Performance of Networked Control Systems under Sporadic Feedback

Michael Lemmon - Dept of Electrical Engineering University of Notre Dame, USA

KTH - Stockholm, Sweden - March 21, 2011

Networked Control Systems

Smart Grid

- Distributed Dispatch Renewable
- Demand Management Generation
- Integration of Renewable Generation

Flocks of Autonomous Vehicles

Micro-Grid

- unmanned or manned aircraft
- in-flight refueling

PHEV

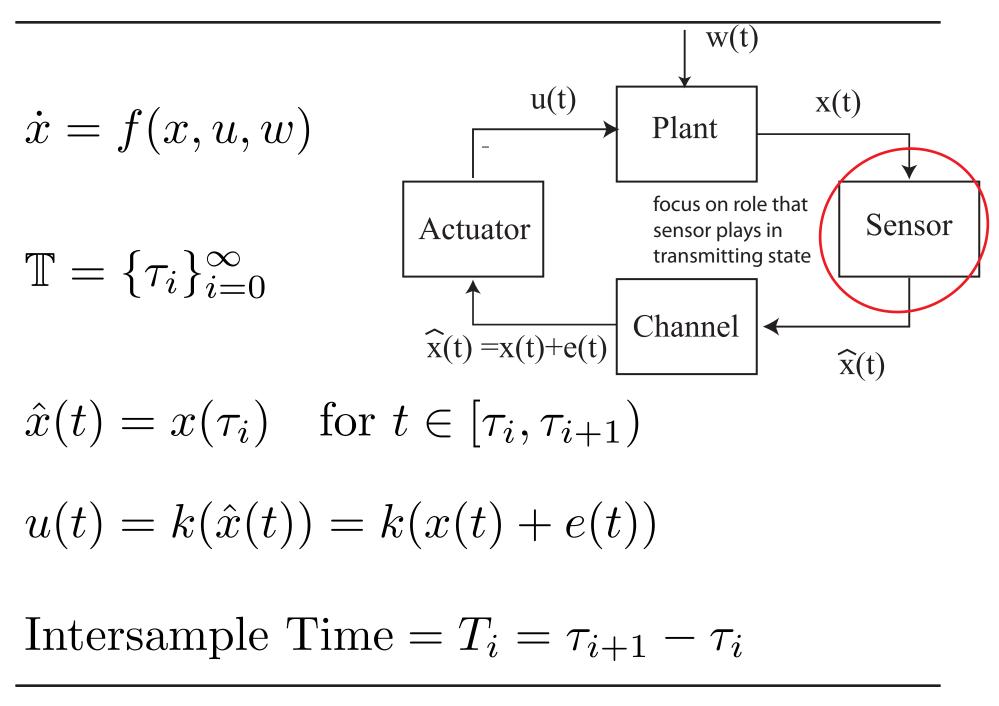
- situational aware retasking

Feedback loops are closed over digital communication networks Variations in network QoS result in sporadic feedback

Outline

- Event-triggered Sporadic Feedback
 - ISS Event Triggers and Minimum Attention Control
 - Intersample Time Scaling
 - Controller Design
- Sporadic Feedback over Wireless Channels
 - Almost sure stability
 - Exponential Burstiness
 - Controller Design
- Future Work

System Model - Event-triggered Sampling

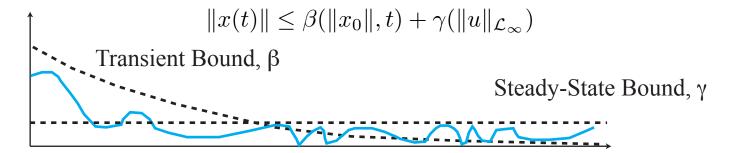


Input to State Stability

Process Model: $\dot{x}(t) = f(x(t), w(t)), \quad x(0) = x_0$

Input-to-State Stability (ISS)

