
This Dissertation

entitled

Real-Time Scheduling in Cyber-Physical System

typeset with nddiss2ε v3.0 (2005/07/27) on August 17, 2014 for

Shengyan Hong

This LATEX2ε classfile conforms to the University of Notre Dame style guide-
lines established in Spring 2004. However it is still possible to generate a non-
conformant document if the instructions in the class file documentation are not
followed!

Be sure to refer to the published Graduate School guidelines
at http://graduateschool.nd.edu as well. Those guide-
lines override everything mentioned about formatting in the
documentation for this nddiss2ε class file.

It is YOUR responsibility to ensure that the Chapter titles and Table caption
titles are put in CAPS LETTERS. This classfile does NOT do that!

This page can be disabled by specifying the “noinfo” option to the class invocation.
(i.e.,\documentclass[...,noinfo]{nddiss2e})

This page is NOT part of the dissertation/thesis, but
MUST be turned in to the proofreader(s) or the

reviwer(s)!

nddiss2ε documentation can be found at these locations:

http://www.gsu.nd.edu

http://graduateschool.nd.edu

Real-Time Scheduling in Cyber-Physical System

A Dissertation

Submitted to the Graduate School

of the University of Notre Dame

in Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

in

Computer Science and Engineering

by

Shengyan Hong, B.S., M.S.

Xiaobo Sharon Hu, Director

Graduate Program in Computer Science and Engineering

Notre Dame, Indiana

August 2014

c⃝ Copyright by

Shengyan Hong

2014

All Rights Reserved

CONTENTS

FIGURES . 5

TABLES . 8

ACKNOWLEDGMENTS . 1

CHAPTER 1: INTRODUCTION . 1
1.1 Overview . 1
1.2 Contributions . 7

1.2.1 Regulating Delay Variations of Real-Time Control Tasks . 7
1.2.2 Local-Deadline Assignment for Distributed Real-Time Sys-

tems . 8
1.2.3 An Adaptive Transmission Rate Control Approach to Min-

imize Energy Consumption 9
1.2.4 Data Link Layer Scheduling in Dynamic Wireless Networked

Control Systems with Minimum On-line Schedule Update . 10

CHAPTER 2: Reducing Delay Jitter through Adaptive Deadline Adjustments 12
2.1 Introduction . 12
2.2 System Model . 15
2.3 Motivation . 17
2.4 Approach . 20

2.4.1 Problem Formulation . 20
2.4.2 DVR Heuristic . 25
2.4.3 Adaptive Delay Variation Reduction 31

2.5 Evaluation . 33
2.5.1 Simulation Setup . 33
2.5.2 Performance of DVR . 35
2.5.3 Experimental Data for Real-World Workload 40
2.5.4 Performance of Adaptive-DVR 42

2

CHAPTER 3: Local-Deadline Assignment for Distributed Real-Time Systems 48
3.1 Introduction . 48
3.2 System Model . 51
3.3 Motivation . 56
3.4 Approach . 59

3.4.1 Overview . 59
3.5 Mathematical Programming Formulation 61
3.6 Omniscient Local-Deadline Assignment 67

3.6.1 Base Subset and Base Sub-job 67
3.6.2 OLDA Algorithm Design 70
3.6.3 Optimality of OLDA Algorithm 74

CHAPTER 4: More Practical Versions of OLDA 83
4.1 Active Local-Deadline Assignment 85
4.2 WLDA . 92
4.3 Practical Consideration . 103

4.3.1 Communication Mechanism 103
4.3.2 Influence of Time Overhead by OLDA 106
4.3.3 Sub-Job Dropping Policies 107

4.4 Evaluation . 109
4.4.1 Simulation Setup . 109

4.5 Comparison of Sub-Job Dropping Policies 112
4.5.1 Selection of Optimal Input Parameters for WLDA 113
4.5.2 Comparing OLDA Derivatives 116
4.5.3 Performance of OLDA against Other Algorithms 119
4.5.4 Time Overhead of OLDA 121

4.6 Case Studies . 123

CHAPTER 5: An Adaptive Transmission Rate Control Approach to Mini-
mize Energy Consumption . 141
5.1 System Model . 143
5.2 Our Approach . 146
5.3 Evaluation . 148

CHAPTER 6: Data Link Layer Scheduling in Dynamic Wireless Networked
Control Systems with Minimum On-line Schedule Update 153
6.1 Introduction . 154
6.2 System Model . 157
6.3 Problem statement . 164
6.4 Motivation . 168
6.5 Overall Approach . 171

3

6.5.1 Determining Switch Point Candidates 171
6.5.2 Framework . 175

6.6 Heuristic . 180
6.6.1 Dynamic Programming . 180
6.6.2 Modified Dynamic Programming (mDP) 184

6.7 Performance Evaluation . 189
6.7.1 Simulation Setup . 189
6.7.2 Parameter Selection for OLS-mDP 192
6.7.3 Performance of OLS-mDP against OLS-mEDF 194
6.7.4 Case Study . 195

BIBLIOGRAPHY . 202

4

FIGURES

1.1 A CPS application example. 2

2.1 Feasible deadline region for mandatory/final subtasks. 23

2.2 Adaptive framework for delay variation reduction. 32

2.3 Comparison of DVR, TDB and DSB in terms of percentage of fea-
sible solutions found. 35

2.4 Comparison of DVR, TDB and DSB in terms of solution quality. . 37

2.5 Comparison of DVR, TDB and DSB in terms of average execution
time. 38

3.1 An example system containing two jobs, each with 5 sub-jobs being
executed on 5 processors. In the example, J1,1 ≼ J1,2 ≼ J1,3, J1,1 ≼
J1,4 ≼ J1,5 ≼ J1,3, J2,1 ≼ J2,4 ≼ J2,5, J2,2 ≼ J2,3, J1,1, J2,1, J2,2 are
input sub-jobs, and J1,3, J2,5, J2,3 are output sub-jobs. 52

3.2 The example of executing sub-jobs with local deadlines assigned by
OLDA . 73

4.1 WLDA flow to determine future release times and upper bounds on
the local deadlines of future sub-jobs and assign local deadlines to
the newly released sub-job as well as the active and future sub-jobs
in Ωw(Vx). 94

4.2 Comparison of differentMax Allowed Drop Num values in terms
of average drop rate by WLDA for balanced ST workloads. 127

4.3 Comparison of differentMax Allowed Drop Num values in terms
of average drop rate by WLDA for imbalanced ST workloads. . . 127

4.4 Comparison of differentMax Allowed Drop Num values in terms
of average drop rate by WLDA for GT workloads. 128

4.5 Comparison of different α values in terms of average drop rate by
WLDA for ST and GT workloads. 128

4.6 Average drop rate for balanced workloads (ST workloads). 129
4.7 Average drop rate for imbalanced workloads (ST workloads). . . . 129

5

4.8 Average drop rate for GT workloads. 130
4.9 Total running time for balanced workloads (ST workloads) 130

4.10 Total running time for imbalanced workloads (ST workloads). . . 131
4.11 Total running time for GT workloads. 131

4.12 Average drop rate for balanced workloads (ST workloads). 132
4.13 Average drop rate for imbalanced workloads (ST workloads). . . . 132

4.14 Average drop rate for GT workloads. 133
4.15 Percentage of feasible task sets found for balanced workloads (ST

workloads). 133

4.16 Percentage of feasible task sets found for imbalanced workloads (ST
workloads). 134

4.17 Percentage of feasible task sets found for GT workloads. 134

4.18 Total running time for balanced workloads (ST workloads). 135
4.19 Total running time for imbalanced workloads (ST workloads). . . 135

4.20 Total running time for GT workloads. 136

4.21 Flight control system. 137

4.22 Subtasks and their dependencies for all the tasks of the fault-
tolerant distributed system. 140

5.1 Comparison of original Lp-EDF, ZM, Lp-EDF-p and Lp-EDF-c in
terms of average energy consumption. 149

5.2 Comparison of original Lp-EDF, ZM, Lp-EDF-p and Lp-EDF-c in
terms of average success ratio. 150

5.3 Comparison of original Lp-EDF, ZM, Lp-EDF-p and Lp-EDF-c in
terms of minimum success ratio. 152

5.4 Comparison of original Lp-EDF, ZM, Lp-EDF-p and Lp-EDF-c in
terms of computational cost. 152

6.1 Topology of An Example WNCS with 4 Tasks Running on 8 Nodes. 161

6.2 Release times and deadlines of rhythmic packets when rhythmic
task τ0 is in the different states. Rhythmic task τ0 enters the rhyth-
mic state from the nominal state at time slot tn→r and returns to
the nominal state from the rhythmic state at time slot tr→n. . . . 163

6.3 Time slot assignment in the static schedule and possible dynamic
schedules in the motivational example. 170

6

6.4 Topology of wireless network used in the simulation, which is com-
posed of gateway V35, 17 sensors and 18 actuators, which are repre-
sented as a square, solid circles and dashed circles, respectively. A
solid and dashed direct link serves the routing path from a sensor
to the gateway and from the gateway to an actuator, respectively. 190

6.5 Number of dropped periodic packets in different groups of 5-task
sets under OLS-mDP with different β values. 197

6.6 Number of dropped periodic packets in different groups of 10-task
sets under OLS-mDP with different β values. 197

6.7 Number of dropped periodic packets in different groups of 15-task
sets under OLS-mDP with different β values. 198

6.8 Number of dropped periodic packets in different groups of 20-task
sets under OLS-mDP with different β values. 198

6.9 Number of dropped periodic packets in different groups of sets un-
der OLS-mDP with different α values. 199

6.10 Number of solved task sets by OLS-mDP and OLS-mEDF with ∆u

equal to 30. 199

6.11 Number of solved task sets by OLS-mDP and OLS-mEDF with ∆u

equal to 60. 200
6.12 Average drop rates of dropped periodic packets for commonly solved

task sets by OLS-mDP and OLS-mEDF with ∆u equal to 30. . . . 200

6.13 Average drop rates of dropped periodic packets for commonly solved
task sets by OLS-mDP and OLS-mEDF with ∆u equal to 60. . . . 201

7

TABLES

2.1 A Motivational Example Containing Four Tasks with the Second
and Fourth Tasks being Non-Decomposable. 17

2.2 Delay Variation of A Motivational Example by Adaptively Apply-
ing Existing Methods . 18

2.3 Number of Iterations for Solving a Task Set by DVR. 39

2.4 A Control System Containing One Hard Real-Time Task and Three
Control Tasks. 44

2.5 Control Task Delay Variations and Their Control Performance by
Adaptively Applying DVR. 47

3.1 Summary of Key Notations Used 53

3.2 A Motivating Example Containing Two Jobs that Traverse Four
Processors . 56

3.3 Local-Deadline Assignment and Response Time of A Motivating
Example . 58

3.4 A Sub-job Set Example . 70

3.5 Base Subset and Base Sub-job in Each Iteration 73

4.1 Job-Drop Rates Generated by ALDA Employing Sub-Job Dropping
Policies, MRET and MLET, for the Different Workloads 113

4.2 Selection of Sub-job Dropping Policies for Different Types of Work-
loads by ALDA and WLDA. 114

4.3 Number of Schedulable Task Sets byWLDA with DifferentMax Allowed Drop Num
Values . 115

4.4 Number of Schedulable Task Sets byWLDA with Different α Values
Using MLET . 116

4.5 Numbers of Solved Tasks Generated by ALDA and WLDA for the
Different Workloads . 117

8

4.6 Comparison of ALDA and WLDA in terms of the Three Metrics
for Different Types of Workloads. 118

4.7 Specification of A Flight Control System 122

4.8 Case Study of A Flight Control System 124

4.9 Average Time Overhead for Both Case Studies 125

4.10 Specification of A Fault-tolerant Distributed System 138

4.11 Data Dependencies of Subtasks in A Fault-tolerant Distributed Sys-
tem . 139

6.1 Summary of Notations Used for System Model 159

6.2 An Example WNCS with 4 Tasks Running on 8 Nodes 160

6.3 Summary of Notations Used for Problem 1 169

9

ACKNOWLEDGMENTS

I would like to appreciate the careful guidance of my advisor, Professor Xiaobo

Sharon Hu, during my study in University of Notre Dame. Professor Hu brought

me to the area of real-time scheduling, trained me to be an assertive, independent

and solid researcher, and was always glad to point out my little merits. She

expects me to achieve the PHD degree and enjoy a happy life in future.

Professor Lemmon have given me lots of valuable advice on the application of

real-time scheduling in the control systems. He is a very passionate, strict and

sincere scientist. Professor Christian Poellabauer taught me the application of

real-time scheduling in the wireless sensor networks. Professor Aaron D. Striegel

gave me important suggestions in my PHD candidacy oral exam.

I show my gratitudes to Dr. Thidapat Chantem and Dr. Jun Yi. Dr. Thidapat

Chantem improved my research skills greatly in the the implementation of ideas

and the writing of papers. Dr. Yi provided valuable advice to me on how to apply

real-time scheduling in the wireless sensor networks.

I am indebted to Professor Song Han, Professor Liqiang Zhang, Professor

Shangping Ren and Miao Song. Professor Han has guided me to complete my last

project. He is very effective in improving the quality and pushing the progress of

this project. Professor Zhang taught me a lot on the knowledge of wireless sensor

networks. I collaborated with Professor Ren and Miao Song to improve one of my

previous works in the area of distributed real-time systems.

1

This work is supported in part by National Science Foundation (NSF) under

grant numbers CNS-0720457, CNS-0931195, CNS-0702761, CPS-0931195, CSR-

1319718 and CSR-1319904.

2

Real-Time Scheduling in Cyber-Physical System

Abstract

by

Shengyan Hong

A Cyber-Physical System (CPS) is a system where physical components and

computational components are tightly integrated. Tasks in a CPS generally need

to be accomplished correctly in terms of not only functionality but also punc-

tuality. Real-time scheduling provides the methodology of determining the task

execution order on a shared resource in order to make as many tasks in a CPS

as possible to meet their deadlines. We addressed four different challenges in this

dissertation, i.e., minimizing delay variations of real-time control tasks in a CPS,

schedulability of jobs in a distributed real-time system (DRTS), tradeoff between

energy savings and real-time stream deadline meetings in a wireless sensor net-

work, and minimizing the impact of network dynamics on a wireless networked

control system (WNCS).

For many CPSs, control performance is strongly dependent on delay variations

of the control tasks. Such variations can come from a number of sources including

task preemptions, variations in task workloads and perturbations in the physi-

cal environment. We designed a general adaptive framework that incorporates a

powerful heuristic aiming to minimize delay variations.

In a DRTS, jobs are often executed on a number of processors and must com-

plete by their end-to-end deadlines. Job deadline requirements may be violated if

Shengyan Hong

resource competition among different jobs on a given processor is not considered.

We designed a distributed, locally optimal algorithm to assign local deadlines to

the jobs on each processor to meet as many jobs’ end-to-end deadline requirements

as possible in a distributed soft real-time system.

Most of the wireless sensors are powered by batteries with a limited amount of

energy, hence require the transmission to be energy efficient. Lower transmission

rates can greatly reduce transmission energy. However, if the lowest transmis-

sion rate is selected, many messages can miss their deadlines, which degrades the

Quality of Service (QoS) for CPS applications. We have designed an on-line trans-

mission rate selection approach to maximize the number of packets to meet their

deadlines with a small increase in the energy dissipation.

A key design challenge in a WNCS is to design efficient data link layer schedul-

ing algorithms to achieve deterministic end-to-end real-time communication while

the WNCS is disturbed by various physical events. In this work, we adopted

a rhythmic task in adaptive to external disturbances and designed an effective

approach to adjust existing schedule for all the nodes in the WNCS when the

disturbances happen.

CHAPTER 1

INTRODUCTION

1.1 Overview

A CPS [124] is a system where physical components and computational com-

ponents are tightly integrated. The physical components are typically monitored

by sensors, and the sensor signals are then transmitted to the computational com-

ponents by the communication infrastructure. The computational components

make decisions for future actions, and these are transmitted to the actuators of

the physical components. The computational components coordinate and control

the physical operations to satisfy the overall requirements. Most of computational

components in CPS applications are control systems which are good at managing

and regulating the behaviors of physical components. CPS is prevalent in different

areas, such as transportation [119], health care [61], power grid [50],[122], building

and environmental control [89], and factory automation [130]. Figure 1.1 shows

a CPS application example which integrates physical components and computa-

tional components by employing the wireless network. In the example, the states

of physical plants are monitored and sampled by sensors, and the sensor signals are

transmitted to the controllers by a series of relay nodes in the multi-hop wireless

network. After the controllers receive the sensor signals, they will generate the

actuator signals that contain decisions for future actions. The actuator signals are

1

transmitted to the actuators of plants by a series of relay nodes in the multi-hop

wireless network to improve the performance of plants.

Plant
Sensor

Controller

Plant

Plant

Sensor

Sensor

Controller

Controller

Wireless Network

Physical

Components

Computational

Components

Figure 1.1. A CPS application example.

Most CPS must deal with real-time constraints. That is, a computational task

needs to be accomplished correctly in terms of not only functionality but also

2

time. A delayed reaction can lead to unsatisfied customers (such as in a video game

scenario) or total catastrophy (such as in a vehicle anti-lock braking scenario). The

real-time requirements of CPS are generally described by deadlines associated with

tasks. A task is typically executed repeatedly. Each instance of a task is a job in

the real-time scheduling area. Since a computational component (i.e., a processor)

in CPS almost always handle multiple real-time tasks, the execution order of such

tasks plays a big role in meeting the deadlines. CPS is required to have predictable

and reliable behaviors in terms of meeting the time requirements of all tasks

instead of completing a single task fast. The predicability and reliability of CPS’s

can be satisfied by employing certain real-time scheduling methods in the CPS

design. Real-time scheduling [29] [101] provides the methodology of determining

the task execution order on a shared resource in order to make as many tasks

as possible to meet their deadlines. Real-time scheduling is widely employed in

CPS applications such as flight control systems [70], wireless networked control

systems [10] and battery management systems [80].

Specifically, real-time scheduling [16] assigns priorities to tasks on a shared re-

source such as a processor. The shared resource then schedules the tasks according

to their priorities through a Real-Time Operating System (RTOS). There are two

different categories of real-time scheduling algorithms, i.e., static-priority schedul-

ing and dynamic-priority scheduling. In static-priority scheduling, a task’s prior-

ity never changes once it is assigned. Rate-Monotonic (RM) scheduling [29, 101]

and Deadline-Monotonic (DM) scheduling [29, 101] are two well-known schedul-

ing algorithms that belong to the static-priority scheduling category. In contrast,

dynamic-priority scheduling allows the task priorities to change over time. Earli-

est Deadline First (EDF) scheduling [29] [101] is a widely used dynamic-priority

3

scheduling algorithm.

DRTSs are widely employed in CPS applications such as vehicle control and

teleconferencing application (e.g., [48, 110, 160]). A DRTS contains a set of tasks

periodically or aperiodically releasing jobs which typically have end-to-end dead-

lines. Many works, e.g. [62, 70, 71, 73, 118, 158] have studied the schedula-

bility of task set in the DRTSs, while the others have proposed many heuris-

tics on the static-priority or dynamic-priority assignment problem for DRTSs,

e.g., [6, 27, 62, 65, 132].

Since the physical world is not entirely predictable, CPS’s present more chal-

lenges to real-time scheduling. The performance of CPS applications is greatly

influenced by the environmental perturbations such as the failures of critical

civil infrastructures and malicious attacks. In response to external events, the

works [28, 81, 92] employ approaches of adjusting the sampling rates and relative

deadlines of tasks on-line in control systems. However, high sampling rates of con-

trol tasks can increase the workload of the system, delay the completion of control

tasks and result in high delay variations of tasks at sampling and actuation in-

stants. Such results can severely cause the unschedulability of the task set and the

degradation of control plant performance. Many works have been done to select

optimal sampling rates and deadlines of control tasks to guarantee the robustness

of CPS under the varying environment, e.g. [8, 9, 12, 13, 23, 26, 33]. Since periodic

sampling causes a large usage of processing resource, event-triggered controllers

have emerged in CPS’s in recent years. Event-triggered controller only executes

control tasks when the controller needs the execution based on the sampling infor-

mation, which greatly saves the usage of processing resource. In event-triggered

control systems, the real-time scheduling is required to determine the minimum

4

or average sampling periods of control tasks to guarantee the schedulability of

sporadic task set, e.g., [91, 142, 153].

Most of CPS’s are composed of a great number of computational components,

sensors and actuators, which are interconnected through large scale wired or wire-

less networks. Wireless network enables computational components to commu-

nicate with remote sensors and actuators in a low cost and flexible manner. To

guarantee the overall CPS application performance, sampling and actuation data

are required to reach their destinations by their end-to-end deadlines in a multihop

wireless network, while the interference in wireless network results in a high un-

predictability of data transmission delay. Many works have studied the scheduling

of data transmission in the wireless network. The works in [5, 38, 72, 85, 125] pro-

pose approaches to solve the flow rate assignment problem in order to improve the

QoS’s of CPS’s while still guaranteeing the end-to-end deadline meeting of all the

streams. A MAC layer protocol and two dynamic-priority assignment approaches

are proposed in [151] and [90, 159], respectively, to provide the timeliness support

in a resource efficient manner. There are other research problems in the multihop

wireless network, such as modeling the effect of transmit power and interference

in the wireless transmission [147], energy saving data transmission [37, 149, 154]

and power control [143].

Although wireless network provides the service of information communication

in many business applications, it is not suitable for the control applications in

CPS’s. Control applications usually have a very stringent requirement on the

real-time responses of control tasks and the adaption to the physical perturba-

tions, which guarantees not only the freshness but also the integrity of physical

information. Such a special requirement may not be fully guaranteed by the gen-

5

eral protocol of wireless networks such as 802.11 [55], which are quite unreliable

and nondeterministic in the timeliness support. In contrast, WirelessHART stan-

dard [36] is very suitable for the control applications since it has been designed

to provide hard timing guarantees and be robust enough against the environ-

mental noise. WirelessHART network has the following features, which makes it

appropriate for the control applications of CPS’s.

1. WirelessHART network is able to adapt to the changes in plant infrastruc-

ture automatically.

2. WirelessHART network spreads the communication among all the channels

in response to the interference from the environment.

3. WirelessHART takes robust security measures to protect the security of

network and information in transmission.

The research works on the implementation of WirelessHART standard, e.g., [79,

116], the communication resource assignment, e.g., [51, 60, 126, 127, 156, 157],

and the schedulability analysis of the stream set, e.g., [128], have been proposed

in recent years. In both standards, a centralized network architecture is adopted

for network resource allocation and data management. However, WirelessHART

is based on static Time Division Multiple Access (TDMA)-based data link layer,

which cannot handle the situation that the sampling rates and relative deadlines

of tasks are adjusted promptly.

During my Ph.D. study, I am working to present solutions to some of the

above challenges. Till now, I have presented approaches in different areas, e.g.,

minimizing the delay variations of control tasks on a uniprocessor, guaranteeing

the schedulability of DRTSs, minimizing the energy expenditure of the real-time

6

data transmission in the wireless network and minimizing the impact of wireless

network dynamics on existing tasks in the CPS. I will introduce the contributions

briefly in Section 1.2 and present the technical details in Chapters 2, 3, 4, 5 and

6.

1.2 Contributions

In this section, I summarize the contributions that I have made till now. During

the past four year, I have mainly worked on three projects, i.e, regulating delay

variations of real-time control tasks, local-deadline assignment for DRTSs and

minimizing energy consumption in wireless sensor networks.

1.2.1 Regulating Delay Variations of Real-Time Control Tasks

Control theory is fundamental to a large set of CPS. Control tasks are used

to determine the actuator behavior according to the sensing signals. For such

CPS applications, besides satisfying the deadlines of the control tasks, the delay

variations of the control tasks can also have a significant impact on the system

performance. Such variations can come from a number of sources including task

preemptions (the operation of suspending the running task with a low priority is

called preemption.), variations in task workloads and perturbations in the physical

environment. Such variations can cause degraded control system performance,

such as sluggish response and erroneous behavior.

When considering the various sources that cause delay variation in a phys-

ical system and the significant influence of delay variation on the stability and

performance of control systems, it is imperative that a delay variation reduction

process be integrated in the control loop so as to regulate delay variation whenever

7

there are strong internal and external perturbations. To accomplish this, I have

designed an on-line adaptive approach which directly minimizes delay variations

for control tasks in response to strong internal and external perturbations. Our

approach formulates the delay variation minimization problem as an optimiza-

tion problem. An efficient algorithm is designed based on the generalized elastic

scheduling heuristic [34]. The efficiency of the algorithm readily supports an adap-

tive framework which can adjust deadlines of control tasks on-line in response to

dynamic changes in workloads.

