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Networked Control Systems

Flocks of Autonomous Vehicles
- unmanned or manned aircraft
- in-flight refueling
- situational aware retasking

Batteries

Electric
Motor

Regenerative Braking

power
inverter

storage 

Micro-Grid 

Renewable
Generation 

PHEV 

Smart Grid
- Distributed Dispatch
- Demand Management
- Integration of Renewable
   Generation

1) Feedback loops are closed over digital communication networks
2) Variations in network QoS result in sporadic feedback
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Outline

• Event-triggered Sporadic Feedback

– ISS Event Triggers and Minimum Attention Control

– Intersample Time Scaling

– Controller Design

• Sporadic Feedback over Wireless Channels

– Almost sure stability

– Exponential Burstiness

– Controller Design

• Future Work
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System Model - Event-triggered Sampling

Plant

Channel

SensorActuator

x(t)

x(t)

u(t)

x(t) =x(t)+e(t)

w(t)

ẋ = f(x, u, w)

u(t) = k(x̂(t)) = k(x(t) + e(t))

x̂(t) = x(τi) for t ∈ [τi, τi+1)

T = {τi}∞i=0

Intersample Time = Ti = τi+1 − τi

focus on role that
sensor plays in
transmitting state
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Input to State Stability

Process Model:

Input-to-State Stability (ISS)

ISS-Lyapunov Function

ẋ(t) = f(x(t), w(t)), x(0) = x0

The system is ISS if there exists KL function β and class K function γ
such that for any initial condition, x(0) = x0, then the response under
any input u ∈ L∞ for all t ≥ 0 satisfies

‖x(t)‖ ≤ β(‖x0‖, t) + γ(‖u‖L∞)

Transient Bound, β
Steady-State Bound, γ

C1 function V : �n → � is ISS-Lyapunov function if there exist
class K functions α, α, α, and γ such that

α(‖x‖) ≤ V (x) ≤ α(‖x‖)
V̇ ≤ −α(‖x‖) + γ(‖w‖)

If V is an ISS-Lyapunov function, then the system is ISS.
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ISS Event-triggering

Consider the system equation

ẋ = f(x, k(x+ e)) = f(x, k(x̂))

Given a function V (·) : Rn → R such that

α(|x|) ≤ V (x) ≤ α(|x|)
V̇ ≤ −α(|x|) + γ(|e|)

Select Sampling Instants T where 0 < σ < 1 so that

|e(t)| < γ−1(σ(α(|x|)))

This is sufficient to imply Asymptotic Stability

EVENT TRIGGER

INPUT-TO-STATE
STABILITY
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Event-Trigger and Intersampling Time

Process Model: 
ẋ(t) = f(x(t)) + u(t)
u(t) = −2f(x̂j(t))

Event Trigger: β1(‖ej‖) = e2
j (t) ≥ x2(t) = γ(‖x(t)‖)
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f(x) = xf(x) = sgn(x)
√

|x| f(x) = x3
sublinear linear superlinear 

Three cases in which system dynamic is sublinear, linear, or superlinear 
sublinear dynamics : exhibit ZENO sampling
linear dynamics exhibit PERIODIC sampling
superlinear dynamics exhibit MINIMUM ATTENTION PROPERTY
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Minimum Attention Property

Lower bound on intersampling Time, Ti, as a function of the sam-
pled state, x̂.

For all ε > 0, there exists δ > 0 and T ≥ 0 (independent of ε) such
that for any |x̂| < δ

Ti = τi+1 − τi > T − ε

Lower bound on Intersampling
time increases to a constant, T ,
as |x̂| → 0
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ISS Event-Trigger with Disturbances

• Consider the plant with disturbance: ẋ = f(x, k(x̂), w) and
let η : Rn → Rm be a weighting function with associated
error,

η̃(x) = η(x)− η(x̂)

• Let V : Rn → R be C1 function such that

α(|x|) ≤ V (x) ≤ α(|x|)
V̇ ≤ −α(|x|) + χ(|x|)γ1(|η̃|) + γ2(|w|)

• The modified event trigger renders the sampled data sys-
tem ISS.

|η̃| ≤ γ−1
1

(
σα(|x|) + γ3(w)