The system is ISS if there exists $\mathcal{K}L$ function β and class \mathcal{K} function γ such that for any initial condition, $x(0) = x_0$, then the response under any input $u \in \mathcal{L}_{\infty}$ for all $t \geq 0$ satisfies



ISS-Lyapunov Function

 C^1 function $V : \Re^n \to \Re$ is **ISS-Lyapunov** function if there exist class \mathcal{K} functions $\underline{\alpha}, \overline{\alpha}, \alpha$, and γ such that

$$\underline{\alpha}(\|x\|) \le V(x) \le \overline{\alpha}(\|x\|)$$
$$\dot{V} \le -\alpha(\|x\|) + \gamma(\|w\|)$$

If V is an ISS-Lyapunov function, then the system is ISS.

Consider the system equation

$$\dot{x} = f(x, k(x+e)) = f(x, k(\hat{x}))$$

Given a function $V(\cdot) : \mathbb{R}^n \to \mathbb{R}$ such that

INPUT-TO-STATE STABILITY

$$\underline{\alpha}(|x|) \le V(x) \le \overline{\alpha}(|x|)$$
$$\dot{V} \le -\alpha(|x|) + \gamma(|e|)$$

Select Sampling Instants $\mathbb T$ where $0<\sigma<1$ so that

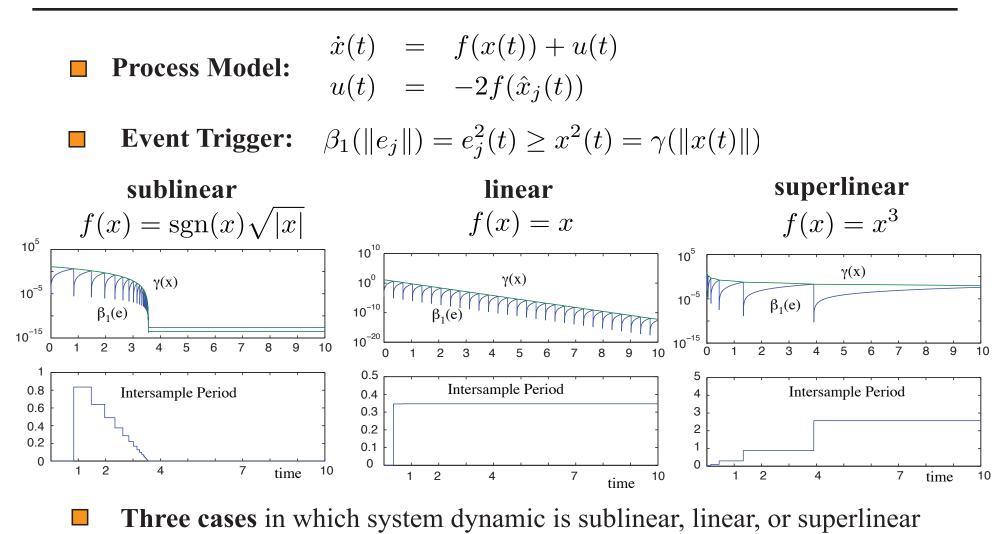
EVENT TRIGGER

$$|e(t)| < \gamma^{-1}(\sigma(\alpha(|x|)))$$

This is sufficient to imply Asymptotic Stability

KTH - NCS Performance under Sporadic Feedback - March 21, 2011

Event-Trigger and Intersampling Time



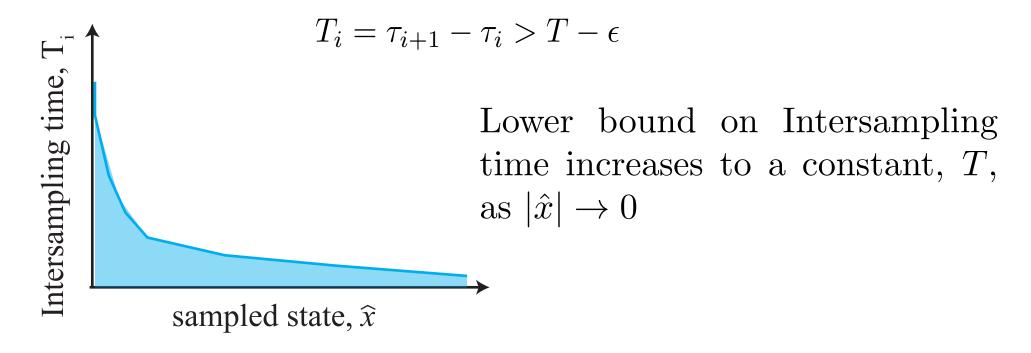
- sublinear dynamics : exhibit ZENO sampling
- linear dynamics exhibit PERIODIC sampling
- superlinear dynamics exhibit MINIMUM ATTENTION PROPERTY

KTH - NCS Performance under Sporadic Feedback - March 21, 2011

Minimum Attention Property

Lower bound on intersampling Time, T_i , as a function of the sampled state, \hat{x} .

For all $\epsilon > 0$, there exists $\delta > 0$ and $T \ge 0$ (independent of ϵ) such that for any $|\hat{x}| < \delta$



ISS Event-Trigger with Disturbances

• Consider the plant with disturbance: $\dot{x} = f(x, k(\hat{x}), w)$ and let $\eta : \mathbb{R}^n \to \mathbb{R}^m$ be a **weighting function** with associated error,

$$\tilde{\eta}(x) = \eta(x) - \eta(\hat{x})$$