1.2.2 Local-Deadline Assignment for Distributed Real-Time Systems

DRTSs are widely employed in CPS applications such as vehicle control and

teleconferencing (e.g., [48, 110, 160]). Such systems typically have stringent real-

time requirements and may experience large variations in terms of their operating

environments. Jobs in a DRTS are often executed on a number of processors

and must complete by their end-to-end deadlines. Job deadline requirements may

be violated and the performance of CPS may be unpredictable and unreliable if

resource competition among different jobs on a given processor is not considered.

The scale of these systems often prohibits a centralized resource management

approach. Designing low-overhead, distributed scheduling solutions is critical to

reliable deployment of such systems.

I have designed a distributed, locally optimal algorithm to assign local dead-

lines to the jobs on each processor without any restrictions on the mappings of

the applications to the processors. The algorithm leads to improved schedulability

results since it considers disparate workloads among the processors due to com-

peting jobs having different paths. Given its distributed nature, the algorithm is

8

adaptive to dynamic changes of the applications and avoids the overhead of global

time synchronization. In order to make the proposed algorithm more practical,

two derivatives of the algorithm are proposed and compared. Simulation results

based on randomly generated workloads indicate that the approach outperforms

existing work both in terms of the number of feasible task sets and the num-

ber of feasible jobs. In addition, our simulation results illustrate the excellent

performance of the approach in real-world case studies.

1.2.3 An Adaptive Transmission Rate Control Approach to Minimize Energy

Consumption

Wireless sensor network is widely used in CPS applications, such as health

care and environment monitoring (e.g. [103, 140]). Most of the wireless sen-

sors are powered by batteries with a limited amount of energy, hence require the

transmission to be energy efficient. Lower transmission rates can greatly reduce

transmission energy. However, if the lowest transmission rate is selected, many

messages can miss their deadlines, which degrades the Quality of Service (QoS)

for CPS applications. There is a tradeoff between saving energy and meeting real-

time stream deadlines in wireless sensor networks. Therefore, it is important to

design an efficient approach for adjusting transmission rates in order to not only

achieve energy saving but also maximize the QoS for CPS applications.

I have designed an on-line transmission rate selection approach based on an

optimal dynamic voltage frequency scaling algorithm, Lp-EDF [148]. Our ap-

proach exploits the periodicity property of the real-time streams to predict the

future jobs’ timing information and finds an optimal transmission rate schedule.

The approach is able to make more messages meet their deadlines. Preliminary

9

results show that the approach achieves a higher success ratio with a lower timing

cost compared with existing works, although the energy dissipation caused by the

approach sees a small increase.

1.2.4 Data Link Layer Scheduling in Dynamic Wireless Networked Control Sys-

tems with Minimum On-line Schedule Update

WNCSs have received significant attention over the past several decades [58,

67, 111, 113, 117] because WNCSs are widely used in many areas such as teler-

obotics [44], aircraft control [150], civil infrastructure monitoring [77], medication

service [63] and power management [56]. In a WNCS, sensors, controllers, ac-

tuators and other relay nodes are geographically distributed and connected over

wireless network media. A task in a WNCS generally delivers measurements from

a sensor to the gateway and sends control signals from the gateway to an actuator

within an end-to-end deadline. In the real-world, the performance of WNCSs is

usually degraded by various physical events, such as the failures of critical civil

infrastructures and malicious attacks.

In this work, I consider a WNCS adopting a centralized network architecture,

which utilizes a static schedule when there is no physical disturbances in the

WNCS. The WNCS contains a set of periodic tasks and a rhythmic task, where the

period and relative deadline of rhythmic task are reduced suddenly and then return

to their nominal values gradually. Since rhythmic task is critical for the WNCS

to respond to physical disturbances, all the packets of rhythmic task must meet

their deadlines. In contrast, packets of periodic tasks are allowed to be dropped

to give up some bandwidth to rhythmic task. After rhythmic task returns to its

nominal state, the WNCS is required to reuse the static schedule immediately

10

after a specific time slot (called switch point) in order to reduce the overhead of

packet transmissions and prepare for any future external event. Therefore, there

exists a transient time duration when the WNCS cannot use the static schedule.

During such a transient duration, there may be a high bandwidth competition

in the WNCS, which may result in the end-to-end deadline misses of periodic

packets. Although the WNCS allows periodic packets to miss their end-to-end

deadlines, frequent deadline misses can degrade the Quality of Service (QoS) of

the system. Therefore, it is critical to determine a transient time duration and

design an on-line data link scheduling algorithm to make periodic packets meet

deadlines as many as possible.

This work designs an on-line data link layer scheduling problem determining a

transient time duration and a dynamic schedule in order to minimize the number of

dropped periodic packets. In the problem, I propose various practical constraints

of making the problem usable for real-world applications. To solve the problem, I

propose an on-line approach to determine a transient time duration and construct

a dynamic schedule for this time duration with bounded time and schedule update

overheads. The effectiveness and efficiency of the proposed approach are validated

thorough extensive experimental results.

11

CHAPTER 2

Reducing Delay Jitter through Adaptive Deadline Adjustments

For many control systems, control performance is strongly dependent on delay

variations of the control tasks. Such variations can come from a number of sources

including task preemptions, variations in task workloads and perturbations in the

physical environment. Existing work has considered improving control task delay

variations due to task preemption only.

This chapter presents a general adaptive framework that incorporates a pow-

erful heuristic aiming to further reduce delay variations. Results indicate that

the heuristic significantly improves existing approaches in terms of the number of

feasible task sets (between 13% to 50% on average) and the delay variation value

(between 113% to 250% on average).

2.1 Introduction

For many CPSs, intelligent coordination between control design and its cor-

responding computer implementation can lead to improved control performance

and/or reduced resource demands [7, 47, 102]. A prime example that benefits

from such coordination is regulating delay variations (jitter) in control tasks. For

many control systems, control performance strongly depends on delay variations

in control tasks. Such variations can come from numerous sources including task

12

preemptions, variations in task workloads and perturbations in the physical en-

vironment, and can cause degraded control system performance, such as sluggish

response and erroneous behavior. An integrated approach to regulate delay vari-

ation has the potential to significantly improve a physical system performance.

There are a number of published papers related to reducing delay variations.

A somewhat indirect way of reducing delay variations is to reduce task deadlines,

which has been investigated by many researchers, e.g., [13, 14, 21, 26, 64]. A com-

mon theme of all these methods is to focus on reducing deadlines of either tasks or

subtasks. Because deadlines are only allowed to be reduced, these methods cannot

effectively explore the design space where deadlines of certain tasks/subtasks may

be increased (within some upper bounds) to reduce the overall delay variations.

Another set of methods are based on a task decomposition based approach

where each task is partitioned into three subtasks, i.e., Initial, Mandatory, and

Final Subtasks (referred as the IMF model), and the delay variation of the final

subtask (corresponding to control update) is minimized. The task-decomposition

based methods [11, 12] suffer less, but still obvious performance degradation (com-

pared with direct deadline reduction methods) when deadlines are only allowed

to be decreased greedily. The decomposition task model is acceptable for control

tasks where only a small amount of data needs to be passed to control update sub-

tasks, otherwise context switching cost could be prohibitive. In addition, these

methods require repeated worst-case response time computation under the Earli-

est Deadline First (EDF) scheduling policy, which can be quite time consuming.

Some recent works have focused on studying the influence of task delay varia-

tions on control system performance, and how to reduce such influence by schedul-

ing the tasks intelligently in order to enhance system performance. A Matlab-

13

based toolbox for real-time control performance analysis, taking the timing effects

into account, is presented in [32, 95]. A computational model has been proposed

in [31] to provide small jitter and short input-output latencies of control tasks to

facilitate co-design of flexible real time control systems. Theory of jitter margin

is proposed in [33], and applied in [18, 19, 33] to guarantee the stability and per-

formance of controllers in the target system. Some straightforward jitter control

methods to improve control system performance, e.g., task splitting, advancing

deadlines and enforcing non-preemption, are evaluated in [26]. [23] proposes a

delay-aware period assignment algorithm under fixed priority scheduling to re-

duce the control performance cost. Some of these works [23, 31, 33] adjust control

task periods and change the workload of the control system, which may over or

under utilize the control system resources, while some of them [18, 19, 26] are

not suitable for on-line use due to their exceedingly long computation time of the

schedulability analysis.

When considering the various sources that cause delay variation in a physical

system and the significant influence of delay variation on the stability and perfor-

mance of control systems, it is imperative that a delay variation reduction process

be integrated in the control loop so as to regulate delay variation whenever there

are strong internal and external perturbations. To accomplish this, we need a

delay variation reduction approach that is effective, efficient and adaptive. In this

chapter, we propose an on-line adaptive approach which directly minimizes delay

variations for both decomposable and non-decomposable control tasks simultane-

ously. The approach leverages the IMF based task model for both types of tasks

and formulates the delay variation minimization problem as an optimization prob-

lem. An efficient algorithm is designed based on the generalized elastic scheduling

14

heuristic [34]. The efficiency of the algorithm readily supports an adaptive frame-

work which can adjust deadlines of control tasks on-line in response to dynamic

changes in workloads.

The rest of the chapter is organized as follow. Section 2.2 reviews system

models and Section 2.3 provides motivations to our work. Section 2.4 presents

our heuristic to solve the delay variation reduction problem. Experimental results

are presented and discussed in Section 2.5.

2.2 System Model

We consider a computer system which handles a set Γ of N real-time control

tasks, {τ1, τ2, · · · , τN}, each with the attributes: (Ci, Di, Pi), where Ci is the worst

case execution time of τi, Di is τi’s deadline, Pi is its period, and Ci ≤ Di ≤ Pi.

Without loss of generality, we adopt the IMF task modeling approach introduced

in [12]. Specifically, we let τi be composed of three subtasks, the initial part τii for

sampling input data, the mandatory part τim for executing the control algorithm,

and the final part τif to deliver the control action. Thus, a task set ΓIMF consists

of 3N subtasks (τ1i, τ1m, τ1f , ..., τNi, τNm, τNf), each with the parameters

τii = (Cii, Dii, Pi, Oii) τim = (Cim, Dim, Pi, Oim) τif = (Cif , Dif , Pi, Oif)

where Oi⋆ is the offset of the corresponding subtask. Note that in order for the

IMF model to faithfully represent the original task set, each τii must be executed

before τim, which must in turn be executed before τif . For a non-decomposable

task, say τi, we simply have Cii = Cim = Dii = Dim = 0, and Cif = Ci. Some

tasks may also be partially decomposable, i.e., we may have non-zero Cii and Dii

but Cim = Dim = 0.

15

To achieve desirable control performance, control actions should be delivered

at regular time intervals periodically. However, preemptions, variations in task

workloads, and perturbations in the physical environment make each instance of

the control actions experience different delays. Similar to [12], we define the delay

variation as the difference between the worst and best case response times of the

same final subtask relative to its period, i.e.,

DVi =
WCRTif −BCRTif

Pi
, (2.1)

where WCRTif , BCRTif are the worst case and best case response times respec-

tively. The definition of delay variation gives information on the delay variance

that a task will suffer in the control action delivery within a period. Our problem

is to minimize the delay variations of all the final subtasks.

We use Earliest Deadline First (EDF) scheduling algorithm. A necessary and

sufficient condition for a synchronous task set to be schedulable under EDF is

given below.

Theorem 1. A set of synchronous periodic tasks with relative deadlines less than

or equal to periods can be scheduled by EDF if and only if ∀L ∈ {dK |dK = K ·

Pi +Di ≤ min(Lip, H,Bp)} the following constraint is satisfied,

L ≥
N∑
i=1

(⌊L−Di

Pi
⌋+ 1) · Ci (2.2)

where Lip =
∑N

i=1(Pi−Di)Ui

1−U , Ui = Ci

Pi
, U =

∑N
i=1

Ci

Pi
, K ∈ N (the set of natural

numbers including 0), H is the hyperperiod, and Bp is the busy period [17, 29].

For an asynchronous task set, the condition in Theorem 1 can be used as a

sufficient condition [17].

16

2.3 Motivation

We use a simple robotic example, similar to the one in [12], to illustrate the

deficiencies of existing approaches for delay variation reduction. The example

contains four control tasks, i.e., the speed, strength, position and sense tasks.

The tasks and the original delay variations under EDF are shown in Table 2.1.

We consider two representative methods for delay variation reduction, described

as the followings.

TABLE 2.1

A Motivational Example Containing Four Tasks with the Second and

Fourth Tasks being Non-Decomposable.

Original

Task Computation Delay

Name Exec. Time Deadline Period Variations (%)

Speed 5000 27000 27000 18.52

Strength 8000 30000 320000 1.56

Position 10000 45000 50000 32

Sense 13000 60000 70000 40

In [11, 12], a task decomposition based method, denoted as TDB, is proposed

to reduce delay variations of final subtasks. The algorithm replaces the deadlines

17

of final subtasks by their respective worst case response times in the main loop

greedily and efficiently. However, the method neglects the subtask dependencies

in the IMF task model and tends to generate infeasible solutions in high utilization

task sets.

Another greedy algorithm, presented in [14] and denoted as DSB, indirectly re-

duces task delay variations by the deadline scaling based technique. The algorithm

repeatedly reduces the deadlines of all the tasks by the same scaling factor, until

the task set becomes unschedulable. The blind deadline reduction may increase

the delay variations.

TABLE 2.2

Delay Variation of A Motivational Example by Adaptively Applying

Existing Methods

New Delay Variations Delay Variations

Task Delay Variations (%) before Reassignment (%) after Reassignment (%)

Name DSB / TDB / DVR DSB / TDB / DVR DSB / TDB / DVR

Speed 44.54 / Fail / 0.44 44.54 / 33.33 / 0.44 41.48 / Fail / 0.44

Strength 3.36 / Fail / 5.94 33.59 / 28.13 / 59.4 31.25 / Fail / 15.59

Position 34.75 / Fail / 1 34.75 / 44 / 1 34 / Fail / 1

Sense 32.86 / Fail / 9.27 32.86 / 48.57 / 9.27 32.86 / Fail / 20

18

Suppose that decomposing the strength and sense tasks in the robotic example

would cause non-negligible context switch overhead and we opt to only partition

the speed and position tasks according to the IMF model. Assume that the IMF

decomposition is made considering that the initial and final subtasks consume

10% of the execution time of the corresponding control task. By applying DSB

and TDB, new delay variation values are obtained and shown as the first two

values in column 2 of Table 2.2. TDB actually fails to find a feasible solution and

employs the original deadline assignment, while DSB gives worse delay variations.

With the DSB method, three tasks suffer more than 30% delay variation.

Now, assume that at some time interval, the execution rate of the strength

task increases by 10 times. If the same deadline assignments are used for the

tasks/subtasks, the delay variation of the strength task increases to 33.59% and

28.13% for DSB and TDB, respectively (see the first two values in column 3 of

Table 2.2). Since TDB cannot find a feasible solution before the workload change,

it still employs the original deadline assignment after the change. Suppose we

apply the DSB and TDB methods on-line in response to this change, the new

delay variation values are shown as the first two values in column 4 of Table 2.2.

It turns out that the TDB still fails to find a feasible solution while DSB does not

provide much improvement over the delay variations before the reassignment.

With our proposed approach (DVR), smaller delay variations can be obtained

for all the cases considered above. In particular, for each respective scenario, we

have applied our approach and the delay variation values are shown as the third

number in columns 2-4 of Table 2.2. Though for some tasks, delay variations see

a small increase, most of the tasks which suffer from large delay variations due to

the other methods are now having much smaller delay variations.

19

2.4 Approach

2.4.1 Problem Formulation

From the previous section, one can see that delay variations could be improved

significantly if more appropriate deadline assignments can be identified. In this

section, we describe our adaptive delay variation reduction (DVR) approach. DVR

is built on three basic elements. First, the general IMF model as given in the pre-

vious section is used for both decomposable and non-decomposable tasks. Second,

the delay variation reduction problem is formulated as an optimization problem.

Third, an efficient heuristic is developed to solve the optimization problem. The

heuristic is then incorporated into an adaptive framework.

We adopt the generalized IMF task model described in Section 2.2 to represent

the task set under consideration. The general IMF model allows both decompos-

able and non-decomposable tasks to be treated equivalently. Given an IMF task

set, there may exist numerous sets of feasible deadlines (Dii, Dim, Dif) which al-

low the original task set to be schedulable. However, different sets of deadlines

could lead to different delay variations of the original tasks. To find the partic-

ular subtask deadline assignment that results in the minimum delay variation,

we formulate the deadline selection problem as a constrained optimization prob-

lem. Though existing work such as [34, 83] has considered the deadline selection

problem as an optimization problem, there are two major differences between our

present formulation and theirs. First, our formulation directly minimizes delay

variations. Second and more importantly, our formulation leverages special prop-

erties of the IMF task model and thus allows much more effective delay variation

reduction.

The delay variation minimization problem is to minimize the total delay vari-

20

ation bounds of (2.1) subject to the schedulability constraints as given in (2.2)

while considering the IMF task model. The decision variables in the problem are

subtask deadlines Dii, Dim and Dif (while L as defined in Theorem 1 is dependent

on Di∗’s). Specifically, we have

min:
N∑
i=1

wi(
Dif − Cif

Pi
)2 (2.3)

s.t.
N∑
i=1

[(⌊L−Dii

Pi
⌋+1) ·Cii+(⌊L−Dim

Pi
⌋+1) ·Cim+(⌊L−Dif

Pi
⌋+1) ·Cif] ≤ L,

∀L ∈ {dK |dK = K · Pi +Di ≤ min(Lip, H,Bp)}, (2.4)

Dii = Dim, (2.5)

Cif ≤ Dif ≤ min (Dim, Di −Dim), (2.6)

Cim ≤ Dim ≤ Di − Cif , (2.7)

where 0 ≤ wi ≤ 1 is a constant, Lip, H,Bp and K are as defined in Theorem 1. If

task τi is not decomposable, (2.6) and (2.7) are replaced by

Cif ≤ Dif ≤ Di, (2.8)

Dim = 0. (2.9)

To see why the above formulation can lead to valid deadline assignments that

minimize delay variations, first note that deadline Dif is the upper bound of the

WCRT of the final subtask of τi, and Cif is the lower bound of the BCRT of the

final subtask of τi. Hence, the objective function in (2.3) is simply the weighted

sum of the squares of worst-case delay variations as defined in (2.1). The use of

21

wi allows one to capture the relative importance of control tasks in the objective

function. The choice of the objective function is based on two observations. First,

the quadratic form effectively reduces the variation of jitter distribution. Second,

the formulation leads to an efficient heuristic to solve the quadratic programming

problem. We do not directly optimize control performance as such formulation

can be quite expensive computationally[32]. (Our experiments will show that the

objective function is effective in improving control performance.)

To guarantee schedulability under the IMF model, we have introduced a set

of constraints in our formulation. Constraint (2.4) helps ensure the schedulability

of the task set according to Theorem 1. However, this constraint alone is not

sufficient since the precedence requirement must be obeyed when executing the

initial, mandatory and final subtasks of any decomposable task. (Note that en-

suring the subtask dependencies during task execution is straightforward. The

difficulty lies in capturing this in the schedulability test without either introduc-

ing more variables (i.e., Oii, Oim, Oif) or being overly pessimistic.) To capture

the fact that τii is always executed before τim, we can set Dii ≤ Dim (and hence

τii has a higher priority than τim as long as Oii = Oim = 0). For simplicity, we

let Dii = Dim, assuming that a tiebreak goes to τii, which is constraint (2.5).

Since τif must start after τim is completed, we let Oif = Dim. Furthermore, to

guarantee that task τi finishes by its deadline Di, we must have Oif +Dif ≤ Di.

We thus have Dif ≤ Di −Dim, which leads to one part of (2.6). The other part

of (2.6), i.e., Dif ≤ Dim, reflects the observation that smaller deadlines should

be assigned to the final subtask compared to that of the mandatory subtask so

as to help reduce delay variation of the final subtask (as this would be the delay

variation of interests). (2.7) constrains the space of Dim and is obtained simply

22

by combining Dim ≤ Di−Dif and Dif ≥ Cif . Constraints (2.8) and (2.9) replace

(2.6) and (2.7) for tasks that are not decomposable. Since they are simpler than

(2.6) and (2.7), our following discussions focus more on constraints (2.5)-(2.7).

if i im

if

im

i i if

if

if im

if

Figure 2.1. Feasible deadline region for mandatory/final subtasks.

Based on constraints (2.5)-(2.7), Figure 2.1 depicts the feasible region of (Dim, Dif),

which is bounded by △ ABO and corresponds to the search region for the opti-

mal solution to (2.3)-(2.7). To make our search more efficient, we would like to

reduce the search region as much as possible without sacrificing the optimization

solution quality. An observation discussed in [15] can be exploited to reduce the

search region. We summarize this observation in the following theorem by using

our notation.

Theorem 2. Given a set ΓIMF of N tasks. If the necessary and sufficient condi-

tion for schedulability in Theorem 1 is satisfied for a synchronous task set ΓIMF

with (Dii = Dim, Dim, Dif) for i = 1, ..., N , then the same condition is satisfied

23

for a synchronous task set Γ
′
IMF with (D

′
ii, D

′
im, Dif), where D

′
ii = D

′
im ≥ Dim for

i = 1, ..., N . [15]

Applying Theorem 2 to the search region depicted in Figure 2.1, one can readily

see that point M
′
on the segment JI leads to a schedulable solution if point M

leads to a schedulable solution. Since Dim corresponding to M
′
is larger than

that of M , M
′
is a more desirable solution than M as it leads to a smaller Dif .

Based on this observation, we can reduce the search region by 1/2 by replacing

constraints (2.6)-(2.7) in the optimization problem by the following:

Cif ≤ Dif ≤ Di −Dim, (2.10)

Di

2
≤ Dim ≤ Di − Cif . (2.11)

If task τi is not decomposable, constraint (2.11) is replaced by

Dim = 0. (2.12)

Hence jitter minimization can be achieved by solving the optimization problem

defined by (2.3-2.5), (2.10-2.12).

Solving the optimization problem specified in (2.3) together with (2.4), (2.5),

(2.10), (2.11) and (2.12) is not trivial as it involves dealing with a discontinuous

function (the floor function). Heuristic techniques such as the one presented in [34]

may be leveraged to solve the problem, but it would take many iterations to reach

convergence. In addition, this heuristic either fails to find a solution or finds a

very pessimistic solution for task sets with high utilization. We have developed a

better heuristic to avoid such problems, which we refer to as DVR. DVR in essence

24

is a branch-and-bound type algorithm. It achieves its efficiency and effectiveness

by exploiting a number of observations based on the general time demand analysis

to direct the search process to focused regions.

2.4.2 DVR Heuristic

DVR solves the optimization problem as follows. (The high-level process of

DVR is similar to that used in [34], but there are significant differences between

DVR and that in [34] in the way that the actual search is conducted.) For an

initial solution (Dii = Dim, Dif), the value of L is computed, and an updated set

of D′
if is obtained by solving the optimization subproblem defined in (2.3)-(2.5)

and (2.10). The new set of D′
if is adjusted to make the solution (Dii = Dim, D

′
if)

become schedulable, i.e., satisfy the necessary and sufficient condition in Theorem

1; and then Dim is updated to D′
im by considering not only the constraint on Dim

but also Dim’s effect on future Dif selection. These new values, D′
ii = D′

im and

D′
if , are then used as the initial solution for the next iteration. This process is

repeated in an attempt to find the best set (Dim, Dif) that minimizes the objective

function (2.3).

Algorithm 1 summarizes the main procedure of DVR. In the algorithm, the

current and best solutions found are represented by currD and bestD, respec-

tively. DVR starts with several straightforward initialization procedures (Line

1-Line 4). The main loop of DVR spans from Line 5 to Line 36, where DVR

searches the best solution bestD to minimize the objective function (2.3). In each

iteration of the main loop, a schedulability check is performed to test whether

the current task set ΓIMF satisfies (2.4) (Line 9). If the current solution satisfies

(2.4), the corresponding objective function value is evaluated by (2.3) and the new

25

solution is either recorded as the best solution found or discarded (Line 11-Line

18). Furthermore, either currDif or currDim is updated according to the value

of state (Line 19-Line 23). If constraint (2.4) is not satisfied, subtasks’ deadlines

(Dif or Dim) are adjusted according to the value of state as shown in Lines 27 to

31.

