but all packets are assumed to be equally important.

Simulations were performed assuming a single processor core is used since the

work in [114] only focuses on uniprocessor scenarios. The task sets and other

parameters are generated in the same way as in Sections 3.7.1 and 3.7.2 except for

the following parameters. The average system utilization is set to 0.5 and the size

of a single packet varies randomly between 0.5-30% of Cts . The larger the packet

size, the more loaded the network is and the harder it is to transmit all packets

by their deadlines.

The graph in Figure 3.15 shows the maximum importance level of dropped
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Figure 3.14. Energy consumption of different job assignment algorithms
for the four-core case.

packets as a function of packet size. As expected, our proposed holistic frame-

work always outperforms Yi’s algorithm [114], which does not consider packet

nor job importance. On average, our framework reduces the average maximum

importance of dropped packets by 30% (up to 96.4%). As the network becomes

more and more overloaded, our framework is forced to drop more and more pack-

ets (but always the least important ones first). This is the reason why the curve

representing the holistic framework tends to increase as the packet size increases.

As for Yi’s algorithm, it is hard to predict which packets will be dropped since all

packets are considered to be equally important. For instance, Yi’s algorithm often

results in important packets being dropped (Figure 3.15). However, at times, it

may by chance transmit more important packets instead of less important ones

(i.e., the dip in Figure 3.15).
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Figure 3.15. Comparison to the work in [114] in terms of minimizing the
maximum importance of dropped packets.

As expected, our proposed framework also results in less energy consumed

(Figure 3.16). When the network is underloaded (shown towards the left side of

Figure 3.16), our method pre-schedules jobs and packets ahead of time to maximize

job laxity and hence reduces energy consumption. In contrast, Yi’s algorithm

greedily tries to send out packets as soon as possible, even when it is unnecessary.

This results in large energy consumption. As the network becomes more and

more loaded, our approach saves energy by dropping jobs whose packets are never

transmitted. On the other hand, Yi’s algorithm always executes jobs, even if

the corresponding packets are dropped. The dip in the curve representing Yi’s

algorithm can be explained as follows. As the network becomes more loaded, the

next available transmission time becomes further away in the future, allowing jobs

to be executed at lower speed. As the packet size increases, however, more energy
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will be consumed because jobs need to finish earlier to send larger packets out.

This is the reason why the curve slowly increases again after the dip. In summary,

our approach saves energy by 37.3% on average when compared to Yi’s algorithm

(up to 78.5% and at least 10%).
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Figure 3.16. Comparison to the work in [114] in terms of energy
consumption.

A performance metric that is often used when all packets are considered to

be equally important is the deadline meet ratio, which is the ratio between the

number of packets transmitted by the deadline and the total number of packets

during some time interval. Since our approach always gives a higher priority to the

most important packets first, it is expected that Yi’s algorithm will outperform
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our framework in terms of packet deadline meet ratio. This is indeed the case,

as shown in Figure 3.17. However, the performance difference is very small. On

average, Yi’s algorithm sends out 1.7% more packets on average and up to 3.1%

when compared to our framework. This is because even when more important

packets are dropped, we still attempt to send out as many packets as possible.
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Figure 3.17. Comparison to the work in [114] in terms of packet deadline
meet ratio.

Finally, to show that our approach is able to control packet urgency over time,

we performed a set of simulations where task importance is dynamically adjusted

in each window using the rules in [109]. A total of 100 task sets consisting of 10

tasks each were simulated for 15,000 time units. The task set utilization is 0.5 and
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the average packet sizes vary randomly between 0.5-2% of the Cts . For the DWCS

window constraint [109], each task starts with a y value of 20. The starting x

value varies randomly between 1 and 19. The DWCS window constraint is set

to x
y
, which indicates that at most x packets can be dropped within a window

of y packets. A violation occurs when more than x packets are transmitted in a

window of y packets for any given stream. The values of x and y changes over

time depending on past transmission history. In general, the value of y for a

stream is decreased if its previous packet is serviced before its deadline. For more

information, readers are referred to Figures 2 and 3 in [109]. Additional parameters

used in this set of simulations are shown in Table 3.2. The last column of Table 3.2

denotes the increase in packet sizes to simulate changing transmission rate.

Table 3.3 shows the results. Since we are using the window constraint in [109]

as the performance metric, the goal is to minimize the number of window con-

straint violations while saving energy. As shown in Table 3.3, our approach sig-

nificantly improves upon Yi’s algorithm both in terms of the number of window

constraint violations and energy by intelligently dropping some packets. As a re-

sult, our method has a higher deadline miss ratio. Based on this set of data, it

can be concluded that selecting the most important packets for transmission is

an effective way to dynamically adapt to changing packet priorities. Also, since

the holistic framework only executes jobs that are necessary, it offers significant

energy savings compared to Yi’s algorithm.
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TABLE 3.2

ADDITIONAL PARAMETERS FOR SIMULATIONS OVER

SEVERAL TIME INTERVALS

Time Interval Cts Tts Packet size increase

[0 : 5, 000] 300 500 0%

[5, 000 : 10, 000] 100 500 0%

[10, 000 : 15, 000] 300 500 10%

TABLE 3.3

RESULTS FOR SIMULATIONS OVER SEVERAL TIME INTERVALS

Yi’s Algorithm [114] Holistic Framework

avg max min avg max min

Number of violations 350.2 581.0 196.0 148.3 402.0 1.0

Normalized energy (%) 84.66 100 72.95 30.33 40.82 24.54

Deadline miss ratio 0.467 0.560 0.376 0.710 0.877 0.592
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3.8 Summary

We presented a holistic scheduling framework that considers packet and job

deadlines, as well as packet importance, to ensure timely transmissions of the most

important packets while saving processor(s) energy consumption. The proposed

framework contains three main steps, two of which include novel algorithms that

can be used to partition and schedule general real-time jobs.

While our main future goal is to implement the proposed framework on a

real system, there are some extensions to be explored. Such extensions include

support for preemptive packet transmissions, processor transition overheads, and

heterogeneous multicore systems.
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CHAPTER 4

ONLINE WORK MAXIMIZATION UNDER A PEAK TEMPERATURE

CONSTRAINT

Increasing power densities and the high cost of low thermal resistance packages

and cooling solutions make it impractical to design processors for worst-case tem-

perature scenarios. As a result, packages and cooling solutions are designed for

less than worst-case power densities and dynamic voltage and frequency scaling

(DVFS) is used to prevent dangerous on-chip temperatures at run time. Unfor-

tunately, DVFS can cause unpredicted drops in performance (e.g., long response

times). We propose and optimally solve the problem of thermally-constrained on-

line work maximization for general-purpose computing systems on uniprocessors

with discrete speed levels and extend our policy to consider non-negligible tran-

sition overhead. Simulation results show that our approach completes 47.7% on

average and up to 68.0% more cycles than a näıve policy.

4.1 Introduction

We start by providing an overview of the problem. We then present some

related work, state our contributions, and present the chapter outline.
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4.1.1 Problem Overview

In response to the increasing computing demands made by applications, sys-

tem designers have been delivering processors with higher performance at the ex-

pense of increasing power densities and temperatures. High chip temperature has

significant impact on reliability, performance, cost, and power consumption; mi-

croprocessor failure rate depends exponentially upon operating temperature [99].

Temperature also affects speed; reduction of charge carrier mobility in transistors

and increased interconnect latency from high temperature degrade performance.

To guarantee that the processors do not reach unsafe temperatures, packages and

cooling solutions can be designed to handle worst-case temperature profiles. How-

ever, this solution is prohibitively expensive, since the cost of cooling solutions

increases super-linearly in power consumption [43].

Another, less expensive, solution to the problem is to use processor throttling

at run time: when the chip temperature exceeds some pre-specified threshold, the

processor power consumption and performance are temporarily reduced by hard-

ware or the operating system. Unfortunately, throttling can cause significant,

and difficult-to-predict, increase in response times. In general-purpose comput-

ing, throttling may lead to significant performance loss. In real-time systems,

throttling may cause more deadline misses.

In this chapter, the goal is to minimize task response times by maximizing the

work completed over time in an online manner where no prior knowledge of the

workload is required. Dynamic Voltage and Frequency Scaling (DVFS) is used to

keep the chip temperature under some threshold. Maximizing the work completed

can also be useful in soft real-time systems where the objective is to meet as many

deadlines as possible, since it can reduce the number of deadline misses. This
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claim is substantiated in Section 4.6.

In real processors such as the Intel Core Duo, the processor will run at the

highest speed (as long as there is still work to be completed) until the chip tem-

perature reaches the threshold temperature. Once this occurs, the system will

either reduce its duty cycle or switch to a lower voltage and frequency pair to cool

the chip down [47]. However, it is unclear how much and how long the proces-

sor should temporarily reduce its performance level in order to cool down while

maximizing the total work completed over time.

4.1.2 Related Work

While the problem of maximizing work to be completed using DVFS has been

well explored for many different systems, only a small number of papers consider

temperature constraints, e.g., [26, 48, 85, 87, 111]. Existing online solutions either

assume that the processor has the ability to transition from one speed level to

another in a continuous manner (e.g, [9], [89], and [78]) or that the processor can

use some arbitrary speed values [89, 106, 107], which is not a realistic assumption

since speed levels can vary from one chip to another even for the same type of

processors due to process variation. On a related note, for processors that can

continuously adjust speed, the Pontryagin Maximum Principle [84] can be used

to find an optimal solution.

The work in [106] is the most closely related work. In that work, the processor

runs at the highest speed until the threshold temperature is reached. Once this

happens, the equilibrium speed, which depends on the processor power consump-

tion, thermal resistance, and threshold temperature Tmax, will be used to keep

the chip temperature at the threshold temperature. This simple scheme allows
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the authors to perform many important analyses such as bounding the worst-case

response time of a task and deriving a schedulability test [106]. However, the

equilibrium speed is determined based on the assumption that the processor can

adjust its speed in a continuous manner. The problem with the equilibrium speed

is that it may fall between two discrete speed levels. Even if manufacturers select

the equilibrium speed as one of the discrete levels supported, we cannot realisti-

cally expect that due to different packaging, ambient temperature, and workload.

Most importantly, due to process variation, chip characteristics vary from one chip

to another, even if these chips come from the same batch.

In general, the assumptions on processor speed levels made by existing work

are unrealistic for several reasons. First, a processor cannot have infinite number

of speed levels due to design and validation difficulties. Even if a processor did

support many speed levels, there is overhead associated with each speed transition

and hence the number of transitions is limited. Second, it is impractical to assume

that processors can support any discrete set of speed levels once the chip has been

fabricated.

To the best of our knowledge, there is no existing work that identifies and

explains the characteristics of an optimal clock throttling policy for maximizing

the work completed for processors with discrete speed levels and non-negligible

transition overhead. The Intel chips have two thermal management policies [47].

Once the chip temperature reaches the threshold temperature, the first mechanism

(known as Thermal Monitor 1 ), which is also the default mechanism, reduces the

duty cycle by some factory-configured percentage until the chip temperature drops

below the maximum temperature and the hysteresis timer has expired. The second

mechanism (Thermal Monitor 2 ), which is user-configurable, is very similar to
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the first one, except that the processor will throttle to cool the processor down.

While these mechanisms seem reasonable, there exists no work that studied their

effectiveness. In addition, it is unclear how the user may select the appropriate

speed levels and the associated time durations to maximize the amount of work

to be completed. Finally, most existing industry thermal management solutions

have operated under the assumption that thermal emergencies are rare events,

for which reactive techniques are sufficient. Now and in the future, processors

will often operate near their thermal emergency temperatures, requiring proactive

thermal management to maintain performance.

4.1.3 Contributions

In this chapter, we tackle the problem of determining speed schedules that

maximizes the work completed under a given maximum temperature constraint.

We propose an optimal clock throttling policy based on several fundamental ob-

servations for processors with discrete speed levels and non-negligible transition

overhead. Our policy is applicable to any uniprocessor architecture and requires

only two speed levels to maximize the work completed. The two speed levels are

alternated in a periodic manner (see Section 4.3 for more details), with some high

speed being applied until the chip temperature reaches the threshold temperature.

Extensive simulation results are used to verify our claims and demonstrate that

our optimal clock throttling policy completes 47.64% on average and up to 67.97%

more cycles than a näıve clock throttling policy.
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4.1.4 Organization

This chapter is outlined as follows. We present our system model and problem

definition in the next section. Section 4.3 provides our formal approach to solving

the work maximizing problem under peak temperature constraint when transition

overhead is negligible. The impact of transition overhead is studied in Section 4.4.

The performance of our optimal clock throttling policy is presented in Section 4.6.

Section 4.7 concludes this chapter.

4.2 System Model and Problem Definition

We describe the system model, state our assumptions and formally define the

problem.

4.2.1 Task and Processor Models

We consider a DVFS-enabled processor with a temperature threshold Tmax.

When the processor temperature reaches this threshold, the processor starts throt-

tling, i.e., switching from some high speed level to some lower speed level to reduce

power consumption and performance.

We adopt the lumped RC thermal model similar to that used by Zhang and

Chatha [115], which is based on Fourier heat transfer model [40]. The die tem-

perature above the ambient temperature after t time units is

T = T̂ + (T0 − T̂ ) · e−
t
τ (4.1)

where T̂ is the die’s steady-state temperature and T̂ = Pdyn · R, with Pdyn being

the dynamic power consumption of the die and R its resistance. In addition, τ is
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the chip time constant, and T0 is the initial die temperature. The expression in

(4.1) was obtained by solving the following differential equation for T :

RC
dT

dt
+ T −RP = 0. (4.2)

Although we will use (4.1) for the rest of the chapter, all of our derivations

hold for any exponential temperature equation of the same form. For instance, we

can replace (4.1) with the temperature equation obtained by Rao and Vrudhula

where the die and package are modeled separately [87]. We can also extend (4.1)

to account for leakage power by noting that a piecewise-linear function can be

used to estimate leakage power in the operating temperature ranges with roughly

5% error [68]. That is, the modified (4.1) can be obtained by solving the following:

RC
dT

dt
+ T −R(Pdyn + Pleak) = 0, (4.3)

where Pleak = αT + β for some constants α and β [68].