• Let $V : \mathbb{R}^n \to \mathbb{R}$ be C^1 function such that

$$\underline{\alpha}(|x|) \leq V(x) \leq \overline{\alpha}(|x|)$$

$$\dot{V} \leq -\alpha(|x|) + \chi(|x|)\gamma_1(|\tilde{\eta}|) + \gamma_2(|w|)$$

• The **modified event trigger** renders the sampled data system ISS.

$$|\tilde{\eta}| \le \gamma_1^{-1} \left(\frac{\sigma \alpha(|x|) + \gamma_3(\overline{w})}{\chi(|x|)} \right) = \theta(|x|)$$

• Rewrite the error's, $e = x - \hat{x}$, time derivative as

$$\frac{d}{dt}|e(t)| = |f(\hat{x} - e, k(\hat{x}), w)|$$

• Under usual Lipschitz assumptions,

$$\frac{d}{dt}|e(t)| < \phi(|\hat{x}|) + L_1|e| + L_2\overline{w}$$

which can be solved to show that the weighted error satisfies

$$|\tilde{\eta}| \le \frac{\phi(|\hat{x}|) + \delta\overline{w}}{L_1} \left(e^{L_1(t-\tau_i)} - 1 \right)$$

Intersampling Time

• Since $|\tilde{\eta}| < \theta(|x|)$, the intersampling time may be bounded as $T_i \ge \frac{1}{L_1} \log \left(1 + \frac{\theta(|\hat{x}_{i+1}|)}{\phi(|\hat{x}_i|) + \delta \overline{w}} \right) = T^*(|\hat{x}_i|, |\hat{x}_{i+1}|)$

where $\phi(|x|)$ is class \mathcal{K}, δ, L_1 are Lipschitz constants, and

$$\theta(|x|) = \gamma_1^{-1} \left(\frac{\sigma \alpha(|x|) + \gamma_3(\overline{w})}{\chi(|x|)} \right)$$

is the event-triggering threshold

• Minimum attention property requires the term in the parentheses approach a constant strictly greater than 1 as $|\hat{x}_i|$ and $|\hat{x}_{i+1}|$ go to zero. • Intersampling time under bounded $(|w(t)| \le \overline{w})$ disturbances

$$T_i \ge \frac{1}{L_1} \log \left(1 + \frac{\gamma_1^{-1} \left(\frac{\gamma_3(\overline{w})}{\chi(|\hat{x}_{i+1}|)} \right)}{\phi(|\hat{x}_i|) + \delta \overline{w}} \right)$$

- Since the closed-loop system is ISS under the event-trigger, the numerator is bounded by a positive constant that is independent of \hat{x}_{i+1} .
- So as long as χ is a monotone function, this system will be minimally attentive.

