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Towards a Passivity Framework for Power Control and Response
Time Management in Cloud Computing

M.D. Lemmon, Dept. of Electrical Engineering, University of Notre Dame

Abstract— There has been great interest in using
classical control theory to manage computing systems.
Classical control, however, focuses on regulating a
system’s state in a neighborhood of an equilibrium
point and it is unclear if such equilibrium-based
methods are well-suited for systems providing per-
formance guarantees in the face of large and rapid
input fluctuations. This may be the case for cloud
computing applications where consumer workloads
vary in a rapid and unpredictable manner. As an
alternative to classical methods, this paper discusses a
passivity framework for power control and response-
time management in cloud computing applications.
This paper suggests that passivity concepts provide a
decentralized method for certifying whether a collec-
tion of interconnected cloud computing systems can
coordinate their actions in a stable manner.

I. INTRODUCTION

Control theoretic methods have been used to
manage a wide range of computational sys-
tems that include real-time embedded systems
[LWK05], [WJLK07], storage systems [KKZ05],
web servers [DGH+02], and virtualized data cen-
ters [XZSW06], [RRT+08], [WCLK12], [UKIN10],
[WW11]. With the exception of [UKIN10], this
prior work has made extensive use of classical
control methods. Classical control is well suited for
designing robust controllers of linear systems. For
nonlinear systems, classical methods only provide
local guarantees on system stability and perfor-
mance. It is unclear if such local guarantees are
appropriate for computational systems that must
respond to large and rapid variations in their
input streams.

Prior surveys have already identified some of the
issues encountered in using classical methods for
computational resource management [ADH+08],
[ZUW+09]. Some of these issues may be recast
into the following list

• Global Performance Guarantees: Distributed
computing applications must provide service

guarantees in the face of ”large” variations
in user demand. Since classical methods pre-
sume regulation within a local neighborhood
of the operating point, it is unclear how well-
suited ”classical” methods will be for real-life
computing applications.

• Nonlinear Dynamics: Classical methods pre-
sume the use of linearized dynamics in which
the system state takes values over the whole
real line. Computational system states, how-
ever, are usually constrained to be positive.
This restriction introduces nonlinear dynam-
ics that cannot be easily ”linearized” away.

• Unknown Models: Classical methods pre-
sume the designer has a formal model of
the plant dynamics. To assure robust perfor-
mance, the designer must also know bounds
on system uncertainties. Dynamic models for
computational systems are rarely known be-
forehand and even if such models were avail-
able, the need to keep certain information
”private” prevents such modeling informa-
tion from being widely used.

• Evolution versus Engineering: Classical con-
trol was developed for engineered systems;
i.e. systems whose development have a well-
defined termination point. Computational
systems, however, evolve into being as soft-
ware upgrades and new components are in-
crementally added into an existing system.
For such ad hoc systems, the use of clas-
sical methods often leads to conservative
controllers that trade away performance for
safety.

Classical control is ill-equipped to deal with the
above issues. Classical methods, however, are over
50 years old [Bod56], and many other methods
have been developed over that time period. One
such technique that seems well-suited for manag-
ing distributed systems is passivity-based control.

Passivity is an alternative to more commonly used
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stability concepts such as asymptotic stability or
bounded-input bounded-output (BIBO) stability.
Informally, one says an input-output system is
passive if the energy injected into the system is
greater than or equal to the energy stored within
the system. Injected power is usually measured
by the product of inputs and outputs while stored
energy is measured using a storage function. When
this inequality is strict, then passivity is sufficient
for the asymptotic stability of the undriven sys-
tem. Passivity has its origins in network (circuit)
synthesis [Gui57], but can be generalized to other
types continous-time systems [Wil72].

Passivity became important in control due to its
connections with classical stability theory [Zam66]
and the fact that passive systems are easily stabi-
lized through high-gain feedback. In some cases, it
is possible to use feedback to passivate a system
[BIW91], thereby making passivity an important
tool in nonlinear control. One of the most attrac-
tive features of passive systems is that passiv-
ity is preserved under arbitrary system intercon-
nections [HM76] which is useful in the control
of large-scale interconnected systems [MH78]. As
a result passivity-frameworks for control of in-
terconnected systems have appeared for robotic
systems [AS89], network congestion [WA04], and
networked cyber-physical systems[SKK+12].

