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Abstract— Network utility maximization (NUM) problems
seek to maximize the aggregate utility network users receive
for transmitting at a given data rate subject to limits on link
throughput. Distributed solutions to the NUM problem assume
one can directly measure link utilization; something that may
not always be possible in practice. This paper examines the use
of consensus filtering methods for the distributed estimation of
link utilization in a distributed NUM algorithm. In particular,
we establish sufficient conditions under which distributed net-
work utility maximization using distributed consensus filtering
converges to the problem’s optimal solution.

I. INTRODUCTION

A networked system is a collection of subsystems where
individual subsystems exchange information over some com-
munication channel. There are many large-scale networked
system in the real world, such as the electrical power grid,
wireless sensor networks, and the Internet. An interesting
research problem seeks to optimize the overall system behav-
ior subject to constraints generated by limited resources in
the network. Network utility Maximization (NUM) problems
maximize the aggregate utility by transmitting at a specified
data rate subject to linear inequality constraints on link
throughput. Many problems can be formulated as NUM
problems, such as resource allocation, data gathering and
power dispatch [1], [2]. Due to the complexity of these large-
scale networked system, centralized optimization techniques
may not be preferable since they require an unacceptably
large amount of coordination and signaling. We are interested
in distributed optimization algorithms, where subsystems
solve the optimization problem collaboratively through com-
munication between subsystems.

A variety of distributed algorithms have been proposed
to solve the NUM problem. Early distributed algorithms
[3] [2] suggest that the network’s state will asymptotically
converge to its optimal point if the communication between
subsystems is frequent enough. The dual decomposition
approach proposed by Low [4] is the most widely used
among the existing algorithms. This approach shows that
the message passing complexity might become unacceptable
when the network size gets large. Recently, several other
distributed optimization algorithms have been proposed. In
[5], a subgradient based method is used to generate an
approximate optimal solution for the unconstrained problem.
Each agent in the network updates the decision vector
containing all the decision variables. In [6], a randomized
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incremental subgradient method was proposed. In this dis-
tributed algorithm, communication is governed by a Markov
chain. This algorithm assumes that local constraints can be
implemented as a projection on the feasible set. Such a
projection may be difficult to implement in practice. In both
[5] and [6], information exchange happens each time the
gradient or subgradient following update is applied and this
may result in very expensive communication cost.

Our recent work focuses on event-triggered distributed al-
gorithms [7]. Under event-triggered communication schemes,
links and users in a subsystem transmit information to each
other when a local ”error” signal exceeds a state dependent
threshold. In this framework, agents transmit information
sporadically rather than in a periodic way and the message
passing complexity is greatly reduced. In order to solve the
constrained optimization problem, we use the augmented
Lagrangian method [8]. This approach transforms the con-
strained NUM problem into an unconstrained one by intro-
ducing penalty for infeasible data rates. One disadvantage
of this method is that computational agents are needed to
monitor the overall data flow going through each link in the
network. Plugging such devices into the network may be
expensive which makes this approach impractical for large
networks.

The motivation for this work is to use a consensus filter es-
timating link utilization in the network. Consensus problems
have a long history in distributed computing and management
science [9]. In networked systems, ”consensus” means all
agents agree on a specified state according to some inter-
action rule. This interaction rule determines how an agent
exchanges information with its neighbors in the network in
order to reach an agreement. Consensus algorithms have
broad application in networked systems, such as flocking,
swarming, and formation control, see [10], [11], [12] and
also in sensor networks [13], [14], [15]. This paper uses an
event-triggered consensus filter to estimate link utilization.
These estimates of link utilization are used by the distributed
algorithm for solving the NUM problem. Our main result is
that this closed loop system can generate an approximate
optimal solution to the NUM problem.

The rest of this paper is organized as follows. Section
II introduces the distributed NUM problem without direct
measurement of link utilization. Section III formulates the
system model for solving the NUM problem. Section IV
studies the error for data rates and link states. Section V
presents the main result of this paper. Section VI gives
an example to verify our theoretical result. Section VII
summarizes this paper.