Minimal Attentive Control without Disturbances

• Intersampling time when w(t) = 0 is

$$T_i \ge \frac{1}{L_1} \log \left(1 + \frac{\theta(|\hat{x}_{i+1}|)}{\phi(|\hat{x}_i|)} \right)$$

where

$$\theta(|\hat{x}_{i+1}|) = \gamma_1^{-1} \left(\frac{\sigma \alpha(|\hat{x}_{i+1}|)}{\chi(|\hat{x}_{i+1}|)} \right)$$

• The system is *strictly* minimally attentive (i.e. $T^* \to \infty$ as $\hat{x} \to 0$ when

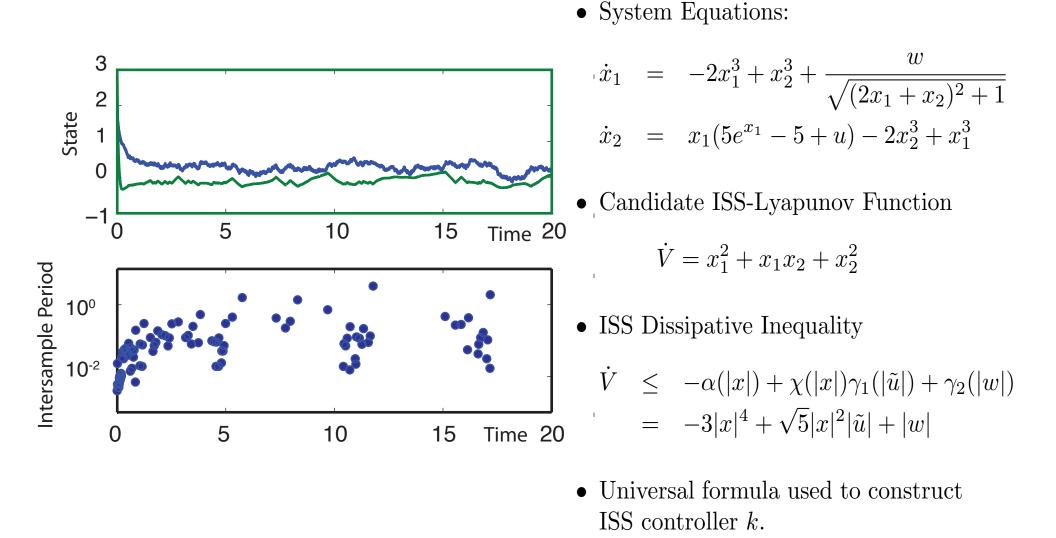
$$\lim_{|\hat{x}_i| \to 0} \frac{\phi(|\hat{x}_i|)}{\theta(|\hat{x}_{i+1}|)} = 0$$

Controller Specifications for Strict Minimum Attentiveness

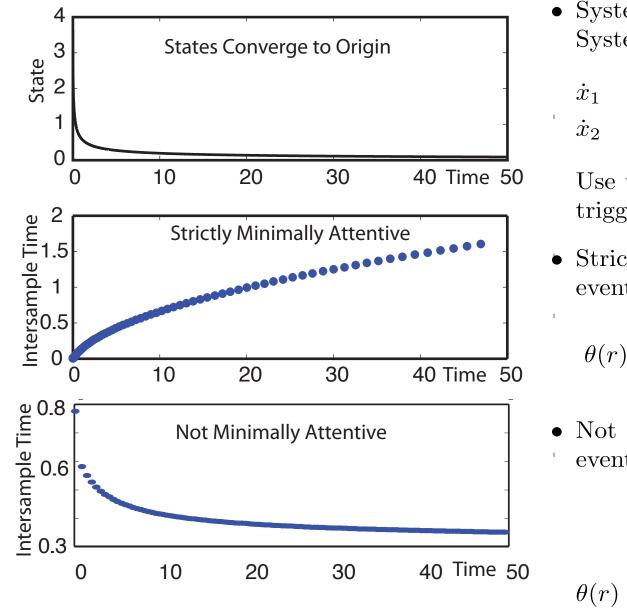
- Note that without disturbance the system is asymptotically stable so that $|\hat{x}_i| \to 0$ and $|\hat{x}_{i+1}| \to 0$.
- System is strictly minimally attentive if