Cloud computing systems [AFG+10] may be
viewed as an interconnected set of brokers and
servers in which brokers route consumer work-
loads to servers. The resulting network of brokers
and servers interact in a market-orient manner
[BYV08] that is reminiscent of network congestion
problems [KMT98]. A passivity framework for
such network congestion control problems was
introduced in [WA04] and building upon that
framework, this paper suggests a passivity frame-
work for cloud computing systems to coordinate
response-time management and power control
across the entire cloud enterprise. One of the main
findings of this paper is that one can use passivity
concepts as a certificate whose satisfaction assures
the safe operation of the system in the presence of
feedback delays and uncertain dynamics.

The remainder of this paper is organized as fol-
lows. Section II reviews definitions and notational
conventions used throughout the paper. Section III
introduces a formal model for a cloud computing
system. Section IV provides an example of power

conflicts between brokers and servers; reminis-
cent of issues identified in [RRT+08]. Section V
introduces a passivity framework for the cloud
computing system and shows how the dissipative
inequality characterizing a system’s passivity may
be used as a certificate assuring that servers and
brokers can be interconnected in an ad hoc man-
ner. Conclusions are presented in section VI.

II. MATHEMATICAL BACKGROUND

This section reviews formal notational conven-
tions used throughout the paper. Let Z and R
denote the set of integers and real numbers, re-
spectively. Given a finite set, Ω, then |Ω| ∈ Z+

represents the number of elements in Ω. The linear
space of all real-valued n-dimensional vectors (n ∈
Z+) is denoted as Rn. |x| denotes the Euclidean
norm of a vector in Rn. Given a matrix A ∈ Rm×n,
we let aji ∈ R denote the element on the jth row
and ith column of the matrix. When defining a
matrix in terms of its components, we will often
write this as A = {aji}. A function F (·) : Rn → R
is positive (semi) definite if F (ξ) > 0 (F (ξ) ≥ 0)
for all ξ 6= 0 and F (0) = 0. A matrix A ∈ Rn×n

is positive definite if the function F (ξ) = ξTAξ is
positive definite.

A discrete-time signal, x, is a function x(·) : Z+ → Ω
where Ω ⊂ Rn. We let x(k) ∈ Ω denote the value
that signal x takes at time instant k ∈ Z+. Given
a discrete-time signal, x, we let [x]+ = max(0, x)
denote the positive projection of x.

A discrete-time positive system, G, with input
signal u(·) : Z+ → Rm and output signal y(·) :
Z+ → Rm has an internal state x(·) : Z+ → Rn that
satisfies the difference equation

G

{
x(k + 1) = [x(k) + f(x(k), u(k))]+

y(k) = h(x(k), u(k)

for all k ∈ Z+ with x(0) = x0 specified as the
system’s initial condition and f(·, ·) : Rn × Rm →
Rn and h(·, ·) : Rn × Rm → Rm are piecewise
continuous functions.

The vector x ∈ Rn is called an equilibrium point if
f(x, 0) = 0. Given a discrete-time positive system
G with equilibrium point at 0 and a positive
definite function V (·) : Rn → R+, we define
the first difference of V as the function ∆V (·, ·) :
Rn × Rm → R that takes values

∆V (x, u) = V ([x+ f(x, u)]+)− V (x)
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III. CLOUD COMPUTING APPLICATION

This section presents a formal model for a cloud
computing system. The ”cloud” consists of a set
B of brokers and a set S of servers. For notational
convenience we assume that |B| = N and |S| = M .
Figure 1 shows a block diagram for this ”cloud”
system. Brokers act as admission control agents,
determining how much of the consumer’s work-
load, w(k), should be routed to each server in S in
the kth time interval . The servers process a por-
tion of the received workload. The workload not
completed by the server at the end of the kth time
interval is buffered as the backlogged workload.
The server sends back to the broker a throttling
signal that is used by the broker to control how
much of the consumer’s workload will be routed
to the servers. A more formal description of the
broker/server workflows is given below.