II. PROBLEM STATEMENT

Consider a network with a set S = {1, 2, . . . , N} users
and L = {1, 2, . . . ,M} links. Let A ∈ {0, 1}M×N denote
the incidence matrix mapping the users in S onto the links in
L. Let aji denote the element in the jth row and ith column
of A, so that aji is one if link j is used by user i and is
zero otherwise. Let āTj denote the jth row of the incidence
matrix, then ā

T
j x denote the total data flow going through

link j. Given a link j ∈ L, let Sj ⊂ S denote the set of all
users using link j. In a similar way, given a user i ∈ S , let
Li ⊂ L denote the set of all links used by user i. If j ∈ Li,
let S−i

j = Sj − {i}, and S−i =
�

j∈Li
Sj − {i}.

Let x ∈ RN be the data rate vector whose ith component,
xi ∈ R, is the data rate for the ith user. Let Ui(·) : R → R+

be a continuous function where i ∈ S and Ui(xi) represents
the utility user i receives for transmitting at data rate xi.
Let c ∈ RM be the link limit vector whose jth component,
cj ∈ R is the largest total rate that can be carried by link j.
The network utility maximization (NUM) problem seeks a
data vector, x ∈ RN that maximizes the summed utility of
all network users subject to the total data rate in each link
being less than or equal to the capacity limit c. Formally,
this problem may be stated as

Maximize: U(x) =
�N

i=1 Ui(xi)
w.r.t: xi ≥ 0, i = 1, 2, . . . , N

subject to: Ax ≤ c.

The function U(·) : RN → R represents the total network
utility, constraint Ax ≤ c constrains the total flow through
each link to be less than link limit vector, c, and the decision
variable is the network rate vector, x.

An approximate solution to the NUM problem may be
computed using the augmented Lagrangian method [8].
This approach converts the contrained NUM problem into
a sequence of unconstrained optimization problems by aug-
menting the utility function, U(x), with a penalty term that
prescribes a high cost to infeasible data rates. The augmented

Lagrangian function Lp(·; ·) : RN × RM → R is a function
that takes values

Lp(x;w) = −
�

i∈S

Ui(xi) +
�

j∈L

ψj(x;w),

for x ∈ RN , w ∈ RM and where the real valued function
ψj(·; ·) : RN × RM → R takes values

ψj(x;w) =

�
0 if cj − ā

T
j x ≥ 0

1
2wj

(āTj x− cj)2 otherwise . (1)

for all j ∈ L.
A primal algorithm based on the augmented Lagrangian

method converges to an arbitrarily small neighborhood of
the NUM problem’s minimizer by approximately minimizing
Lp(x;w) for a sufficiently small weighting vector w ∈ RM

[8]. One may therefore use a standard gradient descent
recursion

x[k + 1] = max {0, x[k]− γ∇xLp(x[k], w)} , (2)

for k = 0, 1, . . . ,∞, where γ is a step size. This recursive
equation generates a sequence {x[k]}∞k=0 that asymptotically
approach a neighborhood of the solution to the NUM prob-
lem. This neighborhood may be made arbitrarily small by
selecting the weighting vector w to be sufficiently small.

The update algorithm in equation (2) can be implemented
in a distributed manner. In particular, the ith user’s update
equation takes the form

xi[k + 1] = max

�
0, xi[k]− γ

∂Lp(x[k], w)

∂xi

�
, (3)

where
∂Lp

∂xi
= −∂Ui(xi[k])

∂xi
+

�

j∈Li

max

�
0,

φj [k]

wj

�
, (4)

φj [k] = ā
T
j x[k]− cj . (5)

The variable, φj [k], is called the jth link’s state. It represents
the jth component of the vector Ax[k]− c. The information
that user i needs in this recursion is its past data rate, xi[k],
the sensitivity of its own utility function, ∂Ui/∂xi, and the
weighted link states, φj , for all those links used by user i

(i.e. j ∈ Li). The local data rate and utility sensitivity are
clearly available to user i. The link states, however, must be
forwarded to the user from the links j ∈ Li. This recursion
is distributed in the sense that it only requires information
from the user and those links that are being used by that
user.