χ(|x|)

)
= θ(|x|)
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Bounding the Weighted Error

• Rewrite the error’s, e = x− x̂, time derivative as

d

dt
|e(t)| = |f(x̂− e, k(x̂), w)|

• Under usual Lipschitz assumptions,

d

dt
|e(t)| < φ(|x̂|) + L1|e|+ L2w

which can be solved to show that the weighted error satisfies

|η̃| ≤ φ(|x̂|) + δw

L1

(
eL1(t−τi) − 1

)
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Intersampling Time

• Since |η̃| < θ(|x|), the intersampling time may be bounded as

Ti ≥
1

L1
log

(
1 +

θ(|x̂i+1|)
φ(|x̂i|) + δw

)
= T ∗(|x̂i|, |x̂i+1|)

where φ(|x|) is class K, δ, L1 are Lipschitz constants, and

θ(|x|) = γ−1
1

(
σα(|x|) + γ3(w)

χ(|x|)

)

is the event-triggering threshold

• Minimum attention property requires the term in the paren-
theses approach a constant strictly greater than 1 as |x̂i| and
|x̂i+1| go to zero.
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Minimal Attentive Control under Disturbances

• Intersampling time under bounded (|w(t)| ≤ w) disturbances

Ti ≥
1

L1
log



1 +
γ−1
1

(
γ3(w)

χ(|x̂i+1|)

)

φ(|x̂i|) + δw





• Since the closed-loop system is ISS under the event-trigger,
the numerator is bounded by a positive constant that is in-
dependent of x̂i+1.

• So as long as χ is a monotone function, this system will be
minimally attentive.
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Minimal Attentive Control without Disturbances

• Intersampling time when w(t) = 0 is

Ti ≥
1

L1
log

(
1 +

θ(|x̂i+1|)
φ(|x̂i|)

)

where

θ(|x̂i+1|) = γ−1
1

(
σα(|x̂i+1|)
χ(|x̂i+1|)

)

• The system is strictly minimally attentive (i.e. T ∗ → ∞ as
x̂ → 0 when

lim
|x̂i|→0

φ(|x̂i|)
θ(|x̂i+1|)

= 0



KTH - NCS Performance under Sporadic Feedback - March 21, 2011

Controller Specifications for Strict Minimum Attentiveness

• Note that without disturbance the system is asymptotically
stable so that |x̂i| → 0 and |x̂i+1| → 0.

• System is strictly minimally attentive if

lims→0
φ(s)
s = 0 f(x, k(x), 0) has order greater than linear

lims→0
φ(s)
θ(s) = 0 order of γ1 greater than order of α(s)/χ(s)

lims→0 θ(s) = 0 Order of α greater than order of χ.

• These are constraints on the class K functions bounding V̇ .
In particular, the second condition places a constraint on the
error rejection ability of the controller.

• The controller must be appropriately selected to ensure the
strict minimum attention property.
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Example - Controller Design
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• System Equations:

ẋ1 = −2x3
1 + x3

2 +
w√

(2x1 + x2)2 + 1

ẋ2 = x1(5e
x1 − 5 + u)− 2x3

2 + x3
1

• Candidate ISS-Lyapunov Function

V̇ = x2
1 + x1x2 + x2

2

• ISS Dissipative Inequality

V̇ ≤ −α(|x|) + χ(|x|)γ1(|ũ|) + γ2(|w|)
= −3|x|4 +

√
5|x|2|ũ|+ |w|

• Universal formula used to construct
ISS controller k.
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Error Rejection and Minimum Attention Property
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Strictly Minimally Attentive

Not Minimally Attentive

States Converge to Origin

• System with no disturbance, w = 0.
System Equations:

ẋ1 = −2x3
1 + x3

2

ẋ2 = x1(5e
x1 − 5 + u)− 2x3

2 + x3
1

Use two different controllers/event-
triggers.

• Strictly Minimally Attentive under
event-triggering threshold

θ(r) = γ−1
1

(
σα(r)

χ(r)

)
=

1.2r2

5
√
5

• Not Minimally Attentive under
event-triggering threshold

θ(r) =
1.2r3

5
√
5

θ(r) is same order as f .
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Sporadic Feedback due to Dropouts

Plant

Channel

SensorActuator

xk

xk

dk

uk

xk

wk

• Sporadic feedback also occurs when feedback
packets are dropped by the communication
link.