brokers

consumer workload
w

AWAT

Broker Performance

servers

y = dispatched workload 

 y = received workloadb = server backlog

u = throttling signal

u = feedback signal

Server Performance
s = service limit

d = dispatch limit

zB =
d-w

d[ [

zS =
b
s[ [

Fig. 1. Cloud Computing Application

At time instant k ∈ Z+, the ith broker (i ∈ B)
receives the consumer’s workload wi(k). The vector
of consumer workloads received by all brokers is
denoted by the vector w(k) = [w1(k), · · · , wN (k)]T .
The maximum workload dispatched by broker i
at time k is denoted as di(k). The actual workload
dispatched by broker i is

yi(k) = min{di(k), wi(k)} (1)

The maximum dispatch level, di, is a state vari-
able for the broker and it satisfies the following
difference equation

di(k + 1) = [di(k) + βi1(wi(k)− di(k))

−βi2ui(k)]+ (2)

where βi1, βi2 > 0 are real-valued control gains. The
signal ui(·) : Z+ → R is a throttling signal sent back
to server i from the brokers. Together equations (2)
and (1) represent a discrete-time positive system.

The workload, yi(k), dispatched by broker i at
time k is routed to the servers in S. The amount
of workload routed from broker i to server j at
time k is denoted as rjiyi(k) where

∑M
j=1 rji = 1

and 0 ≤ rji ≤ 1 for all i and j. The coefficient rji
may be viewed as a routing decision that broker i
makes. This routing decision may be time varying.

The total workload received by server j at time k
is therefore equal to

ŷj(k) =

N∑
i=1

rjiyi(k)

Note that if we let y(k) = [y1(k), · · · , yN (k)]T ,
ŷ(k) = [ŷ1, · · · , yM (k)]T , and R = {rji}, then the
forward route from the brokers to the servers may
be written in matrix-vector form as ŷ(k) = Ry(k).

At time k, we let bj(k) denote the workload that is
waiting for processing on server j. Clearly, ŷj(k),
denotes the new workload arriving at server j at
time instant k. The total workload that needs to
be processed by server j is therefore bj(k) + ŷj(k).
Server j processes at most sj(k) of this workload
where 0 ≤ sj(k) ≤ sj . The constant sj denotes the
physical service limit for the server. Let ej(k) =
bj(k)+ ŷj(k)−sj(k) denote the excess workload. The
service limit, sj(k), and the backlogged workload
bj(k) are internal states of the server that satisfy
the following difference equations,

bj(k + 1) = [ej(k)]+ (3)
sj(k + 1) = min

{
sj , [sj(k) + σjej(k)]+

}
(4)

We assume that the server generates a throttling
signal

ûj(k) = h(bj(k), sj(k), ŷj(k)) (5)

where h(·, ·, ·) is a function that will be defined in
the next section. Together equations (3-5) represent
the lower discrete-time system shown in figure
1. The second state equation (4) determines the
server’s maximum service rate, sj(k). This deter-
mination is controlled by the gain σj > 0.

The throttling signal, ûj , is routed back to the
brokers through a return routing matrix, Q =
{qij}. where

∑M
j=1 qij = 1 and 0 ≤ qij ≤ 1. If

we let u(k) = [u1(k), · · · , uN (k)]T and û(k) =
[û1(k), · · · , ûM (k)]T , then the relation between the
throttling signal, û, generated by the servers and
that signal u received by the brokers can be writ-
ten in matrix-vector form as u = Qû.
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The broker’s system equation 2 forms a control
system in which the gain βi1 is chosen to ensure
tracking of the consumer’s workload wi and βi2
is selected to adjusted how strongly the server’s
feedback signal ui(k) throttles the broker. The first
gain, particular, may be selected independently
of the throttling signal to minimize the broker’s
”cost” function

JB
i = lim

L→∞

1

L

L∑
k=0

(
(di(k)− wi(k))2 + ρBi d

2
i (k)

)
(6)

where ρBi > 0 is a weighting coefficient. This objec-
tive may be seen as trying to minimize the mean
square error between the consumer’s workload
and the broker’s dispatch rate.