The distributed update shown in equation (3) assumes that
some computational agent directly measures the link states,
φ =

�
φ1 φ2 · · · φM

�T ∈ RM . In many applications,
direct measurement of link utilization may not be possible.
In particular, link utilization may need to be inferred from
measured user rates. In a wireless communication channel,
for instance, it may be difficult to measure the actual capacity
of the channel since this is often a function of the number
of users using that channel. In general, it may be easier
to directly measure what the users generate, rather than
how fully the link resources are utilized. Even in wired
networks, direct measurement of link utility is based on
indirect measurement of time delays, which may vary from
user to user.

If direct measurement of link utilization is not possible,
then individual agents must estimate link utilization based
on the information received from other users using the
same link. These link estimates, however, will vary from
user to user, particularly if the time between received data
varies over time. In this context, one can propose using a
distributed consensus filter to estimate the link states, which
are then used by the gradient update in equation (3) to update
actual user rates. The issue addressed in this paper concerns
stability of systems in which distributed consensus is used
in a closed loop manner to update user data rates.

III. SYSTEM MODEL

Figure 1 illustrates the system consisting of N users
that are connected to a communication network through
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Fig. 1. System Model

transmitter (TX) and receiver (RX) subsystems. All systems
are assumed to be synchronized to the same clock tick.
The ith TX subsystem has a sequence Ti = {τ ik}∞k=0 of
increasing integers where τ

i
k denotes the kth consecutive

time when the TX component transmits a message to the
communication channel. We assume that all messages are
transmitted with at most one clock-tick of delay and no data
dropouts.

The information transmitted by the ith TX subsystem are
user i’s data rate xi and his estimate for link utilization φ

i,
where the element in φ

i is φ
i
j , for all j ∈ Li. The update

rule is

xi[k + 1] =



xi[k] + γ
∂Ui(xi[k])

∂xi
− γ

ω

�

j∈Li

�
φ
i
j [k]

�+



+

,

(6)

φ
i
j [k + 1] = φ

i
j [k] + γ




�

�∈S
−i
j

1

|Sj |

�
φ̂
�
j [k]− φ

i
j [k]

�




− γα



φi
j [k]−



xi[k] +
�

�∈S
−i
j

x̂�[k]− cj







 ,

(7)

where φ̂
�
j is the latest link state received from user �, x̂� is the

latest data rate received from user �. S−i
j denotes the other

users who transmit information through each link j ∈ Li and
|Sj | denotes the number of users on each link j ∈ Li. Ui(xi)
denotes the utility function for user i. The utility functions
satisfy the following assumption [7].

Assumption 1: Ui(x) : Ω → R+ is continuous and
(a). ∂Ui/∂x > 0;
(b). ζ < ∂

2
Ui/∂

2
x < 0.

where ζ is a lower bound for ∂
2
Ui/∂

2
x, and Ω ⊂ R

+

denotes a feasible set for the NUM problem.
In the update rules (6)-(7), we let γ > 0 denote a stepsize

for the system, and we assume a common penalty parameter
ω > 0 for all link estimates. In order to ensure convergence

of the method, γ and ω should be sufficiently small. The
feedback gain α > 0 in the consensus filter drives the link
estimate, φi

j , to the optimal value. The notation [f(x[k])]+

defines a positive projection ensuring data rates xi[k] � 0
for all k = 0, 1, . . . ,∞. The consensus filter used in (7)
is based on the ”equal neighbor model” proposed in [12].
This agreement algorithm using the equal neighbor model
achieves asymptotic consensus when there is no difference
between sampled data and actual data. Here, φ̂

l
j and x̂l

denote the sampled data, and φ
i
j and xi denote the actual

data. In the following sections, we will show that when the
difference is not exactly zero, but bounded above by some
threshold, then asymptotic consensus can still be preserved.