$$\begin{split} \lim_{s \to 0} \frac{\phi(s)}{s} &= 0 \quad f(x, k(x), 0) \text{ has order greater than linear} \\ \lim_{s \to 0} \frac{\phi(s)}{\theta(s)} &= 0 \quad \text{order of } \gamma_1 \text{ greater than order of } \alpha(s)/\chi(s) \\ \lim_{s \to 0} \theta(s) &= 0 \quad \text{Order of } \alpha \text{ greater than order of } \chi. \end{split}$$

- These are constraints on the class \mathcal{K} functions bounding \dot{V} . In particular, the second condition places a constraint on the *error rejection* ability of the controller.
- The controller must be appropriately selected to ensure the strict minimum attention property.



Error Rejection and Minimum Attention Property



• System with no disturbance, w = 0. System Equations:

$$\dot{x}_1 = -2x_1^3 + x_2^3$$

$$\dot{x}_2 = x_1(5e^{x_1} - 5 + u) - 2x_2^3 + x_1^3$$

Use two different controllers/eventtriggers.

• Strictly Minimally Attentive under event-triggering threshold

$$\theta(r) = \gamma_1^{-1} \left(\frac{\sigma \alpha(r)}{\chi(r)} \right) = \frac{1.2r^2}{5\sqrt{5}}$$

Not Minimally Attentive under
event-triggering threshold

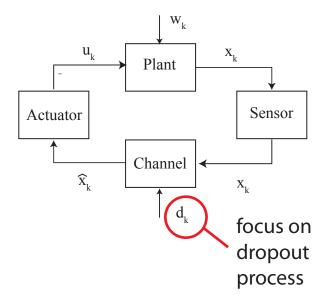
$$\theta(r) = \frac{1.2r^3}{5\sqrt{5}}$$

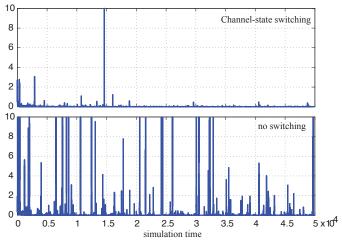
 $\theta(r)$ is same order as f.

KTH - NCS Performance under Sporadic Feedback - March 21, 2011

Sporadic Feedback due to Dropouts

- Sporadic feedback also occurs when feedback packets are *dropped* by the communication link.
- Prior work has examined the impact such dropouts have on *mean square stability*
- We'll examine a stronger notion of stability (almost sure) under dropouts that are *exponentially bursty*.
- The result will highlight the relation between disturbance rejection, stability, and sporadic feedback.





Two different mean square stable systems

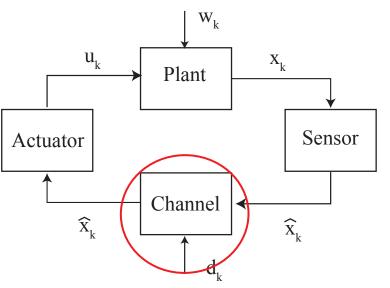
• Scalar Positive System:

$$x_{k+1} = \begin{cases} \alpha x_k + w_k & d_k = 1\\ \beta x_k + w_k & d_k = 0 \end{cases}$$