The server’s system equation (4) is also a control
system with control gain σj . This control gain may
be selected to minimize a local ”cost” function of
the form,

JS
j = lim

L→∞

1

L

L∑
k=0

(
b2j (k) + ρSj s

2
j (k)

)
(7)

where ρSj > 0 is a weighting coefficient. This
objective may be seen as trying to minimize the
server’s power consumption (i.e. keep sj small)
while simultaneously reducing the server’s re-
sponse time (i.e., keeping the backlog, bj , small).
In general, these two objectives conflict with each
other and the coefficient ρSj is chosen to balance
the tradeoff between these two objectives.

Note that these control gains are chosen based
on the broker’s or server’s local state information.
Once a set of weighting coefficients (ρBi and ρSj )
have been selected, a simple simulation can be
used to search for the optimal gains that minimize
the two cost functions in equations (6) and (7). An
example is shown in Figure 2 with ρBi = 0.1 and
ρSj = 0.5. With these choices, the broker places
high value on tracking the consumer workload
closely, whereas the server places a higher value
on keeping power costs down. Figure 2 plots the
cost functions JB and JS as a function of the
control gains βi1 and σj , respectively. From these
plots we see that the optimal sever gain is σ∗j = 0.2
and the optimal broker gain, β∗i1 = 0.95. These
gains guarantee the local asymptotic stability of
the broker and server subsystem’s equilibrium
point when the systems are disconnected from
each other. In the next section, we examine how

well these locally stable systems using optimal
gains work together when they are interconnected.
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IV. POWER CONFLICTS

As noted in earlier papers, assuring the asymp-
totic stability of a number of systems in isolation,
does not guarantee stability of the interconnection.
This is even true of simple cascade connections.
In particular, let’s consider our cloud system in
which the throttling gain β2i is set to zero in all
brokers. With this gain set to zero, the feedback
loop in Figure 1 is broken and we have a simple
cascade connection from the broker to the server.
Let’s now consider a simulation run in which
the initial consumer workload is an i.i.d random
process that is normally distributed with mean 2
and variance 1. There are 3 brokers and 6 servers
with a forward routing matrix that is randomly
selected at the start of the simulation. The capacity
limit on the servers, sj , is taken to be 3. At time
250, the mean workload jumps to 25 and then
drops back to its nominal value of 2 at time
instant 500. Over the time interval [250, 500] the
system is in an overload situation and the question
is how well does this cascade interconnection of
two locally stable and optimal systems handle the
overload.

Simulation results are shown in Figure 3. This
figure plots the time histories for the server’s max-
imum dispatch level, di, the backlogged workload,
bj , the service limit, sj , and the cost functionals,
JB and JS . At time instant 250 a large consumer
workload is injected into one of the brokers and
we see a corresponding jump in that broker’s
dispatch level as it seeks to follow the increase.
The impact that this disturbance has on the down-
stream servers is seen in the remaining plots. The
backlog increases, the service rate increases until
it hits its capacity level, sj . This behavior is to be
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expected because the arrival rate of the workload
into the server is greater than the maximum ser-
vice limit. Once the disturbance is removed from
the system (time instant 500) the server eventually
returns back to normal at about time instant 600.
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Fig. 3. Simulation of Cascaded System (throttling signal not
used)

There are two things to note in these results.
First, the system is ”unstable” when the consumer
input jumps to 25. Secondly, the system is not
very ”resilient”, since it takes nearly 100 time-
steps for the system to return to ”normalcy” after
the consumer’s input, wi, returns to its normal
level. The unstable nature of the system is seen
in the cost functional time history, which exhibits
an exponential rate of growth when the consumer
demand jumps up. This is to be expected, of
course, because the increase in workload arrival
is greater than the maximum service rate sj sup-
plied by the servers. After the consumer demand
returns to normal, however, the plots in Figure
3 show that it takes a relatively long time (100
time steps) before the server states return to their
normal levels. We take this time of return as a
measure of the system’s resilience to the overload
situation. For this cascaded system, it should be
clear that even though the individual controllers
were chosen to be optimal, the resulting system is
not very resilient.