As outlined above, in each iteration of the main loop, DVR updates either the

final subtasks’ deadlines or the mandatory subtasks’ deadlines according to the

value of state. By allowing only one set of deadlines to vary in each iteration, we

not only simplify the optimization problem, but also manage search space reduc-

tion effectively. We use parameter ”state” in each iteration to indicate whether

the iteration is to update Dif (state = 0) or Dim (state = 1). Below, we present

the details on the deadline update procedures.

DVR updates the final subtasks’ deadlines Dif by solving the optimization

problem described by (2.3-2.5) and (2.10) for a fixed L and Dim values. The ob-

vious difficulty here is how to deal with the discontinuous function (2.4). Instead

of simply adopting the strategy introduced in [34], i.e., removing the floor oper-

ator from (2.4), we propose to use a less pessimistic way to tackle the difficulty.

Specifically, we replace constraint (2.4) by the following constraint

N∑
i=1

[(
L−Dii

Pi
+ 1) ·Cii + (

L−Dim

Pi
+ 1) ·Cim + (

L−Dif

Pi
+ 1) ·Cif] = L,L = Lip,

(2.13)

where Lip is as defined in Theorem 1. Constraint (2.13) replaces (2.4) to form

a new optimization subproblem defined by (2.3), (2.5), (2.10), (2.13). Compared

with L∗ employed in [34], Lip in (2.13) leads to less pessimistic solutions. Solving

the optimization subproblem defined by (2.3), (2.5), (2.10), (2.13) can be done

efficiently by leveraging the Karush-Kuhn-Tucker Theorem [114]. Specifically,

26

function Optimize Solution in Line 22 finds the solution according to Theorem 3

for given L = Lip and Dim values.

Theorem 3. Given the constrained optimization problem as specified in (2.3),

(2.5), (2.10), (2.13), for fixed values of L = Lip and mandatory subtask deadlines

Dim,∀i, let

D̃ =
N∑
i=1

L · Ui −
N∑
i=1

Dim · (Uii + Uim) +
N∑
i=1

Ci − L−
∑

Dif ̸=Difmax

DifminUif

−
∑

Dif=Difmax

DifmaxUif , (2.14)

S̃ =
∑

Dif ̸=Difmax

U2
if

wi
P 2
i . (2.15)

A solution, D∗
if , is optimal, if and only if

D∗
if =

D̃Uif

S̃wi
P 2
i +Difmin, (2.16)

where Ui =
Ci

Pi
, Uii =

Cii

Pi
, Uim = Cim

Pi
, Uif =

Cif

Pi
, Difmin = Cif and Difmax =

Di −Dim.

Proof: We prove the theorem by utilizing the KKT necessary conditions for the

solution to the given problem, which can be written in terms of the Lagrangian

function for the problem as

Ja(D,µ) =
N∑
i=1

wi
P 2
i

(Dif −Difmin)
2 + µ0(L

N∑
i=1

Ui −
N∑
i=1

Dim(Uii + Uim)

−
N∑
i=1

DifUif−L+
N∑
i=1

Ci)+
N∑
i=1

λif (Dif−Difmax)+
N∑
i=1

µif (Difmin−Dif), (2.17)

27

where µ0, µif , and λif are Lagrange multipliers, µ0 ≥ 0, µif ≥ 0, and λif ≥ 0, for

i = 1, ..., N . The necessary conditions for the existence of a relative minimum at

D∗
if are, for all i = 1, ..., N ,

0 =
∂Ja(D,µ)

∂Dif

= −2wi
P 2
i

(Difmin −D∗
if)− µ0Uif + λif − µif (2.18)

µ0(L
N∑
i=1

Ui − L−
N∑
i=1

Dim(Uii + Uim)−
N∑
i=1

D∗
ifUif +

N∑
i=1

Ci) = 0 (2.19)

λif (Dif −Difmax) = 0 (2.20)

µif (Difmin −Dif) = 0 (2.21)

Consider the KKT conditions given in (2.18), (2.19), (2.20), (2.21). Suppose that

D∗
kf = Dkfmin, µkf ≥ 0, and λkf = 0. Then, from (2.18), µkf = −µ0Ukf . Since

µkf ≥ 0, µ0 ≥ 0 and Ukf > 0, we have

µkf = µ0 = 0. (2.22)

Similarly, if D∗
kf = Dkfmax, then λkf ≥ 0, µkf = 0 and

µ0 =

2wk(Dkfmax−Dkfmin)

P 2
k

+ λkf

Ukf
. (2.23)

Assume that constraints in (2.10) are inactive (i.e., Dkfmin < D∗
kf < Dkfmax,

µkf = λkf = 0). Then (2.18) becomes

µ0 =
2(Dkf −Dkfmin)Ukf

U2
kfP

2
k

wk

. (2.24)

Summing (2.22) and (2.24) up for all i, and assuming that constraint (2.13) is

28

active for any optimal solution to the given optimization problem, we have

µ0 = 2
D̃

S̃
. (2.25)

By combining (2.25) with (2.18), we get

D∗
if =

D̃Uif

S̃wi
P 2
i +Difmin. (2.26)

2

Applying Theorem 3 for given Lip and Dim values results in a new set of Dif

values. However, tasks with this set of deadlines may or may not be schedulable

since constraint (2.13) itself is not equivalent to (2.4). To check whether the set

of deadlines can indeed satisfy the feasibility condition in Theorem 1, we evaluate

(2.4) for every scheduling point L ≤ min(Lip, H,Bp), where Lip corresponds to

newly found Dif ’s, to determine if the Dif ’s can be satisfied by the tasks. If (2.4)

is satisfied by all L ≤ min(Lip, H,Bp), the solution will be used for deriving new

deadlines in the next iteration. Otherwise, adjustments to the found deadlines

need to be made. DVR adjusts, i.e., extends, the final subtasks’ deadline through

function Final Deadline Adjust (Line 28). The value of Dif is adjusted to a new

value such that the number of τif ’s jobs to be completed within the time interval

(0,min(Lip, H,Bp)] is decreased by 1. The Dif ’s are adjusted one at a time in the

decreasing order of the task execution times, and stops as soon as (2.4) is satisfied

by all L ≤ min(Lip, H,Bp). This method greedily reduces the workload of the

task set within the time interval (0,min(Lip, H,Bp)] and tends to quickly find a

set of schedulable deadlines.

To update mandatory subtasks’ deadline values for constructing a new opti-

29

mization subproblem, DVR increases previous mandatory subtasks’ deadlines Dim

to D′
im = Di−Dif . This is implemented in function Construct New Subproblem

(Line 20). By setting D′
im = Di−Dif , (2.10) is satisfied. More importantly, DVR

skips all D′′
im values that satisfy Dim < D

′′
im < Di−Dif , because D

′
im = Di−Dif

leads to a smaller Dif than D
′′
im according to Theorem 2. Additionally, DVR does

not increase Dim beyond Di−Dif , because for D
′′
im > Di−Dif , DVR would miss

the optimal solution contained in the new subproblem based on D
′
im = Di −Dif .

If the constructed new subproblem contains no schedulable solution, DVR will

incrementally extend the mandatory subtasks’ deadlines, which is implemented in

Mandatory Deadline Adjust and similar to adjusting the final subtasks’ dead-

lines discussed above.

To best utilize the new subproblem formulation in the search process, care must

be taken in the subtasks’ deadline initialization. DVR starts the search process

from the minimum value of Dim and the maximum value of Dif (implemented

in function Construct Initial Solution and Subproblem (Line 2)). Specifically,

the Dim of a decomposable task is set to Di

2
, which satisfies (2.11), while Dim of

a non-decomposable task is set to 0 according to (2.12). The initial deadline of

the final subtask of any task τi is set to Di − Dim, according to (2.10). With

each update of Dim, the upper bound of Dif decreases as the number of iterations

increases, implying a smaller Dif by Theorem 3 (and leads to smaller jitter). To

accelerate the search process and make DVR flexible, we also allow user-defined

deadlines to be used as an initial solution.

In the main loop, DVR needs stopping criteria to end its search process. We

choose variables BestObjF and duplicate to set up the stopping criteria for DVR.

BestObjF is the objective function value of the best solution found so far, and

30

duplicate records the number of the found feasible solutions whose objective func-

tion values satisfy |ObjF − BestObjF | < δ, where δ is a user-defined parameter.

If |ObjF − BestObjF | < δ, duplicate is incremented by 1, as shown in Lines

12 to 14. When the number of ”duplicated” solutions is equal to a user-defined

parameter β, the program exits from the main loop (Line 7). To handle the case

where final subtasks’ deadlines do not converge to some fixed values (or when

it may take too long for the solution to converge), the algorithm uses another

user-defined parameter, maxIter, to limit the maximum number of iterations.

The time complexity of DVR is dominated by the busy period computation

in Line 3 and the main for loop starting at Line 5. The time complexity of the

busy period computation algorithm proposed in [141] is O(
Lbusy

Cmin
), where Lbusy is

the first busy period and Cmin is the minimum task computation time. Inside the

for loop, the most timing consuming operations appear in the Feasibility Test in

Line 9 with the time complexity O(N ·max{Pi−Di⋆}). Thus, the time complexity

of DVR is O(max(
Lbusy

Cmin
, N ·max{Pi −Di⋆} ·maxIter)).

2.4.3 Adaptive Delay Variation Reduction

As we have seen from the motivational example, dynamic workload changes

could cause large delay variations if the original task/subtask deadlines were used.

Dynamic workload changes may be caused by task-period adjustment in response

to an event in the changing environment as shown in [25, 34]. Note that such task

periods may assume any value within a range and it can be impractical to pre-

compute all possible delay variations. Furthermore, task workloads may also fluc-

tuate widely due to non-deterministic task computation times [25, 120]. Thus, it is

desirable to deploy an on-line adaptive framework to adjust task/subtask deadlines

31

when workloads change significantly. The key to such an adaptive framework is

an efficient method of solving the optimization problem posed earlier. Our heuris-

tic, DVR, satisfies such a requirement. Hence, we propose an adaptive framework

built on DVR.

DVR

Algorithm
Kernel

Physical Plant

(Control System)

Dii, Dim, Dif

Physical Control

Signals to Plant

Event

Detector

Trigger

Execution Time

Estimator

Plant Configuration

Manager

Qi (Predicted Execution Time)

Pi, Di (Selected Task Period and Deadline)

Measured

Execution Times

Control System

Performance

Measures

Figure 2.2. Adaptive framework for delay variation reduction.

Our proposed framework is similar to the one in [25] and is shown in Fig-

ure 2.2. This framework triggers the execution of the DVR algorithm in response

to changes in task parameters. The DVR algorithm selects the subtask deadlines,

Dii, Dim, and Dif based on the task set’s current parameters. These deadlines are

handed over to the Kernel which then executes the control tasks and issues the

control signals to Physical Plant. The performance of the physically controlled

plant is monitored by a plant configuration Manager which may request a read-

justment of the control task’s deadlines and periods based on the use of anytime

control formalism [52]. The performance of Kernel is monitored by an Execution

32

Time Estimator. This estimator uses kernel-based measurements of the mean and

worst-case execution times to determine a predicted execution time Qi. The pre-

dicted execution time, Qi, the selected period, Pi, and task deadline Di, are then

handed over to an Event Detector. This detector compares these parameters to

task parameters that were previously used to compute the subtask deadlines. If

there is a large difference, then a trigger is issued to cause the DVR algorithm

to recompute the subtask deadlines. Determining the ”optimal” triggering condi-

tion is being investigated. The triggering condition can be a constant empirically

chosen threshold. It may also be possible to use a time-varying state-dependent

threshold [69] to compute thresholds that optimize overall control system per-

formance subject to a constraint on the average rate at which the intermediate

deadlines are readjusted.

2.5 Evaluation

In this section, we first evaluate the performance and efficiency of our heuristic

DVR based on randomly generated task sets and compare DVR with the iterative

method TDB in [12] and the greedy method DSB in [14]. Then, we illustrate

the use of our heuristic in solving real-world problems. Last, we demonstrate the

effectiveness of our adaptive framework through the simulation of actual control

systems.

2.5.1 Simulation Setup

We generated 1000 random task sets consisting of 5 tasks each were randomly

generated for 9 different utilization levels (Ulevel = 0.1, ..., 0.9) with a total of 9000

task sets. The utilization level is defined to be Uleveli =
∑5

j=1
Cj

Pj
, i = 0.1, ..., 0.9.

33

Each task is initially schedulable with (Cj, Dj, Pj), using the necessary and suf-

ficient condition (2.2) in Theorem 1. In our experiment, we set the maximum

hyperperiod, minimum period, and maximum period to 500, 000, 10, 000, and

40, 000, respectively. The precision was specified to be 100, whereas the max-

imum number of tries was set to 10, 000. The precision denotes the minimum

increment in any task period. For example, if the precision is 100, a task period

could be 5200, but not 5010. In a nutshell, the following steps were taken to gen-

erate a task set. First of all, a set of periods were randomly generated based on

the minimum period, maximum period, hyperperiod bound, and precision. Task

periods were generated in such a way that the hyperperiod was no larger than the

maximum hyperperiod. Each task was randomly assigned an execution time such

that the total utilization was equal to that specified by the user. No task will

have a utilization that is greater than half of the specified total utilization. Then,

each task was assigned an initial deadline Dinitial
i that ensured

∑N
i=1

Ci

Dinitial
i

> 1.

As a final step, the random task set generator tested the schedulability of a task

set using the necessary and sufficient condition in Theorem 1. If the task set was

unschedulable, task deadlines Dinitial
i were randomly increased such that the new

deadline was greater than the previous deadline but
∑N

i=1
Ci

Dinitial
i

was still greater

than 1. This final step was repeated until either a feasible task set had been found

or the maximum number of tries had been reached. To allow the decomposable

task model adopted by both DVR and TDB to be investigated, we randomly

selected 3 tasks out of each task set to be decomposable, and assumed that the

initial and final subtasks consumed 10% of the execution time of the corresponding

control task. Furthermore, because the constraints of the subtask dependencies

in the decomposable task model made it harder to construct initially feasible task

34

sets, we increased each task’s deadline to
Dj+Pj

2
.

Our heuristic was implemented in C++, running on a Sun Ultra 20 (x86-64)

workstation with Red Hat Enterprise Linux 4. To demonstrate the performance

of DVR, we complete the following comparisons in this section. First, we compare

the number of problems that DVR is able to solve with what can be solved by

TDB and DSB. Second, to assess the solution quality of DVR, we compare the

solutions obtained by DVR with the results by TDB and DSB. Third, to show

the efficiency of our heuristic, we compare the DVR’s execution time for solving

a batch of problems with those of TDB and DSB.

2.5.2 Performance of DVR

In the first experiment, we compare the percentage of solutions found by our

heuristic, as opposed to those by TDB and DSB. Figure 2.3 compares the number

of solutions found by DVR, TDB and DSB, respectively. If a task set cannot be

0
10
20
30
40
50
60
70
80
90

100

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Utilization Level

F
e
a
si

b
le

 S
o
lu

ti
o

n
s

F
o

u
n

d
 (

%
)

DSB TDB DVR

Figure 2.3. Comparison of DVR, TDB and DSB in terms of percentage
of feasible solutions found.

35

solved by a method, its solution is said to be not found by this method. The x-axis

shows the different utilization levels, whereas the y-axis shows the percentage of

solutions found. It is clear from the plot that DVR is able to find solutions for

all task sets with utilization levels 0.1 to 0.8, while for utilization level 0.9 DVR

finds 995 solutions out of 1000 task sets. In contrast, TDB and DSB suffer from

various degrees of degradation. With increasing utilization levels, more and more

solutions found by TDB cannot satisfy the subtask dependency constraint, i.e.,

the found solutions are infeasible, because TDB blindly reduces deadlines of final

subtasks, neglecting the deadlines of mandatory subtasks. DSB works better than

TDB, but it cannot find solutions of many task sets for utilization levels 0.6 to

0.8. Compared with TDB and DSB, DVR performs excellently in obtaining a

schedulable solution while guaranteeing subtask dependencies.

The second experiment examines the quality of the solutions found by our

heuristic with respect to the original delay variations and that of the solutions

found by TDB and DSB. Figure 2.4 illustrates the solution quality of DVR as well

as TDB and DSB. As before, the x-axis shows the different utilization levels. The

y-axis shows the average delay variations of the found solutions at each utilization

level, i.e.,
∑5

j=1

DVj
5

1000
, where DVj is the delay variation of task τj in a task set. To

guarantee the fairness of the comparison, the average delay variation of a task set

that cannot be solved by a specific method is set to the original average delay

variation. The first, and most obvious, observation is that the average delay

variations resulted from applying DVR are much smaller than the values by DSB

and the original average delay variations. In addition, with increasing utilization

levels, such a delay variation difference becomes greater. Actually, DSB gives

worse delay variations than the original delay variations at each utilization level,

36

0

10

20

30

40

50

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Utilization Level

T
o
ta

l
A

v
e
r
a
g

e
 D

e
la

y

V
a

r
ia

ti
o

n
 (

%
)

DSB TDB Original DVR

Figure 2.4. Comparison of DVR, TDB and DSB in terms of solution
quality.

because its blind deadline reduction increases the delay variations. Second, for

utilization levels less than or equal to 0.7, TDB performs a little worse than DVR,

while for utilization levels greater than 0.7, the performance of TDB degrades

drastically. The reason for this is that the numbers of found solutions by TDB

for utilization levels greater than 0.7 decrease greatly (see Figure 2.3), and the

average delay variations for these task sets without a solution by TDB are the

original delay variations. The results of the first and second experiments show

that DVR performs best in applications with various utilizations among the three

methods.

To examine whether DVR is suitable for on-line dynamic deadline adjustments,

we study the execution times of DVR and compare them with TDB and DSB in

the third experiment. Figure 2.5 compares the execution times of DVR, TDB and

DSB. The x-axis shows the different utilization levels, whereas the y-axis shows

the average execution time which it takes by an algorithm. As shown in Figure

2.5, TDB spends 24.5 milliseconds on average in searching a solution at utilization

level 0.9, and only finds 1 solution out of 1000 task sets finally. DVR and DSB

37

0

5

10

15

20

25

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Utilization Level

A
v
e
r
a
g
e
 E

x
e
c
u

ti
o
n

 T
im

e

(m
se

c
)

DSB TDB DVR

Figure 2.5. Comparison of DVR, TDB and DSB in terms of average
execution time.

only take 6.58 and 6.21 milliseconds on average to search a solution at utilization

level 0.9, respectively, which is almost 4 times faster than TDB. Furthermore,

at all utilization levels, TDB always spends longer execution time than DVR and

DSB, and DVR has the execution time comparable with that of the greedy method

DSB.

To further investigate the convergence characteristics of DVR, the average

and maximum numbers of iterations to search for a solution by DVR at various

utilization levels are summarized in Table 2.3. As shown in Table 2.3, DVR

converges very fast at utilization levels 0.1 to 0.6 with the average number of

iterations less than 10 and the maximum number of iterations 19. For higher

utilization levels 0.7 to 0.9, the maximum number of iterations increase obviously.

However, most of the task sets at high utilization levels can be solved within 50

iterations. For example, 894 task sets at utilization level 0.9 can be solved within

50 iterations, 568 out of which only need 25 iterations or less. The relatively high

number of iterations at higher utilization levels is caused by the increased amount

38

of preemption, which requires the adjustment of subtasks’ deadlines repeatedly

in DVR. However, the execution time of the deadline adjustment is very short,

which effectively restrains the average execution time at high utilization levels

from increasing drastically.

TABLE 2.3

Number of Iterations for Solving a Task Set by DVR.

Utilization Average Number Maximum Number

Level of Iterations of Iterations

0.1 9.43 19

0.2 9.29 19

0.3 9.21 19

0.4 9.33 19

0.5 9.59 19

0.6 9.5 19

0.7 11.43 38

0.8 16.31 58

0.9 25.98 106

The experimental results on the execution time and convergence rate of DVR

demonstrate that DVR can solve problems with various utilization levels efficiently

39

and have an acceptable convergence rate even for task sets with a high utilization

level. The power of DVR lies in its effective problem formulation as well as its

efficient search strategy.

2.5.3 Experimental Data for Real-World Workload

Using a large number of randomly generated task sets, we have shown that

our heuristic can reduce delay variations greatly in almost all the task sets at

various utilization levels. However, it is important to quantify the performance

of DVR under real-world workloads. In this section, we compare DVR with TDB

and DSB using three real-world applications. The applications we consider are

a videophone application, a computerized numerical control (CNC) application,

and an avionics application. We will describe the benchmarks one by one, and

compare the results obtained by the three methods.

1) Videophone Application: A benchmark for a typical videophone application

is presented in [137]. The task set is composed of four real-time tasks: video

encoding, video decoding, speech encoding, and speech decoding. Delay varia-

tions in such an application would degrade the user perceived quality of voice or

images. The worst-case execution time and period for each task is given. Task

deadlines are randomly generated to be at least 95% of the period by using a

uniform distribution. Since the videophone application was proposed in 2001, it

is reasonable to reduce each task execution time by 10%. Thus, the utilization of

the task set becomes 0.89. Assume that the context switch overhead of partition-

ing the encoding tasks is non-negligible, so only the video decoding and speech

decoding tasks are decomposed based on the IMF model, where the initial and

final subtasks consume 10% of the execution time of the corresponding control

40

task.

DVR, TDB and DSB are applied to the application to reduce delay variations.

DVR takes 7 iterations to reduce average delay variations from 58.05% to 5.96%,

while both TDB and DSB fail to find a feasible solution.

2) Computerized Numerical Control Application A benchmark is presented in

[82], consisting of eight tasks with measured execution times and derived periods

and deadlines of some CNC controller tasks. Consider the situation where the

system is overloaded (e.g., the primary computer is down and the backup computer

is less powerful). The increased task execution times can cause much higher

delay variations and degrade the controller performance significantly. Thus, it is

necessary to employ an efficient method to reduce delay variations. To model such

a scenario, we multiply each task execution time by a factor of 1.6 and increase the

utilization of the task set to 0.78. We assume that all the tasks in the application

are decomposed based on the IMF model where the initial and final subtasks

consume 10% of the execution time of the corresponding control task.

DVR can reduce the average delay variation from 69.9% to 2.17%, requiring

23 iterations in total, while TDB fails to find a feasible solution and DSB reduces

the average delay variation only to 67.8%.

3) Generic Avionics Application The authors in [104] present a benchmark con-

taining one aperiodic task and 17 periodic tasks with given period and execution

time for each task, for a Generic Avionics Platform (GAP). We randomly assign

the task deadlines to be between 50% and 60% of the periods using a uniform

distribution. The aperiodic task arrives with a specific deadline and a minimum

inter-arrival time. In addition, since the GAP benchmark dates back to 1991, it

is reasonable to reduce each task execution time by 20%. The utilization of the

41

task set becomes 0.72. In this application, we still assume that all the tasks are

decomposed based on the IMF model where the initial and final subtasks consume

10% of the execution time of the corresponding control task.

DVR reduces the average delay variation from 23.42% to 1.63% within 22

iterations. TDB is unable to find a feasible solution, and DSB actually increases

the average delay variation to 30.64% after 324 iterations.

According to the experimental results of the three real-world benchmarks, we

show that DVR is capable of reducing delay variations greatly within a limited

number of iterations. In contrast, TDB always fails to find a feasible solution

for such high utilization level applications, while DSB cannot guarantee to find a

satisfactory solution even after quite a few iterations.

2.5.4 Performance of Adaptive-DVR

We use a simple system composed of one hard real-time task and three control

tasks, similar to the systems employed in [18, 19, 26], to illustrate the efficiencies

of DVR for delay variation reduction and control performance improvement. The

hard real-time task is a non-control task without jitter and delay requirement

except for schedulability, while each control task τi actuates a continuous-time

system of two stable poles Pi. In order to vary the sensitivity towards delay

variations, we employ the method presented in [23] to generate random plants Pi,

which are given by

P1(s) =
1000

(s+ 0.5)(s− 0.2)
,

P2(s) =
1000

(s+ 0.5)(s− 0.3)
, (2.27)

P3(s) =
1000

(s+ 0.2)(s− 0.7)
.

42

In [23, 31], the control performance cost Ji of each system is defined to be

Ji = lim
T−→∞

∫ T

0

(yi(t)
2 + ui(t)

2)dt, (2.28)

where yi(t) and ui(t) are the system output and input controlled by task τi, re-

spectively. Thus, the total control performance cost of the continuous-time system

is

J =
3∑
i=1

Ji. (2.29)

In addition, one hard real-time task and three control tasks are generated by the

method presented in [23], as shown in columns 2 to 4 of Table 2.4. All the tasks

have transient and location dependent deadlines, similar to the cases in [135, 136].