The transmission (TX) subsystem of the ith user decides
when to transmit the user data rate xi and the estimated
link state vector φ

i. Let Ti = {τ ik}∞k=0 denote a sequence
of integers where τ

i
k < τ

i
k+1 for i ∈ S . The integer τ

i
k is

the kth consecutive time instant when user i transmits the
data state and link state of user i. This means we can define
another signal, x̂

i[·] : Z+ → R and φ̂
i
j [·] : Z+ → R that

takes the values

x̂i[k] = xi[τ
i
k], (8)

φ̂
i
j [k] = φ

i
j [τ

i
k], (9)

for k ∈ [τ ik, τ
i
k+1 − 1] and all k = 0, 1, . . . ,∞.

IV. ERROR INEQUALITIES

Showing stability of the interconnected system is equiv-
alent to showing that the error generated at each iteration
step converges to zero asymptotically. Since the following
analysis is concerned with the asymptotic behavior of the
errors, it is convenient to transform the original system
dynamics (6)-(7) into a set of coupled error inequalities.

Let x∗
i denote the data rate for user i that maximizes the

utility of the network, and φj
∗ denote the link utilization

when data rates for all users i ∈ Sj are optimal, where j ∈
Li. Obviously, we want to guarantee that all users l ∈ Sj

agree on the same link state φj
∗ by use of the consensus

filter. In other words, we should have φ
l
j [k] → φj

∗, as k →



+∞, for all l ∈ Sj . The optimal value of x∗
i and φj

∗ should
satisfy the following relationship:

1

ω

�

j∈Li

�
φ
∗

j

�+
=

∂Ui(x∗
i )

∂xi
, (10)

φj
∗ =

�

l∈Sj

x
∗

l − cj . (11)

Define the data rate error x̃i and link state error φ̃i
j as

x̃i = xi − x
∗

i ,

φ̃
i
j = φ

i
j − φ

∗

j .

From the update rule for data rate, (6), we obtain

x̃i[k + 1] =

�
xi[k] + γ

∂Ui(xi[k])

∂xi

− γ

ω




�

j∈Li

φ
i
j [k]




+



+

− x
∗

i .

With the non-expansive property of the Euclidean projection,
we have

|x̃i[k + 1]| �
����xi[k] + γ

∂Ui(xi[k])

∂xi

− γ

ω




�

j∈Li

φ
i
j [k]




+

− x
∗

i

������
.

Substituting (10), and using the mean value theorem, we
obtain

|x̃i[k + 1]| �
�
1 + γ

∂U
2
i (ξi[k])

∂x
2
i

�
|x̃i[k]|+

γ

ω

�

j∈Li

���φ̃i
j [k]

��� ,

with a stepsize γ < −2/ζ chosen to satisfy Assumption 1.
For notational convenience, we let

βi = 1 + γ
∂U

2
i (ξi[k])

∂x
2
i

where βi ∈ (0, 1). Therefore, the data rate error satisfies the
following inequality

|x̃i[k + 1]| � βi|x̃i[k]|+
γ

ω

�

j∈Li

|φ̃i
j [k]|. (12)

Next we analyze the error of the link states, φ̃i
j , for j ∈ Li.

According to the consensus algorithm (7), substituting (11),
we obtain

φ̃
i
j [k + 1] =

�
1− γα− γ

|Sj | − 1

|Sj |

�
φ̃
i
j [k]

+γ
1

|Sj |
�

�∈S
−i
j

φ̃
l
j [k] + γα

�

h∈Sj

x̃h[k]

+γα

�

�∈S
−i
j

(x̂l[k]− xl[k])

+γ
1

|Sj |
�

�∈S
−i
j

�
φ̂
l
j [k]− φ

l
j [k]

�
.