For each speed level k of the processor, we define an associated tuple (Vk, Sk,

Pk), where Vk, Sk, and Pk are the required voltage, speed, and power consumption

of the processor when it executes at speed level k, respectively. Without loss of

generality, we assume that each speed level Sk has been normalized to fall within

the interval [0, 1]. For speed level k, (4.1) can be written as

T = T̂ (Sk) + (T0 − T̂ (Sk)) · e−
t
τ , (4.4)

where T̂ (Sk) is the steady-state temperature when the processor executes at speed

level k and T̂ (Sk) = S3
kPkR.
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4.2.2 Problem Definition

Given a processor that is kept busy with work to be completed, determine a

speed schedule such that the peak temperature constraint is met and total work

completed is maximized.

4.3 Work Maximizing Speed Selection Strategy for Processors with Negligible

Transition Overhead

We describe a policy for maximizing the work completed over a schedule length

based on some crucial observations. Namely, we determine (i) the speed levels

needed, (ii) the length of time the processor should spend in each speed level, and

(iii) the sequence of speed levels in which the processor should execute.

For now, we assume that the processors under consideration have negligible

transition overhead. This simplifying assumption allows us to identify some im-

portant characteristics of an optimal clock throttling policy for maximizing the

work completed. As will be shown in Section 4.4, the policy described in this sec-

tion can be adjusted to handle processors with non-negligible transition overhead.

Our objective is to develop an optimal DVFS control policy for use once the

chip reaches its threshold temperature, and not a pre-throttling policy. In many

systems, the time from startup to reaching the temperature constraint is a neg-

ligible percentage of total time. In addition, it is important to note that our

DVFS control policy does not perform task scheduling, though it can be used in

conjunction with any existing task scheduling algorithm.

Consider a high speed level SH where T̂ (SH) ≥ Tmax. During throttling, if the

processor execute tasks using SH for long enough, the chip peak temperature will

eventually reach Tmax. Our first question is whether such a high speed should be
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used until the chip temperature reaches Tmax or be used for a shorter amount of

time. The following lemma answers this question. In addition, the “sufficiently

large time interval” requirement is there to ensure that the time interval under

consideration is long enough for the chip temperature to reach Tmax at least once.

Lemma 4.1 Given a sufficiently large time interval [ta, tb], let SL1, SL2, and SH

be some speed levels satisfying T̂ (SL1) < Tmax, T̂ (SL2) < Tmax, and T̂ (SH) ≥

Tmax and let the transition overhead be negligible. Consider the speed schedules

that apply SL1, SH , and then SL2 in a consecutive manner during [ta, tb] given

some initial temperature Ta ≥ min{T̂ (SL1), T̂ (SL2)} and some end temperature

Tb. A schedule that completes the maximum amount of work must allow the chip

temperature to reach Tmax at the end of the application of SH .

Proof: Let t1 and t3 be the time durations during which SL1 and SL2 are applied,

respectively. In addition, let T1 and T2 be the temperatures at the end of the

applications of SL1 and SH , respectively. Figure 4.1 provides a graphical depiction

of the corresponding speed schedule. The work completed during [ta, tb] can be

expressed as

W = SL1 · t1 + SH · (tb − ta − t1 − t3) + SL2 · t3 (4.5)

where

t1 = τ ln

T2 − T̂ (SH)− (Ta − T̂ (SL1)) · e−
(tb−ta)

τ ·
(

T2−T̂ (SL2)

Tb−T̂ (SL2)

)
(T̂ (SL1)− T̂ (SH)) · e−

(tb−ta)

τ ·
(

T2−T̂ (SL2)

Tb−T̂ (SL2)

)
 (4.6)

t3 = τ ln

(
T2 − T̂ (SL2)

Tb − T̂ (SL2)

)
. (4.7)
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Figure 4.1. Graphical depiction of the speed schedule in the statement of
Lemma 4.1.

To determine how the work completed changes as a function of T2, we take the

partial derivative of W with respect to T2, which yields

∂W

∂T2

=
τ

T2 − T̂ (SL2)

·

SL2 − SH +
(SL1 − SH) · (T̂ (SH)− T̂ (SL2))

T2 − T̂ (SH)− (Ta − T̂ (SL1)) · e−
(tb−ta)

τ ·
(

T2−T̂ (SL2)

Tb−T̂ (SL2)

)
 .
(4.8)

By writing the temperature equations for T1 and T2 and using substitutions, it

can be shown that

(T̂ (SH)− T̂ (SL1))e−
tb−ta−t1−t3

τ

= T2 − T̂ (SH)− (Ta − T̂ (SL1)) · e−
(tb−ta)

τ ·

(
T2 − T̂ (SL2)

Tb − T̂ (SL2)

)
. (4.9)
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Hence,

∂W

∂T2

=
τ

T2 − T̂ (SL2)

·

[
SL2 − SH +

(SH − SL1) · (T̂ (SH)− T̂ (SL2))

(T̂ (SH)− T̂ (SL1))e−
tb−ta−t1−t3

τ

]
. (4.10)

Since T2 ≥ T̂ (SL2), ∂W
∂T2
≥ 0 if the expression inside the parentheses of (4.10) is

greater than zero. We know that

T̂ (SH)− T̂ (SL2) ≥ T̂
′
(SH)(SH − SL2), (4.11)

which leads to the following

(SL2 − SH) · (T̂ (SH)− T̂ (SL1))e−
tb−ta−t1−t3

τ + (SH − SL1) · (T̂ (SH)− T̂ (SL2))

≥ (SL2 − SH) · (T̂ (SH)− T̂ (SL1))e−
tb−ta−t1−t3

τ + (SH − SL1)(SH − SL2) · T̂
′
(SH)

≥ 0. (4.12)

We now show that the expression in (4.12) is greater than or equal to zero as

follows.

0 ≤ T̂
′
(SH)(SH − SL1)− (T̂ (SH)− T̂ (SL1))e−

tb−ta−t1−t3
τ

T̂
′
(SH)(SL1 − SH) ≤ (T̂ (SL1 − T̂ (SH))e−

tb−ta−t1−t3
τ

T̂ (SL1)− T̂ (SH) ≤ (T̂ (SL1)− T̂ (SH))e−
tb−ta−t1−t3

τ

1 ≥ e−
tb−ta−t1−t3

τ (4.13)

This means that ∂W
∂T2
≥ 0 and the work completed is maximized when T2 is maxi-

mized. This, in turns, implies that T2 must equal Tmax for the work completed to
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be maximized.

2

In Lemma 4.1, we referred to the high (SH) and low (SL1 and SL2) speeds

with the requirements that T̂ (SL1), T̂ (SL2) < Tmax and T̂ (SH) ≥ Tmax. Since

modern processors often have several speed levels, we need to determine which of

these speed levels actually allow the maximum amount of work to be completed.

The following lemmas provide the basis for our speed selection policy when the

processor starts to throttle. That is, once the chip temperature reaches Tmax.

Lemma 4.2 Given a sufficiently large time interval [ta, tb], let SL1, SL2, and SH

be speed levels satisfying T̂ (SL1) < Tmax, T̂ (SL2) < Tmax, and T̂ (SH) ≥ Tmax

and let the transition overhead be negligible. Given an initial temperature Ta ≥

min{T̂ (SL1), T̂ (SL2)} and an end temperature Tb, consider the speed schedules that

apply SL1, SH , and then SL2 in a consecutive manner during [ta, tb]. If the duration

of the application of SL1 or SL2 is not zero, a schedule that completes the maximum

amount of work must satisfy SL1 = SL2 = max{s|T̂ < Tmax} and SH = min{s|T̂ ≥

Tmax}.

Proof: Let t1 and t2 denote the durations of the application of SL1 and SL2,

respectively. Let t3 denotes the duration of the application of SH and t3 = tb −

ta − t1 − t2. In addition, let T (t1) and T (t3) be the temperatures at the end

of the application of SL1 and SH , respectively. We can write three associated
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temperature equations as follows.

T (t1) = T̂ (SL1) + (Ta − T̂ (SL1))e−
t1
τ (4.14)

T (t3) = T̂ (SH) + (T (t1)− T̂ (SH))e−
tb−ta−t1−t2

τ (4.15)

Tb = T̂ (SL2) + (T (t3)− T̂ (SL2))e−
t2
τ . (4.16)

In addition, from Lemma 4.1, we know that T (t3) = Tmax. Letting

A = e−
tb−ta
τ ·

(
Tmax − T̂ SL2

Tb − T̂ SL2

)
(4.17)

and combining (4.14) with (4.15) yield

t1 = τ ln

(
T̂ (SH)− Tmax + (Ta − T̂ (SL1))A

(T̂ (SH)− T̂ (SL1))A

)
. (4.18)

By definition, the total work completed during [ta, tb] is

W = (SL1 − SH) · t1 + (SL2 − SH) · t2 + SH · (tb − ta). (4.19)

To determine the appropriate value of SL1 that maximizes W , we take the partial

derivative of W with respect to SL1, observing that neither A nor t2 depends on

SL1. We obtain the following result.

∂W

∂SL1

= τ ln

(
T̂ (SH)− Tmax + (Ta − T̂ (SL1))A

(T̂ (SH)− T̂ (SL1))A

)

+
τ(SL1 − SH)T̂

′
(SL1)

T̂ (SH)− T̂ (SL1)
·

(
T̂ (SH)− Tmax + A(Ta − T̂ (SH))

T̂ (SH)− Tmax + A(Ta − T̂ (SL1))

)
. (4.20)

From (4.20), we observe that ∂W
∂SL1

= 0 if Tmax = T̂ (SH)−A(T̂ (SH−Ta)). However,
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we know that Tmax < T̂ (SH) − A(T̂ (SH − Ta)) due to the very definition of SH .

This means that Ta > A−1(Tmax− T̂ (SH) + T̂ (SH)A). Now, we wish to determine

how ∂W
∂SL1

changes as Ta increases. To do so, we take the second partial derivative

of W , this time with respect to Ta. We have

∂2W

∂Ta∂SL1

= τ
A

T̂ (SH)− Tmax + A(Ta − T̂ (SL1))

·

(
1 +

A(SL1 − SH)T̂
′
(SL1)

T̂ (SH)− Tmax + A(Ta − T̂ (SL1))

)
. (4.21)

Since

T̂ (SH)− Tmax + A(Ta − T̂ (SL1)) > 0 (4.22)

and

1 +
A(SL1 − SH)T̂

′
(SL1)

T̂ (SH)− Tmax + A(Ta − T̂ (SL1))
≥ 0, (4.23)

we have

∂2W

∂Ta∂SL1

≥ 0. (4.24)

As a consequence, as Ta increases, ∂W
∂SL1

also increases. In other words, ∂W
∂SL1

≥ 0

for all valid values of Ta and SL1 = max{s|T̂ < Tmax}.

We can use the same technique to prove that SH = min{s|T̂ ≥ Tmax} and

SL2 = max{s|T̂ < Tmax}.

2

The following theorem generalizes the results from the above lemma to an

arbitrary number of speed transitions.

Theorem 4.1 Given a sufficiently large time interval [ta, tb], let SL1, SL2, and

SH be speed levels satisfying T̂ (SL1) < Tmax, T̂ (SL2) < Tmax, and T̂ (SH) ≥ Tmax
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and let the transition overhead be negligible. Given an initial temperature Ta ≥

min{T̂ (SL1), T̂ (SL2)} and an end temperature Tb, consider the speed schedules that

apply SL1, SH , and then SL2 in a consecutive manner for a fixed number of times

during [ta, tb]. If the duration of the application of SL1 or SL2 is not zero, a

schedule that completes the maximum amount of work must satisfy SL1 = SL2 =

max{s|T̂ < Tmax} and SH = min{s|T̂ ≥ Tmax}.

Proof: We prove the theorem by induction on the number of speed transitions

within [ta, tb], which is denoted by i.

The basis: For i = 1, there are two time intervals, and some low speed SL is

used either in the first or the second time interval. In either case, it is trivial to

show that selecting SL = max{s|T̂ < Tmax} will maximize the work completed for

the corresponding scenario. Additionally, in the other interval, the high speed SH

that maximizes that work completed must satisfy SH = min{s|T̂ ≥ Tmax}.

The induction step: Assume that the theorem holds for i ≤ n. At the

(i = n+1)-th transition, there are four possibilities: (i) SH → SL1, (ii) SL1 → SH ,

(iii) SH → SL2, (ii) SL2 → SH . For (i), let t1 be an arbitrary time point in the

SL1 interval immediately before the newly added SL1 interval. According to the

induction assumption, regardless of the actual value of T (t1), the maximum work

completed in [ta, t1] is achieved by setting SL1 = max{s|T̂ < Tmax}. For interval

[t1, tb], by Lemma 4.2, the maximum work completed is also completed in [t1, tb]

when SL1 = min{s|T̂ < Tmax}. A similar reasoning can be used for (ii), (iii), and

(iv). Thus, the total work completed is maximized when SL1 = SL2 = max{s|T̂ <

Tmax} and SH = min{s|T̂ ≥ Tmax}.

2

As a direct consequence of Theorem 4.1, a DVFS control policy that maximizes

96



the work completed only needs to use two speed levels: SH = min{s|T̂ ≥ Tmax}

and SL = max{s|T̂ < Tmax}. Incorporating these results, the following theorem

generalizes the observation from Lemma 4.1 to an arbitrary number of high speed

intervals.

Theorem 4.2 Given a sufficiently large time interval [ta, tb], let SL and SH be

two speed levels satisfying T̂ (SL) < Tmax and T̂ (SH) ≥ Tmax and let the transition

overhead be negligible. Given an initial temperature Ta ≥ min{T̂ (SL1), T̂ (SL2)}

and an end temperature Tb, let SL and SH be alternately applied during the time

interval [ta, tb] and let the total number of speed transitions be fixed. A schedule

that completes the maximum amount of work must allow the chip temperature to

reach Tmax at the end of every application of SH .

Proof: We prove the theorem by induction on the number of speed transitions

within [ta, tb], which is denoted by i.

The basis: For i = 1, there are two time intervals, and SH can occur either

in the first or the second time interval. In either case, it is trivial to show that

reaching Tmax at the end of SH leads to the maximum work completed for the

corresponding scenario.