We compare the delay variation values of the control tasks by applying DVR

with those obtained by TDB and DSB. Furthermore, given the delay variation

and sampling periods of a control system, we compute control performance cost

by using Jitterbug proposed in [32, 95].

The delay variation value and control performance cost of each control task

in the original task set and the corresponding values obtained by DSB, TDB and

DVR are shown in column 2 of Table 2.5. For each task, two rows of data are

shown in column 2. The top row corresponds to delay variation while the bottom

one corresponds to control performance cost. The data clearly show that DVR

reduces the average delay variation from 11.59% to 5.94% and improves the total

performance cost from 330.8 to 271. However, DSB neither reduces the delay

variations nor improves the total control performance. TDB fails to find a feasible

solution for the task set.

Now, assume that at some time interval, the execution times of all the tasks

43

TABLE 2.4

A Control System Containing One Hard Real-Time Task and Three

Control Tasks.

New

Computation Computation New

Task Name Exec. Time Deadline Period Exec. Time Deadline

Hard

Real-time Task 570 3810 3810 1140 2290

Control

Task τ1 1570 10000 10000 3140 10000

Control

Task τ2 855 1500 6860 1710 5710

Control

Task τ3 429 1500 8570 857 7570

increase by 2 times, due to the primary processor being down and the backup

processor being much slower. Meanwhile, the deadlines of the hard real-time task

and the control tasks τ2 and τ3 are also changed to satisfy the user’s requirement.

The new execution times and deadlines of the tasks are shown in columns 5 and

6 of Table 2.4. If the previous deadline assignments generated by DSB and DVR

are reused for the tasks/subtasks, the deadlines of the hard real-time task and the

control tasks will be missed. If no delay variation reduction method is applied to

the current case, the delay variation and control performance cost of each control

task are shown as the first numbers in column 3 of Table 2.5 (for each task,

44

top row for delay variation and bottom for control performance). The average

delay variation and total control performance cost increase to 57.86% and 2453.79,

respectively, which may not be acceptable to the system.

Suppose DSB, TDB and DVR methods are applied on-line in response to the

workload and deadline change, the new delay variation values and control per-

formance costs are shown as the second to the fourth numbers in column 3 of

Table 2.5. With our proposed approach (DVR), smaller average delay variation

4.74% and total control performance cost 266 can be obtained in the current situ-

ation, which overcomes the negative effects on the system caused by the workload

and deadline change. However, TDB fails to find a feasible solution while DSB

gives average delay variation 57.77% and total control performance cost 1617.3,

much worse than the results obtained by DVR.

45

Algorithm 1 DVR(ΓIMF , Γ, maxIter)

1: ePID = Sort in Task Exe T ime(Γ)
2: Construct Initial Solution and Subproblem(ΓIMF , Γ, currD)
3: Compute Busy Period and Hyper Period(Γ, L busy,Hyper Period)
4: state = 0, duplicate = 0, BestObjF = +∞
5: for h = 0, h < maxIter , h = h+ 1 do
6: if duplicate == β then
7: break
8: end if
9: feasibility = Feasibility Test(ΓIMF ,Γ, currD,L busy,Hyper Period, L,

time demand, h) //test whether currD satisfies constraint (2.4)
10: if feasibility == 1 then //feasible
11: ObjF = Obj Compute(Γ,ΓIMF , currD)
12: if |ObjF −BestObjF | < δ then
13: duplicate = duplicate+ 1
14: end if
15: if ObjF < BestObjF then
16: Record Current Solution(Γ,ΓIMF , bestD, currD,BestObjF,ObjF)
17: duplicate = 0
18: end if
19: if state == 1 then
20: Construct New Subproblem(Γ,ΓIMF , currD) //update currDim =

Di −currDif to formulate a new subproblem
21: else
22: Optimize Solution(Γ,ΓIMF , currD) //apply Theorem 3 to compute a

new set of currDif

23: end if
24: state =!state
25: else if feasibility == 0 then //not feasible
26: overload = time demand− L
27: if state == 1 then
28: adjust result = Final Deadline Adjust(Γ, ΓIMF , currD, overload, L,

ePID) //adjust currDif to make the found solution schedulable
29: else
30: adjust result=Mandatory Deadline Adjust(Γ,ΓIMF , currD, overload,

L, ePID) //adjust currDim to make solution feasible
31: end if
32: if adjust result == 0 then //the deadlines cannot be adjusted
33: break
34: end if
35: end if
36: end for
37: return bestD

46

TABLE 2.5

Control Task Delay Variations and Their Control Performance by

Adaptively Applying DVR.

Delay Variations (%) New Delay Variations (%)

Control Performance Cost Control Performance Cost

Task Name Original / DSB / TDB / DVR Original / DSB / TDB / DVR

Hard 33.7 / 33.7 / Fail / 37.82 7.27 / 23.12 / Fail / 29.52

Real-time Task NA / NA / NA / NA NA / NA / NA / NA

Control 18.54 / 18.54 / Fail / 12.84 59.87 / 56.84 / Fail / 8.08

Task τ1 153.3 / 153.3 / Fail / 112.5 2089.49 / 1246.6 / Fail / 105.2

Control 6.25 / 6.25 / Fail / 1.16 45.58 / 48.52 / Fail / 4.17

Task τ2 82.2 / 82.2 / Fail / 71.9 123.8 / 130.2 / Fail / 74.2

Control 9.98 / 9.98 / Fail / 3.83 68.14 / 67.94 / Fail / 1.98

Task τ3 95.3 / 95.3 / Fail / 86.6 240.5 / 240.5 / Fail / 86.6

Average

Delay Variation 11.59 / 11.59 / Fail / 5.94 57.86 / 57.77 / Fail / 4.74

Total

Performance Cost 330.8 / 330.8 / Fail / 271 2453.79 / 1617.3 / Fail / 266

47

CHAPTER 3

Local-Deadline Assignment for Distributed Real-Time Systems

In a DRTS, jobs are often executed on a number of processors and must com-

plete by their end-to-end deadlines. Job deadline requirements may be violated if

resource competition among different jobs on a given processor is not considered.

We introduce a distributed, locally optimal algorithm to assign local deadlines to

the jobs on each processor without any restrictions on the mappings of the applica-

tions to the processors in the distributed soft real-time system. Improved schedu-

lability results are achieved by the algorithm since disparate workloads among the

processors due to competing jobs having different paths are considered. Given its

distributed nature, the proposed algorithm is adaptive to dynamic changes of the

applications and avoids the overhead of global clock synchronization.

3.1 Introduction

Distributed soft real-time systems are widely used in cyber-physical applica-

tions such as the multimedia [68, 84], telecommunication [106], and automatic

control and monitoring systems [94]. Since such systems often experience large

variations in terms of their operating environments, a number of task deadlines

may be missed without severely degrading performance. The scale of these dis-

tributed soft real-time systems often prohibits a centralized resource management

48

approach. Designing low-overhead, distributed scheduling solutions is critical to

a reliable operation of such systems.

A DRTS contains a set of tasks periodically or aperiodically releasing jobs

which typically have end-to-end deadlines. Each job is composed of a set of sub-

jobs that are executed on different processors. Since different tasks may require

execution on different sets of processors, there may be high resource competi-

tion among sub-jobs on a given processor, which could severely increase job re-

sponse times, potentially resulting in end-to-end deadline misses. Although the

distributed soft real-time system allows some jobs to miss their end-to-end dead-

lines, frequent deadline misses can degrade the Quality of Service (QoS) of the

system. Therefore, it is important to properly assign local sub-job priorities in

order to meet as many job deadlines as possible.

A number of recent papers investigated the sub-job priority assignment prob-

lem for DRTSs. Most of the local-deadline assignment approaches [27, 76, 158]

divide the end-to-end deadline of a job into segments to be used as local deadlines

by the processors that execute the sub-jobs. The division may depend on the

number of processors on which the sub-job is executed [158] or the execution time

distribution of the job among the processors [27, 76]. The local deadlines then

dictate sub-job priorities according to the earliest-deadline-first (EDF) scheduling

policy [29, 101]. While efficient, such approaches [27, 76, 158] do not consider

resource competition of different sub-jobs on a processor, which may lead to local

deadline misses and eventually end-to-end deadline violations.

To ensure the schedulability of the tasks on each processor, some work com-

bines the local-deadline assignment problem with feasibility analysis so that the

resulting deadline assignment is guaranteed to be schedulable. The approaches

49

proposed in [65, 132] assign local deadlines to the sub-jobs on-line by considering

the schedulability of sub-jobs on each processor in a distributed manner. The

approach [65] is based on a strong assumption that each processor knows the local

release times and upper bounds on the local deadlines of all the future sub-jobs,

which may be impractical for real-world applications. In [132], the absolute local

deadline of each sub-job is derived on-line based on the sub-job completion time

on the preceding processors and the given relative local deadline of each subtask.

However, the work can not handle the situation where the relative local deadlines

of subtasks are not given off-line. In contrast, the works in [87, 109, 131] assign

intermediate deadlines to subtasks and consider resource contention among sub-

tasks off-line. The schedulability condition used in work [87] (from [99]) utilizes

the ratio of subtask execution time over subtask local deadline in the schedulabil-

ity analysis. According to [29], this condition can be very pessimistic in testing the

schedulability of subtask set when the subtask period is not equal to the subtask

local deadline or the subtask is not periodic. The work in [109] employs the feasi-

bility condition from [17] to assign local deadlines to subtasks on each processor

in an off-line, iterative manner. The drawback of the approach is that it is time

consuming and cannot adapt to dynamic changes in applications. In addition,

the analysis assumes that all the periodic subtasks are synchronized, which is pes-

simistic in testing the schedulability of subtask set. The authors in [131] proposed

a local-deadline assignment scheme to minimize processor resource requirements

for a single task, yet many DRTSs need to execute multiple tasks.

To address the shortcomings of existing work, we present an on-line distributed

approach which combines local-deadline assignment with feasibility analysis to

meet as many applications’ end-to-end deadline requirements as possible in a

50

distributed soft real-time system. Since the proposed approach is targeted towards

soft real-time systems, it supports possibly infeasible applications. By extending

our previous work [65], our local-deadline assignment algorithm supports soft real-

time applications which can be modeled as a directed acyclic graph (DAG) and

partitioned onto processors by whichever means. Our general application model

covers a wide range of CPSs, e.g., multimedia system, data processing back-end

systems, signal processing systems, control systems and wireless network systems.

In order to efficiently solve the local-deadline assignment problem, we formu-

late the local-deadline assignment problem for a given processor as a mixed integer

linear programming (MILP) problem. We further introduce a locally optimal algo-

rithm that can solve the MILP based local-deadline assignment problem in O(N4)

time, where N is the number of sub-jobs executed by the processor. We should

point out that the locally optimal solution may not be a globally optimal solution

for the DRTS. Given the algorithm’s distributed nature, the proposed algorithm

avoids the overhead of global clock synchronization. In addition, the observations

made in the proofs reveal several interesting properties (such as when a busy time

interval occurs) for some special sub-job subsets used in our algorithm and can be

applied to similar feasibility studies.

3.2 System Model

We consider a DRTS where a set of real-time tasks arrive either periodically or

aperiodically and require execution on an arbitrary sequence of processors. Each

task Tn is composed of a set of subtasks Tn,k and has a relative end-to-end deadline

Dn. Since our focus is on an on-line distributed local-deadline assignment method,

we only consider individual task and sub-task instances, i.e., jobs and sub-jobs,

51

J1

Processor V1

J1,1

Processor V2

J1,2

Processor V3

Processor V4

J1,3

J1,4 J1,5

Processor V5

J2,1 J2,2

J2,4 J2,3J2,5

J2

J2

J1

Figure 3.1. An example system containing two jobs, each with 5
sub-jobs being executed on 5 processors. In the example,

J1,1 ≼ J1,2 ≼ J1,3, J1,1 ≼ J1,4 ≼ J1,5 ≼ J1,3, J2,1 ≼ J2,4 ≼ J2,5, J2,2 ≼ J2,3,
J1,1, J2,1, J2,2 are input sub-jobs, and J1,3, J2,5, J2,3 are output sub-jobs.

respectively, without any assumption on task periodicity. Job Ji is composed of

Mi sub-jobs Ji,k, k = 1, ...,Mi, where i and k are the index numbers of job Ji and

subtask Tn,k, respectively
1. Figure 3.1 shows a DRTS containing 2 jobs, J1 and

J2, and each has 5 sub-jobs.

The precedence relationship among the sub-jobs of Ji is given by a directed

acyclic graph (DAG). If sub-job Ji,k′ cannot begin its execution until sub-job Ji,k

has completed its execution, Ji,k is a predecessor of Ji,k′ , and Ji,k′ is the successor

of Ji,k (denoted as Ji,k ≺ Ji,k′). Ji,k′ is an immediate successor of Ji,k and Ji,k is an

immediate predecessor of Ji,k′ (denoted as Ji,k 4 Ji,k′) if Ji,k is the predecessor of

Ji,k′ and no job Ji,h satisfies Ji,k ≺ Ji,h ≺ Ji,k′ . After all the immediate predecessors

of a sub-job Ji,k have finished their execution, sub-job Ji,k is released and can start

1We omit a task’s index number n when referring to a sub-job Ji,k because we only consider
jobs and sub-jobs.

52

TABLE 3.1

Summary of Key Notations Used

Symbol Definition

Vx A processor in the system

Tn, Tn,k The nth task, and its kth subtask

Ψ(Vx) Set of subtasks to be executed on processor Vx

Ω(Vx) Set of sub-jobs to be scheduled

Ji, Ji,k The ith job, and sub-job Ji,k

Dn Relative end-to-end deadline of task Tn

Di, Absolute end-to-end deadline of job Ji

Ri Release time of job Ji

di,k Local deadline of sub-job Ji,k

ri,k Release time of sub-job Ji,k

UBi,k Local deadline upper bound of sub-job Ji,k

si,k Time slack of sub-job Ji,k

A sub-job path starting from Ji,k and ending with

Pi,k,k′ , Pi,k output sub-job Ji,k′ , and the set of all the Ji,k’s paths

Ci,k The worst-case execution time of sub-job Ji,k

Ccri
i,k Critical execution time of sub-job Ji,k (See (3.1))

executing. A sub-job without any predecessor is called an input sub-job and a sub-

job without any successor is called an output sub-job. A sub-job path Pi,k,k′ is a

chain of successive sub-jobs starting with sub-job Ji,k and ending with an output

sub-job Ji,k′ . A sub-job may belong to multiple paths. We let Pi,k be the set of

paths Pi,k,k′ ’s starting from Ji,k. See Figure 3.1 for examples of these definitions.

Job Ji is released at time Ri, and must be completed by its absolute end-

to-end deadline, Di, which is equal to Ri + Dn. All the input sub-jobs of Ji

are released at time Ri, and all the output sub-jobs of Ji must be completed by

53

time Di. The worst-case execution time of Ji,k is Ci,k, and Ji,k is associated with

an absolute release time ri,k and absolute local deadline di,k, both of which are

to be determined during the local-deadline assignment process. (We adopt the

convention of using upper letters to indicate known values and lower letters for

variables.)

We consider a multiprocessor system, where each processor Vx has a set Ω(Vx)

of sub-jobs. We use Ji,k ∈ Ω(Vx) to indicate that sub-job Ji,k, an instance of

subtask Tn,k, is executed on processor Vx. Subtask Tn,k belongs to set Ψ(Vx)

of subtasks that reside on Vx, i.e., Tn,k ∈ Ψ(Vx). Note that we do not assume

any execution order among the processors in the distributed system. That is,

processor Vx may appear before processor Vy in a sub-job’s path while the order

of the two processors may be reversed in another sub-job’s path. In Figure 3.1,

we have 5 processors, where J1,1, J2,5 ∈ Ω(V1), J1,2, J2,4 ∈ Ω(V2), J1,3, J2,3 ∈ Ω(V3),

J1,4, J2,1 ∈ Ω(V4), and J1,5, J2,2 ∈ Ω(V5).

One way to meet the jobs’ end-to-end deadlines is to assign local deadlines

such that all the sub-jobs on every processor are schedulable and that the local

deadlines of all the output sub-jobs are less than or equal to the respective end-

to-end deadlines. In order to ensure that end-to-end deadlines are not violated,

it is important for predecessor sub-jobs not to overuse their shares of slacks and

to leave enough time for successor sub-jobs. We define the critical execution time

Ccri
i,k as the longest execution time among all the paths in Pi,k, i.e.,

Ccri
i,k = max

Pi,k,k′∈Pi,k

∑
∀Ji,h∈Pi,k,k′
Ji,k≺Ji,h

Ci,h. (3.1)

Using the definition of the critical execution time Ccri
i,k , we define the time slack of

54

Ji,k as the difference between Di relative to di,k and Ccri
i,k , i.e.,

si,k = Di − di,k − Ccri
i,k . (3.2)

The time slack provides information on the longest delay that a job can endure

after the execution of sub-job Ji,k for all of the respective output sub-jobs to meet

their end-to-end deadlines. By using the end-to-end deadline and the critical

execution time of the sub-job Ji,k, we define the upper bound on the local deadline

of Ji,k as

UBi,k = Di − Ccri
i,k , (3.3)

which gives the maximum allowable value for the local deadline of Ji,k. According

to (3.2) and (3.3), we see that maximizing the time slack of each sub-job on any

processor provides the best opportunity for each sub-job to meet its local deadline,

and for each job to satisfy its end-to-end deadline requirement. Table 3.1 presents

the notations and definitions of the parameters and variables used throughout the

paper.

We assume that EDF [29] is used on each processor since it is optimal in terms

of meeting job deadlines for a uniprocessor2. A necessary and sufficient condition

for schedulability under EDF on a uniprocessor is restated below with the notation

introduced earlier.

Theorem 4. [39, 40] Sub-job set Ω(Vx) can be scheduled by EDF if and only if

2This does not imply that EDF is optimal for distributed systems.

55

∀Ji,k, Jj,h ∈ Ω(Vx), ri,k ≤ dj,h,

dj,h − ri,k ≥
∑

∀Jp,q∈Ω(Vx),
rp,q≥ri,k,
dp,q≤dj,h

Cp,q. (3.4)

3.3 Motivation

We use a simple DRTS to illustrate the drawbacks of existing approaches in

terms of satisfying the real-time requirements. The example application contains

2 jobs, J1 and J2, and both jobs are composed of a chain of four sub-jobs, which

are sequentially executed on four processors, V1, V2, V3 and V4. The sub-jobs’

execution times and the jobs’ end-to-end deadlines are shown in columns 2 to 5

in Table 3.2.

TABLE 3.2

A Motivating Example Containing Two Jobs that Traverse Four

Processors

Job J1 Job J2

Processor Execution End-to-End Execution End-to-End

Name Time Deadline Time Deadline

Processor V1 100 N/A 70 N/A

Processor V2 200 N/A 430 N/A

Processor V3 100 N/A 100 N/A

Processor V4 600 1100 100 930

56

We consider two representative priority assignment methods: JA [70, 73] and

BBW [27]. JA is a job-level fixed-priority based approach, employed by Jayachan-

dran and Abdelzaher in [70, 73]. BBW, proposed by Buttazzo, Bini and Wu, is

an end-to-end deadline partitioning based method. In [27], the local-deadline as-

signment by BBW is used as an input to partitioning hard real-time tasks onto

multiprocessors. However, BBW can also be utilized to assign local deadlines to

sub-jobs in a distributed soft real-time system when tasks have been partitioned

onto different processors since it efficiently decomposes the job’s end-to-end dead-

line in proportion to the sub-job’s execution times on different processors.

In the motivating example, the local deadlines assigned by BBW (and the

resultant sub-job response times) at each processor are indicated by the first value

in columns 2 and 3 (and the first value in columns 4 and 5) of Table 3.3. The

resultant sub-job response times at each processor obtained by JA are shown in

the second value in columns 8 and 9. For example, under BBW, the local absolute

deadline of sub-job J1,1 on processor V1 is 111 time units and the response time

is 170 time units. BBW causes job J1 to complete its execution on processor

V4 at time 1170 and miss its end-to-end deadline by 70 time units. The reason

for J1’s end-to-end deadline miss is that BBW ignores the resource competition

on individual processors and does not make the best use of the given resources,

which results in an idle time interval [470, 700] on processor V3. JA performs much

worse than BBW in reducing the response time of job J1, and causes sub-job J1,1

to complete its execution on processor V4 at time 1400. This is because job J1 is

assigned a lower priority by JA and is preempted by J2 on both processors V1 and

V2. As a result, J1 fails to meet its end-to-end deadline when its sub-job J1,4 has

a large execution time of 600 on processor V4.

57

If there exists an alternative local-deadline assignment method that can con-

sider both the workloads on a job’s execution path and resource competition

among different sub-jobs on a shared processor, adopting such a method may re-

sult in meeting the deadline requirements for both jobs J1 and J2. We will present

one such method, OLDA (Omniscient Local-Deadline Assignment), in the subse-

quent sections. The new local deadlines obtained by OLDA are shown as the

second values in columns 2 and 3 and the resultant response times are as given by

the third values in columns 4 and 5 in Table 3.3. It is clear that this local-deadline

assignment allows both jobs to meet their end-to-end deadlines.

TABLE 3.3

Local-Deadline Assignment and Response Time of A Motivating

Example

Local-Deadline Assignment Response Time

Processor BBW / OLDA BBW / JA / OLDA

Name Job J1 Job J2 Job J1 Job J2

Processor V1 111 / 100 90 / 170 170 / 170 / 100 70 / 70 / 170

Processor V2 331 / 300 663 / 730 370 / 700 / 300 700 / 500 / 730

Processor V3 441 / 400 797 / 830 470 / 800 / 400 800 / 600 / 830

Processor V4 1100 / 1100 930 / 930 1170 / 1400 / 1100 900 / 700 / 930

If there exists an alternative local-deadline assignment method that can con-

58

sider both the workloads on a job’s execution path and resource competition

among different sub-jobs on a shared processor, adopting such a method may

result in meeting the deadline requirements for both jobs J1 and J2. We will

present one such method, OLDA (Omniscient Local-Deadline Algorithm), in the

subsequent sections. The new local deadlines obtained by OLDA are shown as the

second values in columns 2 and 3 and the resultant response times are as given by

the third values in columns 4 and 5 in Table 3.3. It is clear that this local-deadline

assignment allows both jobs to meet their end-to-end deadlines.

3.4 Approach

In this section, we provide a high-level overview of our approach and present the

detailed MILP formulation for finding a locally optimal local-deadline assignment.

Since our objective is to assign local deadlines to a set of sub-jobs on-line, we will

only use the concepts of jobs and sub-jobs from now on.

3.4.1 Overview

As shown in the last section, the probability that jobs meet their end-to-end

deadlines can be greatly increased if appropriate local deadlines are assigned to

the sub-jobs on different processors. Although it is possible to accomplish local

sub-job deadline assignment in a global manner using mathematical programming

or dynamic programming, such approaches incur high computation overhead and

are not suitable for on-line use.

We adopt a distributed, on-line approach to determine local sub-job deadlines

on each processor. At Algorithm 2, every time a new sub-job arrives at processor

Vx, new deadlines are assigned for both the newly arrived sub-job and current

59

Algorithm 2 Distributed On-Line Approach in Processor Vx
1: Upon completing sub-job Jj,h in Vx:
2: Send a message to Vy’s that are to execute Jj,h′ ’s which satisfy Jj,h 4 Jj,h′ and

Jj,h′ ∈ Ω(Vy)
3: Ω(Vx) = Ω(Vx)− {Jj,h}
4: Execute Jj′,h′ which satisfies dj′,h′ = minJi,k∈Ω(Vx){di,k}

5: Upon receiving a message on the completion of sub-job Jj,h from Vy:
6: Suspend the currently executing sub-job
7: Release Jj,h′ ’s which satisfy Jj,h 4 Jj,h′ and Jj,h′ ∈ Ω(Vy), and calculate UBj,h′ ’s of

Jj,h′ ’s
8: Re-assign di,k’s to Ji,k’s in Vx
9: Update the dropped job record in Vx
10: Send an acknowledgement message to Vy
11: Execute Jj′,h′ which satisfies dj′,h′ = minJi,k∈Ω(Vx){di,k}

12: Upon receiving an acknowledgement message from Vy:
13: Update the dropped job record in Vx

14: Upon dropping a subset of sub-jobs in Vx:
15: Update the dropped job record in Vx

active sub-jobs which are already in Vx and may have been partially executed

(Section 4.1). Upon the completion of a sub-job at Vx, Vx sends a message to

those downstream processors which are to execute the immediate successors of the

completed sub-job. The downstream processors utilize the information contained

in the message to release new sub-jobs. Consider the example shown in Figure 3.1.