Then we have

|φ̃i
j [k + 1]| �

�
1− γα− γ

|Sj | − 1

|Sj |

�
|φ̃i

j [k]|

+γ
1

|Sj |
�

�∈S
−i
j

|φ̃l
j [k]|+ γα

�

h∈Sj

|x̃h[k]|

+γ
1

|Sj |
�

�∈S
−i
j

|φ̂l
j [k]− φ

l
j [k]|

+γα

�

�∈S
−i
j

|x̂l[k]− xl[k]|. (13)

Here, we characterize the relationship between the data
rate error and link state error, (12)-(13). In order to ensure
stability, we have to derive threshold conditions for |φ̂l

j [k]−
φ
l
j [k]| and |x̂l[k]−xl[k]|, based on the link state error, φ̃l

j [k].
These thresholds are derived in the next section.

V. MAIN RESULT

This section shows (6)-(7) will converge to the optimal
solution of the NUM problem. The main result establishes
a threshold condition for message passing ensuring stability
for the closed-loop system. In the following analysis, we
will choose γ > 0 and ω > 0 to be constants, which are
sufficiently small.

The following lemma studies the data error vector x̃ =
(x̃1, x̃2, . . . , x̃N )T ∈ RN . Consider the following system,

x̃[k + 1] = Bx̃[k] + u[k]

y[k] = Dx̃[k] (14)

where B = diag(β1 · · ·βN ) ∈ RN×N , D ∈ R
�M

j=1 |Sj |×N

containing M blocks, and each block Dj ∈ R|Sj |×N has
same rows. For each block Dj , let dqh denote the element
in the qth row and hth column of Dj , then for q = 1, . . . , |Sj |
and h = 1, . . . , N , we have

dqh =

�
γα if h ∈ Sj

0 otherwise

Lemma 1: The system (14) is l2 stable.
Proof: The transfer function for the discrete-time sys-

tem (14) is denoted by G(z), where G(z) = D(zI −B)−1.
The H∞ norm for the system,

�G(z)�H∞ � �D�∞�(zI −B)−1�H∞

� Nγα�(zI −B)−1�H∞

= Nγα

����diag
�

1

z − β1
, . . . ,

1

z − βN

�����
H∞

� max
i

Nγα

1− βi

� Nγα

1− β

< ∞,

where β = maxi βi, for i = 1, . . . , N and the second
inequality holds since each link j ∈ L has at most N users.
Therefore, the system is l2 stable.



Next, we derive threshold conditions for sampling. Let ρ
and η be two constants such that 0 < ρ < 1 and 0 < η < 1.
If

|φ̂i
j [k]− φ

i
j [k]| � ρ

�
φ
i
j [k]

�+
, (15)

and

|x̂i[k]− xi[k]| � η
�
φ
i
j [k]

�+ (16)

hold for all j ∈ L and i ∈ S and for k = 0, . . . ,∞, we can
guarantee that

|φ̂i
j [k]− φ

i
j [k]| � ρ|φ̃i

j [k]|,
|x̂i[k]− xi[k]| � η|φ̃i

j [k]|,

since the optimal link state φ
∗
j � 0, as defined in (11). From

(13), we know that for all i ∈ S and j ∈ L,

|φ̃i
j [k + 1]| �

�
1− γα− γ

|Sj | − 1

|Sj |

�
|φ̃i

j [k]|

+γ

�
1

|Sj |
(ρ+ 1) + αη

� �

�∈S
−i
j

|φ̃l
j [k]|

+γα

�

h∈Sj

|x̃i[k]|. (17)

Consider the following system

φ̃[k + 1] = Eφ̃[k] + v[k]

z[k] = Fφ̃[k] (18)

where φ̃ = (φ̃1, . . . , φ̃M )T ∈ R
�M

j=1 |Sj | with each φ̃j ∈
R|Sj |. Notice that by ordering φ̃ in this way, we actually put
together the error for link j’s state from all users h ∈ Sj ,
for j = 1, 2, . . . ,M . In (18), E = diag(E1, . . . , EM ) ∈
R

�M
j=1 |Sj |×

�M
j=1 |Sj |, where each Ej ∈ R|Sj |×|Sj | is sym-

metric. Let eqh denote the element in the qth row and hth
column of Ej so that for j = 1, 2, . . . ,M ,

eqh =





1− γα− γ

|Sj |−1
|Sj |

if q = h,

γ

�
1

|Sj |
(ρ+ 1) + αη

�
otherwise.