- $\{d_k\}_{k=0}^{\infty}$ is a dropout process.
- Cumulative dropout process is

$$d_{\ell,k} = \sum_{j=\ell}^{k-1} d_j$$

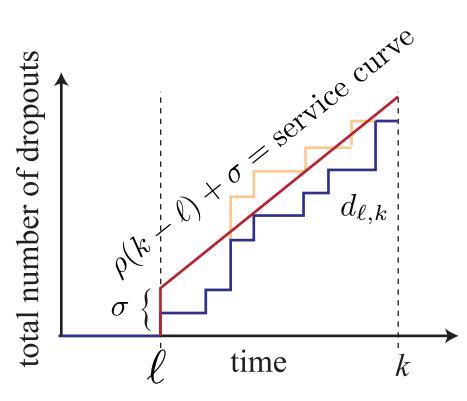
• The system state is



focus on role that channel plays in dropping data

$$x(k;x_0) = \alpha^{d_{0,k}} \beta^{k-d_{0,k}} + \sum_{\ell=1}^k \alpha^{d_{\ell,k}} \beta^{k-\ell-d_{\ell,k}} w_{\ell-1}$$

Exponentially Bounded Bursty Dropouts



• The dropout process $\{d_k\}_{k=0}^{\infty}$ is (ρ, σ) -exponentially bounded bursty (EBB) if there exists $\gamma > 0$ such that

$$\Pr\left\{d_{\ell,k} > \rho(k-\ell) + \sigma\right\} \le e^{-\gamma\sigma}$$

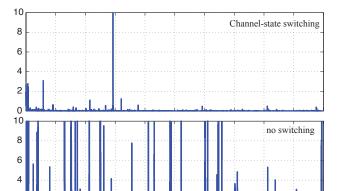
- The parameter ρ is an "average dropout rate"
- The parameter σ is the "size" of a dropout "burst" (set of consecutive dropouts).
- γ is called the *burst exponent*

Almost Sure Stability

Mean square stability

$$\lim_{k \to \infty} \mathbb{E}[x_k^T x_k] \to c$$

There is a finite probability of being arbitrarily far away from origin.



2.5

3 simulation time

15

Two different mean square stable systems

• Almost sure stability requires that the probability of being arbitrarily far from the origin goes to zero as $k \to \infty$.

 $\Pr \{ \limsup_k A_k^{\epsilon} \} = 0 \text{ where } A_k^{\epsilon} = \text{event } |x_k| > \epsilon$

- Almost sure stability is a *stronger* stability concept than mean square stability.
- More useful for safety-critical systems.

Almost Sure Stability without Disturbances

• Assume that $d_{\ell,k} \leq \rho(k-\ell) + \sigma$ where $\rho < -\frac{\log \beta}{\log \alpha - \log \beta}$, We can then bound the state as

$$x_k \le \mu^k \left(\frac{\alpha}{\beta}\right)^\sigma x_0$$

where $\mu = \alpha^{\rho} \beta^{1-\rho}$.

• We can use this bound on x_k along with the definition of exponential burstiness to show that

$$\sum_{k=1}^{\infty} \Pr\left\{A_k^{\epsilon}(x_0)\right\} \le C_1 \sum_{k=1}^{\infty} k^{-2} = \frac{C_1 \pi^2}{6}$$

• From the Borel-Cantelli lemma

$$\sum_{k=1}^{\infty} \Pr \left\{ A_k^{\epsilon} \right\} < \infty \Rightarrow \Pr \left\{ \limsup_k A_k^{\epsilon} \right\} = 0 \Leftrightarrow A.S. \text{ stability}$$

If we now consider disturbances where $\rho < -\frac{\log \beta}{\log \alpha - \log \beta}$, we can use the same techniques to show that the disturbed system is almost sure stable provided