Suppose at time t, J2,4 arrives at V2 which is executing J1,2. Processor V2 suspends

the execution of J1,2 and assigns new local deadlines to J2,4 and J1,2. If at the

same time, J2,3 arrives at V3, V3 simultaneously assigns the new local deadlines to

J2,3 and J1,3. If a feasible deadline assignment is not found, a sub-job dropping

policy is followed to remove a job from further processing. The drop information

is propagated to the subsequent processors using some communication mechanism

(Section 4.3.1).

The key to making the above distributed approach effective lies in the design

60

of an appropriate local-deadline assignment algorithm to be run on each processor

such that some specific QoS metric for the DRTS is achieved, e.g., the number

of jobs dropped is minimized. In our framework, each processor determines the

local-deadline assignment to maximize the minimum time slack of sub-jobs on the

corresponding processor. (Readers can see the explanation of this objective in

our previous work [65]). To achieve this goal, we formulate an MILP problem to

capture the local-deadline assignment on each processor (Section 3.5). Then, we

devise an exact off-line algorithm that can solve the MILP problem in polynomial

time (more details in Section 3.6). The MILP problem and the off-line algorithm

provide a theoretical foundation for the practical on-line local-deadline assignment

algorithms (Chapter 4). It is important to note that our overall framework is a

heuristic since the objective used by each processor to determine the local-deadline

assignment does not guarantee to always lead to a globally optimal solution. (The

local-deadline assignment problem for DRTS is an NP-hard problem [20].) Below,

we present the MILP formulation for local-deadline assignment as it forms the

basis for our off-line algorithm.

3.5 Mathematical Programming Formulation

In order to ensure that a local-deadline assignment leads to a feasible schedule

on a processor, we must consider resource competition among different sub-jobs on

that processor. Furthermore, a sub-job should leave as much time slack (see the

definition in (3.2)) as possible for successor sub-jobs to help satisfy the end-to-end

deadline requirements. Hence, our goal is to determine the local deadline di,k for

sub-job Ji,k such that the end-to-end deadline of Ji is met, the sub-job set Ω(Vx)

on processor Vx is schedulable (see Theorem 4), and (3.2) is maximized. Assume

61

that the release times and upper bounds on the local deadlines of all the sub-jobs

are known, we capture the problem as a constrained optimization problem given

below:

max:
{
Di − di,k − Ccri

i,k

}
∀Ji,k ∈ Ω(Vx) (3.5)

s.t. ri,k + Ci,k ≤ di,k ≤ Di − Ccri
i,k , ∀Ji,k ∈ Ω(Vx) (3.6)

dj,h − ri,k ≥
∑

∀Jp,q∈Ω(Vx),
ri,k≥rp,q ,
dp,q≤dj,h

Cp,q, ∀Jj,h, Ji,k ∈ Ω(Vx). (3.7)

It is difficult to maximize the time slacks of all sub-jobs on a processor, since

the sub-jobs compete with each other for the shared computation resource severely.

Therefore, we resort to the objective of maximizing the minimum time slack among

all the sub-jobs executed on Vx as follows,

max: min
Ji,k∈Ω(Vx)

{
Di − di,k − Ccri

i,k

}
. (3.8)

Constraints (3.6)–(3.7) are used to guarantee schedulability on each processor.

Specifically, constraint (3.6) bounds the local deadlines of sub-jobs executed on

Vx by the earliest completion time of the sub-job (left side of (3.6)) and the latest

allowable completion time of the sub-job (right side of (3.6)). Constraint (3.7) is

simply a restatement of (3.4).

An astute reader would notice that the above constraint optimization problem

formulation cannot be straightforwardly solved by a mathematical programming

solver. This is because the actual terms to be included in the summation on the

62

right hand side of constraint (3.7) depend on local deadlines which are themselves

decision variables. To overcome this challenge, we introduce an observation in

Lemma 1 below which can be used to convert constraint (3.7) to a form readily

solvable by a mathematical programming solver. The essence of the observation is

that the EDF schedulability of a sub-job set can be checked by examining certain

behavior of all the sub-job subsets in the set. This observation also plays a key

role in developing the efficient algorithm to be presented later.

Lemma 1. Given sub-job set Ω(Vx) to be executed on processor Vx according to

the EDF policy, let ω(Vx) represent any subset of Ω(Vx). Ω(Vx) is schedulable if

and only if

max
Ji,k∈ω(Vx)

{di,k} − min
Ji,k∈ω(Vx)

{ri,k} ≥
∑

∀Ji,k∈ω(Vx)

Ci,k,

∀ω(Vx) ⊆ Ω(Vx). (3.9)

Proof: We first prove the “if” part. Assume that ∀ω(Vx) ⊆ Ω(Vx), constraint (3.9)

holds, i.e.,

max
Ji,k∈ω(Vx)

{di,k} − min
Ji,k∈ω(Vx)

{ri,k} ≥
∑

∀Ji,k∈ω(Vx)

Ci,k,∀ω(Vx) ⊆ Ω(Vx). (3.10)

Then for each pair of rj,h and dj′,h′ with Jj,h, Jj′,h′ ∈ Ω(Vx), there must exist a

sub-job subset ω(Vx) in Ω(Vx) such that

ω(Vx) = {Ji,k|ri,k ≥ rj,h, di,k ≤ dj′,h′ ,∀Ji,k ∈ Ω(Vx)}.

63

Thus, ∀Jj,h, Jj′,h′ ∈ Ω(Vx), we have

max
Ji,k∈ω(Vx)

{di,k}− min
Ji,k∈ω(Vx)

{ri,k} = dj′,h′−rj,h ≥
∑

∀Ji,k∈ω(Vx)

Ci,k =
∑

∀Ji,k∈Ω(Vx),
ri,k≥rj,h,
di,k≤dj′,h′

Ci,k.

By Theorem 4, sub-job set Ω(Vx) is schedulable.

Next, we prove the “only if” part. Assume that the sub-job set Ω(Vx) is schedu-

lable on Vx. According to Theorem 4, ∀Jj,h, Jj′,h′ ∈ Ω(Vx), rj,h ≤ dj′,h′, and

dj′,h′ − rj,h ≥
∑

∀Ji,k∈Ω(Vx),
ri,k≥rj,h,
di,k≤dj′,h′

Ci,k. (3.11)

Given any sub-job subset ω(Vx), let maxJi,k∈ω(Vx){di,k} = dj′,h′ and minJi,k∈ω(Vx){ri,k} =

rj,h. We have

max
Ji,k∈ω(Vx)

{di,k} − min
Ji,k∈ω(Vx)

{ri,k} ≥
∑

∀Ji,k∈Ω(Vx),
ri,k≥rj,h,
di,k≤dj′,h′

Ci,k ≥
∑

∀Ji,k∈ω(Vx)

Ci,k. (3.12)

Therefore, constraint (3.9) holds and the lemma is proved. 2

Based on Lemma 1, we can substitute constraint (3.7) in our optimization problem

with constraint (3.9). We claimed that the formulated problem (3.8) together with

(3.6) and (3.9) is an MILP problem. Constraint (3.6) is already in an MILP form.

We now show how to transform the max and min functions in (3.8) and (3.9)

into expressions in an MILP form. We introduce a variable sminΩ(Vx)
to replace

minJi,k∈Ω(Vx){Di − di,k −Ccri
i,k } and transform (3.8) to the following objective plus

64

a new constraint,

max: sminΩ(Vx), (3.13)

and

sminΩ(Vx) ≤ Di − di,k − Ccri
i,k , ∀Ji,k ∈ Ω(Vx). (3.14)

Since the objective (3.13) is to maximize sminΩ(Vx)
and (3.14) ensures that sminΩ(Vx)

is

smaller than or equal to the slack si,k of any sub-job Ji,k on processor Vx, s
min
Ω(Vx)

is equal to the minimum time slack among all the sub-jobs executed on Vx.

To remove the max function in (3.9), we use a variable dmax,ω(Vx) to represent

maxJi,k∈ω(Vx){di,k} and then replace constraint (3.9) with the following constraints,

dmax,ω(Vx) − min
Ji,k∈ω(Vx)

{ri,k} ≥
∑

∀Ji,k∈ω(Vx)

Ci,k, ∀ω(Vx) ⊆ Ω(Vx), (3.15)

dmax,ω(Vx) ≥ di,k, ∀Ji,k ∈ ω(Vx), ∀ω(Vx) ⊆ Ω(Vx), (3.16)

dmax,ω(Vx) ≤
∑

∀Ji,k∈ω(Vx)

di,k · Ai,k,ω(Vx), ∀ω(Vx) ⊆ Ω(Vx), (3.17)

and

∑
∀Ji,k∈ω(Vx)

Ai,k,ω(Vx) = 1, Ai,k,ω(Vx) ∈ {0, 1}, ∀ω(Vx) ⊆ Ω(Vx), (3.18)

where Ai,k,ω(Vx) are binary variables. Constraints (3.17) and (3.18) indicate that

dmax,ω(Vx) is no greater than the deadline of one sub-job in ω(Vx). Without loss

of generality, we suppose this sub-job is Ji′,k′ whose deadline is di′,k′ . Meanwhile,

since dmax,ω(Vx) ≥ di,k for any sub-job Ji,k in ω(Vx), we have dmax,ω(Vx) = di′,k′ =

maxJi,k∈ω(Vx){di,k}.

Although we remove the max function in (3.9), constraint (3.17) is non-linear.

65

To linearize (3.17), we use variable αi,k,ω(Vx) which is defined as follows,

αi,k,ω(Vx) =

 di,k : Ai,k,ω(Vx) = 1

0 : Ai,k,ω(Vx) = 0
, ∀Ji,k ∈ ω(Vx), ∀ω(Vx) ⊆ Ω(Vx). (3.19)

By replacing di,k · Ai,k,ω(Vx) with αi,k,ω(Vx), the following constraint can be used

instead of (3.17).

dmax,ω(Vx) ≤
∑

∀Ji,k∈ω(Vx)

αi,k,ω(Vx), ∀ω(Vx) ⊆ Ω(Vx). (3.20)

In addition to ensure that αi,k,ω(Vx) is as defined in (3.19), the following two con-

straints are needed,

αi,k,ω(Vx) ≤ Ai,k,ω(Vx) ·M, ∀Ji,k ∈ ω(Vx), ∀ω(Vx) ⊆ Ω(Vx), (3.21)

and

αi,k,ω(Vx) ≤ di,k,ω(Vx) + (1− Ai,k,ω(Vx)) ·M, ∀Ji,k ∈ ω(Vx), ∀ω(Vx) ⊆ Ω(Vx),

(3.22)

where M is some large constant greater than zero. In summary, the problem in

(3.8) together with (3.6) and (3.9) can be expressed as (3.13), (3.6), (3.14), (3.15),

(3.16), (3.18), (3.20), (3.21) and (3.22).

If the release times of sub-jobs are known when computing the local deadlines,

which is true in the proposed on-line approach, the resulting problem specified by

(3.8), together with (3.6) and (3.9), can be solved by a mathematical programming

solver. Though a solver can be used for solving the local-deadline assignment

problem, it can be too time consuming for on-line use (see Section 4.4). In the

66

next section, we introduce a polynomial time algorithm to solve the problem

exactly.

3.6 Omniscient Local-Deadline Assignment

In this section, we present the Omniscient Local-Deadline Assignment (OLDA),

the canonical version of our local-deadline assignment algorithm, which solves the

optimization problem given in (3.8), (3.6) and (3.9) in O(N4) (where N is the

number of sub-jobs), assuming that the release times of all the existing and future

sub-jobs are known a priori. Although OLDA is an off-line algoirthm, it forms the

basis of the desired on-line algorithms (see Chapter 4). There are multiple chal-

lenges in designing OLDA. The most obvious difficulty is how to avoid checking

the combinatorial number of subsets of Ω(Vx) in constraint (3.9). Another chal-

lenge is how to maximize the objective function in (3.8) while ensuring sub-job

schedulability and meeting all jobs’ end-to-end deadlines.

Below, we discuss how our algorithm overcomes these challenges and describe

the algorithm in detail along with the theoretical foundations behind it. Unless

explicitly noted, the deadline of a sub-job in this section always means the local

deadline of the sub-job on the processor under consideration.

3.6.1 Base Subset and Base Sub-job

One key idea in OLDA is to construct a unique subset from a given sub-job

set Ω(Vx). Using this sub-job subset, OLDA can determine the local deadline of

at least one sub-job in Ω(Vx). This local deadline is guaranteed to belong to an

optimal solution for the problem given in (3.8), (3.6) and (3.9). We refer to this

unique sub-job subset of Ω(Vx) as the base subset of Ω(Vx) and define it as follows.

67

We first describe sub-job subsets that are candidates for the base subset of Ω(Vx).

Subset ωc(Vx) is a candidate for the base subset of Ω(Vx) if

dc,kc = min
Ji,k∈ωc(Vx)

{ri,k}+
∑

∀Ji,k∈ωc(Vx)

Ci,k ≥ min
Ji,k∈ω(Vx)

{ri,k}

+
∑

∀Ji,k∈ω(Vx)

Ci,k,∀ω(Vx) ⊆ Ω(Vx),

where dc,kc is the earliest completion time of ωc(Vx). We now formally define the

base subset of Ω(Vx). Let {ωc(Vx)|∀ωc(Vx) ⊆ Ω(Vx)} contain all the candidates of

the base subset.

Definition 1. ω∗(Vx) is a base subset of Ω(Vx), if it satisfies

min
Ji,k∈ω∗(Vx)

{ri,k} > min
Ji,k∈ω(Vx)

{ri,k}, ω∗(Vx) ∈ {ωc(Vx)|∀ωc(Vx)

⊆ Ω(Vx)},∀ω(Vx) ∈ {ωc(Vx)|∀ωc(Vx) ⊆ Ω(Vx)}.

The definition of the base subset of Ω(Vx) simply states that the completion time

of the sub-jobs in the base subset is no less than that in any other sub-job subset

in Ω(Vx) (such a property of the base subset will be proved in Lemma 5). If the

completion times of all the sub-jobs in multiple subsets are the same, the base

subset is the subset which has the latest released sub-job in Ω(Vx).

For a given base subset, determining which sub-job to assign a deadline to

and what value the deadline should have constitutes the other key idea in OLDA.

Recall that our optimization goal is to maximize the sub-job time slacks. Hence,

we select this sub-job based on the local deadline upper bounds of all the sub-jobs

68

in the base subset. Let Jc,kc ∈ ω∗(Vx) be a candidate for the base sub-job if

UBc,kc ≥ UBi,k ∀Ji,k ∈ ω∗(Vx).

Let {Jc,kc |∀Jc,kc ∈ Ω(Vx)} contain all the candidates for the base sub-job in ω∗(Vx).

We refer to the selected sub-job as the base sub-job and define it as follows.

Definition 2. J∗,k∗ ∈ {Jc,kc|∀Jc,kc ∈ Ω(Vx)} is a base sub-job for sub-job set

Ω(Vx), if it satisfies

(∗ > i) or (∗ = i and k∗ > k) ∀Ji,k ∈ {Jc,kc |∀Jc,kc ∈ Ω(Vx)}.

The base sub-job has the largest local deadline upper bound among all the sub-

jobs in the base subset. Ties are broken in favour of the sub-job with the largest

job identifier and then in favour of the sub-job with the largest subtask identifier.

We use a simple example to illustrate how to find base subset and base sub-

job. Consider a sub-job set Ω(Vx) with its timing parameters as shown in the

top part of Table 3.4. It is easy to verify that subset {J2,1, J3,1, J4,1} is the base

subset ω∗(Vx) (see the bottom part of Table 3.4), where d∗ is 9. Among the three

sub-jobs in ω∗(Vx), sub-job J2,1 is the base sub-job according to Definition 2 since

it has the largest local deadline upper bound of 42. OLDA uses the base subset

and base sub-job to accomplish local-deadline assignment. The details of OLDA

is given in the next subsection.

69

TABLE 3.4

A Sub-job Set Example

Sub-job ri,k Ci,k UBi,k

J1,1 0 2 35

J2,1 4 2 42

J3,1 5 2 39

J4,1 6 1 35

ω(Vx) minJi,k∈ω(Vx){ri,k}+
∑

∀Ji,k∈ω(Vx)
Ci,k

{J1,1, J2,1, J3,1, J4,1} 7

{J2,1, J3,1, J4,1} (ω∗(Vx)) 9

{J3,1, J4,1} 8

{J4,1} 7

3.6.2 OLDA Algorithm Design

Given a sub-job set Ω(Vx), OLDA first constructs the base subset for the sub-

job set. It then finds the base sub-job and assigns a local deadline to that base

sub-job. The base sub-job is then removed from the sub-job set and the process

is repeated until all the sub-jobs have been assigned deadlines.

Algorithm 3 summarizes the main steps in OLDA. (Recall that this algorithm

is used by each processor in a distributed manner, so the pseudocode is given for

processor Vx.) The inputs to OLDA are the sub-job set Ω(Vx) and the variable

Max Allowed Drop Num. Ω(Vx) contains all the active and future sub-jobs Ji,k’s.

Without loss of generality, a sub-job is always associated with its local release

time, execution time, and local deadline upper bound, and the local deadline

upper bound of sub-job is computed before the call of OLDA. Thus, we do not

use the local release time, execution time and local deadline upper bound as

70

Algorithm 3 OLDA(Ω(Vx), Max Allowed Drop Num)

1: d = ∅
2: Ω(Vx) = Sort Sub Jobs(Ω(Vx))
3: while (Ω(Vx) ̸= ∅) do
4: ω(Vx) = Ω(Vx)
5: ω∗(Vx) = Ω(Vx)
6: Max Deadline = 0
7: Temp Deadline = 0
8: while ω(Vx) ̸= ∅ do
9: Temp Deadline = minJi,k∈ω(Vx){ri,k}+

∑
Ji,k∈ω(Vx){Ci,k}

10: if Temp Deadline ≥ Max Deadline then
11: Max Deadline = Temp Deadline
12: ω∗(Vx) = ω(Vx)
13: end if
14: ω(Vx) = Remove Earliest Released Sub Job(ω(Vx))
15: end while
16: J∗,k∗ = Find Base Sub Job(ω∗(Vx)) //Find base sub-job J∗,k∗ according to Def-

inition 2
17: if (UB∗,k∗ ≥ Max Deadline) then
18: d∗,k∗ = Max Deadline
19: d = d

∪
{d∗,k∗}

20: Ω(Vx) = Ω(Vx)− J∗,k∗

21: else
22: Jdrop = Drop Sub Jobs(ω∗(Vx),Max Allowed Drop Num) //Remove a sub-

set of sub-jobs from ω∗(Vx) according to some sub-job dropping policy, and
return the subset containing the dropped sub-jobs

23: d = ∅
24: break
25: end if
26: end while
27: return d //d = {di,k}

the input variables in OLDA. The variable Max Allowed Drop Num is used in

Function Drop Sub Jobs(), which will be discussed in Section 4.2. OLDA starts

by initializing the set of sub-job deadlines (Line 1) and sorting the given sub-jobs

in a non-decreasing order of their release times (Line 2), which breaks ties in favour

of the sub-job with the largest job identifier and then in favour of the sub-job with

the largest subtask identifier. Then, the algorithm enters the main loop spanning

from Line 3 to Line 26. The first part in the main loop (Lines 4–15) constructs the

71

base subset ω∗(Vx) for the given sub-job set and computes the desired deadline

value (Max Deadline) according to Definition 1. (Max Deadline is in fact the

completion time of all the sub-jobs in the base subset, as will be shown in the

next subsection.) The second part of the main loop (Line 16) applies Definition 2

to find the base sub-job in the base subset.

If the desired deadline value is smaller than or equal to UB∗,k∗ of the base

sub-job J∗,k∗ (Line 17), the third part of the main loop (Lines 17–26) assigns

the desired deadline value to the base sub-job as its local deadline (denoted by

d∗,k∗) (Line 18), adds d∗,k∗ to the set of sub-job deadlines (Line 19), and removes

J∗,k∗ from Ω(Vx) (Line 20). This process is repeated in the main loop until each

sub-job in Ω(Vx) obtains a local deadline. In the case where the desired deadline

value is larger than UB∗,k∗ (Line 21), at least one sub-job will miss its deadline

and a subset of sub-jobs Jdrop are removed from the subset ω∗(Vx) based on

some sub-job dropping policy (Line 22).(The discussion on the sub-job dropping

policy is provided in Section 4.3.3.) Then, the set of sub-job deadlines is set to

be empty (Line 23) and OLDA exits (Line 24). OLDA either returns the set of

sub-job deadlines to be used by the processor in performing EDF scheduling or

an empty set to processor Vx. In the latter case, Vx calls OLDA repeatedly until

a feasible solution is found or all the sub-jobs in Ω(Vx) have been dropped. The

time complexity of OLDA is O(|Ω(Vx)|3), which is proved in Theorem 5, and a

processor takes O(|Ω(Vx)|4) time to solve a set Ω(Vx) using OLDA.

We use the example in Table 3.4 to illustrate the steps taken by OLDA to

assign local deadlines given sub-job set {J1,1, J2,1, J3,1, J4,1}. In the first iteration

of the main loop, OLDA finds the base subset {J2,1, J3,1, J4,1} and selects the base

sub-job J2,1. OLDA assigns the completion time of all the sub-jobs in the base

72

t

0 1 2 3 4 5 6 7 8 9 10

J1,1 J2,1 J3,1 J4,1 J3,1 J2,1

Figure 3.2. The example of executing sub-jobs with local deadlines
assigned by OLDA

subset, 9, to J2,1 as its local deadline. In the next iteration, OLDA works on

sub-job set {J1,1, J3,1, J4,1} and the process is repeated until all the sub-jobs have

been assigned local deadlines. In the example, the local deadlines for sub-jobs

J1,1, J2,1, J3,1 and J4,1 are 2, 9, 8 and 7, respectively. The base subset and base

sub-job in each iteration are shown in Table 3.5.

A possible schedule for sub-jobs J1,1, J2,1, J3,1 and J4,1 is shown in Figure 3.2.

It is worth noting that we assume that a processor knows the release times

and local deadline upper bounds of all the future sub-jobs in OLDA (This as-

sumption will be relaxed in Chapter 4). Thus, OLDA only requires information

known upon a sub-job’s release (such as the maximum allowed response time of a

sub-job at the completion time of the sub-job’s intermediate predecessor), which

TABLE 3.5

Base Subset and Base Sub-job in Each Iteration

Iter. Number Sub-job Set Base Subset Base Sub-job

1 {J1,1, J2,1, J3,1, J4,1} {J2,1, J3,1, J4,1} J2,1

2 {J1,1, J3,1, J4,1} {J3,1, J4,1} J3,1

3 {J1,1, J4,1} {J4,1} J4,1

4 {J1,1} {J1,1} J1,1

73

can be relayed between processors with the support of a specific distributed com-

munication mechanism (Section 4.3). Therefore, OLDA does not require global

clock synchronization.

3.6.3 Optimality of OLDA Algorithm

We claim that OLDA solves the optimization problem given by (3.8), (3.6)

and (3.9). That is, if there exists a solution to the problem, OLDA always finds

it. Furthermore, if there is no feasible solution to the problem, OLDA always

identifies such a case, i.e., drop a job following some sub-job dropping policy.

To support our claim, we first show that the local-deadline assignment made by

OLDA (when no sub-jobs are dropped) satisfies the constraints in (3.6) and (3.9).

This is given in Lemmas 2 and 3, respectively.

Lemma 2. Given sub-job set Ω(Vx), let d∗i,k be the local deadline assigned by

OLDA to Ji,k ∈ Ω(Vx). Then

ri,k + Ci,k ≤ d∗i,k ≤ Di − Ccri
i,k ∀Ji,k ∈ Ω(Vx). (3.23)

Proof: First, we prove that ri,k +Ci,k ≤ d∗i,k for any Ji,k in any solution found by

OLDA. Without loss of generality (WLOG), we prove the lemma for the first local

deadline determined by OLDA (denoted as d∗,k∗). Let dωi,k = minJi,k∈ω(Vx){ri,k} +∑
∀Ji,k∈ω(Vx)Ci,k for any ω(Vx) ⊆ Ω(Vx). According to Lines 4–15 of Algorithm 3,

OLDA selects the sub-job subset ω∗(Vx), which has the maximum dωi,k among all

the subsets of Ω(Vx), and assigns this value to sub-job J∗,k∗ as its local deadline.