F ∈ RN×
�M

j=1 |Sj | contains M blocks, where each block
Fj ∈ RN×|Sj |. For each Fj , let fhq denote the hth row and
qth column of Fj , such that for h = 1, . . . , N and for a
q ∈ {1, . . . , |Sj |}, we have

fhq =

� γ
ω if j ∈ Lh,

0 otherwise.

and q corresponds to that φ̃h
j is the qth element of φ̃j .

The following lemma studies the link state error vector
φ̃[k] ∈ R

�M
j=1 |Sj |.

Lemma 2: Let ρ and η be two constants such that 0 <

ρ < 1 and 0 < η < 1. If ρ and η satisfy

[1− (N − 1) η]α > ρ

�
1− 1

N

�

1

η
> N − 1

then system (18) is l2 stable.
Proof: The transfer function for the discrete-time

system (18) is denoted by H(z), where H(z) = F (zI −
E)−1. Since E is symmetric and nonsingular, we can find
a nonsingular matrix P , such that E = PΛP−1, where
Λ = diag(λ1, . . . , λ

�M
j=1 |Sj |

). Then we have

�(zI − E)−1�H∞

=�(zI − PΛP−1)−1�H∞

=�P−1(zI − Λ)−1
P�H∞

��(zI − Λ)−1�H∞

=

�����diag

�
1

z − λ1
, . . . ,

1

z − λ�M
j=1 |Sj |

������
H∞

�max
j

����
1

1− λj

���� ,

where j ∈ {1, 2 . . . ,
�M

j=1 |Sj |}. Since the following in-
equality holds,

�E�∞ �max
j

�
1− γα+ γρ(1− 1

|Sj |
) + (|Sj | − 1)γαη

�

�1− γα+ γρ(1− 1

N
) + (N − 1)γαη,

and from the condition that

[1− (N − 1) η]α > ρ

�
1− 1

N

�
> 0,

we obtain �E�∞ < 1. Because maxj |λj | � �E�∞, we have
maxj |λj | < 1, therefore

�(zI − E)−1�H∞ � max
j

1

1− |λj |
.

Then we have

�H(z)�H∞ = �F (zI − E)−1�H∞

� �F�∞ max
j

1

1− |λj |

� Mγ

ω
max

j

1

1− |λj |

� M

ω

1

α− ρ(1− 1
N )− (N − 1)αη

< ∞,

where the second inequality holds since there are most M
links used by user i ∈ S . Therefore, the system is l2 stable.

The following lemma is a direct result of small gain
theory [16]. It shows that when the systems (14) and (18)
are connected in a feedback loop (one system’s output is
another’s input, i.e., u[k] = z[k] and v[k] = y[k]), then the
closed loop system is l2 stable.

Lemma 3: If conditions in Lemma 2 are satisfied, and the
following inequality holds,

�
1− (N − 1) η − MNγ

(1− β)ω

�
α > ρ

�
1− 1

N

�
,



then system (19) is asymptotically stable, where

r[k + 1] =

�
B F

D E

�
r[k], (19)

and β = maxi βi, for i = 1, . . . , N .
Proof: By small gain theorem, we know that the

induced gain for system (19) is less than 1 and hence the
absolute value of all eigenvalues of T is less than 1. This
implies all the eigenvalues stay inside the unit circle of z-
plane. Therefore, system (19) is asymptotically stable.

Remark 1: In order to ensure stability, we have to choose
γ and ω to satisfy

γ

ω
<

1− β

MN
<

1

MN
.