The induction step: Assume that the theorem holds for i ≤ n. At the

(i = n + 1)-th transition, either (i) SH → SL or (ii) SL → SH . For (i), let t1 be

an arbitrary time point in the SL interval immediately before the newly added SL

interval. According to the induction assumption, regardless of the actual value

of T (t1), the maximum work completed in [ta, t1] is achieved by each SH interval

reaching Tmax at the end of the interval. For interval [t1, tb], by Lemma 4.1, the

maximum work completed is also completed in [t1, tb] when Tmax is reached at the

end of the single SH interval. Thus, the total work completed is maximized when
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Tmax occurs at the end of every SH interval. A similar but simpler reasoning can

be used for (ii).

2

Theorems 4.1 and 4.2 provide a theoretical foundation for any work-maximizing,

DVFS control policy. That is, the theorems specify the speed levels needed and

indicate that it is advantageous in terms of maximizing the work completed to

alternate between the high and low speed levels while allowing the chip to reach

the maximum temperature at the end of every high speed application interval.

We now need to determine how long the low speed level should be applied and

whether each low speed level interval should have the same duration. To answer

these questions, we begin by defining a periodic speed schedule then showing that

such a schedule is part of the optimal DVFS control policy.

Definition 1 A periodic speed schedule is a speed schedule that alternately applies

SL and SH (where T̂ (SL) < Tmax and T̂ (SH) ≥ Tmax) in a time interval such

that the durations of all applications of SH are the same and the durations of all

applications of SL are the same.

Lemma 4.3 Given a time interval [ta, tb] with the initial chip temperature of Tmax,

let SL and SH be two speed levels satisfying T̂ (SL) < Tmax and T̂ (SH) ≥ Tmax and

let the transition overhead be negligible. Let SL and SH be alternately applied

during the time interval [ta, tb] with SH being applied until the chip temperature

reaches Tmax and let the speed schedules follow the pattern SL, SH , SL, and SH .

A schedule that completes the maximum amount of work must be a uniform speed

schedule.
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Proof: The total work completed using the uniform schedule can be expressed as

W = SL(tb − ta) + (SH − SL) · 2p, (4.25)

where p is the duration of each of the two applications of SH . On the other hand,

the total work completed using the non-uniform schedule can be written as

W ′ = SL(tb − ta) + (SH − SL) · (r + q), (4.26)

where r and q denote the duration of the first and second applications of SH ,

respectively. Observe that to compare W with W ′, we only need to compare 2p

with r + q.

We can derive an expression for p as

p = τ ln

(
T̂ (SH)− T̂ (SL)

T̂ (SH)− Tmax + (Tmax − T̂ (SL))e−
t

2τ

)
. (4.27)

where t = tb − ta.

On the other hand, r and q can be expressed as

r = τ ln

(
T̂ (SH)− T̂ (SL)

T̂ (SH)− Tmax + (Tmax − T̂ (SL))e−
tR
τ

)
(4.28)

q = τ ln

(
T̂ (SH)− T̂ (SL)

T̂ (SH)− Tmax + (Tmax − T̂ (SL))e−
tQ
τ

)
, (4.29)

where tR + tQ = tb − ta. We wish to show that the uniform speed profile yields

more work completed. In other words, that 2p − (r + q) ≥ 0, which will be the
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case if

(T̂ (SH)− Tmax + (Tmax − T̂ (SL))e−
tR
τ )(T̂ (SH)− Tmax + (Tmax − T̂ (SL))e−

tQ
τ )

≥
(
T̂ (SH)− Tmax + (Tmax − T̂ (SL))e−

t
2τ

)2

, (4.30)

since ln(1) = 0 and ln is an increasing function. Simplifying the above expression,

we need to show that

e−
tR
τ + e−

tQ
τ − 2e−

t
2τ ≥ 0. (4.31)

Letting tR = t
2

+ ∆, tQ = t
2
−∆, and ignoring τ , we have

e−( t2 +∆) + e−( t2−∆) − 2e−
t

2τ ≥ 0

e∆ + e−∆ ≥ 2, (4.32)

which is true when ∆ = 0. In addition, since

d(e∆ + e−∆)

d∆
= e∆ − e−∆, (4.33)

which is greater than or equal to zero, the lemma holds.

2

We now generalize the results from the above lemma to an arbitrary number

of speed transitions.

Theorem 4.3 Given a sufficiently large time interval [ta, tb] with the initial chip

temperature of Tmax, let SL and SH be two speed levels satisfying T̂ (SL) < Tmax

and T̂ (SH) ≥ Tmax and let the transition overhead be negligible. Let SL and SH be

alternately applied during the time interval [ta, tb] with SH being applied until the
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chip temperature reaches Tmax and let the total number of speed transitions be n.

A schedule that completes the maximum amount of work must be a periodic speed

schedule.

Proof: The theorem can be proved using the same technique as in Lemma 4.3.

That is, ignoring τ , equation (4.31) can be generalized to

0 ≤ C1

(∑
ti∈Γ

e−ti − n · e−
t(n−(n−1))

n

)
+

C2

 ∑
ti,tj∈Γ,ti 6=tj

e−(ti+tj) − n · e−
t(n−(n−2))

n

+

C3

 ∑
ti,tj ,tk∈Γ,ti 6=tj 6=tk

e−(ti+tj+tk) − n · e−
t(n−(n−3))

n

+

. . . (4.34)

where Γ contains the durations of all n applications of SH for the non-uniform

speed schedule and where C1, C2, . . . are constants. The above inequality can be

shown to hold using substitutions and derivatives as before.

2

Though Lemma 4.3 describes a desired property of a work-maximizing speed

schedule, it does not specify the length of the SL intervals. The time duration in

which the processor applies SL determines the number of speed transitions in a

given time interval. For processors with negligible transition overhead, more tran-

sitions would lead to more work completed (i.e., the duration of every application

of SL should be minimized), as shown by the following theorem.
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Theorem 4.4 Given a sufficiently large time interval [ta, tb], let SL and SH be

two speed levels satisfying T̂ (SL) < Tmax and T̂ (SH) ≥ Tmax and let the transition

overhead be negligible. Let SL and SH be alternately applied. Consider the periodic

speed schedules that use the same initial and final speed levels. A schedule with m

speed transitions completes more work than a schedule with n speed transitions if

m > n.

Proof: The speed schedule with m speed transitions completes the following

amount of work

W = SL(tb − ta) + (SH − SL) ·m · p, (4.35)

where p is the duration of each of the m applications of SH . Similarly, the speed

schedule with n speed transitions completes the following amount of work

W ′ = SL(tb − ta) + (SH − SL) · n · q, (4.36)

where q is the duration of each of the n applications of SH .

As previously, p and q can be expressed as

p = τ ln

(
T̂ (SH)− T̂ (SL)

T̂ (SH)− Tmax + (Tmax − T̂ (SL))e−
t
mτ

)
(4.37)

q = τ ln

(
T̂ (SH)− T̂ (SL)

T̂ (SH)− Tmax + (Tmax − T̂ (SL))e−
t
nτ

)
, (4.38)

where t = tb − ta and

m · p = τ ln

(
T̂ (SH)− T̂ (SL)

T̂ (SH)− Tmax + (Tmax − T̂ (SL))e−
t
mτ

)m

(4.39)

n · q = τ ln

(
T̂ (SH)− T̂ (SL)

T̂ (SH)− Tmax + (Tmax − T̂ (SL))e−
t
nτ

)n

. (4.40)
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Although q ≥ p, m · p ≥ n · p due to the exponential nature of equations (4.39)

and (4.40) (and since m > n). Hence, W ≥ W ′.

2

We now summarize our optimal DVFS control policy. To maximize the

work completed, the processor should periodically alternate between the low speed

SL = max{s|T̂ < Tmax} and the high speed SH = min{s|T̂ ≥ Tmax}. In addition,

the processor should run at the high speed SH until the chip temperature reaches

Tmax. With negligible transition overhead, the processor should minimize the time

it spends running at the low speed (i.e., the throttling time) by switching to the

high speed as soon as possible.

4.4 Work Maximizing Speed Selection Strategy for Processors with Non-Negligible

Transition Overhead

Each speed transition imposes some overhead, reducing the amount of time

spent on computation. Figure 4.2 illustrates the typical trajectories for voltage

and speed levels during two transitions. When transitioning from a lower speed

level to a higher speed level, the voltage is gradually increased until it reaches

the required value (we have simplified the voltage curve to a straight line when

in reality it is a staircase curve). Once this happens, the processor switches to

the higher speed. During this transition, there is a small time interval α during

which the processor clock is halted and no work is completed. The process of

transitioning from a higher speed to a lower speed is similar, except that the

processor switches to the new speed immediately and gradually decreases the

voltage. Once again, the processor clock is halted for a short duration β. Typical
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values for α and β are on the order of tens of microseconds. The voltage changing

times, a and b, are on the order of hundreds of microseconds.

Figure 4.2. Waveforms of speed and voltage levels for two transitions,
where S and V denote speed and voltage, respectively. During

transitions, the voltage is increased or decreased in a small step size and
thus there is a delay associated with each transition.

Compared to the scenario where there is no transition overhead (denoted as

“ideal” in Figure 4.2), there is no work loss during b. During α and β, the number

of cycles lost is SH · α and SL · β, respectively. Finally, during a, the number of

cycles lost is (SH − SL) · a. To find the optimal value of the time the processor

spends at the low speed level tl, we find the maximum value of the net work

completed function that accounts for transition overhead.
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Figure 4.3 confirms this intuition. It shows the net work completed in cycles

as a function of throttling times for different values of a. As we can see from the

curves, when the throttling times are too small, the net work completed is actually

negative (that is, no useful work is being done). Clearly, to maximize the work

completed when transition overhead is non-negligible, we must find the optimal

value of throttling time tl, which we now present. Our method involves finding

the maximum point of the function that represents the net work completed when

transition overhead are accounted for.

Given a schedule length L, the net work completed W ∗ is

W ∗ = [(tl − β + a) · SL + (th − α− a) · SH ] · L

tl + th
, (4.41)

where th is the duration of the high speed level application.

The following theorem identifies the optimal value for tl.

Theorem 4.5 Given a schedule length L, let SL and SH be two speed levels

satisfying T̂ (SL) < Tmax and T̂ (SH) ≥ Tmax Let tl and th be the time dura-

tions the processor spends at the low and high speed levels, respectively, and let

λ = β ·SL +α ·SH +(SH−SL) ·a, where α, β, and a are constants associated with

transition overhead as defined previously. Further, assume that the processor uses

the DVFS control policy presented in Section 4.3. A speed schedule that maximizes

the net work completed over L must have t∗l that satisfies

(SH − SL) · (th − t∗l · t′h)− λ · (1 + t′h) = 0, (4.42)

where th is expressed as a function of t∗l and t′h = ∂th
∂t∗l

.
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Figure 4.3. Net number of cycles completed as a function of throttling
time, where a is the voltage changing time from the low speed level to

the high speed level. With non-negligible transition overhead,
infinitesimally small throttling time does not lead to the maximum

amount of work completed.

Proof: Since λ = β · SL + α · SH + (SH − SL) · a, (4.41) becomes

W ∗ =

[
SH −

(
(SH − SL) · t∗l

t∗l + th
+

λ

t∗l + th

)]
· L. (4.43)

The symbol λ denotes the number of cycles lost due to transition overhead pro-

vided that the processor transitions from high speed level to low speed level once

and from low speed level to high speed level once. To find the maximum value of
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W ∗, we compute ∂W ∗/∂t∗l , noting that th can be expressed as

th = τ ln

 T̂ (SH)− T̂ (SL)− (T0 − T̂ (SL))e−
t∗l
τ

T̂ (SH)− Tmax

 . (4.44)

The partial derivative of W ∗ with respect to t∗l is

∂W ∗

∂t∗l
= − L

(t∗l + th)2
[(SH − SL)(th − t∗l · t′h)− (1 + t′h)λ] . (4.45)

The maximum of W ∗ occurs when (SH − SL) · (th − t∗l · t′h) − O · (1 + t′h) = 0.

Solving this equation for t∗l yields an optimal throttling time.

2

As a result, we can use our previously proposed policy to maximize the work

completed for processors with non-negligible transition overhead if the throttling

time is found by solving (4.42) using a nonlinear equation solver.

4.5 Workloads with Different Power Consumptions

So far, we have assumed that processor power consumption is fixed over time

for a given speed level. In reality, the required power consumption may depend

on the details of operation and hardware, resulting in steady-state temperatures

differing among workloads even for the same processor speed level. Since our

DVFS control policy relies on the steady-state temperature of different speed

levels to determine SH and SL, some modifications are needed. Consider a sys-

tem that must execute different workloads with different power consumption over

time. For the duration of a workload, which may consist of a number of applica-

tions, we can determine SH and SL as follows: SH = min{S|S3PiR ≥ Tmax} and
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SL = max{S|S3PiR < Tmax}, where Pi is the maximum power consumption when

executing workload WLi. As long as the power consumption of the workload in a

given time interval is known at run-time, e.g., by using performance counter based

power models [53], our proposed DVFS control policy will maximize the work com-

pleted. The more complex case where tasks in a workload require different power

consumptions is left as future work.

4.6 Simulation Results

In this section, we provide simulation results to demonstrate the effectiveness

of our optimal clock throttling policy.

4.6.1 Simulation Setup

Using a Java simulator, we modeled our processor based on the Alpha 21264

processor, which consumes 120 W of power when running at the highest frequency

of 4 GHz with the maximum temperature of 110 ◦C [87]. The silicon die and cop-

per package have the dimensions of 16 mm × 16 mm × 0.5 mm and 24 mm ×

24 mm × 2 mm, respectively. The threshold temperature is set to 90 ◦C. To com-

pute the time constant for (4.1), we obtained temperature data via simulations in

ISAC [112], which is a static and dynamic thermal analysis software package with

improved time-domain solver for higher performance, using the default settings

for all thermal-related parameters (e.g., heat capacity).

Since we did not have the data on the available voltage and frequency pairs

of the Alpha processor, we assumed that it can switch to the same speed levels

as the Intel Core Duo [47]. That is, we used the speed levels of the Intel Core

Duo but calculated the corresponding power consumption and frequency for the
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Alpha processor. For our system, the available speed levels are: 0.462, 0.615,

0.692, 0.769, 0.846, 0.923, and 1.