74

That is,

d∗,k∗ = dω
∗

i,k ≥ dωi,k, ∀ω(Vx) ⊆ Ω(Vx). (3.24)

Suppose that d∗,k∗ < r∗,k∗ + C∗,k∗. In such a case, we can find a sub-job subset

ω′(Vx) containing only one sub-job J∗,k∗ such that dω
′

i,k = r∗,k∗ + C∗,k∗ > dω
∗

i,k. This

contradicts the condition in (3.24).

Next, we prove that d∗i,k ≤ Di−Ccri
i,k for any Ji,k in the solution found by OLDA.

Suppose there is a sub-job Jp,q where dp,q > Dp−Ccri
p,q . In such a case, OLDA exits

without returning a solution, which contradicts the assumption that OLDA returns

a solution. Therefore, the solution returned by OLDA satisfies (3.23). 2

Lemma 3. Given sub-job set Ω(Vx), let d∗i,k be the local deadline assigned by

OLDA to Ji,k ∈ Ω(Vx). We have

max
Ji,k∈ω(Vx)

{d∗i,k} − min
Ji,k∈ω(Vx)

{ri,k} ≥
∑

∀Ji,k∈ω(Vx)

Ci,k,∀ω(Vx) ⊆ Ω(Vx). (3.25)

Proof: Suppose sub-job Jj,h has the maximum local deadline dj,h among all the

sub-jobs in sub-job subset ω
′
(Vx), which satisfies

dj,h = max
Ji,k∈ω

′
(Vx)

{d∗i,k} (3.26)

Meanwhile, suppose Jj,h is the base sub-job in the base subset ω∗(Vx) determined

by OLDA, which satisfies

dj,h = min
Ji,k∈ω∗(Vx)

{ri,k}+
∑

∀Ji,k∈ω∗(Vx)

Ci,k ≥ min
Ji,k∈ω

′
(Vx)

{ri,k}+
∑

∀Ji,k∈ω
′
(Vx)

Ci,k. (3.27)

75

By combining (3.26) and (3.27), we obtain (3.25). 2

To show that OLDA always identifies the case where there is no feasible so-

lution to the optimization problem, we observe that OLDA always finds a local-

deadline assignment without dropping any job if there exists a feasible solution

that satisfies constraints (3.6) and (3.9). This is stated in the following lemma.

Lemma 4. Given sub-job set Ω(Vx), if there exists di,k for every Ji,k ∈ Ω(Vx) that

satisfies (3.6) and (3.9), OLDA always finds a feasible local-deadline assignment

for every Ji,k ∈ Ω(Vx).

Proof: We prove Lemma 4 by contradiction. Suppose there is one solution d

satisfying (3.6) and (3.9) but OLDA fails to find a solution. This means that the

if condition on Line 17 in Algorithm 3 is false, and consequently, for sub-job

J∗,k∗, we have

D∗ − Ccri
∗,k∗ < d∗,k∗ . (3.28)

In addition,

d∗,k∗ = min
Ji,k∈ω∗(Vx)

{ri,k}+
∑

∀Ji,k∈ω∗(Vx)

Ci,k. (3.29)

Given that Ω(Vx) is schedulable, according to Lemma 1, we have

min
Ji,k∈ω∗(Vx)

{ri,k}+
∑

∀Ji,k∈ω∗(Vx)

Ci,k ≤ max
Ji,k∈ω∗(Vx)

{di,k}. (3.30)

Combining (3.28), (3.29) and (3.30), we have

D∗ − Ccri
∗,k∗ < max

Ji,k∈ω∗(Vx)
{di,k}. (3.31)

Assume that Jp,q has the maximum local deadline among all the sub-jobs in ω∗(Vx)

76

in the feasible solution d. Then,

D∗ − Ccri
∗,k∗ < max

Ji,k∈ω∗(Vx)
{di,k} = dp,q ≤ Dp − Ccri

p,q . (3.32)

In Algorithm 3, J∗,k∗ is selected because it has the maximum upper bound on the

local deadline among all the sub-jobs in ω∗(Vx) (Line 16). However, D∗ −Ccri
∗,k∗ <

Dp − Ccri
p,q , which is a contradiction. 2

Proving that the local-deadline assignment made by OLDA indeed maximizes

the objective function in (3.8) requires analyzing the relationship among the sub-

jobs’ time slacks. Since OLDA assigns sub-job local deadlines by identifying the

base sub-job in each base subset, a special property that the base subset possesses

greatly simplifies the analysis process. Lemma 5 below summarizes this property.

Lemma 5. Let ω∗(Vx) be a base subset of sub-job set Ω(Vx) and r
∗ = minJi,k∈ω∗(Vx){ri,k}.

Under the work-conserving EDF policy, processor Vx is never idle once it starts

to execute the sub-jobs in ω∗(Vx) at r
∗ and before it completes all the sub-jobs in

ω∗(Vx). In addition, the busy interval during which the sub-jobs in ω∗(Vx) are

executed is [r∗, r∗ +
∑

∀Ji,k∈ω∗(Vx)
Ci,k]. Furthermore, there is at least one sub-job

unfinished at any time instant within [r∗, r∗ +
∑

∀Ji,k∈ω∗(Vx)
Ci,k).

Proof: We prove the lemma by contradiction. Since ω∗(Vx) is the base subset of

Ω(Vx), according to Definition 1, we have ∀ω(Vx) ⊆ Ω(Vx),

r∗ +
∑

∀Ji,k∈ω∗(Vx)

Ci,k ≥ min
Ji,k∈ω(Vx)

{ri,k}+
∑

∀Ji,k∈ω(Vx)

Ci,k. (3.33)

Under EDF scheduling policy, the earliest start time of the first sub-job in ω∗(Vx)

is simply r∗ = minJi,k∈ω∗(Vx){ri,k}, and the earliest completion time of the last

sub-job in ω∗(Vx) (denoted by f ∗) satisfies f ∗ = r∗ +
∑

∀Ji,k∈ω∗(Vx)
Ci,k.

77

Suppose there are multiple idle time intervals inside [r∗, f ∗] when the sub-jobs

in ω∗(Vx) are executed. Let Tidle,sum be the total duration of the idle times. Thus,

the completion time of the last sub-job in ω∗(Vx) can be expressed as

Tcomplete,ω∗(Vx) = f ∗ + Tidle,sum. (3.34)

Let [tstart, tend] be the latest idle time interval among all the idle time intervals.

Under the work-conserving EDF policy, an idle interval means that no sub-job is

ready to be executed during the interval. In other words, tend coincides with the

release time rp,q of some sub-job Jp,q in ω∗(Vx). The completion time of ω∗(Vx)

can also be expressed as,

Tcomplete,ω∗(Vx) = rp,q +
∑

∀Ji,k∈ω∗(Vx)
ri,k≥rp,q

Ci,k. (3.35)

This implies that,

rp,q +
∑

∀Ji,k∈ω∗(Vx)
ri,k≥rp,q

Ci,k > r∗ +
∑

∀Ji,k∈ω∗(Vx)

Ci,k.

This contradicts (3.33) stated earlier.

Since there is no idle time when executing the sub-jobs in ω∗(Vx), and since

the start time of the first sub-job and the total execution time of the sub-jobs in

ω∗(Vx) are r∗ and
∑

∀Ji,k∈ω∗(Vx)
Ci,k, respectively, the completion time of the last

sub-job in ω∗(Vx) is then equal to r∗ +
∑

∀Ji,k∈ω∗(Vx)
Ci,k. It follows that the busy

interval is [r∗, r∗ +
∑

∀Ji,k∈ω∗(Vx)
Ci,k].

Suppose there exists a time instant that all the sub-jobs released earlier than

78

this time instant has been finished. Since there is no idle time when executing the

sub-jobs in ω∗(Vx), such an instant can only occur at the completion time of a sub-

job. Without loss of generality, we assume that when sub-job Jp,q is finished at t,

there is no unfinished sub-job released earlier than t. This implies that any sub-job

which is released earlier than t has been finished already before t. In addition, at

least one sub-job in ω∗(Vx) is released at time t. Let sub-job subset ω+(Vx) contain

all the sub-jobs released later than or equal to t in ω∗(Vx). Then we have,

r∗ +
∑

∀Ji,k∈ω∗(Vx)

Ci,k = t+
∑

∀Ji,k∈ω+(Vx)

Ci,k. (3.36)

According to Definition 1, OLDA should select ω+(Vx) instead of ω∗(Vx) to be the

base subset. This contradicts that ω∗(Vx) is the base subset.

2

Based on Lemma 5, it can be proved that the local-deadline assignment made by

OLDA maximizes the objective function (3.8), which is stated in Theorem 5.

Theorem 5. Given sub-job set Ω(Vx), let d∗i,k be the local deadline assigned to

each Ji,k ∈ Ω(Vx) by OLDA. Then d∗i,k maximizes the minimum time slack, {Di−

di,k − Ccri
i,k }, among all the sub-jobs executed on Vx, i.e.,

max: min
Ji,k∈Ω(Vx)

{
Di − di,k − Ccri

i,k

}
. (3.37)

Proof: Suppose there exists an optimal set of local deadlines d+ that is different

from the solution d∗ returned by OLDA. Then, there exists at least one sub-job Ji,k

whose d+i,k is different from d∗i,k. We need to show that such differences in local-

deadline assignments do not affect the value of the objective function in (3.37).

79

Let the sub-jobs in Ω(Vx) be arranged in the order by which a sub-job obtains

its local absolute deadline in OLDA. Without loss of generality, suppose that sub-

job Jp,q is the first sub-job in Ω(Vx) and has different deadlines d+p,q and d∗p,q in

solutions d+ and d∗, respectively. According to Lemma 5, d∗p,q is the completion

time of the base sub-job in base subset ω∗(Vx) and is equal to r∗+
∑

∀Ji,k∈ω∗(Vx)
Ci,k.

Hence, d∗p,q is the longest absolute local deadline of the sub-jobs in ω∗(Vx) for d∗.

Assume that in d+, the sub-job Jp′,q′ has the longest absolute local deadline among

the sub-jobs in ω∗(Vx). We consider the following scenarios: Jp,q = Jp′,q′ and

Jp,q ̸= Jp′,q′.

Case 1 (Jp,q = Jp′,q′) : Recall that d
∗
p,q = r∗ +

∑
∀Ji,k∈ω∗(Vx)

Ci,k. According to the

definition of d+p′,q′, we have

d+p′,q′ = max
Ji,k∈ω∗(Vx)

{d+i,k} ≥ r∗ +
∑

∀Ji,k∈ω∗(Vx)

Ci,k = d∗p,q. (3.38)

Hence, we have s∗p,q ≥ s+p′,q′, and the objective function of the OLDA’s solution is

larger than or equal to that of J+.

Case 2 (Jp,q ̸= Jp′,q′) : In this case, we first prove that s+p,q ≥ s+p′,q′ and s
+
p,q does

not have an impact on the value of the objective function minJi,k∈ω+(Vx){s+i,k}. We

then prove that s∗p,q ≥ s+p′,q′ and s
∗
p′,q′ ≥ s+p′,q′, which leads to the observation that

the value of the objective function obtained by OLDA is larger than or equal to

that of the assumed optimal solution.

Since d+p′,q′ ≥ d+p,q (see the definition of d+p′,q′ above), and Dp−Ccri
p,q ≥ Dp′−Ccri

p′,q′

according to Line 16 of Algorithm 3, we have s+p,q ≥ s+p′,q′ ≥ minJi,k∈ω∗(Vx){s+i,k}.

Therefore, s+p,q has no impact on the value of the objective function. In addition,

since d+p′,q′ ≥ d∗p,q, and Dp − Ccri
p,q ≥ Dp′ − Ccri

p′,q′, we have s∗p,q ≥ s+p′,q′. Similarly,

since d∗p′,q′ ≤ d∗p,q and d∗p,q ≤ d+p′,q′, we have s∗p′,q′ ≥ s+p′,q′. As a result, the value

80

of the objective function obtained by OLDA is larger than or equal to that of the

optimal solution in either case, hence the solution found by OLDA is optimal. 2

Based on Theorem 5, we conclude that the solution found by OLDA maximizes

the objective function (3.37). Note that the found solution may not be globally

optimal for DRTS.

Based on Lemmas 2, 3, 4 and Theorem 5, we have the following theorem.

Theorem 6. In O(|Ω(Vx)|3) time, OLDA returns a set of local deadlines if and

only if there exists a solution to the optimization problem specified in (3.8), (3.6)

and (3.9). Furthermore, the returned set of local deadlines is a solution that

maximizes the objective function (3.8).

Proof: By Lemmas 2, 3 and 4, OLDA returns a set of local deadlines if and only

if there exists a solution to the optimization problem specified in (3.8), (3.6) and

(3.9). Furthermore, by Theorem 5, the returned set of local deadlines is a solution

to the optimization problem.

The time complexity of OLDA is dominated by the main while loop starting at

Line 3 of Algorithm 3. Inside the while loop, the most time consuming operations

appear inside the inner while loop from Lines 8–15. Every time OLDA computes

the local absolute deadline of a sub-job, it considers |Ω(Vx)| number of subsets.

Furthermore, the number of sub-jobs in Ω(Vx) is always reduced by 1 in each

iteration. Hence, OLDA considers |Ω(Vx)|·|Ω(Vx)+1|
2

number of subsets of Ω(Vx) in

total, instead of a combinatorial number of them. In addition, it takes |ω(Vx)|

iterations to compute minJi,k∈ω(Vx){ri,k} +
∑

∀Ji,k∈ω(Vx)Ci,k for each subset ω(Vx).

Therefore, the time complexity of OLDA is O(|Ω(Vx)|3). 2

The importance of Theorem 6 is that the deadline assignment problem can be

solved exactly by OLDA in polynomial time even though the original MILP for-

81

mulation contains (|Ω(Vx)| + 2|Ω(Vx)|) constraints. Note that processor Vx needs

O(|Ω(Vx)|4) time to solve Ω(Vx) using OLDA since Vx may call OLDA for at most

|Ω(Vx)| number of times due to dropping sub-jobs.

82

CHAPTER 4

More Practical Versions of OLDA

Although the local-deadline assignment problem can be solved efficiently and

effectively by the canonical version of our algorithm, it is based on the strong as-

sumption that each processor knows the local release times and the local deadline

upper bounds of all the future sub-jobs as in [65]. Fundamentally, the canonical

version of our algorithm is an off-line algorithm. To relax this assumption and

make our algorithm practical for real-world applications, we propose two deriva-

tives of our algorithm. In the first derivative, each processor only considers the

currently active local sub-jobs, which are released (ready to be executed) but have

not been finished. In the second derivative, the processor employs a prediction

mechanism to estimate the timing information of future sub-jobs in order to fur-

ther exploit the capability of the ideal algorithm to improve system performance.

We prove that the first derivative can find the same solution to that generated

by the canonical version of our algorithm if both solve the same set of sub-jobs.

Additionally, we discuss other practical considerations such as communication

among processors and investigate the time overhead on the performance of the

system. Since our algorithm needs to be run upon each release of a sub-job, the

time overhead of the proposed algorithm grow relatively quickly as the number of

sub-jobs on each processor increases. Thus, our algorithm is suitable for DRTSs

83

with the number of active sub-jobs in the order of tens. Such DRTSs often appear

in avionics and automotive applications.

We have conducted simulation-based studies of our approach and compared it

to two existing representative methods, JA [70, 73] and BBW [27]. To evaluate our

proposed approach, we used two different types of workloads, the stream-type (ST)

workloads and the general-type (GT) workloads to emulate different kinds of ap-

plication scenarios. The ST workloads are intended to simulate pipelined DRTSs,

often found in multimedia systems, performance-sensitive server farms, data pro-

cessing back-end systems, and shipboard computing clusters [35, 66, 70, 73, 110].

The GT workloads emulate more complex DRTSs, such as signal processing sys-

tems, control systems and wireless network systems [98, 129, 159–161].

Our studies reveal that, for ST workloads whose distribution on processors is

somewhat balanced, JA and BBW drop 179% and 165% more jobs on average

than our approach. For ST workloads whose distribution on processors varies

noticeably, the averages are 61% and 313%. For GT workloads, 160% and 51%

more jobs, on average, are dropped by JA and BBW than those by our proposed

approach. Furthermore, for balanced ST workloads, our approach can find, on

average, 71% and 22% more feasible solutions than JA and BBW, respectively.

For imbalanced ST workloads, our approach leads to, on average, 60% and 48%

more feasible solutions than JA and BBW, respectively. For GT workloads, our

approach can solve, on average, 13% and 12% more of task sets than JA and

BBW, respectively. These results show that our approach indeed leads to improved

quality of service for DRTSs.

84

4.1 Active Local-Deadline Assignment

In this section, we present a local-deadline assignment algorithm in which each

processor considers only the active sub-jobs. We refer to this new algorithm as

ALDA. In ALDA, sub-job set Ωa(Vx) contains only the active sub-jobs on the

processor when ALDA is invoked. Whenever a sub-job is completed, it is removed

from Ωa(Vx). Every time a new sub-job arrives at the processor, the processor

stops its current execution and calls ALDA to determine the deadlines of all the

active sub-jobs. The remaining execution times of the active sub-jobs, which is

maintained by the processor, are used by ALDA instead of the original execution

times. Note that ALDA only returns the solution of Ωa(Vx). For a given sub-job set

Ω(Vx) containing sub-jobs with different release times, a sub-job can be assigned

local deadlines by ALDA multiple times from its release to its completion. This

is because multiple sub-jobs may be released during such a time interval. Hence,

the solution of Ω(Vx) by ALDA is a set of local deadlines, {di,k}, where di,k is the

last local deadline assigned to each sub-job Ji,k ∈ Ω(Vx) by ALDA.

ALDA actually is very similar to OLDA in that both algorithms need to find

the base subset and the base sub-job and then assign the local deadline to the base

sub-job. However, ALDA only considers all the active sub-jobs on the processor,

which possesses a special property. The property can greatly reduce the time

complexity of OLDA and is summarized in Lemma 6.

Lemma 6. Given sub-job set Ωa(Vx), if all the sub-jobs are ready for execution,

the base subset ω∗(Vx) is just Ω
a(Vx).

Proof: We prove the lemma by contradiction. Suppose Ωa(Vx) is not a base

85

subset, and there is one base subset ω∗(Vx) ⊂ Ωa(Vx). Then we have

min
Ji,k∈ω∗(Vx)

{ri,k}+
∑

∀Ji,k∈ω∗(Vx)

Ci,k > min
Ji,k∈Ωa(Vx)

{ri,k}+
∑

∀Ji,k∈Ωa(Vx)

Ci,k. (4.1)

Since all the sub-jobs are ready at the current time, we have minJi,k∈ω∗(Vx){ri,k} =

min
Ji,k∈Ωa(Vx)

{ri,k}. Thus, we have,
∑

∀Ji,k∈ω∗(Vx)
Ci,k >

∑
∀Ji,k∈Ωa(Vx)

Ci,k, which

contradicts our initial assumption that ω∗(Vx) is a subset of Ωa(Vx). 2

Based on Lemma 6, it costs ALDA a lower time overhead to identify the base

subset than that of OLDA.

The steps of ALDA are summarized in Algorithm 4. We briefly discuss the key

steps and omit the ones that are similar to OLDA. The inputs to ALDA are the

newly released sub-job Jj,h and the sub-job set Ωa(Vx) that contains all the active

sub-jobs that are already in Vx before the current invocation of ALDA. The sub-

jobs in Ωa(Vx) are sorted in the non-decreasing order of the upper bound on the

local deadline of each sub-job in Ωa(Vx). Ties are broken in favour of the sub-job

with the largest job identifier and then in favour of the sub-job with the largest

subtask identifier. Since the sub-job set Ωa(Vx) is the base subset according to

Lemma 6, the sorting of sub-jobs in Ωa(Vx) makes the tail sub-job in Ωa(Vx) the

base sub-job according to Definition 2. In addition, ALDA directly calculates the

desired local deadline value, Max Deadline, for Ωa(Vx) according to Lemma 5

(Lines 4–7).

The algorithm then enters the main loop spanning from Line 8 to Line 27.

ALDA finds the base sub-job J∗,k∗ , which is the last sub-job of the sub-job set

in Ωa(Vx) according to Lemma 6 (Line 9). If the desired local deadline value

is smaller than or equal to UB∗,k∗ , ALDA updates Max Deadline for the next

86

Algorithm 4 ALDA(Ωa(Vx), Jj,h)

1: Ωa(Vx) = Insert by Non Dec Local Deadline UB(Ωa(Vx), Jj,h) //Insert Jj,h into
the sub-job set in the non-decreasing order of the upper bound on the local deadline
of each sub-job in Ωa(Vx)

2: d = ∅
3: Ω

′
(Vx) = ∅

4: Max Deadline = 0
5: for (Ji,k ∈ Ωa(Vx)) do
6: Max Deadline = Max Deadline+ Ci,k
7: end for
8: while (Ωa(Vx) ̸= ∅) do
9: J∗,k∗ = Tail(Ωa(Vx)) //Select the base sub-job which is the last sub-job of the

sub-job set in Ωa(Vx)
10: if (UB∗,k∗ ≥ Max Deadline) then
11: d∗,k∗ = Max Deadline
12: d = d

∪
{d∗,k∗}

13: Ωa(Vx) = Ωa(Vx)− J∗,k∗

14: Ω
′
(Vx) = Ω

′
(Vx)

∪
{J∗,k∗}

15: Max Deadline = Max Deadline− C∗,k∗

16: else
17: Jdrop = Drop Sub Jobs(Ωa(Vx)) // Remove a subset of sub-jobs from Ωa(Vx)

according to some sub-job dropping policy, and return the subset containing
the dropped sub-jobs

18: Temp C = 0
19: for (Ji,k ∈ Jdrop) do
20: Temp C = Temp C + Ci,k
21: end for
22: Max Deadline = Max Deadline− Temp C
23: for (Ji,k ∈ Ω

′
(Vx)) do

24: di,k = di,k − Temp C
25: end for
26: end if
27: end while
28: return d //d = {di,k}

iteration (Line 15). If the desired local deadline value is larger than UB∗,k∗ of the

base sub-job J∗,k∗ , the total execution time of the removed sub-jobs, Temp C, is

calculated (Lines 18–21). Since the sub-jobs in Jdrop are removed from the base

subset Ωa(Vx), Temp C is reduced from Max Deadline (Line 22). According to

the local-deadline assignment in ALDA (Lines 4–15), a sub-job which is assigned

87

its local deadline earlier will have a longer local deadline than a sub-job being

assigned its local deadline later. This implies that a sub-job that has been moved

to Ω
′
(Vx) will be completed after the sub-jobs currently still in Ωa(Vx). Thus,

after removing the sub-jobs in Jdrop from Ωa(Vx), each sub-job in Ω
′
(Vx) can

be completed earlier by Temp C and each previously assigned local deadline is

reduced by Temp C (Lines 23–25). The above process is repeated until each sub-

job in Ωa(Vx) either receives a deadline or is dropped. ALDA eventually returns

the set of sub-job deadlines to be used by the processor in performing EDF based

scheduling.

Since ALDA simplifies OLDA by only considering the active sub-jobs on a local

processor, all the lemmas and theorems in Section 3.6.3 still hold for ALDA except

for the time complexity of ALDA. The time complexity of ALDA is dominated

by the main while loop starting at Line 8. (Refer to Algorithm 4.) Every time

a subset of sub-jobs are to be removed from Ωa(Vx) (Line 17), OLDA needs to

traverse |Ωa(Vx)| number of sub-jobs in Function Drop Sub Jobs(). Hence, the

time complexity of ALDA when handling |Ωa(Vx)| number of sub-jobs on processor

Vx is O(|Ωa(Vx)|2), where |Ωa(Vx)| is the number of active sub-jobs on processor

Vx. Processor Vx calls ALDA every time a new sub-job from Ω(Vx) is released

at Vx. Since |Ωa(Vx)| ≤ |Ω(Vx)|, processor Vx takes O(|Ω(Vx)|3) time to solve a

set Ω(Vx) using ALDA. Compared with OLDA, ALDA is much more efficient in

solving the local-deadline assignment problem.

We show next that ALDA is equivalent to OLDA. First, we have the following

lemma to show that ALDA can solve the sub-job set if and only if the sub-job set

is schedulable.

Lemma 7. Let Ω(Vx) contain all the sub-jobs to be scheduled by OLDA. If and

88

only if there exists a schedulable solution for Ω(Vx), ALDA can find a feasible

solution for Ω(Vx).