The reason for the cascaded system’s instability
is fairly obvious. The broker is not lowering its
dispatch level to stay within the capacity of the
servers. One obvious way of handling this is to use
the feedback signal, uj , provided by the servers
to throttle or reduce the broker’s dispatch level.
The question is what should we choose for this
throttling signal? One obvious choice is to simply
let

ûj(k) = min{sj(k), bj(k) + ŷj(k)}

This is the total amount of work returned to the
broker by the server at the end of the kth time
interval. Since this is passed through the return
routing matrix, Q, the actual signal received by
the broker is simply a fraction of the workload
serviced. This is something that can be measured
directly by the broker and may be taken as a
crude measure of how congested the server is.
We can then select a gain βi2 which forces the
broker to reduce (throttle) its dispatch rate when
the server’s dispatch level, sj , is large. Figure 4
shows the results for such a simulation run when
βi2 = 0.1. Figure 4 shows that this feedback sys-
tem is better able to control the unstable growth
in the server’s states under overloads. However,
it still takes nearly 100 time steps to return to
normal after the overloading inputs are removed.
This system still fails to exhibit the resilience to
overloads that one would hope for.

We now consider a different throttling signal.
In particular, let’s assume that the server sends
information about its backlogged workload, bj ,
through the return routing matrix. In particular,
we let

ûj(k) = 2σbj(k) + 2σsj(k) (8)

Again we set the broker’s throttling gain, β2i =
0.1, and an overloading input drives one of the
brokers between [250, 500]. The results for this
simulation are shown in figure 5. In this case,
we see a more ”controlled” increase in the cost
functionals. In particular, the cost JS no longer
grows in an uncontrolled exponential manner. In-
stead, these costs grow and appear to converge to
a constant value. This system, therefore, appears
to be ”stable” during the overload scenario. As
a result, when the overloading input is removed,
we see the server states quickly return to nor-
mal. Since the return time to normalcy is much
shorter than the 100 time steps seen in Figure 4,
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Fig. 4. Simulation Results using Serviced Workload as
Feedback Throttle

we can conclude that the throttling signal used
in equation (8) results in a system that is more
resilient to overloads. Why should the backlogged
workload be a better throttling signal than the
served workload? The next section shows that this
is because using backlog as the feedback signal
renders the server subsystems passive.

V. PASSIVITY FRAMEWORK

Passivity refers to the basic idea [Wil72] that the
power flowing into a system should not exceed
the energy stored within it. In particular, consider
a discrete-time system whose state-space represen-
tation may be written as

x(k + 1) = x(k) + f(x(k), u(k))

y(k) = h(x(k), u(k))

where u is the input signal and y is the output
signal. We say that this system is passive if there
exists a positive definite function V (·) : Rn → R
such that

∆V (x(k)) ≤ uT (k)y(k) (9)

The function V is usually called a storage function.
It represents the energy stored within the system.
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Fig. 5. Simulation Results using Backlogged Workload as
Feedback Throttle

The inner product, uT y, represents the instanta-
neous power flowing into the system. If there is a
positive definite function W (·) : Rn → R such that

∆V (x(k)) ≤ uT (k)y(k)−W (x(k)) (10)

then this system is strictly passive. If one replaces
W (x) with W (y), then the system is said to be
strictly output passive. We sometimes refer to equa-
tions (9) and (10) as dissipative inequalities. Finally,
if no solution of the difference equation x(k+1) =
f(x(k), 0) other than the trivial solution x(k) = 0
can satisfy 0 = h(x(k), 0), then we say the system
is zero-state observable.

Passivity is useful in control theory due to its con-
nections with asymptotic stability as summarized
in the following proposition,

Proposition 1: [vdS00] Consider an input-output
system, G, such that f(0, 0) = 0. If this system is
strictly output passive and zero-state observable,
then the origin of x(k + 1) = x(k) + f(x(k), 0) is
asymptotically stable.