As our policy does not perform scheduling, it is insensitive to the type of

applications that may be running. We used a periodic soft real-time system as

an example application. Each simulation consisted of 100 randomly generated

task sets of 20 tasks each for 30 different utilizations (U = 0.05, 0.1, · · · , 1.5), for

a total of 3,000 task sets. The utilization signifies how loaded the processor is;

a utilization of 1 or greater means that the system is overloaded. Task periods

ranged from 1 s to 10 s, with task execution times falling somewhere between 20%

and 80% of the periods. For underloaded systems, a background job was also

added. Each task set was simulated for a duration of 1,000 s.

For each run, we recorded the following data: number of cycles completed,

number of deadline missed, average delays for jobs that missed their deadlines, and

associated transition overhead, if applicable. Note that while we use a soft real-

time system as an example here, metrics such as the number of cycles completed

are relevant for general-purpose computing systems as well. In addition, while

maximizing the work completed is not the same as maximizing the number of

deadlines met, our results show that completing more work often leads to meeting

more job deadlines.

4.6.2 Performance Comparison of Different Speed Selection Policies with Negli-

gible Transition Overhead

We now discuss the simulation results for the different speed selection poli-

cies: (i) the näıve approach where the highest and lowest speed levels are both

used (corresponding to the speeds of 1 and 0.462, respectively), (ii) the one speed
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approach where the highest of the low speed levels is used the entire time (cor-

responding to the speed of 0.846), and (iii) the best approach where the lowest

of the high and highest of the low speed levels are selected (corresponding to the

speeds of 0.923 and 0.846, respectively). Note here that the näıve approach could

represent the policy used by Thermal Monitor 2 described in Section 4.2. We did

not specifically compare with Thermal Monitor 1 since it is non-configurable. The

initial chip temperature is set to Tmax since we are interested in the performance

of the system once the processor starts to throttle. The throttling time used for

this set of simulations is 10 s, which is similar to the default throttling time for

the 2.13 GHz Pentium M-770 CPU [70].

The results are shown in Figures 4.4–4.6, which compare the average number of

cycles completed, average number of deadline misses, and average delays for jobs

that missed their deadlines, respectively. The average number of cycles completed

is compared with the number of cycles completed when using the equilibrium

speed described in Section 4.2. We can see that the proposed speed selection policy

consistently outperforms the näıve policy in terms of all performance metrics. A

comparison between the näıve and best speed selection policies reveals that our

approach completes 47.65% on average and up to 67.99% more cycles than the

näıve approach. Our policy also improves the number of cycles completed by

the one speed policy by 1.60% on average and up to 3.29%. When compared

to the number of cycles completed using the equilibrium speed, our approach

deviates on average by only 2.76% and up to 2.93%. In addition, our policy

reduces deadline misses by 59.38% on average and up to 100% compared to the

näıve policy. Our policy also reduces deadline misses compared to the one speed

approach by 3.65% on average and up to 45.74%. Note that the best policy would
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yield more substantial performance improvements over the one-speed policy for

systems with fewer speed levels and/or when the lowest of the high speed differs

significantly from the equilibrium speed.

Figure 4.4. Average number of cycles completed (%) for different speed
selection policies with throttling time of 10 s.

Figures 4.7–4.9 show the effect of different throttling times (i.e., the times the

processor spends executing at the low speed level) on system performance when

using our policy. We used the throttling times of 0.1 s, 0.5 s, 1 s, 5 s, and 10 s.
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Figure 4.5. Average number of deadline misses for different speed
selection policies with throttling time of 10 s.

Recall that the 2.13 GHz Pentium M-770 CPU uses a throttling time of about

10 s [70]. With a throttling time of 0.1 s, our DVFS control policy completes

between 0.20% and 2.51% on average and up to between 0.22% and 2.68% more

cycles than the throttling times of 0.5 s, 1 s, 5 s, and 10 s, respectively. When

compared to the policy that uses the equilibrium speed, our policy completes

0.25% fewer cycles (using the throttling time of 0.1 s). Last but not least, the

smallest throttling time (0.1 s) reduces deadline misses by between 8.14% and

9.42% on average and up to 100%.
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Figure 4.6. Average deadline miss delay (cycles) for different speed
selection policies with throttling time of 10 s.

4.6.3 Performance Comparison of Different Speed Selection Policies with Non-

Negligible Transition Overhead

As described in Section 4.4, the constants associated with transition overhead

that we need to consider are α, β, and a, which we set to 10 us, 5 us, and 100 us,

respectively. Since these constants are much smaller than the die time constants,

it is reasonable to assume that the die temperature does not change during speed

transitions.

Figure 4.10 plots the number of cycles completed with transition overhead

considered as a function of the throttling times using our clock throttling policy.
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Figure 4.7. Average number of cycles completed (%) for different
throttling times for the best speed selection policy.

By solving the equation in (4.42), we know that the optimal throttling time is

43.23 ms and this is confirmed by the results of this simulation. As expected, when

transition overhead are non-negligible, switching from the low to high speed levels

more often than optimal decreases the rate of computation due to the increasing

proportion of time spend idle during transitions. On the other hand, switching

very infrequently can reduce the computation rate because a lower percentage of

time can be spent at the higher speed level.
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Figure 4.8. Average number of deadline misses for different throttling
times for the best speed selection policy.

4.7 Summary

We proposed an optimal online DVFS control policy to maximize instruction

cycles subject to a peak temperature constraint. Our solution is applicable to any

processor with discrete speed levels and non-negligible transition overhead. Our

policy completed 47.7% on average and up to 68.0% more cycles when compared

to the näıve policy.

We plan on extending our proposed policy to consider the time interval before

the system reaches the threshold temperature for the first time. To handle situ-

ations where external factors such as ambient temperature dynamically changes
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Figure 4.9. Average deadline miss delay (cycles) for different throttling
times for the best speed selection policy.

and when tasks have different power consumption, modifications to the proposed

policy are needed. Finally, we would like to extend our policy to consider multi-

processor architectures.
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Figure 4.10. Average number of cycles completed as a function of
throttling time when transition overhead is considered. A very small

throttling time can result in a negative net number of cycles completed.
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CHAPTER 5

TEMPERATURE-AWARE SCHEDULING AND ASSIGNMENT FOR HARD

REAL-TIME APPLICATIONS ON MPSOCS

Increasing integrated circuit (IC) power densities and temperatures may ham-

per multiprocessor system-on-chip (MPSoC) use in hard real-time systems. This

chapter formalizes the temperature-aware real-time MPSoC assignment and schedul-

ing problem and presents an optimal phased steady-state mixed integer linear pro-

gramming based solution that considers the impact of scheduling and assignment

decisions on MPSoC thermal profiles to directly minimize the chip peak temper-

ature. We also introduce a flexible heuristic framework for task assignment and

scheduling that permits system designers to trade off accuracy against running

time when solving large problem instances. Finally, for task sets with sufficient

slack, we show that inserting idle times between task executions can further reduce

the peak temperature of the MPSoC quite significantly.

5.1 Introduction

We begin by providing an in-depth overview of the problem under consid-

eration, review existing work, present our main contributions, and provide the

organization of this chapter.
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5.1.1 Problem Overview

Multiprocessor systems-on-chips (MPSoCs) are now widely used in application-

specific systems and high-performance computing. They offer performance, power

consumption, and implementation complexity advantages over highly superscalar

uniprocessor architectures. Their use, and scale, will increase dramatically in the

coming years. According to Milchman [73], 16-core processors will be common

within the next four years. Intel plans to deliver processors that have dozens or

hundreds of cores during the next decade [15]. The use of heterogeneous MPSoCs

can sometimes dramatically improve performance and power consumption rela-

tive to homogenous MPSoCs [57]. However, it can also increase complexity. It

is likely that some future MPSoCs will be homogeneous and some will be hetero-

geneous. With the current use of MPSoCs in soft real-time applications such as

gaming [110], it is expected that many hard real-time applications will soon be

implemented using MPSoCs. In fact, FreeScale is now offering the QorIQ Embed-

ded Multicore Processor [80] that is intended for application domains that require

real-time computing, e.g., aerospace applications.

MPSoC temperature is a strong function of power density. Increasing tran-

sistor counts and aggressive frequency scaling result in a significant increase in

chip power density and temperature. Increasing chip temperature has significant

impact on other design metrics including reliability, performance, and cost, as mi-

croprocessor failure rate depends exponentially upon operating temperature [99].

A 10–15 ◦C difference in operating temperature can result in a 2× difference in

the lifespan of a device [102]. Temperature also affects speed; reduction of charge

carrier mobility in transistors and increased interconnect latency resulting from

high temperature degrade performance, requiring reduced clock frequencies or,
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worse yet, resulting in run-time failures.

Increasing power densities make package and cooling design for the worst-

case scenario prohibitively expensive, since the cost of cooling solutions increases

super-linearly with power consumption [43]. It is therefore necessary to design

packaging and cooling solutions based on less than worst-case thermal profiles

and compensate by preventing, hopefully rare, dangerous thermal scenarios at

run-time. Most popular approaches react to critical temperatures by reducing

frequency and voltage (i.e., performing hardware throttling), or by temporarily

preventing instruction issue to reduce the power consumption, and hence temper-

ature, of the processor [63].

Since the execution times of real-time tasks, and hence total system utilization,

tend to vary significantly due to factors such as conditional branches and system

inputs [116], real-time applications can exhibit great temperature variation at

run-time. When the system utilization is low, the MPSoC may not have a high

temperature problem, thanks to the amount of slack available in the system.

On the other hand, a system with high utilization can push an MPSoC to its

thermal limit [28, 106, 111]. In the worst case, the host MPSoC may lack run-

time thermal management, leading to overheating and signal timing violations or

permanent failure. More subtly, even those real-time systems containing MPSoCs

that support run-time thermal management may fail when a temperature bound

is reached, but for a different reason.

Most run-time thermal management techniques use thermal sensors to detect

when the maximum safe temperature is approached and react by decreasing pro-

cessor power consumption, e.g., by decreasing frequency or stalling instruction

issue. These techniques share a common weakness: they decrease performance. If
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a real-time task running on an MPSoC with run-time thermal management ever

triggers throttling when there is little timing slack, the real-time task will miss its

deadline. Missing hard real-time deadlines is unacceptable; an example would be

failure to stop an automatically controlled train on time [67]. To guarantee hard

real-time performance, designers should consider thermal effects by explicitly op-

timizing peak temperature while meeting all functionality and real-time deadlines.

This motivates our work on the temperature-aware real-time MPSoC assignment

and scheduling problem.

Existing power-aware techniques, such as energy minimization, peak power

minimization, as well as global dynamic voltage and frequency scaling (DVFS),

cannot solve the temperature problem in MPSoCs because they do not consider

spatial thermal variation; heat generated by an active core also affects other neigh-

boring thermal elements, be they other cores or portions of the heatsink. The net

heat flow from one thermal element to another depends on the conductance pa-

rameters and the current temperatures of these thermal elements. Ignoring spatial

thermal variation can lead to unnecessarily high peak temperatures, especially for

high power density chips.

5.1.2 Related Work

Researchers have only recently started work on temperature-aware high-level

synthesis [76] and design space exploration [64]. The objective is usually to opti-

mize system performance subject to a peak temperature constraint. For unipro-

cessor architectures, Wang and Bettati presented a reactive two-speed policy to

control peak temperature [106]. To guarantee real-time deadlines, a proactive

thermal management policy was later proposed [28]. Rao et al. presented an
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optimal processor speed control policy to maximize the work completed under a

temperature constraint [89]. The thermal model was later improved by the same

authors [87]. Mutapcic et al. focused on energy minimization under thermal and

task constraints [78]. Quan et al. presented a necessary and sufficient condition

for schedulability as well as a novel scheduling algorithm for real-time applica-

tions running on processors with a temperature constraint [85]. A temperature-

constrained optimization technique is valuable in maximizing application perfor-

mance, but it does not necessarily increase system reliability nor guarantee hard

real-time deadlines. The lower the operating temperature, the better the system

reliability.

Unfortunately, there is little research that targets peak temperature control

directly. Bansal et al. were among the first to study the problem of peak tem-

perature minimization using continuous dynamic speed scaling for uniprocessors

running independent tasks [8]. Jayaseelan and Mitra presented a task sequencing

technique to minimize the peak temperature for periodic real-time tasks running

on a single processor [48]. Neither work considers MPSoCs nor task dependencies.

The problem of assigning and scheduling real-time tasks in systems containing

multiprocessors and MPSoCs has received significant research attention. Some

papers focus on meeting hard real-time constraints [42] while others aim to opti-

mize energy consumption in the presence of timing constraints [91]. Since most

real-time scheduling problem variants are NP-hard, many heuristics have been

proposed to solve large problem instances with different optimality criterion [97].

Once again, the focus is usually placed on meeting the thermal constraint instead

of minimizing peak temperature. For example, Rao et al. presented a method to

maximize throughput by determining speeds of different cores subject to a peak
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temperature constraint [88]. Mulas et al. proposed a task migration algorithm

that balances the loads on different cores to reduce hotspots [77]. Coskun et al.

used online learning [31] and integer linear program (ILP) [32] to reduce the fre-

quency of peak temperature constraint violations. Jung et al. used dynamic ther-

mal management (DTM) to minimize energy while meeting a peak temperature

constraint [52]. An approximation algorithm for minimizing the peak tempera-

ture of ideal processors was proposed by Chen et al. for real-time tasks with no

precedence constraints [26]. In addition, a temperature-aware task assignment

and voltage selection algorithm was proposed by Sun et al. for three-dimensional

stacked-wafer MPSoCs [100]. However, this solution cannot be used to solve our

problem since only homogeneous cores are considered and lateral thermal varia-

tion is ignored (the peak temperature of 3-D MPSoCs is strongly influenced by

vertical inter-core heat flow).

Xie and Hung were the first to propose a collection of heuristics for temperature-

aware processor allocation, task assignment, and scheduling [111]. However, their

heuristics consider spatial or temporal thermal variation, but not both types of

variations. In Section 5.5, we show that their technique can deviate significantly

from optimality.

Finally, Paci et al. claim that temperature-aware design is unnecessary in low-

power embedded systems [81]. While their conclusions hold for very low-power

embedded processors because on-die temperature variation is small, our results

show substantial (> 30 ◦C improvement) benefits from temperature-aware design

for MPSoCs containing several embedded processor cores (see Section 5.7.1 for

more details), using the thermal model in Section 5.2.2.
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5.1.3 Contributions

This chapter makes the following main contributions. We present a mixed-

integer linear programming (MILP) formulation for assigning and scheduling tasks

with hard real-time constraints on an MPSoC to minimize the chip peak tempera-

ture. Our formulation considers spatial and temporal thermal variations. It relies

on a phased steady-state thermal analysis directly integrated within the MILP

formulation. This analysis produces a separate steady-state thermal profile for

each power profile occurring during the schedule. Extensions for temperature-

dependent leakage power modeling, DVFS, finer-grained thermal modeling, and

inter-task communication modeling are given.