Next we will state the main theorem of this paper.
Theorem 1: Consider a network with fixed topology

where the routing matrix A is of full rank. Assume the utility
function Ui are twice differentiable, strictly increasing, and
strictly concave. Assume a fixed setpsize γ > 0 and penalty
parameter ω > 0. Consider {τ ik}∞k=0 for each user i ∈ S .

For each user i ∈ S , let its data rate, xi[k], satisfy equation
(6). For each link j ∈ Li, let the link state, φi

j [k], satisfy
equation (7) with sampled link state and data rate from
l ∈ S−i

j given by (8)-(9). If conditions in Lemma 1-3 are
satisfied, then the data rates will asymptotically converge to
the optimal solution of the NUM problem.

Proof: We assume that the data rate errors, �x̃[0]� =
r1[0], and the link state errors, �φ̃[0]� = r2[0], where r[k] =
(r1[k], r2[k])T , with r1[k] ∈ RN and r2[k] ∈ R

�M
j=1 |Sj |. By

comparison principle, we obtain

�x̃[k]� � r1[k],

�φ̃[k]� � r2[k],

for all k = 0, 1 . . . ,∞. Hence, �x̃[k]� and �φ̃[k]� are
bounded below by zero and bounded above by r[k] which
is converging to zero according to Lemma 3. As a result
of Pinching Theorem, we know that all the errors go to
zero as time goes to infinity. Therefore, the date rates and
link utilization computed by (6)-(7) converge to the optimal
data rates, x∗

i , and the corresponding link utilization, φ∗
j , as

defined in (10)-(11).
In order to solve the NUM problem, each user i ∈ S

executes the following algorithm.
Algorithm 1: (1). Parameter Initialization: Let k = 0,

T = 0, and choose suitable parameters γ, ω, α, η, ρ such
that they satisfy the conditions in the theorem.
(2). State Initialization: Set the initial user rate x

0
i so that x0

i

lies in the feasible set. Set x̂i(T ) = xi(T ) and send x̂i(T )
to users l ∈ S−i

j , for all j ∈ Li. Upon receiving user state
from l ∈ S−i

j , initialize link state

φ
i
j(T ) = x

0
i + x̂l[T ]− cj

Set φ̂
i
j(T ) = φ

i
j(T ) and transmit φ̂

i
j(T ) to users l ∈ S−i

j ,
for all j ∈ Li.

(3). Update link state:

xi[k + 1] =



xi[k] + γ
∂Ui(xi[k])

∂xi
− γ

ω




�

j∈Li

φ
i
j [k]




+



+

φ
i
j [k + 1] = φ

i
j [k] + γ




�

l∈S
−i
j

1

|Sj |

�
φ̂
�
j [T ]− φ

i
j [k]

�




− γα



φi
j [k]−



xi[k] +
�

l∈S
−i
j

x̂�[T ]− cj









where τ
i
k ∈ [T, T+) and T

+ is the time instant when the
following conditions is true:
(a). If φ

i
j(k) > 0 and �φ̂i

j [k] − φ
i
j [k]� > ρφ

i
j [k], broadcast

φ
i
j [k] to all users l ∈ S−i

j and set φ̂i
j [T

+] = φ
i
j [k].

(b). If φ
i
j(k) > 0 and �x̂i[k] − xi[k]� > ηφ

i
j [k], broadcast

x
i[k] to all users l ∈ S−i

j and set x̂i[T+] = xi[k].
(4). Increment Time: Set T = T

+ and k = k + 1 and then
go to step (3).

Remark 2: Here, we find a nonlinear event-triggered con-
dition (15)-(16) that determines when to transmit informa-
tion. The main idea is that when link state φ

i
j < 0, it says all

data rates are in the feasible set, and we can then increase
data rates in order to increase network utility. Otherwise,
we have to inform other users that the link limit has been
reached and require them to adjust their data rates.