Another important property of passivity is that
feedback interconnections of passive systems are
again passive. Consider the feedback intercon-
nection shown in Figure 6 and assume that the
upper system G1 is strictly passive while the lower
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system G2 is passive and zero-state observable. It
is then possible to show that the entire feedback
system is strictly output passive and zero-state
observable as stated in the following proposition.
Variations on this result will be found in [vdS00].
In this result, G1 and G2 are both passive with
storage function V1 and V2, respectively. The result
is proven by selecting V = V1 + V2 as the storage
function for the feedback system and then show-
ing that the dissipative inequality in equation (10)
is satisfied.

Proposition 2: Consider the feedback interconnec-
tion shown in Figure 6 in which G1 is strictly pas-
sive and G2 is passive and zero-state observable,
then the feedback system is strictly output passive
and zero-state observable.

G1

G2

w1

w2y2

y1u1

u2
Fig. 6. Feedback Interconnection

The implication of Propositions 1 and 2 is that
if we can show the broker system in Figure 1 is
strictly passive and the server system is passive
and zero-state observable, then we can conclude
the equilibrium for the cloud computing system
in Figure 1 will be asymptotically stable. The
passivity of the server system is proven below

Proposition 3: The server system defined in equa-
tions (3-5) is passive and zero-state observable.

Proof: Equations (3-5) may be rewritten as

ξ(k + 1) = min
{
ξ, [Aξ(k) +Bŷ(k)]+

}
û(k) = Cξ(k)

where ξ = [b, s]T , ξ = [∞, s]T , A =

[
1 −1
σ 1− σ

]
,

B =

[
1
σ

]
, and C =

[
2σ 2σ

]
. Note that for

notational convenience, we’ve dropped the sub-
script on the server states. From these equations
it can be readily seen that the system is zero-state

observable. Let’s consider a storage function of the
form

V (ξ) = ξTPξ

where P =

[
σ −σ/2
−σ/2 1

]
. With this choice for

V , we can now go ahead and compute the first
difference

∆V (ξ) = V (ξ(k + 1))− V (ξ(k))

Due to the non-smooth nature of the right-hand
side of the difference equations, there are a num-
ber of conditions we need to consider. We clas-
sify these conditions on the basis of the backlog
projection in equation (3) being active/inactive. It
can be readily seen that the projection operator in
equation (4) can never be active.

• Backlog Projection is inactive: In this case, the
first difference can be written as

∆V (ξ) = ξT (k + 1)Pξ(k + 1)− ξT (k)Pξ(k)

This bound holds whether s(k + 1) hits its
upper limit or not. This difference may be
rewritten as

∆V (ξ) ≤ ξT
(
ATPA− P

)
ξ + 2ξTATPBŷ

For the given choice of P , we have ATPA −
P = 0 and we have 2ξATPBŷ ≤ ξTCŷ
which implies ∆V ≤ ûŷ and so the dissipative
inequality is satisfied.

• Back Projection active: Let’s consider

∆V (ξ) = ((1− σ)s+ σ(b+ ŷ))2

−σb2 + σbs− s2

Since the backlog project is active, we know
that b + ŷ < s and in particular since b and
ŷ are non-negative this means that σbs ≤ σs2
and we rewrite the above inequality as

∆V (ξ) ≤ ((1− σ)s+ σ(b+ ŷ))2

−σb2 + (σ − 1)s2

We now expand out the first square term and
collect terms in the states b and s to obtain

∆V (ξ) ≤ (−1 + σ + (1− σ)2)s2

+2σ(1− σ)bs+ (σ2 − σ)b2

+2σ2bŷ + σ2ŷ2 + 2σ(1− σ)sŷ
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It can be shown that the largest value the
first two lines can take is zero, so the above
inequality reduces to

∆V (ξ) ≤ 2σ2bŷ + σ2ŷ2 + 2σ(1− σ)sŷ

Again ŷ < s since the backlog projection is
active. Using this fact in the second term we
obtain

∆V (ξ) ≤ 2σ2bŷ + (2σ − σ2)sŷ
≤ 2σ2bŷ + 2σsŷ

≤ 2σbŷ + 2σsŷ

= ûŷ

where we used the fact that 0 < σ < 1. So the
dissipative inequality is again satisfied.