To solve problem instances that are large or for which the effects of heat

capacitance are significant, we propose a heuristic task assignment and scheduling

framework in which the actual method for computing the thermal profile can be

selected as appropriate. Specifically, phased steady-state thermal analysis is used

when task durations are long relative to the time constants of the cores. Transient

thermal analysis, in which temperatures are time-dependent, is used otherwise.

To exploit slack in the system where the effects of heat capacity are significant,

we use the concept of delay (i.e., idle time) insertion in our transient analysis

based heuristic to further reduce the chip peak temperature while guaranteeing

hard real-time deadlines.

5.1.4 Organization

The chapter is organized as follows. In Section 5.2, we introduce our system

model, state our assumptions, and formally define the problem. We motivate the

need for a temperature-aware assignment and scheduling algorithm in Section 5.3.
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We describe our formal approach in Section 5.4 and present our flexible heuristic

framework in Section 5.5. We introduce and incorporate the concept of delay

insertion into our heuristic framework in Section 5.6. The benefits and efficiency of

our approach are experimentally determined in Section 5.7. Section 5.8 concludes

the chapter.

5.2 System Model and Problem Definition

The system model and the temperature-aware real-time MPSoC assignment

and scheduling problem are now described.

5.2.1 Task Model

In our model, J represents the set of hard real-time tasks to be executed.

For each task j ∈ J , the worst-case execution time when running on core m is

denoted by E(j,m), the deadline by D(j), and the release time by R(j). Note that

R(j) = 0 and D(j) =∞ if no release time and deadline constraints are associated

with task j. A directed acyclic graph (DAG) is used to capture data dependencies

among tasks. In a DAG, nodes represent tasks and directed edges indicate data

dependencies between pairs of tasks. Let Γj1,j2 denotes the dependency between

tasks j1 and j2 where

Γj1,j2 =


1 if task j1 immediately precedes task j2

0 otherwise.

(5.1)

A task j may execute only after all its predecessor tasks have completed and j

has been released, i.e., the current time is greater than or equal to R(j). For now,

we assume that there is no cost for communication among dependent tasks. This
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assumption will be relaxed in Section 5.4.5. For periodic systems, we guarantee

schedule validity by scheduling out to the hyperperiod of all tasks [60]. The

hyperperiod is the least common multiple of the periods of all tasks in the problem

specification.

5.2.2 Thermal Model

We model an MPSoC with a set of cores, M . For each core m ∈M , its width,

height, and location are specified. Based on the floorplan, the set of neighbors

of core m, Nm, thermal conductance to a neighbor n, Gn(m,n), and thermal

conductance to the heatsink element above it, Gh(m), can be calculated. For each

task and core combination, P (j,m) indicates the power consumption of core m

when executing task j. We discuss an extension to this power model to account

for leakage power in Section 5.4.2.

Thermal analysis estimates heat transfer through heterogeneous materials among

heat producers (e.g., transistors) and heat consumers (e.g., heatsinks attached to

an MPSoC). In the task assignment and scheduling phase, we will adopt a coarse-

grained discrete heat flow model analogous to widely used compact models [98] to

balance thermal analysis efficiency and accuracy. However, the algorithm frame-

work proposed in Section 5.5 can be used with any thermal analysis technique.

In our thermal model, which is based on the classical Fourier heat flow model,

each core corresponds to a discrete thermal element; Section 5.4.4 discusses how

our approach can be modified to support finer-grained thermal element model-

ing. The heatsink on top of the cores is modeled using multiple thermal elements

and its partitioning corresponds to the layout of the cores. Since the heatsink

is usually larger than the processor itself, we model heatsink overhang using ad-
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ditional thermal elements; the heatsink overhangs the chip by 25% of its length

and width. The interface layer is included within the heatsink instead of being

modeled explicitly. The interface material is usually very thin so lateral heat flow

within it can be neglected. Lateral heat flow between cores and heatsink elements

is modeled.

To perform thermal analysis, we take advantage of the well-known duality be-

tween electrical and thermal circuits. The temperature of each thermal element

can be expressed as a function of its power consumption, the ambient tempera-

ture, and the temperatures of neighboring thermal elements. Figure 5.1 depicts

the circuit representation of this model. Here, TA denotes the ambient temper-

ature, GA(h) is the conductance from the heatsink element h to the ambient,

and Gnh(h, g) is the conductance between heatsink elements h and g. The cur-

rent source Pm denotes the power consumption of core m. The terms Gh(m) and

Gn(m,n) were as defined previously.

The temperature of core m at time t, T (t,m), can be determined using the

node thermal analysis of the circuit in Figure 5.1:

0 =
∑
n∈Nm

(T (t,m)− T (t, n)) ·Gn(m,n) + C(m) · dT (t,m)

dt

+ (T (t,m)− T (t, h)) ·Gh(m)−
∑
j∈J

α(t, j,m) · P (j,m), (5.2)

0 =
∑
g∈Nh

(T (t, h)− T (t, g)) ·Gnh(h, g) + C(h) · dT (t, h)

dt

+ (T (t, h)− T (t,m)) ·Gh(m) + (T (t, h)− TA) ·GA(h), (5.3)
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Figure 5.1. Equivalent circuit diagram of the thermal model. In this
example, core m is connected to its neighboring core n and is under

heatsink element h. The power consumption and capacitance of core m
are represented by the current source Pm and the capacitor C(m),

respectively. The heatsink element h is connected to other neighboring
heatsink elements, a capacitor, as well as to the ambient, which is

denoted by the voltage source TA.
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where T (t, h) is the temperature of the heatsink element h directly above core

m at time t, C(m) is the thermal capacitance of core m, C(h) is the thermal

capacitance of heatsink element h, and α(t, j,m) = 1 if task j is active on core

m at time t. In the above two equations, if the heatsink element h is a heatsink

overhang element, then the term (Th − Tm) ·GH(m) is set to 0.

The thermal conductance of core m to the heatsink element h directly above

it, Gh(m), can be computed as described by Serway [92]:

Gh(m) =
Aream

Rchip · Areachip

, (5.4)

where Aream denotes the area of core m, Areachip represents the area of the chip,

and Rchip = thsi

Ksi ·Areachip
, thsi is the thickness of silicon, and Ksi denotes its thermal

conductivity. In our experiments, we set thsi andKsi to be 0.6 mm and 148 W/mK,

respectively.

The conductance of a heatsink element h to the ambient can be calculated

in a similar manner. That is, we substitute Aream and Areachip in (5.4) by

the area of the heatsink element under consideration and the area of the en-

tire heatsink, respectively. In addition, we replace Rchip with RHS in (5.4), where

RHS = Tactive−Tambient

Pchip
− Rchip , Pchip being the total power consumption of the chip

and Tactive the average active layer temperature when all cores are busy and Tambient

being the ambient temperature. We set Tactive and Tambient to 90 ◦C and 45 ◦C,

respectively.

We compute the conductance between corem and its neighbor core n as follows:

Gn(m,n) =
wmn · thsi ·Ksi

Lmn

, (5.5)
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where wmn is the length of intersection between cores m and n and Lmn is the dis-

tance between the midpoint of m and that of n. The lateral conductance between

two heatsink elements can be computed in a similar fashion. We assume that the

heatsink is made of copper, with a thickness of 1 mm and thermal conductivity of

400 W/mK.

5.2.3 Problem Definition

Given the floorplan of a chip containing a set of cores, M , and a set of hard real-

time tasks, J , as described above, determine a static assignment of tasks to cores

and a static, non-preemptive schedule of tasks on the cores such that all precedence

constraints and real-time deadlines are met and the chip peak temperature, Tmax ,

is minimized.

5.3 Motivations

Since average power (i.e., energy) for a fixed duration and peak power are

related to chip temperature, it is natural to question whether optimizing peak

temperature can produce significantly different results than optimizing peak power

or average power. Let us consider a task set containing two identical tasks, j1 and

j2, each with a deadline of 5 ms. For this example, the MPSoC is arranged as

shown in Figure 5.2 (core sizes are not necessarily drawn to scale in the diagram).

Task execution times (E) and associated power consumptions (P ) are shown near

the respective cores. To minimize energy, tasks j1 and j2 are both assigned to

core m2. The resultant chip peak temperature is 65.30 ◦C. If our objective were

to minimize peak power, then task j1 would be assigned to core m2 and task j2

to core m1, also resulting in a peak temperature of 65.30 ◦C. However, if task j1
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were executed on core m4 and task j2 on core m1, the peak temperature would

be reduced to 65.16 ◦C, which is about 0.14 ◦C cooler. This difference is the first

point in the plot in Figure 5.3.

m1  m2 

m3  m4 

P = 7W 

P = 5W P = 10W 

P = 10W 

E = 2ms 

E = 2ms 

E = 3ms 

E = 5ms 

Figure 5.2. Floorplan for the motivating example in Section 5.3, where
both task execution times (E) and power consumption (P ) are shown

for each core.

While the improvement in this case is small, the power density of the chip

in the above example is only 0.19 W/mm2. The power density can be as high

as 0.79 W/mm2 for 90 nm processors, 2.02 W/mm2 for 65 nm processors, and

7.24 W/mm2 for 45 nm processors [65]. To obtain similar chip power densities, we

repeated the previous experiment but increased each core power consumption by
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Figure 5.3. Differences in peak temperatures between energy
minimization and peak temperature approaches. The x-axis shows the

values (i.e., multiplying factors) that were multiplied to the original chip
power density. In this example, peak power minimization yields the

same peak temperature as energy minimization.

factors of 2, 5, 10, 15, and 20. The resulting chip power densities are 0.39 W/mm2,

0.97 W/mm2, 1.95 W/mm2, 2.92 W/mm2, and 3.89 W/mm2. In each case, the

heatsink conductance to the ambient is adjusted to model the improved cooling

solutions necessary to maintain an average active layer temperature of 90 ◦C.

Although task assignments and schedules are the same as before, chip peak

temperatures increase when the higher power density cores are used. Figure 5.3

shows the reductions in chip peak temperatures when the peak temperature is op-

timized instead of peak power or energy for the example in Figure 5.2 and the chip

power densities mentioned above. The x-axis shows the chip power density. The

y-axis shows the difference between the peak temperature obtained from energy or

peak power minimization and that from peak temperature minimization. As can
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be seen from the plot, the advantages of minimizing the chip peak temperature

increase with increasing chip power density, resulting in up to 20 ◦C reduction in

peak temperature for this example.

Energy and peak power minimization suffer from the same weakness: neither

considers spatial thermal effects. In fact, energy minimization ignores both tempo-

ral and spatial thermal variation while peak power minimization considers tempo-

ral thermal variation but ignore spatial thermal variation. The peak temperature

of an MPSoC is increased by crowding the same amount of energy consumption

into less time and space. Hence, to minimize the chip peak temperature, tasks

should be assigned and scheduled in careful consideration of thermal interaction

with neighboring cores. In addition, our example indicates that although there are

many cases in which minimizing peak power produces different (and potentially

better) results than minimizing energy, the same results are produced for some

problem instances.

5.4 MILP-based Approach

In this section, we present our approach to solving the problem defined in

Section 5.2.3. We also describe how our model can be extended to account for

leakage power, dynamic voltage and frequency scaling (DVFS), and inter-task

communication, or adjusted to use a finer-grained thermal model. Limitations of

the MILP-based approach are described at the end of the section.
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5.4.1 MILP Formulation

We now present our MILP formulation for the problem defined in Section 5.2.3.

We define the following variables.

δ(j,m) =


1 if task j is assigned to core m

0 otherwise.

(5.6)

η(j1, j2) =


1 if task j1 starts before task j2

0 otherwise.

(5.7)

β(j1, j2,m) =


1 if task j2 executes on core m, precedes1,

and overlaps with task j1

0 otherwise.

(5.8)

For the sake of consistency, we let β(j, j,m) ≡ δ(j,m). The β(j1, j2,m) variables

capture the overlapping execution of different tasks and play a key role in com-

puting the peak temperature. They are also useful in computing the peak power,

as will be shown later. We use ts(j) and tf (j) to denote the start and finish time

of task j, respectively, yielding

tf (j) ≡ ts(j) +
∑
m∈M

δ(j,m) · E(j,m) (5.9)

≡ ts(j) + et(j). (5.10)

MILP formulations have long been proposed for modeling the task assignment

and scheduling problem in a heterogeneous multiprocessor environment [61]. How-

1Precedence is not necessary but is sufficient and simplifies the test. Also, j1 does not execute
on core m; its execution overlaps in time with the execution of j2.
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ever, energy minimization has often been the main objective. Such solutions ignore

both temporal and spatial thermal variation. Even peak power minimization only

considers temporal thermal variation. To take both types of thermal variation

into account, we directly minimize the chip peak temperature, Tmax, which is the

highest temperature at any position on the chip during a schedule of duration SL,

i.e.,

Tmax = max
m∈M,t∈[0,SL]

τm(t), (5.11)

Using (5.2) and (5.3) to compute the temperature at each node at any given

time corresponds to dynamic or transient thermal analysis. Unfortunately, tran-

sient thermal analysis is computationally expensive. This makes its use in the

MILP formulation impractical; the MILP solver would only be able to handle

very small problem instances, thereby making it difficult to validate a heuristic.

For this reason, we set the capacitance values in (5.2) and (5.3) to zero to obtain

the steady-state temperature at each node when predicting temperatures in our

MILP formulation. In Section 5.4.6, we indicate the situations in which the MILP-

based approach with steady-state analysis is appropriate and inappropriate. In

addition, Section 5.5 presents a solution to the more general problem of dynamic

temperature optimization.