Proof: We first prove the ”only if” part. After processor Vx assigns local deadlines

to released sub-jobs by running ALDA, the processor keeps executing the released

sub-jobs until the release of a new sub-job. A sub-job can be assigned local deadlines

for multiple times from its release to its completion since multiple sub-jobs may be

released during the time interval. However, the local deadline di,k assigned to Ji,k

for the last time is the finish time of Ji,k. Suppose at time t, processor assigns dp,q

to Jp,q by using ALDA and let Jp,q be completed without any more local-deadline

assignment. According to Lines 4-15 of Algorithm 4, we have

dp,q ≥ C ′
p,q + t, (4.2)

where C ′
p,q is the remaining execution times of Jp,q. The other execution time

Cp,q − C ′
p,q of sub-job Jp,q has been finished within time interval [rp,q, t]. Thus, we

have

t− rp,q ≥ Cp,q − C ′
p,q. (4.3)

By combining (4.2) and (4.3), we have rp,q + Cp,q ≤ dp,q. In addition, the local

deadline dp,q assigned to sub-job Jp,q at time t satisfies dp,q ≤ UBp,q. Otherwise,

ALDA will drop some sub-jobs in Line 17 of Algorithm 4. Hence, constraint (3.6)

is satisfied.

Given a set of local deadlines determined by ALDA, we assume that subset

ω(Vx) cannot satisfy condition (3.9) and dp,q has the maximum local deadline

89

among all the sub-jobs in ω(Vx), i.e.,

dp,q = max
Ji,k∈ω(Vx)

{di,k} < min
Ji,k∈ω(Vx)

{ri,k}+
∑

∀Ji,k∈ω(Vx)

Ci,k. (4.4)

Since di,k determined by ALDA for the last time is the completion time of sub-

job Ji,k, Jp,q should be finished after all the other sub-jobs in ω(Vx) have been

completed, i.e.,

min
Ji,k∈ω(Vx)

{ri,k}+
∑

∀Ji,k∈ω(Vx)

Ci,k ≤ dp,q. (4.5)

By combining (4.4) and (4.5), we have dp,q < dp,q, which is a contradiction. There-

fore, if ALDA finds a solution, this solution must be a schedulable solution.

We next prove the ”if” part by contradiction. Suppose ALDA cannot find a

feasible solution. Since ALDA employs EDF scheduling algorithm and uses UBi,k

of each sub-job Ji,k in ω(Vx) as Ji,k’s deadline, we can find a subset ω(Vx) which

satisfies

max
Ji,k∈ω(Vx)

{UBi,k} − min
Ji,k∈ω(Vx)

{ri,k} <
∑

∀Ji,k∈ω(Vx)

Ci,k, (4.6)

according to Lemma 1. Meanwhile, there exists a feasible solution for Ω(Vx).

According to Lemma 1, we have

max
Ji,k∈ω(Vx)

{di,k} − min
Ji,k∈ω(Vx)

{ri,k} ≥
∑

∀Ji,k∈ω(Vx)

Ci,k. (4.7)

Combining constraints (4.6) and (4.7), we have maxJi,k∈ω(Vx){UBi,k} < maxJi,k∈ω(Vx){di,k},

which is a contradiction. 2

Second, we have the following lemma to show that the equivalence of the solutions

found by ALDA and OLDA.

90

Lemma 8. The solutions found by ALDA and OLDA are the same if Ω(Vx) is

schedulable.

Proof: We prove the lemma by contradiction. Suppose the solution d by ALDA

is different from the solution d∗ by OLDA. Then, there exists at least one sub-job

Ji,k whose di,k is different from d∗i,k. Let the sub-jobs in Ω(Vx) be arranged in the

order by which a sub-job obtains its local absolute deadline in OLDA. Without

loss of generality, suppose that sub-job Jp,q is the first sub-job in Ω(Vx) which has

different deadlines dp,q and d
∗
p,q in solutions d and d∗, respectively. Hence, d∗p,q is

the longest absolute local deadline of the sub-jobs in ω∗(Vx) for d∗. We consider

two cases: dp,q = maxJi,k∈ω∗(Vx){di,k} and dp,q ̸= maxJi,k∈ω∗(Vx){di,k}.

Case 1 dp,q is equal to d
∗
p,q according to Lemma 5.

Case 2 Since Jp,q is the base sub-job in ω∗(vx), ALDA always put Jp,q to the tail

of the sub-job list in Ωa(Vx) when there are only the sub-jobs in ω∗(vx) on Vx.

Hence, any sub-job in ω∗(Vx) released earlier than Jp,q should have been finished

when Jp,q is finished. However, this contradicts the property that there is always

at least one sub-job unfinished within [r∗, r∗ +
∑

∀Ji,k∈ω∗(Vx)
Ci,k), which is proved

in Lemma 5. 2

Since ALDA and OLDA are equivalent for schedulable sub-job sets and we have

proved the optimality of OLDA, ALDA is also an optimal algorithm to solve the

proposed problem.

Based on Theorem 6, Lemma 7 and Lemma 8, we have the following theorem.

Theorem 7. In O(|Ω(Vx)|2) time, ALDA returns a set of local deadlines if and

only if there exists a solution to the optimization problem specified in (3.8), (3.6)

and (3.9). Furthermore, the returned set of local deadlines is a solution that

91

maximizes the objective function (3.8).

Proof: By Lemma 7, ALDA returns a set of local deadlines if and only if there

exists a solution to the optimization problem specified in (3.8), (3.6) and (3.9).

Furthermore, by Lemma 8, the returned solution by ALDA is the same to that by

OLDA if Ω(Vx) is schedulable. Since the solution found by OLDA maximizes the

objective function (3.8) according to Theorem 6, the returned set of local deadlines

maximizes the objective function (3.8).

When ALDA does not drop any sub-job, the most time consuming operations of

ALDA appear in the calculation of desired local deadline in Lines 4-7 of Algorithm

4, which considers |Ωa(Vx)| number of sub-jobs. In addition, every time a sub-job

from Ω(Vx) is released, ALDA will be called to assign local deadlines to active

sub-jobs in Ωa(Vx). Since the number of active sub-jobs on Vx is smaller than or

equal to |Ω(Vx)|, ALDA needs O(|Ω(Vx)|2) time to find a solution for a schedulabe

sub-job set Ω(Vx). 2

Theorem 7 shows that ALDA is able to solve the local-deadline assignment prob-

lem exactly in polynomial time, which demonstrates the same performance to that

of OLDA.

4.2 WLDA

Although ALDA is extremely efficient in assigning local deadlines to the active

sub-jobs, it does not consider any future sub-job when judging the schedulability of

a sub-job subset. That is, the sub-job set which is deemed schedulable by ALDA at

the current time may not actually be schedulable after additional sub-jobs arrive at

the processor. If a processor considers the workload of some future sub-jobs when

assigning local deadlines, an infeasible sub-job subset can be detected ahead of

92

time, and a subset of sub-jobs can be dropped as early as possible without wasting

valuable resources. To achieve this, we propose another derivative of OLDA,

WLDA, which leverages workload prediction during local-deadline assignment to

improve resource utilization and avoid dropping jobs. In WLDA, a processor can

estimate the release times and local deadline upper bounds of future sub-jobs and

then apply OLDA directly to all the active sub-jobs and predicted future sub-jobs

on the processor.

Similar to OLDA and ALDA, WLDA is invoked to perform local-deadline

assignment every time a new sub-job arrives at the processor. However, WLDA

considers both the active sub-jobs and the predicted future sub-jobs whose release

times and upper bounds on the local deadlines are within some given window. In

WLDA, the set of active sub-jobs and future sub-jobs predicted by Vx is denoted

by Ωw(Vx). We set the time window as W = [t, t + α · (max
Ji,k∈Ωw(Vx)

{Di −

Ccri
i,k }− t)], α > 0, where t is the current time and α is a scaling factor whose value

can be selected by the user. When α is 0, WLDA is equivalent to ALDA, i.e., it

only considers the active sub-jobs. When α is 1, WLDA considers all the future

sub-jobs whose upper bounds on their local deadlines are smaller than or equal to

the largest local deadline upper bound among all the sub-jobs in Ωw(Vx). With

increasing α value, WLDA considers more future sub-jobs, which leads to more

precise schedulability prediction at the cost of higher time overhead. The actual

deadline assignment part of WLDA is done by the original OLDA. The main task

of WLDA is to predict the release times as well as local deadline upper bounds of

future sub-jobs. A straightforward way of estimating these values is to simply use

the corresponding task periods if tasks are periodic. However, such estimation can

have large errors due to the variations in sub-job completion times on different

93

Calculate the time

window W for the sub-

jobs in Ω
w
(Vx)

Update the release times

and local deadline upper

bounds for future

instances of subtask Tm,h

Generate new future

sub-jobs that are within

W, and insert them to

Ω
w
(Vx)

Apply OLDA to find a

solution

Jj,h is the second

or later instance of subtask Tm,h

to reach processor

Yes

No

Δr_next(Jj,h) and ΔUB_next(Jj,h)

are estimated based on the

history timing information

Figure 4.1. WLDA flow to determine future release times and upper
bounds on the local deadlines of future sub-jobs and assign local

deadlines to the newly released sub-job as well as the active and future
sub-jobs in Ωw(Vx).

processors. Furthermore, when tasks are not periodic, WLDA needs to employ

other estimation methods.

WLDA utilizes recent history data to predict future timing data, as is shown

in 4.1. Specifically, it estimates the release interval between subsequent future

sub-jobs and the difference between the local deadline upper bounds of subsequent

future sub-jobs. Once these values are available, release times and upper bounds

on the local deadlines for future sub-jobs can be readily predicted.

Prediction of sub-job release times and local deadline upper bounds is per-

formed for sub-jobs of the same subtask. We use subtask Tm,h as an example for

our following discussion. Suppose sub-jobs Jj,h and Jj′ ,h, are instances of subtask

Tm,h on processor Vx. Let Ind(j) be a function which returns Jj,h’s instance index

of subtask Tm,h. Then we have the average release interval between the sub-jobs,

denoted as ∆r(Jj,h, Jj′,h), to be the difference between the release times of Jj,h

94

and Jj′,h relative to the instance index difference

∆r(Jj,h, Jj′,h) =
r(Jj′,h)− r(Jj,h)

Ind(j′)− Ind(j)
, Ind(j′) > Ind(j). (4.8)

If Ind(j′) > Ind(j), we have rj,h < rj′,h. This observation is summarized in

Lemma 9.

Lemma 9. For sub-jobs Jj′ ,h and Jj,h, if the instance index Ind(j′) is larger than

Ind(j), the release time rj,h is smaller than the release time rj′ ,h.

Proof: We prove this lemma by induction. Consider jobs Jj and Jj′ that satisfy

ind(j′) > ind(j). We first prove the base case. Suppose sub-jobs Jj,h and Jj′ ,h

are input sub-jobs of Jj and Jj′ , respectively. Since ind(j
′
) > ind(j), we have

rj,h < rj′ ,h by the definition of the absolute release time of a sub-job. The base

case holds.

Consider sub-jobs Jj,h′ and Jj′ ,h′ , which are not input sub-jobs and have imme-

diate successors Jj,h′′ and Jj′ ,h′′ , respectively. Assume that we have rj,h′ < rj′ ,h′ ,

we then need to prove rj,h′′ < rj′ ,h′′ . According to the dependencies of the subtasks,

we have rj,h′′ = maxJ
j,h

′4J
j,h

′′ {dj,h′} and rj′ ,h′′ = maxJ
j
′
,h

′4J
j
′
,h

′′ {dj′ ,h′}. In order

to prove rj,h′′ < rj′ ,h′′ , we need to prove dj,h′ < dj′ ,h′ for sub-jobs Jj,h′ and Jj′ ,h′ .

We prove dj,h′ < dj′ ,h′ by contradiction. According to the first paragraph in the

proof of Lemma 5, dj,h′ and dj′ ,h′ are equal to the completion times of Jj,h′ and

Jj′ ,h′ , respectively. Since Jj,h′ and Jj′ ,h′ cannot be completed on Vx at the same

time, dj,h′ ̸= dj′ ,h′ . Suppose we have dj,h′ > dj′ ,h′ . Without loss of generality, Jj,h′

and Jj′ ,h′ are the base sub-jobs of base subsets ω
′
(Vx) and ω

′′
(Vx), respectively.

95

Therefore, dj,h′ and dj′ ,h′ satisfy

dj,h′ = min
Ji,k∈ω′ (Vx)

{ri,k}+
∑

∀Ji,k∈ω′
(Vx)

Ci,k > min
Ji,k∈ω′′ (Vx)

{ri,k}+
∑

∀Ji,k∈ω′′
(Vx)

Ci,k = dj′ ,h′ .

(4.9)

Hence, according to Lines 4–15 of Algorithm 3, OLDA should select ω
′
(Vx) as the

base subset before selecting ω
′′
(Vx). Thus, Jj′ ,h′ is still in Ωw(Vx) when OLDA

selects ω
′
(Vx) as the base subset. Since rj,h′ < rj′ ,h′ , according to Definition 2,

Jj′ ,h′ is in ω
′
(Vx) and maximizes minJi,k∈ω′ (Vx)

{ri,k} +
∑

∀Ji,k∈ω′ (Vx)
Ci,k. In addi-

tion, since rj,h′ < rj′ ,h′ and C
cri
j,h′

= Ccri
j′ ,h′

, we have Dj < Dj′ and UBj,h′ < UBj′ ,h′ .

According to Definition 2, OLDA should not select Jj,h′ as the base sub-job for the

base subset ω
′
(Vx). This contradicts the assumption that Jj,h′ is the base sub-job

of ω
′
(Vx). Thus, we proved dj,h′ < dj′ ,h′ .

Since dj,h′ < dj′ ,h′ , rj,h′′ = maxJ
j,k

′4J
j,k

′′ {dj,k′} and rj′ ,h′′ = maxJ
j
′
,k

′4J
j
′
,k

′′ {dj′ ,k′}

hold, we have rj,h′′ < rj′ ,h′′ and the lemma holds. 2

If Ind(j′) = Ind(j) + 1, the average release interval r(Jj,h, Jj′,h) is called the next

release interval ∆r next(Jj,h) of Jj,h, i.e.,

∆r next(Jj,h) = ∆r(Jj,h, Jj′,h), ∀Ind(j′) = Ind(j) + 1. (4.10)

We further define Ins(j, h) to be the number of Tm,h’s instances that have arrived

at processor Vx before or at time t (arrival time of Jj,h). Assume that sub-job

Jj−,h is the latest arriving sub-job of subtask Tm,h before time t, i.e. Ins(j−, h) =

Ins(j, h) − 1. By using the timing information of Jj−,h and Jj,h, processor Vx

96

estimates ∆r next(Jj,h) of Jj,h as,

∆r̃ next(Jj,h) =

∆r̃ next(Jj−,h)+∆r(Jj,h,Jj−,h)

2
: Ins(j, h) ≥ 3

∆r(Jj,h, Jj−,h) : Ins(j, h) = 2

, (4.11)

where ∆r̃ next(Jj,h) and ∆r̃ next(Jj−,h) are the estimated next release intervals

of Jj,h and Jj−,h, respectively, and ∆r(Jj,h, Jj−,h) is the average release interval

between Jj,h and Jj−,h. The processor starts to estimate ∆r̃ next(Jj,h) after two

instances of subtask Tm,h have reached processor Vx, i.e., Ins(j, h) ≥ 2. When

Jj,h is the second instance to reach the processor, ∆r̃ next(Jj,h) is estimated to

be the release interval ∆r(Jj,h, Jj−,h) between sub-jobs Jj,h and Jj−,h. Otherwise,

∆r̃ next(Jj,h) is estimated to be the average of ∆r̃ next(Jj−,h) and ∆r(Jj,h, Jj−,h).

Similarly, we define the average difference in local deadline upper bounds

∆UB(Jj,h, Jj′,h) to be the difference between local deadline upper bounds of sub-

jobs Jj′,h and Jj,h relative to their instance index difference, i.e.,

∆UB(Jj,h, Jj′,h) =
UBj′,h − UBj,h

Ind(j′)− Ind(j)
, Ind(j′) > Ind(j). (4.12)

If Ind(j′) = Ind(j) + 1, ∆UB(Jj,h, Jj′,h) is the next local deadline upper bound

difference ∆UB next(Jj,h), i.e.,

∆UB next(Jj,h) = ∆UB(Jj,h, Jj′,h), ∀Ind(j′) = Ind(j) + 1. (4.13)

97

Processor Vx estimates ∆UB next(Jj,h) of Jj,h as,

∆ŨB next(Jj,h) =

∆ŨB next(Jj−,h)+∆UB(Jj,h,Jj−,h)

2
: Ins(j, h) ≥ 3

∆UB(Jj,h, Jj−,h) : Ins(j, h) = 2

, (4.14)

where ∆ŨB next(Jj,h) and ∆ŨB next(Jj−,h) are the estimated next local deadline

upper bound differences of Jj,h and Jj−,h, respectively, and ∆UB(Jj,h, Jj−,h) is the

average difference between the local deadline upper bounds of Jj,h and Jj−,h.

The details of WLDA are summarized in Algorithm 5. The input variables of

WLDA are user-defined parameters, α and Max Allowed Drop Num, the sub-

job sets Ωw(Vx) and Ω−(Vx), the newly released sub-job Jj,h, and the sub-task set

Ψ(Vx). Ωw(Vx) contains all the active sub-jobs that have been released but not

finished before rj,h and all the future sub-jobs that have been considered in the pre-

vious invocation of WLDA. Ω−(Vx) contains the latest arriving sub-job of each sub-

task on Vx prior to the arrival of Jj,h. When Jj,h arrives at processor Vx, WLDA

first determines if Jj,h should be dropped in Function Determine Drop Sub Job()

(Line 1) based on the drop counter value corresponding to Jj,h. The drop counter

of the future sub-job corresponding to Jj,h indicates how many times WLDA has

intended to drop Jj,h before the release of Jj,h in the previous calls of WLDA.

That is, every time when WLDA calls OLDA in Line 32 of Algorithm 5 and

decides to drop future sub-job Jj,h in Function Drop Sub Jobs() of OLDA, the

corresponding drop counter of Jj,h is incremented. If this drop counter value is

accumulated to be higher thanMax Allowed Drop Num, Jj,h is dropped directly

as soon as it is released in Function Delete Sub Job() (Line 3) of Algorithm 5.

Otherwise, WLDA computes UBj,h, updates Ωw(Vx), and determines the time

window, W , as given in Lines 5–8. It then removes the obsolete future sub-

98

jobs whose predecessors have been predicted to be dropped on other processors

(Line 9). If Ins(j, h) ≥ 2, WLDA updates the release times and local deadline up-

per bounds for future instances of Tm,h that are already in set Ωw(Vx) in function

Update Release T imes Local Deadline UB() (Lines 10–12), which is introduced

in more details in Algorithm 6. Then, WLDA add Jj,h to Ω−(Vx) since it is the

latest arriving sub-job of Tm,h.

After updating the release times and local deadline upper bounds for the future

instances of Tm,h already in Ωw(Vx), WLDA generates new future sub-jobs Ji′ ,k’s

whose ri′ ,k’s and UBi′ ,k’s are predicted to be within W (Lines 14–28). By con-

sidering these newly predicted sub-jobs in the schedulability analysis of Ωw(Vx),

WLDA can more accurately predict the load of Vx and give a more precise schedu-

lability prediction of Ωw(Vx). To predict release times and local deadline upper

bounds for new future instances Ji′ ,k’s of Tn,k, WLDA need to utilize the timing

information of the latest arriving sub-job Ji−,k and the latest predicted sub-job

Ji,k by the current time t. Specifically, WLDA first obtains the latest predicted

future sub-job Ji,k and latest arriving sub-job Ji−,k of each Tn,k in order to achieve

ri,k, UBi,k, ∆r̃ next(Ji−,k) and ∆ŨB next(Ji−,k) (Lines 15–16). If WLDA has

never constructed a future sub-job of a specific subtask Tn,k, WLDA replaces Ji,k

with Ji−,k, whose ri−,k and UBi−,k substitute for ri,k and UBi,k in predicting new

future sub-jobs (Lines 17–18). Next, WLDA iteratively adds ∆r̃ next(Ji−,k) and

∆ŨB next(Ji−,k) to ri,k and UBi,k to predict release times and local deadline upper

bounds of future sub-jobs Ji,k’s, respectively (Lines 20–22). As long as the newly

predicted release time and local deadline upper bound are within W , WLDA con-

structs a new sub-job Ji′ ,k and adds it to Ωw(Vx) (Lines 23–27). Finally, OLDA is

invoked for the new sub-job set Ωw(Vx) and returns the local-deadline assignment

99

Algorithm 5WLDA(α,Max Allowed Drop Num, Ωw(Vx), Ω
−(Vx), Jj,h, Ψ(Vx))

1: Flag = Determine Drop Sub Job(Ωw(Vx), Jj,h,Max Allowed Drop Num)
2: if (Flag = 1) then
3: Delete Sub Job(Jj,h)
4: else
5: UBj,h = Comp Local Deadline UB(Jj,h)
6: Ωw(Vx) = Ωw(Vx)

∪
{Jj,h}

7: end if
8: W = Calc Schedule Window(Ωw(Vx), α)
9: Ωw(Vx) = Remove Obsolete Future Sub Jobs(Ωw(Vx))
10: if (Ins(j, h) ≥ 2) then
11: Update Release T imes Local Deadline UB(Ωw(Vx),Ω

−(Vx), Tm,h, Jj,h)
12: end if
13: Ω−(Vx) = Ω−(Vx)

∪
{Jj,h}

14: for (Tn,k ∈ Ψ(Vx)) do
15: Ji,k = Find Latest Future Sub Job(Ωw(Vx), Tn,k)
16: Ji−,k = Find Latest Sub Job(Ω−(Vx), Tn,k)
17: if (Ji,k = NULL) then
18: Ji,k = Ji−,k
19: end if
20: while (Ins(i−, k) ≥ 2) do
21: Next RT = ri,k +∆r̃ next(Ji−,k)

22: Next UB = UBi,k +∆ŨB next(Ji−,k)
23: if ([Next RT,Next UB] * W) then
24: break
25: end if
26: Ji′ ,k = Construct a Future Sub Job(Next RT, Next UB,Ci,k)
27: Ωw(Vx) = Ωw(Vx)

∪
{Ji′ ,k}

28: end while
29: end for
30: d = ∅
31: while (d = ∅) do
32: d = OLDA(Ωw(Vx),Max Allowed Drop Num)
33: end while
34: return d

for all the existing and future sub-jobs (Lines 30–34).

Algorithm 6 presents function Update Release T imes Local Deadline UB(),

which updates the release times and local deadline upper bounds for future in-

100

Algorithm 6 Update Release Times Local Deadline UB(Ωw(Vx), Ω
−(Vx), Tm,h,

Jj,h)

1: Jj−,h = Find Latest Sub Job(Ω−(Vx), Tm,h)
2: ∆r̃ next(Jj,h) = Estimate Next Release Interval(Jj−,h, Jj,h)

3: ∆ŨB next(Jj,h) = Estimate Next UB Difference(Jj−,h , Jj,h)
4: Next RT = rj−,h +∆r̃ next(Jj,h)

5: Next UB = UBj−,h +∆ŨB next(Jj,h)
6: for (Ji,k ∈ Ωw(Vx)) do
7: if (Ji,k is a future instance of Tm,h) then
8: ri,k = Next RT
9: UBi,k = Next UB
10: Next RT = Next RT +∆r̃ next (Jj,h)
11: Next UB = Next UB +∆ŨB next (Jj,h)
12: if ([ri,k, UBi,k] ̸⊆W) then
13: Ωw(Vx) = Ωw(Vx)− Ji,k
14: end if
15: end if
16: end for
17: Ω−(Vx) = Ω−(Vx)− {Jj−,h}

stances of Tm,h that are already in set Ωw(Vx). Note that Jj,h is an instance of

Tm,h. WLDA obtains the latest arriving sub-job Jj−,h of Tm,h prior to the ar-

rival of Jj,h from Ω−(Vx) (Line 1). Based on the timing information of Jj−,h and

Jj,h, ∆r̃ next(Jj,h) and ∆ŨB next(Jj,h) of Jj,h are computed according to (4.11)

and (4.14) (Lines 2–3). Based on ∆r̃ next(Jj,h) and ∆ŨB next(Jj,h), ri,k and

UBi,k of a future sub-job Ji,k are updated (Lines 4–11) if Ji,k is an instance of

Tm,h. If the newly obtained ri,k and UBi,k of Ji,k are out of W , Ji,k is removed

from Ωw(Vx) (Lines 12–13). Finally, Jj−,h is removed from Ω−(Vx) because Jj−,h

is not the latest arriving sub-job of Tm,h due to the arrival of Jj,h.