• Disturbance is asymptotically rejected in the sense that there exists s > 0 (**response exponent**) such that

$$\mu^k x_0 + \sum_{j=0}^{k-1} \mu^j w_{k-j-1} \le Ck^{-s}$$

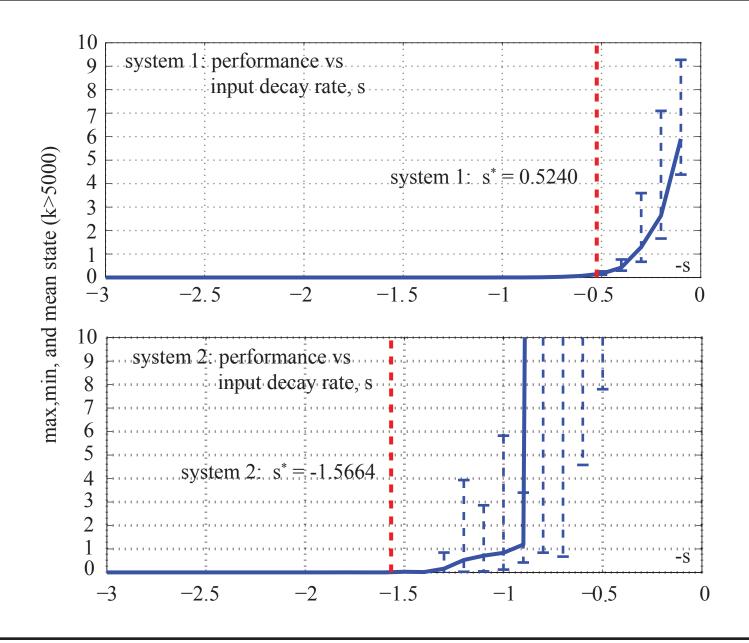
• The response exponent, s, and burst exponent, γ satisfy

$$s\gamma > \log \alpha - \log \beta$$

Disturbance Rejection and Dropout Sensitivity

- If the response to the input is uniformly bounded (s = 0), then we know the system is *almost sure unstable*.
- If the response exponent can be taken arbitrarily close to zero, then the system is A.S. stable provided the burst exponent is sufficiently large.
- In fact if we can guarantee that the probability of a burst greater than $\sigma^*(\epsilon)$ can never occur then we can guarantee A.S. stability.
- This shows a fundamental tradeoff exists between a system's sensitivity to dropout bursts and its disturbance rejection ability.

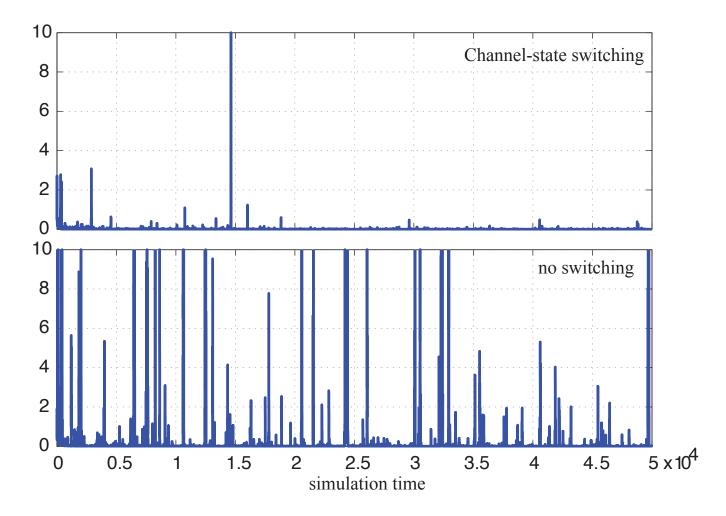
Simulation Experiments Bernoulli Channel



KTH - NCS Performance under Sporadic Feedback - March 21, 2011

Simulation Experiments - Gilbert-Elliott Channel

Switching controller on detected channel state



KTH - NCS Performance under Sporadic Feedback - March 21, 2011

- Impact of Sporadic Feedback on Control System Performance/Stability
- Sporadic Feedback due to
 - event-triggering (choice)
 - channel burstiness (dropouts)
- In both cases, a useful strategy involves changing/switching controller's disturbance rejection ability to provide control performance assurances.
- Application to real-time control over wireless communication links