From the thermal model in Section 5.2.2, it might appear necessary to com-

pute the steady-state temperature, τm(t), of a core m at every time instant t to

determine Tmax. Even if we discretize the time duration SL, this approach may

still be too costly; task execution times can vary dramatically, resulting in some

tasks executing for hundreds of thousands or millions of time units. To overcome

this difficulty, we make the following observations: (1) core power consumptions

only change at the beginning or end of a task execution, and (2) the steady-state
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temperature of a core only experiences a rapid change when the power consump-

tion of at least one core on the chip changes. Hence, we can significantly reduce

the amount of computation needed to obtain Tmax. Specifically, we only evaluate

the temperature of each core m immediately after every task i starts or finishes

executing on any core in the MPSoC and denote this temperature with T (i,m).

Consequently, the objective function of the MILP can be expressed as

minTmax, where Tmax ≥ T (i,m), ∀m ∈M, ∀i ∈ J. (5.12)

T (i,m) satisfies the constraints given in (5.2) and (5.3), which are rewritten in

(5.13) and (5.14), respectively.

T (i,m) ≡ THS (i, h) +
1

GH(m)

[∑
j∈J

β(i, j,m) · P (j,m)

]

+
1

GH(m)

∑
n∈Nm

GN(m,n) · [T (i, n)− T (i,m)] (5.13)

0 = (THS (i, h)− T (i,m)) ·GH(m) + (THS (i, h)− TA)

·GA(h) +
∑
g∈Nh

(THS (i, h)− THS (i, g)) ·GNH (h, g). (5.14)

Note that (5.13) is only linear if we can treat P (j,m) as a constant given task j

and core m. For now, we assume that this is the case. We will discuss the more

general case where P (j,m) is not a constant in Section 5.4.2. Also, it should be

clear that (5.14) can be rewritten and expressed as a function of THS .

The following constraints are used to guarantee schedulability.
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1. Every task j is assigned to exactly one core m:

∀j ∈ J
∑
m∈M

δ(j,m) = 1. (5.15)

2. Every task j meets its deadline:

∀j ∈ J ts(j) + et(j) ≤ d(j). (5.16)

3. Precedence constraints are honored:

∀i, j ∈ J ts(j) ≥ tf (i) · Γi,j. (5.17)

4. All tasks execute for their durations without overlap on any given core:

∀j1, j2 ∈ J

1 ≤ η(j1, j2) + η(j2, j1), (5.18)

ts(j1) ≤ ts(j2) + (1− η(j1, j2)) · Λ, (5.19)

ts(j2) ≤ ts(j1) + η(j1, j2) · Λ, (5.20)

∀j1, j2 ∈ J, j1 6= j2,∀m ∈M

tf (j1) ≤ (2− δ(j1,m)− δ(j2,m))·Λts(j2) + Λ · (1− η(j1, j2)), (5.21)

tf (j2) ≤ (2− δ(j1,m)− δ(j2,m))·Λ + ts(j1) + Λ · η(j1, j2), (5.22)

where Λ is a constant greater than or equal to the largest deadline in the task

set. Constraint (5.19) states that task j1 must start before task j2 if η(j1, j2) = 1.

Constraint (5.21) guarantees that task j1 finishes before task j2 starts if tasks j1
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and j2 are executed on the same processor and task j1 precedes task j2. Similar

conditions hold for (5.20) and (5.22).

Consider a situation where tasks i and j execute on cores m and n, respectively.

Further, task i precedes task j and their executions overlap. At the start of task

i, we only need to consider the power consumption of core m. However, at the

start of task j, we must take into account the power consumptions of both cores

to correctly compute the chip peak temperature. For this reason, we must ensure

that β(j1, j2,m) = 1 only when δ(j2,m) = 1 and ts(j2) ≤ ts(j1) ≤ tf (j2) − ε,

where ε is a small constant used to prevent imprecise floating point computations

from making it appear as if contiguous tasks overlap in time. Therefore,

∀m ∈M,∀j1, j2 ∈ J, j1 6= j2

tf (j2) ≥ ts(j1) + (β(j1, j2,m)− 1) · Λ, (5.23)

ts(j2) ≤ ts(j1) + (1− β(j1, j2,m)) · Λ, (5.24)

1 ≥ β(j1, j2,m) + δ(j1,m), (5.25)

tf (j2)− ε− (1− η(j2, j1)) · Λ− (1− δ(j2,m)) · Λ

≤ ts(j1) + β(j1, j2,m) · Λ. (5.26)

The above MILP formulation finds an assignment and schedule that minimize

the chip peak temperature. To minimize peak power Pmax , we simply substitute

the object function as follows:

Pmax ≥ ∀i∈J
∑
m∈M

∑
j∈J

β(i, j,m) · P (j,m). (5.27)

On the other hand, if total energy is to be minimized, the following objective
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function can be used

Etotal ≥
∑
j∈J

∑
m∈M

P (j,m) · E(j,m) · δ(j,m), (5.28)

where Etotal denotes the total energy.

5.4.2 Modeling Power Consumption

In (5.13), the parameter P (j,m) captures the power consumption of core m

while executing task j, and

P (j,m) = Pdyn(j,m) + Pleak(j,m), (5.29)

where Pdyn and Pleak are the dynamic power and the leakage power when running

task j on core m.

Assuming average switching activity is used to evaluate Pdyn(j,m) allows us

to treat Pdyn(j,m) as a constant. The leakage power, Pleak(j,m), however, is a

superlinear function of temperature. Simply treating Pleak(j,m) as a constant

may lead to an underestimation of the chip peak temperature. Though integrated

circuit (IC) leakage power is a superlinear function of temperature, a 4-segment

piecewise linear function can be used to approximate leakage in the operating

temperature ranges of integrated circuits with only 0.69% error [68]. Therefore, we

model the power consumption required to execute task j on core m at temperature

Tm as a piecewise linear function as follows (more segments can be added as

needed)

P (j,m) = K1(j,m) · Tm +K2(j,m), (5.30)

where K1(j,m) and K2(j,m) are constants that depend on core m and task j.
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Consequently, (5.13) can be rewritten as

T (i,m) ≡ Th(i, h) +
1

Gh(m)

∑
n∈Nm

Gn(m,n) · [T (i, n)− T (i,m)] +
1

Gh(m)

·

[∑
j∈J

β(i, j,m) · (K1(j,m) · T (i,m) +K2(j,m))

]
. (5.31)

To eliminate the nonlinear term β(i, j,m) · T (i,m), we replace β(i, j,m) · T (i,m)

with a new variable λ(i, j,m). In other words,

λ(i, j,m) =


K1(j,m) · T (i,m) if β(i, j,m) = 1

0 otherwise.

(5.32)

We then add the following constraints to our MILP formulation.

∀m ∈M,∀i, j ∈ J

λ(i, j,m) ≥ 0, (5.33)

λ(i, j,m) ≤ β(i, j,m) · Λ, (5.34)

λ(i, j,m) ≥ (K1(j,m) · T (i,m))− (1− β(i, j,m)) · Λ, (5.35)

λ(i, j,m) ≤ (K1(j,m) · T (i,m))− (β(i, j,m)− 1) · Λ. (5.36)

Solving the MILP instance given in (5.13), (5.14) (with β(i, j,m)·T (i,m) being

replaced by λ(i, j,m)), (5.14)–(5.26), and (5.33)–(5.36) leads to an exact solution

to the problem defined in Section 5.2.3.

Another power consumption related issue is that we model neither inter-core

interconnect nor cache power consumption. This omission is due to the following

two observations. According to Ku et al. [56], the power density of the cache,
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and hence temperature, is relatively low due to its size. A similar conclusion can

be drawn about interconnect temperatures; a simulation with default parameters

using the Orion interconnect network simulator [105] revealed that typical core

power density [65] is about 6.5× that of a high-performance router and 10.6× that

of global interconnect wire.

5.4.3 Incorporating Dynamic Voltage Scaling

Many modern processors support dynamic voltage and frequency scaling (DVFS).

Although using DVFS to minimize energy will generally also reduce peak temper-

ature, energy minimization alone is not equivalent to peak temperature mini-

mization. Energy minimization does not consider temporal or spatial thermal

variation. It is, however, possible and beneficial to consider DVFS in conjunction

with our peak temperature optimization technique. Our MILP formulation from

Section 5.4.1 can be modified as follows.

For each core m, the set of discrete voltage levels, Km, must be specified. We

redefine E(j, k,m) to be the execution time of task j on core m at voltage level

k and P (j, k,m) to be the power consumption required to execute task j on core

m at voltage level k. The binary variables δ(j, k,m) are also redefined to be 1 if

task j is assigned to core m at voltage level k. Consequently, from (5.13),

∑
j∈J

β(i, j,m) · P (j,m) =
∑
k∈K

∑
j∈J

ν(i, j, k,m) · P (j, k,m),
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where

ν(j1, j2, k,m) =


1 if δ(j2, k,m) = 1, β(j1, j2,m) = 1

0 otherwise.

The constraints in (5.13)–(5.26) can be readily modified for use in the new formu-

lation.

5.4.4 Using Finer-Grained Thermal Model

The thermal model described in Section 5.2.2 can further be refined by using

multiple thermal elements for each core, where each thermal element may have

different power consumption and/or correspond to a particular functional unit of

the core. Specifically, we redefine the variables δ(j,m, x) and β(j1, j2,m, x) as

follows.

δ(j,m, x) =


1 if task j executes on functional unit x of core m

0 otherwise.

β(j1, j2,m, x) =


1 if task j2 executes on functional unit x of core m,

precedes, and overlaps with task j1

0 otherwise.

The constraints in (5.13)–(5.26) can be readily modified for use in the new formu-

lation.

Core power consumption may vary depending on the individual instructions
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being executed. However, the relative change in temperature at the functional-

unit level is relatively slow due to the large thermal time constants of the func-

tional units (i.e., the constant influencing the rate of temperature change in re-

sponse to power consumption change). For this reason, the finer-grained thermal

model presented here remains accurate; it is not necessary to model instruction-

by-instruction variation in power consumption [2].

5.4.5 Modeling Inter-Task Communication

In some situations, communication cost for a task to send data to its successors

is significant. Given that the time to send data from task i to task j using

shared memory is expressed by parameter C(i, j), our MILP formulation from

Section 5.4.1 can be modified to capture inter-task communication by simply

substituting (5.17) with the following expression:

∀i, j ∈ J ts(j) ≥ (tf (i) + C(i, j)) · Γi,j. (5.37)

5.4.6 Limitations of MILP-based Approach

While the solution provided by the MILP formulation in Section 5.4.1 is opti-

mal, there are two main limitations to the MILP-based approach: (1) the MILP

formulation cannot be used to efficiently solve large problem instances, as the

problem defined in Section 5.2.3 is NP-hard, and (2) due to the use of steady-

state thermal analysis, the MILP formulation may overestimate the chip peak

temperature when task execution times are short relative to the thermal time

constant of the cores. That is, steady-state analysis can be used to accurately

predict the temperature when task execution times are long compared to the core

time constants, and transient analysis should otherwise be used to permit more
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accurate temperature prediction, thereby allowing more aggressive scheduling of

short tasks that do not cause temperatures to converge to steady-state values

during execution.

5.5 Scheduling Heuristic Framework

Our framework uses a binary search based approach to minimize peak tem-

perature under functionality and timing constraints. It takes as inputs upper

and lower temperature bounds, as well as the maximum number of iterations,

maxIter. It then uses the average of the upper and lower bounds on the peak tem-

peratures as the target peak temperature to find an assignment and schedule. If

an assignment and schedule is found while staying below the target temperature,

the current target temperature will be used as the upper temperature bound for

the next iteration of the binary search. Otherwise, it will be used as the lower

temperature bound.

We introduce the key part of our framework: ThermalSched, a list schedul-

ing [33] algorithm summarized in Algorithm 6. For a given task j, the earliest

start time (EST(j)) and latest start time (LST(j)) are computed. The mobility

of task j can then be calculated as the difference between LST(j) and EST(j). A

potential challenge in computing EST(j) and LST(j) is that the execution time

of task j is unknown prior to the selection of a core. Our solution is to use the

smallest execution time of task j as given by the fastest core when computing

EST(j) and LST(j) to maximize the mobility of task j, for all j ∈ J .

The steps for task assignment and scheduling follow. Ready tasks are ordered

in a non-decreasing order of mobility. A ready task is a task whose predecessors

have finished executing. Given a ready task j, ThermalSched selects the fastest
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Algorithm 6 ThermalSched(G(V,E), targetTemp, dMaxIter)

1: compute EST(j) and LST(j), for all tasks
2: compute avgE // average execution time over all tasks and cores
3: mobility(j) ← LST(j) - EST(j), for all tasks
4: currentTime ← 0, busy(m) ← 0, for all cores
5: while there are unscheduled tasks do
6: RT ← ready tasks in non-decreasing order of mobility
7: for each j ∈ RT do
8: invalidCount ← 0, fastestCore ← −1, bestExeTime ←∞
9: for each m ∈M do

10: δ(j,m)← 0
11: endTime ← E(j,m) + currentTime
12: if not busy(m) and endTime ≤ D(j) then
13: compute projected thermal profile for [currentTime, nextIdleTime]

// nextIdleTime is the next earliest time when all cores become idle
14: peakTemp ← maxm∈M T (j,m)
15: if peakTemp ≤ targetTemp then
16: if E(j,m) < bestExeTime then
17: fastestCore ← m, bestExeTime ← E(j,m), currentDelay ← 0
18: else if currentTime > 0 then
19: [ fastestCore, bestExeTime, currentDelay ] ←

DelayInsertion(G(V,E), j, m, currentTime, targetTemp, dMax-
Iter, avgE )

20: else if not busy(m) then
21: invalidCount ← invalidCount + 1
22: if invalidCount = |M | then
23: return INFEASIBLE
24: else if fastestCore 6= −1 then
25: δ(j, fastestCore)← 1 // assign j to fastestCore
26: ts(j) ← currentTime + currentDelay
27: tf(j) ← ts(j) + E(j, fastestCore)
28: busy(fastestCore) ← 1
29: if currentDelay > 0 then
30: break // allow no tasks to start executing between currentTime and

currentTime + currentDelay
31: update EST(j), for all unscheduled tasks
32: update mobility(j), for all unscheduled tasks
33: nextSchedPoint ← min{tf (j ) : tf (j ) > currentTime + currentDelay}
34: for each m ∈M do
35: if m becomes idle at nextSchedPoint then
36: busy(m) ← 0
37: currentTime ← nextSchedPoint
38: return FEASIBLE
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available core that allows the task to meet its deadline while keeping the peak

temperature below the target temperature. The fastest available core is chosen

to maximize the mobility of the successors of task j, thereby improving schedula-

bility. If no core is fast enough to execute task j by its deadline, ThermalSched

terminates. (We ignore Lines 18–19 and 29–30 in Algorithm 6, and the variables

currentDelay and dMaxIter for now. Their use will be explained in the next sec-

tion.) Our search-based scheduling approach permits the use of an efficient list

scheduler without global knowledge of temperature variation.