Since the dissipative inequality is satisfied for all
conditions, this system is passive. ♦

We now establish that the broker subsystem is
strictly passive

Proposition 4: The broker system defined in equa-
tions (1-2) is strictly passive.

Proof: We assume that the consumer input wi = 0
and only consider the input-output system from
u to d. In this case, the state equations may be
rewritten as

d(k + 1) = [(1− β1)d(k)− β2u(k)]+

where the gains β1, β2 > 0. In this case u(k) is
the input and the output y(k) = d(k). We select
the storage function V (d) = d2 and compute the
first difference. Again we need to consider the
case when the projection operator is active and
inactive.

• Projection Inactive: This means that the first
difference is

∆V (d) = ((1− β1)d− β2u)2 − d2

= (−1 + (1− β1)2)d2

−2β2(1− β1)ud+ β22u
2

Since the projection is inactive, we know that
(1 − β1)d > β2u. Inserting this into the last
term yields,

∆V (d) ≤ (−1 + (1− β1)2)d2

−β2(1− β1)ud

which implies this block is strictly passive
since the output y = d.

• Projection Active. In this case the first differ-
ence is

∆V (d) ≤ −d2 ≤ 0

which implies this system is also strictly pas-
sive.

♦.

Propositions 3 and 4 establish that the broker is
strictly passive and that the server is passive and
zero-state observable. Combining this result with
proposition 1 and 2, allows us to conclude that
the overall cloud system is asymptotically stable
as was seen in the earlier simulations of section
IV. We can experimentally verify the passivity of
both broker and server subsystems by introducing
a passivity certificate

C(x, u, y) = uT y −∆V (x) (11)

which can be computed on-line. If the system
is passive then C(x(k), u(k), y(k)) ≥ 0 for all k.
Figure 7 shows the passivity certificate for two
simulation runs. The top two plots in the figure
show the passivity certificates when the server
transmits the throttle signal û = σ(b + s). As
predicted in propositions 3 and 4, we see that the
certificates are positive, which is consistent with
the fact that the broker and server systems are
passive.

The bottom two plots show the same certificates
for the simulation in which the throttling signal
was only û = s. As we saw in section IV, this
choice of throttling signal was not stable when the
system was in an overload condition. This fact is
also seen in figure 7 where the certificate for the
server is negative when the system is overloaded.
The passivity certificate, therefore, can be used
to detect the loss of passivity (with respect to
the given certificate) that may be an indicator of
unstable operation.

VI. SUMMARY

This paper describes preliminary efforts to de-
velop a passivity framework for the cloud com-
puting systems in which brokers and servers
act in a market-oriented manner. The passivity
framework may address some of the limitations
observed in classical controllers. Passivity tools
can be applied to nonlinear systems and do



9

−100
0

100
200
300
400
500

Broker Passivity Certificate

0 500 1000 1500
−200

0
200
400
600
800

Server Passivity Certificate

Backlog used as throttle

−100
0

100
200
300
400
500

Broker Passivity Certificate

0 500 1000 1500
−200

0
200
400
600
800

Server Passivity Certificate

Serviced Workload used as throttle

Fig. 7. Passivity Certificates for both Examples Simulations

not require regulation of the system in a small
neighborhood of an operating point. Passivity is
a compositional system property that provides
stability guarantees on ad hoc interconnections
of systems. It does not need to have extremely
precise system models that are known to some
central designer. System designs can be done on
a piece-by-piece basis and as long as these sys-
tems satisfy a published passivity certificate, the
interconnection of the system is guaranteed to
assure stable operation. The passivity certificate in
equation (11) provides a tool for detecting when
a system may be faulty (i.e. no longer passive).
This tool can be used as an on-line monitor to
disconnect misbehaving servers or brokers from
the network in an automated manner. Finally, pre-

liminary simulation results (not included in this
paper) suggest that interconnections of passive
brokers and servers will be very tolerant of time-
varying changes in the routing topology as well as
delays in the throttling feedback signal. This is a
potential feature of passivity-based control which
should be studied more closely in the future.
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