• Prior work has examined the impact such
dropouts have on mean square stability

• We’ll examine a stronger notion of stability
(almost sure) under dropouts that are ex-
ponentially bursty.

• The result will highlight the relation between
disturbance rejection, stability, and sporadic
feedback.
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Two di�erent mean square stable systems



KTH - NCS Performance under Sporadic Feedback - March 21, 2011

System Model - Channel Dropouts

Plant

Channel

SensorActuator

xk

xk

dk

uk

xk

wk

focus on role that
channel plays in
dropping data

• Scalar Positive System:

xk+1 =

{
αxk + wk dk = 1
βxk + wk dk = 0

• {dk}∞k=0 is a dropout process.

• Cumulative dropout process is

d�,k =

k−1∑

j=�

dj

• The system state is

x(k;x0) = αd0,kβk−d0,k +

k∑

�=1

αd�,kβk−�−d�,kw�−1



KTH - NCS Performance under Sporadic Feedback - March 21, 2011

Exponentially Bounded Bursty Dropouts

• The dropout process {dk}∞k=0 is
(ρ, σ)-exponentially bounded
bursty (EBB) if there exists γ > 0
such that

Pr {d�,k > ρ(k − �) + σ} ≤ e−γσ

• The parameter ρ is an ”average
dropout rate”

• The parameter σ is the ”size” of a
dropout ”burst” (set of consecutive
dropouts).

• γ is called the burst exponent
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Almost Sure Stability
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• Mean square stability

lim
k→∞

E[xT
k xk] → c

There is a finite probability of being
arbitrarily far away from origin.

• Almost sure stability requires that the probability of being
arbitrarily far from the origin goes to zero as k → ∞.

Pr {lim supk A
ε
k} = 0 where Aε

k = event |xk| > ε

• Almost sure stability is a stronger stability concept than
mean square stability.

• More useful for safety-critical systems.
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Almost Sure Stability without Disturbances

• Assume that d�,k ≤ ρ(k − �) + σ where ρ < − log β
logα−log β , We

can then bound the state as

xk ≤ µk

(
α

β

)σ

x0

where µ = αρβ1−ρ.

• We can use this bound on xk along with the definition of
exponential burstiness to show that

∞∑

k=1

Pr {Aε
k(x0)} ≤ C1

∞∑

k=1

k−2 =
C1π

2

6

• From the Borel-Cantelli lemma

∑∞
k=1 Pr {Aε

k} < ∞ ⇒ Pr {lim supk A
ε
k} = 0 ⇔ A.S. stability
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Almost Sure Stability with Disturbances

If we now consider disturbances where ρ < − log β
logα−log β , we can use

the same techniques to show that the disturbed system is almost
sure stable provided

• Disturbance is asymptotically rejected in the sense that there
exists s > 0 (response exponent) such that

µkx0 +
k−1∑

j=0

µjwk−j−1 ≤ Ck−s

• The response exponent, s, and burst exponent, γ satisfy

sγ > logα− log β
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Disturbance Rejection and Dropout Sensitivity

• If the response to the input is uniformly bounded (s = 0),
then we know the system is almost sure unstable.

• If the response exponent can be taken arbitrarily close to zero,
then the system is A.S. stable provided the burst exponent
is sufficiently large.

• In fact if we can guarantee that the probability of a burst
greater than σ∗(ε) can never occur then we can guarantee
A.S. stability.

• This shows a fundamental tradeoff exists between a system’s
sensitivity to dropout bursts and its disturbance rejection
ability.
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Simulation Experiments Bernoulli Channel
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Simulation Experiments - Gilbert-Elliott Channel
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Final Remarks

• Impact of Sporadic Feedback on Control System Per-
formance/Stability

• Sporadic Feedback due to

– event-triggering (choice)

– channel burstiness (dropouts)

• In both cases, a useful strategy involves chang-
ing/switching controller’s disturbance rejection abil-
ity to provide control performance assurances.

• Application to real-time control over wireless com-
munication links
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