Observe that Algorithm 6 does not provide any details on computing the ther-

mal profile (Line 17). Since predicting highly accurate thermal profiles increases

time complexity, we propose two techniques based on the observations made in

Section 5.4.6. These techniques achieve different trade-offs between accuracy and

time complexity.

5.5.1 Steady-State Analysis Based Heuristic

As explained in Section 5.4.6, if task execution times are long compared to the

thermal time constants of the cores, steady-state analysis can usually rapidly and

accurately predict the resulting chip temperature.

The steady-state thermal profile can be computed by expressing (5.2) and (5.3)

for all the thermal elements as a system of linear equations of the form A ·T+B =

0, and of size |E| × |E|, where |E| is the total number of thermal elements.

Since the thermal conductance matrix A is fixed once a floorplan is given, the

inverse of the matrix can be pre-computed once and the temperature matrix can

be updated using a constant number of multiplications in each iteration. In our

work, we use Matrix TCL Lite [72], which is a C++ class library, to perform matrix
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operations. ThermalSched has a time complexity in O(|J |2 · |M |3). The time

complexity of the steady-state thermal analysis based heuristic (SSAB) is

in O(|J |2 · |M |3 ·maxIter).

5.5.2 Transient Analysis Based Heuristic

If task execution times are short, it is desirable to use transient analysis to

compute the projected thermal profile, as explained in Section 5.4.6. Essen-

tially, any existing thermal analysis technique can be used in our task assignment

and scheduling heuristic framework. To validate our transient analysis based

heuristic (TAB), we will use HotSpot [98] in our experiments. HotSpot is an

architecture-level thermal modeling tool that is based on an equivalent circuit of

thermal resistances and capacitances that correspond to microarchitecture blocks

and essential aspects of the thermal package [98]. The transient analysis based

heuristic has a time complexity of O(|J |2 · |M | · maxIter · H), where H denotes

the running time of HotSpot and depends on a number of input parameters such

as task execution times and number of cores in the MPSoCs.

5.6 Delay Insertion

Algorithm 6 always tries to schedule as many tasks as possible at every schedul-

ing point to maximize the mobility of later tasks. One possible consequence of

this greedy approach to task assignment and scheduling is that the chip peak

temperature may be so close to the target temperature that no future ready task

can execute without violating the target temperature bound, thus requiring a

higher target temperature to find a feasible task assignment and schedule. To

address this weakness in our heuristic framework, we introduce the concept of
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delay insertion. That is, when the chip peak temperature is at or near the target

peak temperature, we delay the execution of the next ready task by introducing

an idle interval before the task starts to allow the chip to cool down. This im-

proves the probability of later tasks being scheduled without exceeding the target

temperature bound.

Since steady-state thermal analysis depends on fast temperature rises and

falls, an idle time (or a delay inserted) between task executions has no effect on

the resulting peak temperature. On the other hand, transient thermal analysis

would capture the cooling effects of delay insertions. Hence, the concept of delay

insertions applies to the TAB heuristic only.

To demonstrate the potential benefits of delay insertions, we use the following

illustrative example. Consider a system with 5 identical real-time tasks running

on the MPSoC shown in Figure 5.1 with the associated execution time and 10×

the power consumption for each core. Without inserting any idle times, our TAB

heuristic finds a feasible assignment and schedule with a peak temperature of

51.60 ◦C. An algorithm capable of inserting appropriate delays would reduce the

peak temperature to 49.88 ◦C.

In the above example, delay insertion only reduces the chip peak temperature

by 1.72 ◦C because there are only 5 tasks in the system with relatively short

execution times. In other words, executing these tasks on the example MPSoC

does not significantly raise the chip peak temperature. If our tasks require 10×

the original execution times, i.e., a mean of 30 ms, then delay insertions would

reduce the chip peak temperature by 3.87 ◦C, from 66.22 ◦C to 62.35 ◦C.

We now explain the use of delay insertions in our heuristic framework. When-

ever an attempt to schedule a task on a core fails because the target temperature
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bound is exceeded, DelayInsertion is called (Lines 18–19 of Algorithm 6). If

an idle time has successfully been inserted into the schedule, our heuristic will

immediately move on to the next scheduling point by setting currentTime to

min{tf (j ) : tf (j ) > currentTime+currentDelay} and continue the assignment and

scheduling process (Lines 29–30 and Line 33 of Algorithm 6). No pending tasks are

allowed to run during [currentTime, currentTime + currentDelay). This not only

simplifies the algorithm, but is also reasonable since when an idle time has been

inserted, the current chip peak temperature is at or near the target temperature;

executing another task within the interval [currentTime, currentTime + delay)

would likely cause the target temperature to be exceeded.

Our delay insertion algorithm is shown in Algorithm 7. To find the appropriate

idle time to insert delays without sacrificing the schedulability of future tasks, we

use a binary search based approach. In each iteration, Algorithm 7 attempts to

schedule the current task onto the core currently under consideration such that

the resulting peak temperature does not exceed the target peak temperature. If

this is possible, Algorithm 7 will keep this scheduling and assignment only if the

current configuration has minimized the task finish time thus far. Hence, if an

assignment and schedule exists for the current task that does not require delay

insertions, that assignment and schedule will likely be selected (this design choice

maximizes the mobility of future tasks). Algorithm 7 halts when the maximum

number of iterations dMaxIer has been reached or an appropriate idle time has

been found. The appropriate idle time is found when the current assignment and

schedule do not exceed the target temperature and the chip peak temperature has

converged (Line 10 of Algorithm 7).

In our implementation, the search begins by setting the upper bound on the
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Algorithm 7 DelayInsertion(G(V,E), j, m, currentTime, targetTemp, dMaxIter,
avgE )

1: upperDelay ← avgE
2: lowerDelay ← 0
3: delay ← (upperDelay + lowerDelay) / 2
4: iter ← 0
5: oldPeakT ← 0
6: newPeakT ← 0
7: while iter < dMaxIter do
8: compute projected thermal profile for

[currentTime, currentTime + delay ] and
[currentTime + delay , nextIdleTime] // nextIdleTime is the next earliest
time when all cores become idle

9: newPeakT ← maxm∈M T (j,m)
10: if targetTemp > newPeak and |oldPeakT − newPeakT | < ε then
11: if E(j,m) + delay < bestExeTime and currentTime + delay + E(j, m)

≤ D(j) then
12: fastestCore ← m
13: bestExeTime ← E(j,m)
14: return [ fastestCore, bestExeTime, delay ]
15: else
16: return FAILURE
17: else if targetTemp > newPeakT then
18: upperDelay ← delay
19: else
20: lowerDelay ← delay
21: oldPeakT ← newPeakT
22: delay ← (upperDelay + lowerDelay) / 2
23: iter ← iter + 1
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delay to the average execution time of all task and core combinations and the lower

bound delay to 0. This design choice has the following justifications: (1) if the

upper bound is too large, DelayInsertion can be slow and (2) DelayInsertion

is most likely invoked when the chip temperature is near the target temperature.

Inserting an idle time similar to the average task execution time would allow,

on average, the chip to cool down enough to permit most tasks to eventually be

scheduled on the current core without sacrificing the efficiency of the heuristic.

5.7 Experimental Results

This section quantifies the benefits of our proposed approach and assess the

quality of our heuristic framework.

5.7.1 Experimental Setup

In our experiments, we used the Embedded System Synthesis Benchmarks

Suite (E3S) [36]. E3S contains 17 processing elements (PEs). In our experiments,

we used the following 11 cores: AMD K6-2 450, AMD K6-2E 400 Mhz/ACR, AMD

K6-2E+ 500 Mhz/ACR, AMD K6-IIIE+ 550 Mhz/ACR, IBM PowerPC 405GP

266 Mhz, IBM PowerPC 750CX 500 MHz, IDT32334 100 MHz, IDT79RC32V334-

150, IDT79RC64575 250 MHz, Motorola MPC555 40 MHz, and TI TMS320C6203

300 MHz. (Note that we did not use all 17 cores because for each floorplan, we

attempted to use cores with similar sizes.) The E3S task sets follow the organiza-

tion of the EEMBC benchmarks [36]. There are five benchmarks in total: Auto

(24 tasks), Consumer (12 tasks), Networking (13 tasks), Office (5 tasks), and Tele-

com (30 tasks). Each benchmark represents an application, as its name indicates.

Each sink task, which does not have any successors, has a hard real-time deadline.
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For the E3S benchmarks, we experimented with a number of floorplans with

2×2, 2×3, and 3×3 core arrangements. We use the coarse-grained thermal model

presented in Section 5.2.2 instead of the fine-grained thermal model in Section 5.4.4

due to the lack of realistic benchmarks for which power profile variations within

cores are known. Each benchmark has different floorplans, as specific tasks are

required to run on specific cores among the 11 cores mentioned above. The specific

configuration of each floorplan and the corresponding core names are provided in

Tables 5.1 and 5.2, respectively. The chips consist of heterogeneous cores. Since

cores with different power consumptions tend to have different areas, the vertical

and lateral thermal conductance between neighboring cores, and between cores

and heatsink elements will vary and can be computed as described in Section 5.2.2.

We also used TGFF [35], which is a pseudo-random task graph generator, in

our experiment to generate 10 additional benchmarks. For each benchmark, there

are up to 5 task graphs and the total number of tasks ranges from 4 to 29 tasks

(this is similar to the number of tasks in the E3S benchmarks). Each task has at

most 3 predecessors and 2 successors. A 2×2 core arrangement was used, with

an average core width and height of 5 mm and an average power consumption of

10 W.

5.7.2 MILP Formulation Performance

In this set of experiments, we used CPLEX with AMPL to solve instances of

the MILP formulation in Section 5.4 for optimal peak temperature, energy, and

peak power. Each E3S benchmark was run for two 2×2, one 2×3, and one 3×3

floorplan.
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TABLE 5.1

FLOORPLAN CONFIGURATIONS

Benchmark First Row Second Row Third Row

Auto-2×2-1 14, 7 1, 7

Auto-2×2-2 1, 7 1, 7

Auto-2×3 1, 7, 7 1, 7, 7

Auto-3×3 14, 14, 14 1, 1, 1 7, 7, 7

Consumer-2×2-1 7, 7 11, 11

Consumer-2×2-2 7, 7 9, 7

Consumer-2×3 7, 7, 7 11, 11, 11

Consumer-3×3 7, 7, 7 9, 9, 9 7, 7, 7

Networking-2×2-1 2, 3 4, 5

Networking-2×2-2 5, 5 4, 4

Networking-2×3 5, 4, 5 5, 4, 5

Networking-3×3 5, 5, 5 4, 4, 4 5, 5, 5

Office-2×2-1 4, 3 4, 12

Office-2×2-2 4, 3 4, 3

Office-2×3 4, 8, 4 3, 8, 3

Office-3×3 3, 8, 3 8, 12, 8 3, 8, 3

Telecom-2×2-1 14, 7 1, 7

Telecom-2×2-2 1, 7 1, 7

Telecom-2×3 1, 7, 7 1, 7, 7

Telecom-3×3 14, 14, 14 1, 1, 1 7, 7, 7
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TABLE 5.2

CORE NAMES

Index Core

1 AMD ElanSC520-133 MHz

2 AMD K6-2 450

3 AMD K6-2E 400Mhz/ACR

4 AMD K6-2E+ 500Mhz/ACR

5 AMD K6-IIIE+ 550Mhz/ACR

6 Analog Devices 21065L - 60 MHz

7 IBM PowerPC 405GP - 266 Mhz

8 IBM PowerPC 750CX - 500 MHz

9 IDT32334-100 MHz

10 IDT79RC32364-100

11 IDT79RC32V334-150

12 IDT79RC64575-250MHz

13 Imsys Cjip 40 Mhz

14 Motorola MPC555 - 40MHz

15 NEC VR5432 - 167 MHz

16 ST20C2 50 Mhz

17 TI TMS320C6203-300MHz

154



We first examine the temperature differences between optimizing peak tem-

perature and optimizing energy or peak power. The solutions from the MILP

solver are shown in Figure 5.4. The x-axis shows the different benchmarks and

floorplans. The y-axis shows the resulting peak temperatures. Some results are

unavailable due to the MILP solver running out of memory before finding a so-

lution. Our approach reduces peak temperatures by 9.19 ◦C on average, and up

to 24.66 ◦C, when compared to the method that minimizes energy. Most of the

improvement results from considering the effects of temporal thermal variations.
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Figure 5.4. Peak temperature minimization vs. energy and peak power
minimization. The results were obtained by solving the MILPs directly.
Clearly, energy minimization is not effective in reducing the chip peak

temperature.
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The results in Figure 5.4 do not show significant differences in peak tempera-

tures between our approach and the approach that minimizes peak power. This

is because the low-power embedded cores used in our benchmarks have low power

densities. For example, the floorplans for the Consumer benchmarks resulted in

a chip power density ranging from 0.27 W/mm2 to 0.36 W/mm2 with an average

chip power density of 0.32 W/mm2. As a result, little spatial temperature vari-

ation was observed. However, spatial temperature variation will increase when

higher power density chips are used, as explained in Section 5.3.

In the first run, we used the original chip power density. The chip power

density was then increased by an order of magnitude (once again to obtain similar

power densities to those described by Link and Vijaykrishnan [65]) in the second

run. The resulting chip power densities ranged from 0.75 W/mm2 to 3.13 W/mm2

with an average power density of 2.28 W/mm2. As shown in Figure 5.5, for these

cores our method reduces peak temperature by 9.58 ◦C on average, and up to

23.25 ◦C, when compared to peak power minimization. These results demonstrate

the advantage of considering spatial thermal variations.