VI. SIMULATION RESULTS

To verify our results, let’s consider the following example.
This example is illustrated in Figure 2, where there are three
users and two links in the network, i.e., N = 3, M = 2.
Link j1 is used by user i1 and user i2 with link capacity 1.
Link j2 is used by user i1 and user i3 with link capacity 2.
The NUM problem is stated as follows:

Maximize: U(x) =
√
x1 +

√
x2 +

√
x3

w.r.t: xi ≥ 0, i = 1, 2, 3
subject to: x1 + x2 � 1

x1 + x3 � 2

Fig. 2. Network topology

We choose the penalty parameter ω = 10−3 and the
feedback gain α = 1/2. According to Lemma 2, one
threshold condition should satisfy η < 1/2, so we choose
η = 1/6. Also, another threshold condition should satisfy
ρ < 1/2, and we choose ρ = 1/6. We set the initial data rates



for user i1, i2, i3 are 0.4, 0.4 and 1.3, respectively. According
to the theorem, we pick a constant stepsize γ = 5× 10−5.

Figure 3 illustrates that user i1 and i2 will finally agree on
link j1’s utilization and user i1 and i3 will finally agree on
link j2’s utilization. In the first 3× 105 iterations, the users
have not agreed on the link states. Each user has a local
estimate for the link states, based on information available
to him. When this local estimate is negative, users’ data rates
is increasing in order to increase network utility. Once the
local estimate is positive, user’s data rate will be decreased,
as we can see from Figure 3. Consensus on link utilization
is achieved after 3× 105 iterations. When the link states are
zero, then the two links are fully utilized.

Figure 4 illustrates that data rates for all three users will
converge to a small neighborhood of the optimal (analytical)
solution: 0.26865, 0.73135 and 1.73135. The optimal data
rate is denoted by the green straight line in each plot. The
data rate for each user increases when the user thinks the
link is not fully utilized. In other words, when the user’s
local estimate for the link state is negative, the data rate will
increase, as we can see from Figure 3. In the first 3 × 105

iterations, data rates deviate from the optimal value since
the three users have not agreed on the link states. Once the
users reach an agreement on the link states, the date rates
converge to the optimal solution very fast. Figure 5 shows
the trajectory for the augmented Lagrangian function for the
NUM problem. After 3× 105 iterations, it converges to the
minimum value. This implies the aggregate network utility
is maximized with feasible data rates.

Figure 6 shows the channel utilization for transmitting data
rates (the top plot) and link states (the middle and the bottom
plots) is almost 0 after a number of iterations. We can see
from the plots that the channel utilization is much higher
in the first 3 × 105 iterations, which means users have to
communicate more frequently in order to achieve consensus
on the link states. Once the users reach an agreement on the
link states (after 3 × 105 iterations in Figure 6), they could
communicate less frequently just to ensure they stay in the
small neighborhood of the optimal solution.

This example shows that augmented Lagrangian method

under consensus filtering can generate an approximate solu-
tion for the NUM problem. By using ”event-triggered” com-
munication schemes, channel utilization is greatly reduced.
One thing we should mention is that parameter choices here
are conservative. For instance, the algorithm still converges
with stepsize γ = 5× 10−4.

VII. FINAL REMARKS

Network utility maximization (NUM) problems seek to
maximize the aggregate utility that network users receive
for transmitting at a given data rate subject to limits on
link throughput. Distributed solutions to the NUM problem
require direct measurement of link utilization. This however
may not be possible in practice. This paper examines the
use of consensus filtering for the distributed estimation of
link utilization in a distributed NUM algorithm. In particular,
we find a nonlinear event-triggered condition such that
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Fig. 3. Trajectories for estimation of link utilization
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Fig. 4. Trajectories for three users’ data rate

distributed network utility maximization using distributed
consensus filter converges to the problem’s optimal solution.
By using this event-triggered idea, message exchange be-
tween users in the network can be greatly reduced.

In the future work, we may consider transmission delays
and dropouts in the network. We may also consider changing
network topology and nondifferentiable utility functions in
the NUM problem.
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