There exist situations where optimal peak temperature cannot be obtained

by either energy or peak power minimization. This situation was observed in

the Networking benchmark with a 2×3 core arrangement (depicted in Figure 5.6,

diagram not drawn to scale). Due to the characteristics of this benchmark, at

least two cores must be active simultaneously at some time. In the case of energy

and peak power minimization, the optimal solution consists of executing on cores

m2 and m5 in parallel. This yields an optimal peak power of 28 W and an optimal

energy of 35.46 J. The peak temperature obtained in this case is 61.45 ◦C. Using

our approach, cores m3 and m4 will be executing simultaneously. This solution
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Figure 5.5. Peak temperature minimization vs. energy and peak power
minimization for higher power density chips. The results were obtained

by solving the MILPs directly. Here, as the chip power density increases,
spatial thermal variation becomes significant and peak power

minimization is not effective in reducing the chip peak temperature.

gives an optimal peak temperature of 58.15 ◦C, which is about 3 ◦C lower than

either energy or peak power minimization. However, this solution yields a peak

power of 32 W and a total energy of 36.20 J, which means that neither energy nor

peak power minimization can achieve this optimal peak temperature.

Even in the cases where peak power (or energy) minimization can yield opti-

mal peak temperature, it is still relevant to minimize peak temperature directly.

Firstly, there is no guarantee that an optimal peak temperature will be obtained

by minimizing peak power, as the latter considers temporal thermal variation but

ignores spatial thermal variation. Secondly, there may exist a range of possible

peak temperatures as a result of a single optimal peak power. If such a range is

large, the actual peak temperature of a chip can vary significantly.
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Figure 5.6. An example 2×3 floorplan with associated power
consumption for each core.
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To illustrate this scenario, we performed an additional experiment using a

slightly modified Consumer benchmark. In this version, task deadlines were mod-

ified in such a way that at least two tasks must execute in parallel. We used a

2×3 floorplan with homogeneous processors. The experiment was run twice. In

the first run, we used the original chip power density. The chip power density was

then increased by a factor of 10 (once again to obtain similar power densities as

in [65]) in the second run. For this benchmark, there exist four distinct parallel

core assignments yielding the same optimal peak power but different peak tem-

peratures. The left bars in Figure 5.7 show the peak temperatures for each of

these four assignments in the first run. The right bars show the range of possible

peak temperatures of the chip with a higher power density. The results show that

the difference in peak temperature for the same peak power can be over 5 ◦C for

the higher power density chip. Clearly, peak power minimization is not sufficient,

especially when it is predicted that the power density of future chips will continue

to increase.

Finally, when using the TGFF benchmarks described earlier, the MILP solver

could handle eight out of ten problem instances. Minimizing peak temperature

directly instead of minimizing energy reduced peak temperatures by 9.41 ◦C on

average and up to 24.19 ◦C. In addition, when compared to peak power minimiza-

tion, peak temperature minimization reduced peak temperatures by 1.27 ◦C on

average and up to 6.71 ◦C.

The above results allow for a general conclusion to be drawn. Average power

minimization suffers due to temporal and spatial thermal variation. Peak power

minimization ignores spatial thermal variation. Peak temperature minimization

takes both types of thermal variation into account. Variation in floorplan and
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Figure 5.7. Bar plot illustrating the resultant peak temperatures for the
different core assignments that can be obtained given the same peak
power. The maximum difference in peak temperatures is higher than

5 ◦C for the Networking benchmark, which contains only 12 tasks.

other task execution times results in variation in task mobility, resulting in vari-

ation in the peak temperature improvements achieved by our approach.

As previously mentioned, the MILP-based approach is only suitable for small

problem instances. We next examine the performance of our heuristic framework,

which is more scalable.

5.7.3 Performance of Steady-State Analysis Based Heuristic

We assess the performance of our SSAB algorithm (Section 5.5) by comparing

its solutions to the ones from the MILP solver (Section 5.4.1) as well as the results

from Xie’s and Hung’s Heuristic 1 [111], which we refer to as the X&H heuristic.

The X&H heuristic calls HotSpot to compute the temperatures. Figure 5.8 com-

pares the results from the SSAB and X&H heuristics to the optimal solution from

the MILP formulation. We used HotSpot to compare the peak temperatures for a

fair comparison. Results for benchmarks that were not successfully solved by the
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Figure 5.8. Performance comparison between the steady-state analysis
based heuristics (based on HotSpot), the MILP, and Xie and Hung’s

heuristic [111].

X&H algorithm are omitted.

The X&H heuristic deviates from the optimal solution by 10.94 ◦C on average

and 38.40 ◦C in the worst case. On the other hand, the SSAB heuristic finds

an optimal solution in many cases while giving results that deviate by at most

3.40 ◦C from optimality (and 0.22 ◦C on average) requiring at most 50 binary

search iterations for each benchmark. Both heuristics require similar running

times, but the SSAB heuristic never performs worse than the X&H heuristic.

When the X&H heuristic was tested on the 10 TGFF benchmarks mentioned

previously, we found that it could only solve two of the benchmarks, with a maxi-

mum deviation from optimality of 7.74 ◦C. On the other hand, the SSAB heuristic

could solve four, one of which was a problem instance so large that it proved in-

tractable for the MILP solver. For the three other benchmarks, the SSAB heuristic

found the same solutions as the MILP solver.

161



To demonstrate that the SSAB heuristic can efficiently solve larger problem

instances, we considered a benchmark that consists of 30 tasks and a 4×4 core

arrangement of homogeneous processors. First, we attempted to use the MILP

solver. As expected, no solution was returned, as the 3.58 GB RAM workstation

on which CPLEX was executing ran out of memory. The SSAB heuristic found a

solution using at most 50 binary search iterations (although the quality of the

solution is unknown).

We used a discretized Fourier heat flow model in the SSAB heuristic. It differs

from that in HotSpot. However, the experiments in this section show that the

peak temperatures from the two models differed by less than 5 ◦C on average.

This indirectly served as a validation of our thermal model.

5.7.4 Performance of Transient Analysis Based Heuristic

We now assess the performance of the TAB heuristic described in Section 5.5

using the benchmarks from Section 5.7.1. The TAB heuristic calls HotSpot to

determine transient temperatures. Since the original task execution times for the

E3S benchmarks tend to be short, dynamic thermal effects can be significant.

We compare the peak temperatures obtained by the MILP solver and the TAB

heuristic, as shown in Figure 5.9. When compared to the results from the MILP

solver, the TAB heuristic reduces the peak temperature by up to 0.67 ◦C and

0.06 ◦C on average. This is because transient analysis can more accurately predict

temperatures when performing assignment and scheduling.

The TAB heuristic also improves the task finish times. Let the speedup be the

ratio of the finish time of the last task in the MILP schedule to that in the TAB

schedule. The maximum, minimum, and average speedups are 78.13×, 1.21×,
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Figure 5.9. Performance comparison between the transient analysis
based heuristics (based on HotSpot) and the MILP. Here, the MILP
sometimes results in a higher peak temperature because it uses the

steady-state thermal analysis, which ignores dynamic thermal effects.

and 9.02×, respectively. Such a significant speedup results from the TAB heuristic

being much less pessimistic in estimating temperatures and hence scheduling more

tasks in parallel. However, the SSAB heuristic is more efficient than the TAB

heuristic. Specifically, the SSAB heuristic is about 175× faster than the TAB

heuristic on average for benchmarks with short task execution times; this difference

further increases for benchmarks with longer task execution times.

5.7.5 Performance of Transient Analysis Based Heuristic with Delay Insertions

To determine the impact of delay insertions (Section 5.6) on reducing the

chip peak temperature, we once again used the E3S and TGFF benchmarks. We

compared the solutions from the original TAB heuristic to those from the improved

TAB heuristic (iTAB). As before, since the power densities of the E3S cores are
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quite low compared to those of today’s processors [65], we increased each cores

power consumption by a factor of 10. The results for the E3S benchmarks are

shown in Table 5.3. The first column shows the benchmark names and associated

floorplans. The second main column presents the peak temperatures from the TAB

heuristic and the iTAB heuristic, as well as the differences in peak temperatures

for the original task execution times. Finally, the last main column presents the

data for the case where task execution times are multiplied by a factor of 10.

With the original task execution times, the effect of delay insertions is minimal

for some benchmarks (e.g., networking). In fact, for two of the telecom bench-

marks, iTAB actually performs worse than TAB. This is because iTAB always

tries to insert delays, even when it may not be optimal to do so. For instance, if

the chip is currently too hot to execute the next ready task, iTAB tries to insert

idle time before scheduling that task. However, it may sometimes be better to se-

lect a different task that can meet the peak temperature constraint in Algorithm 6

without inserting delays.

When the execution times are increased by a factor of 10, we see the benefits

of using the iTAB heuristic. This is because the average chip peak temperature

is much higher than in the original cases and inserting idle times between task

executions cools the chip down. iTAB produces solutions that reduce peak tem-

peratures by 3.15 ◦C on average and up to 11.92 ◦C.

iTAB did not significantly improve on the TGFF benchmark solutions found

by TAB; both solved four out of the ten problem instances. The largest improve-

ment in peak temperature was 1.71 ◦C. This is because most tasks in the TGFF

benchmarks did not have enough slack for delay insertion to be effective.

Based on these results, we conclude that iTAB reduces the peak temperature
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of systems with time slack. It must be noted, however, that iTAB also requires

longer running times. On average, iTAB takes 19.2× longer to run than the

original TAB algorithm. There is a trade-off between solution quality and time

complexity of these algorithms.

5.8 Summary

We presented an assignment and scheduling technique that uses a mixed-

integer linear program solver to optimize IC peak temperature under precedence

and hard real-time constraints based on phased steady-state thermal analysis.

Experimental results show a peak temperature reduction of 10.09 ◦C on average

and up to 30.75 ◦C for embedded processors when compared to energy minimiza-

tion. When compared to peak power minimization, our approach reduced peak

temperature of 8.98 ◦C on average and up to 23.25 ◦C for high power density chips.

To efficiently solve this NP-hard problem, we also proposed a task assignment

and scheduling heuristic framework in which the actual method for temperature

prediction depends on task durations. Phased steady-state analysis is appropriate

when task execution times are long compared to the thermal time constants of the

cores and transient analysis should be used otherwise. Our phased steady-state

analysis based heuristic finds solutions with a maximum deviation from optimality

of 3.40 ◦C. When compared to previous work, the heuristic achieves a temperature

reduction of 10.94 ◦C on average. The transient analysis based heuristic models

and exploits the transient thermal effects of short tasks to further improve upon

the existing solution by 0.67 ◦C in the best case. Finally, we showed that incorpo-

rating the concept of delay insertion into the proposed heuristic framework results

in an additional peak temperature reduction of up to 11.92 ◦C.
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TABLE 5.3

EFFECTIVENESS OF DELAY INSERTIONS IN REDUCING CHIP

PEAK TEMPERATURES

Temperature (◦C)

Original Exe.Times (s) Exe. Times (s) × 10

Benchmark TAB iTAB Diff. TAB iTAB Diff.

Consumer 2×2-1 65.78 60.56 5.22 84.30 80.90 3.40

2×2-2 86.24 81.47 4.77 86.24 81.47 4.77

2×3 63.32 60.06 3.26 79.24 76.81 2.43

3×3 61.97 60.28 1.69 78.60 76.85 1.75

Networking 2×2-1 47.49 47.45 0.04 57.81 55.43 2.38

2×2-2 47.29 46.85 0.45 57.83 53.48 4.35

2×3 46.80 46.80 0.00 53.96 53.87 0.09

3×3 46.80 46.79 0.01 53.45 53.36 0.09

Office 2×2-1 54.22 54.22 0.00 75.96 75.96 0.00

2×2-2 54.14 54.14 0.00 75.37 75.37 0.00

2×3 54.21 54.21 0.00 67.91 67.89 0.02

3×3 54.13 54.13 0.00 67.43 57.94 9.49

Telecom 2×2-1 50.28 51.70 -1.42 72.06 65.53 6.53

2×2-2 49.48 52.79 -3.31 71.26 59.34 11.92

2×3 46.38 47.40 -1.02 51.37 51.30 0.08
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Since real-time systems can experience great temperature variations at run-

time due to the differences in actual task execution times, we intend to solve the

peak temperature minimization problem online to further reduce temperature and

increase system reliability.
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CHAPTER 6

CONCLUSIONS

6.1 Summary

Designing real-time systems under physical and resource constraints is an im-

portant problem that has received significant research attention in the past several

years. In this dissertation, we discussed the design of real-time systems under en-

ergy, processing, and network constraints (i.e., resource constraints), as well as

temperature constraints (i.e., physical constraints). To address processing over-

loads in real-time control applications, we proposed an efficient online heuristic

that is compatible with a more general real-time task model in Chapter 2. In

terms of network overload management for wireless soft real-time applications, we

presented an energy-aware holistic scheduling framework in Chapter 3. Chapter 4

discussed an optimal DVFS speed selection policy to maximize the performance of

temperature-constrained systems. Finally, a temperature-aware assignment and

scheduling algorithm for hard real-time applications running on a multicore system

is given in Chapter 5.

6.2 Future Research Directions

Chapters 2.6, 3.8, 5.8, and 4.7 outlined some specific future research directions

that logically follow from the work in respective chapters. We now present a

168



high-level overview of two boarder research problems.

6.2.1 Designing for High-Performance and Dependability on Multicore and Many-

Core Systems

Embedded systems are traditionally designed in an ad-hoc basis. To make their

design feasible when a large number of processor cores is available, there are some

fundamental questions that need to be answered. For instance, communication

delays and cost may cause centralized task assignment and scheduling to become

obsolete. A localized approach that is adaptive in nature is needed.

In addition, with a large number of processor cores, the management of re-

sources such as memory, network cards, and disks is crucial in time-sensitive sys-

tems. A low-overhead arbitration mechanism must be in place.

Finally, as voltage scaling continues to take place to save energy, the system

is more prone to soft errors during task execution. Providing fault-tolerance is

essential but is often in conflict with other design goals such as energy savings. The

problem is even more challenging in large-scale systems and must be addressed.

6.2.2 Designing Highly-Adaptive, Highly-Reconfigurable Cyber-Physical Systems

(CPS)

We are now entering the era where systems that have previously been clas-

sified as belonging to science fiction are quickly becoming a reality, e.g., remote

surgery or in-home medical care. With a large number of devices forming a large

network, there are two main challenges that need to be addressed: (i) locally and

dynamically reconfigure the nodes to keep the CPS alive in face of node failures,

and (ii) distribute dynamic workload to save energy.
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