Since the prediction by WLDA may not always be accurate and may lead to an

overestimation of the resource required by future sub-jobs, we need to be judicious

when dropping sub-jobs (see Lines 21–25 in Algorithm 3). To avoid dropping a

sub-job prematurely, in function Drop Sub Jobs(), we introduce a user-defined

101

threshold parameter Max Allowed Drop Num to help balance the prediction in-

accuracy. Specifically, if the counter value is higher thanMax Allowed Drop Num,

the sub-job is then actually dropped.

The most time consuming part of Algorithm 5 is running OLDA at Line 32,

which is O(|Ωw(Vx)|3). In addition, WLDA calls OLDA for at most |Ωw(Vx)|

times if some sub-jobs are dropped. Therefore, the time complexity of WLDA is

O(|Ωw(Vx)|4), where |Ωw(Vx)| is the number of active and predicted future sub-

jobs on processor Vx. Since processor Vx calls WLDA every time a new sub-job

from Ω(Vx) is released at Vx, processor Vx takes O(|Ω(Vx)| · |Ωw(Vx)|4) time to

solve a set |Ω(Vx)| using WLDA.

Since WLDA considers some future sub-jobs, it may be able to detect an

unschedulable sub-job subset earlier and hence drop sub-jobs earlier than ALDA.

Doing so avoids wasteful execution of sub-jobs whose successors would be dropped

later, and results in a possible decrease in the total number of dropped sub-jobs.

However, if ALDA cannot find a feasible local-deadline assignment for a task set,

neither can WLDA. This observation is summarized in Lemma 10.

Lemma 10. If ALDA drops any sub-jobs due to an infeasible deadline assignment,

WLDA must also drop some sub-jobs.

Proof: We prove the lemma by contradiction. Suppose there is a task set that

cannot be solved by ALDA, but it can be solved by WLDA. Assume that processor

Vx has not dropped any job using ALDA until it finds an unschedulable sub-job set

Ωa(Vx) at time t. Processor Vx would encounter the sub-job set Ω
′
(Vx) that contains

all the same active sub-jobs in Ωa(Vx) at time t using WLDA, because it processes

sub-jobs in the same order as using ALDA. Since processor Vx considers not only

the existing sub-jobs, but also the future sub-jobs when analyzing the schedulability

102

of Ω
′
(Vx) at time t using WLDA, Vx would consider Ω

′
(Vx) unschedulable, and

drop at least one job at time t. This contradicts our initial assumption, and the

lemma holds. 2

4.3 Practical Consideration

In this section, we discuss two important issues applicable to all versions of

OLDA. Specifically, we present a communication mechanism to support timely

release of a sub-job whose predecessors, possibly on different processors, have

finished execution. In addition, we discuss the influence of time overhead by

OLDA on the performance of the DRTSs.

4.3.1 Communication Mechanism

OLDA and its derivatives all rely on the following generic communication

scheme. A processor completing a sub-job sends a message to downstream pro-

cessors which are to execute the immediate successors of the completed sub-job.

The message contains the identifier of the completed sub-job and the identifier of

the subtask that the completed sub-job belongs to, which downstream processors

utilize to release new sub-jobs. In addition, the maximum allowed response time of

job comprising the completed sub-job is included in the message, based on which

downstream processors calculate the upper bound on the local deadline of the

newly released sub-job and compute the necessary local deadlines. We define the

maximum allowed response time respi(t) of job Ji at time t to be the difference

between the relative end-to-end deadline Dm of task Tm that Ji belongs to and the

total delay that Ji has experienced up to time t. Moreover, the message includes

the dropped job identifiers which have been recorded in the local processor but

103

never been told to downstream processors. The downstream processors utilize

such information to drop sub-jobs for which other sub-jobs composing the same

job have been dropped in other processors. Notice that whenever a sub-job is

dropped, the job that this dropped sub-job belongs to cannot meet its end-to-end

deadline and all the sub-jobs belonging to the job needs to be dropped. To support

our proposed algorithms, we can employ a low-cost communication mechanism im-

plemented in a bus-based network similar to those discussed in [30, 57, 59, 161].

To reduce network traffic, we do not require global clock synchronization when

implementing our algorithms. The main challenge lies in how to calculate the local

deadline upper bound of a newly released sub-job without requiring global clock

synchronization. For any newly released sub-job, its execution time, release time

and local deadline upper bound is required in OLDA. The execution time and

release time of a sub-job are known locally. In contrast, the local deadline upper

bound of a sub-job is determined by the end-to-end deadline of the corresponding

job comprising the sub-job according to (3.3), which may be different on different

processors in an asynchronous DRTS. Therefore, downstream processors cannot

directly use the end-to-end deadline value of a job delivered from the local proces-

sor. We employ a distributed method to calculate the local deadline upper bound

of a newly released sub-job, which leverages the relative end-to-end deadline of a

task . Below, we illustrate how to accomplish this without requiring global clock

synchronization.

Assume that sub-job Ji,k belonging to subtask Tm,k is assigned to processor Vy.

To calculate UBi,k of Ji,k, processor Vy needs to obtain the end-to-end deadline Di

according to (3.3), where Di can be calculated by using the following equation,

Di = ri,k + respi(ri,k). (4.15)

104

When all the immediate predecessors of Ji,k have finished execution, Ji,k is imme-

diately released. Therefore, respi(ri,k) of Ji at time ri,k is calculated by

respi(ri,k) = min
∀Ji,h4Ji,k

{respi(di,h)}. (4.16)

Without loss of generality, suppose an immediate predecessor Ji,h of Ji,k is finished

on processor Vx at time di,h. Then, processor Vx can obtain respi(di,h) by using

equation

respi(di,h) = respi(ri,h)− (di,h − ri,h). (4.17)

If Ji,k is an input sub-job, the maximum allowed response time respi(ri,k) of Ji is

equal to the relative end-to-end deadline Dm of task Tm. Therefore, to calculate

UBi,k of Ji,k, a message triggered by the completion of Ji,h at di,h is sent from Vx

to Vy to inform Vy about the completion of Ji,h. Then, processor Vy reads ri,k

directly and uses (3.3) to calculate the local deadline upper bound UBi,k of Ji,k

without global clock synchronization.

Furthermore, every time a processor drops a sub-job or overhears that a sub-job

has been dropped by other processors, the local processor adds the drop informa-

tion to a list of jobs whose sub-jobs have been dropped. When a message is sent

from Vx to Vy to inform Vy about the completion of Ji,h, the message will include

the dropped jobs’ identifiers which have been recorded in Vx’s list but never been

told to Vy by Vx. Similarly, when Vy receives a message that a sub-job finished

execution at processor Vx, Vy will send Vx an acknowledgement message. The

acknowledgement message includes the dropped jobs’ identifiers that have been

recorded in Vy’s list and have never been told to Vx by Vy. The list of dropped

jobs kept by each processor is then updated and the corresponding sub-jobs are

105

dropped when they arrive at the local processor.

In all, the message transmitted upon the completion of a sub-job contains a

small amount of information, which can be supported by the bus-based network

platforms, e.g., Controller Area Network (CAN). There exist some communication

delays due to message transmissions among processors. When the on-line deriva-

tives of OLDA, ALDA and WLDA, are implemented in a DRTS, the communi-

cation delays between the processors can increase the maximum allowed response

time of jobs on the downstream processors and reduce the local deadline upper

bounds of sub-jobs on the upstream processors. If the communication delays along

the downstream paths of sub-jobs can be estimated, these delays can be readily

incorporated into the maximum allowed response time of jobs and the local dead-

line upper bounds of sub-jobs during runtime. Hence, though ALDA and WLDA

cannot precisely handle communication delays along the downstream paths, they

can indirectly account for such delays.

4.3.2 Influence of Time Overhead by OLDA

The time overhead associated with OLDA may cause some sub-jobs to miss

their local deadlines. There are two factors that determine the effects of time

overhead of OLDA on the performance of the distributed system. The first factor

is the density level of a task Tn, i.e.,
Cn

Dn
. A job of a task with a high density level

has a higher probability of missing its end-to-end deadline when it is delayed due

to the execution of OLDA. The second factor is the ratio of the time overhead over

the relative end-to-end deadline of task Tn, i.e.,
Overhead

Dn
. If the relative end-to-end

deadline of a job is not large enough to accommodate the time overhead of OLDA,

the job will violate its end-to-end deadline. The time overhead is determined by

106

the time complexity of OLDA and the frequency of the call to OLDA. Since the

time complexity of OLDA’s derivatives is at least quadratic in the number of sub-

jobs and OLDA needs to be run each time a sub-job enters a local processor, our

algorithm is suitable for DRTSs where dozens of active sub-jobs are to be executed,

e.g., avionics and automotive control applications. We discuss quantitatively the

effect of the time overhead of OLDA in Section 4.5.4.

4.3.3 Sub-Job Dropping Policies

There exist a large number of job dropping policies for soft and firm real-

time systems. Examples include, but are not limited to, on-demand job dropping

policy [22], deadline based job dropping policy [75], Markov Chain job dropping

policy [100], and uniform job dropping policy [115]. All these policies focus on

improving the performance of firm real-time systems, and not on reducing the

job-drop rates, on uniprocessor systems. For DRTSs, the work in [107, 151, 158]

proposed different job or packet dropping policies. Specifically, the authors in [107]

assume that an active instance of task Tm will be discarded when a new instance of

Tm is released. This policy may drop a job unnecessarily if that job can still catch

up with its end-to-end deadline. Furthermore, it may not drop a job that can no

longer meet its end-to-end deadline, thus wasting resources. The work in [151]

assumes that a packet will be dropped after 7 retransmissions of that packet.

Again, such a policy does not drop a packet early enough to save computation

resources. In [158], the authors proposed a packet dropping policy that considers

packet latency and the utilization of a given node. Such a policy neglects the

impact of dropping a packet on the utilizations of downstream processors in the

system.

107

In OLDA, a processor must determine a subset of sub-jobs to drop when it

cannot find a feasible local-deadline assignment. Note that when a processor

drops any sub-job of a job, the job can no longer meet its end-to-end deadline

and all the sub-jobs of this job need to be dropped. When OLDA decides to drop

a subset of future sub-jobs, these future sub-jobs are not removed from Ω(Vx)

immediately. Instead, each time a future sub-job is considered by OLDA to be

dropped, a corresponding drop counter of this future sub-job is incremented in

Drop Sub Jobs(). In contrast, if OLDA decides to drop a subset of active sub-

jobs in function Drop Sub Jobs() of Algorithm 2, these sub-jobs are immediately

removed from Ω(Vx). In order to maximize the number of jobs meeting their end-

to-end deadlines, it is desirable that as few jobs are abandoned by the system as

possible. We consider two sub-job dropping policies, as explained next.

The first policy (denoted as MLET, for Maximum Local Execution Time)

abandons a job with the largest execution time on the processor first. This step

is repeated until a local-deadline assignment can be found for the remaining sub-

jobs. Therefore, MLET ensures that the least number of jobs are abandoned

locally. The MLET policy focuses on the execution times of the existing sub-jobs

without considering the execution times of their successors. Therefore, by using

MLET, it is possible for a processor to keep jobs that have smaller local execution

times but larger remaining execution times than the dropped job. This, in turns,

may lead to higher future workload on subsequent processors and result in high

resource competition in the near future.

In contrast, the second policy (denoted as MRET, for Maximum Remain-

ing Execution Time) addresses the deficiencies of MLET by giving up the job

with the maximum remaining execution time first. We define the remaining ex-

108

ecution time of a job to be the job’s remaining local execution time plus the

sum of path execution times among all the paths of all the job’s local active in-

stances. For example, the remaining execution time of job Ji on processor Vx is∑
∀k,Ji,k∈Ω(Vx)

(Ci,k +
∑

∀pi,k,k′∈Pi,k

∑
∀Ji,h∈Pi,k,k′
Ji,k≺Ji,h

Ci,h). By using MRET, OLDA can

maximally reduce future workload on subsequent processors and alleviate poten-

tially high resource competition.

4.4 Evaluation

In this section, we analyze the performance and efficiency of our proposed

algorithms using generated task sets. We start by selecting sub-job dropping policy

for ALDA and WLDA, and determining optimal input parameters for WLDA.

Next, we evaluate ALDA with a specific sub-job dropping policy for ALDA, and

then compare ALDA against WLDA. Note that we do not evaluate OLDA since it

is not practical in real settings, as explained in Section 4.1. To determine how our

proposed algorithms fare against existing techniques, we select one derivative with

a better performance out of ALDA andWLDA and compare this derivative against

JA and BBW for different types of workloads. Notice that ALDA performs better

than WLDA for the ST workloads while WLDA performs better than ALDA for

the GT workloads. Finally, we show the performance of ALDA under real-world

workloads. Below, we describe the simulation setup and then discuss simulation

results.

4.4.1 Simulation Setup

The distributed system consists of 8 processors. We use two different types of

workloads, the stream-type (ST) workloads and the general-type (GT) workloads

109

to emulate different kinds of application scenarios. For the ST workloads, each

task is composed of a chain of subtasks. Such tasks can be found in many signal

processing and multimedia applications. In contrast, the GT workloads are more

general where (i) a sub-job may have multiple successors and predecessors, and

(ii) there is no fixed execution order in the system.

The ST workloads consist of randomly generated task sets in order to evaluate

two different processor loading scenarios. For the first set of workloads, the exe-

cution time of a job is randomly distributed along its execution path. As a result,

processor loads tend to be balanced. As a stress test, the second set of workload

represents a somewhat imbalanced workload distribution among the processors.

The workloads were generated in such a way that the first few subtasks as well as

the last few subtasks are more heavily loaded. This set of workloads was designed

to test the usefulness in considering severe resource competition among different

jobs on a given processor in meeting end-to-end deadlines. (Note that imbal-

anced workload scenarios may occur in real life if an originally balanced design

experiences processor failures and the original workload must be redistributed.)

Both sets of the ST workloads contain 100 randomly generated task sets of 50

tasks each for 10 different system utilization levels (400%, 425%, . . . , 625%), for

a total of 1,000 task sets. Each task is composed of a chain of 4 to 6 subtasks.

Each subtask is assigned to a processor such that no two subtasks of the same

task run on a common processor. Task periods were randomly generated within

the range of from 100,000 to 1000,000 microseconds and the end-to-end deadlines

were set to their corresponding periods. We used the UUnifast algorithm [22]

to generate the total execution time of each task since UUnifast provides better

control on how to assign execution times to subtasks than a random assignment.

110

After the call to the UUnifast algorithm, the set of processors used by task Ti was

randomly selected based on the actual number of subtasksMi for each task Ti and

the execution time of each subtask was determined. Each task set was generated

with the guarantee that the total utilization at each processor is no larger than 1.

Similar to the ST workloads, the GT workloads also contain 1000 task sets,

but each set only has between 25 and 100 subtasks. The GT workloads were gen-

erated using TGFF [49]. Task periods were generated using uniform distribution

and can take any value between [10, 000, 150, 000] microseconds. The end-to-end

deadline of each job was set to be equal to the release time of the job plus the

period of the corresponding task. The execution time of a subtask was randomly

generated and was within [1, 10, 000] microseconds. After the task set was gener-

ated, the execution time of each sub-job was uniformly scaled down so that the

total utilization of the task set is equal to the desired utilization.

To ensure a fair comparison of the different algorithms under consideration, we

made some modifications to JA and BBW. The original versions of JA and BBW

require global clock synchronization. We removed this requirement by imple-

menting JA and BBW on-line on each processor. We implemented our proposed

algorithms (ALDA and WLDA) as well as two sub-job dropping policies. The

first policy (denoted as MLET, for Maximum Local Execution Time) abandons a

job with the largest execution time on the processor first. The second policy (de-

noted as MRET, for Maximum Remaining Execution Time) drops the job with the

largest remaining execution time on the processor first. All algorithms were imple-

mented in C++. Experimental data were collected on a computer cluster, which

is composed of 8 quad-core 2.3 GHz AMD Opteron processors with Red Hat Linux

4.1.2-50. Each task set was simulated for the time interval [0, 100 ·max period],

111

where max period is the maximum period among the periods of all the tasks in

the task set.

We measure the performance of each algorithm with three metrics. The first

metric is the job drop rate, i.e., the ratio between the number of jobs dropped and

the number of jobs released in the system. This metric measures the algorithm’s

dynamic behavior in a soft real-time system. The second metric is the number

of schedulable task sets. This metric indicates each algorithm’s ability in finding

feasible solutions (i.e., static behavior). The third metric is the running time of

each algorithm (averaged on each processor) to solve a task set. This metric shows

the time overhead of each algorithm.

4.5 Comparison of Sub-Job Dropping Policies

The job-drop rates due to the use of MRET and MLET in ALDA are summa-

rized in table 4.1. The differences of job-drop rates due to the use of MRET and

MLET are very small because both sub-job dropping policies are very effective in

reducing the job drop number for the workloads. Specifically, experimental results

show that MLET drops 1.02%, 0.93% and 3.28% (up to 1.23%, 1.76%, and 7.98%)

more jobs on average than MRET for the balanced ST workloads, the imbalanced

ST workloads and the GT workloads, respectively. This improvement of MRET

over MLET can be attributed to that MRET considers the execution times of

both the active sub-jobs on the processor and the successors of these sub-jobs,

which helps ease future resource competition. In addition, MRET solves more

task sets than MLET by one for the GT workloads while both policies solve the

same numbers of task sets for the balanced and imbalanced ST workloads. Thus,

we will use MRET in ALDA in the rest of the paper. The selection of the sub-job

112

TABLE 4.1

Job-Drop Rates Generated by ALDA Employing Sub-Job Dropping

Policies, MRET and MLET, for the Different Workloads

Utilization GT (%) Balanced ST (%) Imbalanced ST (%)

Level MRET / MLET MRET / MLET MRET / MLET

400% 0 / 0 0 / 0 0 / 0

425% 0 / 0 0 / 0 0 / 0

450% 0.693 / 0.693 0 / 0 0.000478 / 0.000478

475% 0.0628 / 0.064 0 / 0 0.000398 / 0.000398

500% 0.217 / 0.217 0.000796 / 0.000796 0.00335 / 0.00335

525% 1.06 / 1.08 0.00765 / 0.00765 0.0146 / 0.0143

550% 1.49 / 1.52 0.0130 / 0.0131 0.0263 / 0.0266

575% 2.13 / 2.26 0.0579 / 0.0584 0.0362 / 0.0369

600% 3.43 / 3.69 0.0591 / 0.0598 0.0691 / 0.0698

625% 8.23 / 8.32 0.0556 / 0.0562 0.105 / 0.106

dropping policies for different workloads by ALDA and WLDA is summarized in

table 4.2.

4.5.1 Selection of Optimal Input Parameters for WLDA

Since the performance of WLDA depends on the parametersMax Allowed Drop Num

and α, we start by calibrating these parameters to fully exploit the potential of

WLDA. We adopt two metrics when selecting the values. The main metric is the

number of dropped jobs caused by WLDA. If multiple variable settings for WLDA

result in the same number of dropped jobs, we employ the number of solved sets

113

TABLE 4.2

Selection of Sub-job Dropping Policies for Different Types of Workloads

by ALDA and WLDA.

Workload Type GT Balanced ST Imbalanced ST

ALDA MRET MRET MRET

WLDA MLET MLET MLET

by WLDA as the secondary metric. That is, we will use the variable setting which

results in more sets being solved. Note that for ALDA, we do not need to set the

values for Max Allowed Drop Num since ALDA does not consider future sub-

jobs. As a starting point, we tested WLDA using different values (1, 2, 3, . . . , 10),

for Max Allowed Drop Num while fixing the scaling factor α to 1. The average

drop rates for the GT workloads, the balanced ST workloads and the imbalanced

ST workloads are shown in Figures 4.2, 4.3 and 4.4, respectively. The data reveal

that setting Max Allowed Drop Num to 1 and employing MLET as the sub-job

dropping policy result in the fewest number of dropped jobs for the GT work-

loads. However, the number of dropped jobs using WLDA is never fewer than

that using ALDA for the balanced and imbalanced ST workloads, regardless of

the values of Max Allowed Drop Num and the selection of the sub-job dropping

policies. Thus, we setMax Allowed Drop Num to 1 and 10 for the balanced and

imbalanced ST workloads, respectively, and use MLET as the sub-job dropping

policy for the ST workloads to obtain the best performance. The numbers of the

schedulable task sets by WLDA for the three sets of the workloads are shown in

table 4.3.

114

TABLE 4.3

Number of Schedulable Task Sets by WLDA with Different

Max Allowed Drop Num Values

Max Allowed Drop Num 1 2 3 4 5 6 7 8 9 10

MLET 817 817 817 815 815 815 818 816 817 817

GT MRET 818 817 815 817 818 813 816 816 815 816

Balanced MLET 848 845 846 845 845 844 845 845 844 845

ST MRET 847 846 847 844 844 846 846 845 843 848

Imbalanced MLET 715 715 714 717 715 718 716 715 714 715

ST MRET 713 715 714 714 715 717 716 717 719 716

Next, we tested different values (0.2, 0.4, 0.6, . . . , 1.2) for the scaling factor α

while fixing Max Allowed Drop Num to the values selected above for all three

sets of the workloads. The average drop rates by WLDA with different α values

are shown in Figure 4.5. The left y-axis shows the average drop rates at different

α values for the balanced and imbalanced ST workloads, while the right y-axis

shows the average drop rates at different α values for the GT workloads. Based on

the results, we find that setting α to 0.6 minimizes the number of dropped jobs for

the GT workloads. However, regardless of the value of α, the number of dropped

jobs using WLDA is never fewer than that using ALDA for the balanced and

imbalanced ST workloads. Thus, for the balanced and imbalanced ST workloads,

we set α to 0.2 to obtain the best performance. The numbers of the solved task

sets by WLDA with different α values are shown in table 4.4.

115

TABLE 4.4

Number of Schedulable Task Sets by WLDA with Different α Values

Using MLET

0 0.2 0.4 0.6 0.8 1.0 1.2

GT 843 841 839 834 829 817 797

Balanced ST 861 859 858 856 855 848 834

Imbalanced ST 745 739 735 735 724 715 694

4.5.2 Comparing OLDA Derivatives

We now discuss the comparison results for our proposed algorithms, ALDA and

WLDA for the ST and GT workloads. Since the performance of WLDA depends

on some input parameters (e.g., Max Allowed Drop Num and α), we set these

parameters to optimal values in order to fully exploit the potential of WLDA.

The job-drop rates for the balanced ST workloads, the imbalanced ST work-

loads and GT workloads obtained by ALDA and WLDA are shown in Figures

4.6, 4.7 and 4.8, respectively. The numbers of solved task sets by ALDA and

WLDA are summarized in table 4.5. ALDA solves 2, 6, and 10 more task sets

than WLDA for the balanced ST workloads, the imbalanced ST workloads and

GT workloads, respectively. WLDA drops more jobs than ALDA in 72, 40 and

75 sets of the GT workloads, the balanced ST workloads and the imbalanced ST

workloads, respectively.

The running time of the task sets at different utilization levels for the bal-

anced ST workloads, the imbalanced ST workloads and GT workloads obtained

by ALDA and WLDA are shown in Figures 4.9, 4.10 and 4.11, respectively. The

116

TABLE 4.5

Numbers of Solved Tasks Generated by ALDA and WLDA for the

Different Workloads

Utilization Level 400% 425% 450% 475% 500%

ALDA 100 100 98 98 98

GT WLDA 100 99 98 97 97

Balanced ALDA 100 100 100 99 95

ST WLDA 100 100 100 99 95

Imbalanced ALDA 100 100 96 96 90

ST WLDA 100 100 96 95 90

Utilization Level 525% 550% 575% 600% 625%

ALDA 91 86 75 61 37

GT WLDA 91 83 75 58 36

Balanced ALDA 92 88 73 67 47

ST WLDA 92 88 72 67 46

Imbalanced ALDA 81 72 51 35 24

ST WLDA 81 71 50 34 22

average number of cycles required to run WLDA once is 7797, 12719 and 4508 for

the balanced ST workloads, imbalanced ST workloads and GT workloads, respec-

tively. These numbers are dependent on the number of active sub-jobs plus that

of the predicted sub-jobs, which are 3, 4 and 8 on average for the balanced ST

workloads, imbalanced ST workloads, and GT workloads, respectively.

Table 4.6 summarizes the total job drop rates, total solved task set numbers

and total running times of solving all the 1000 task sets by ALDA and WLDA for

different types of workloads. It is found that WLDA drops 5.21% fewer jobs (up to

117

TABLE 4.6

Comparison of ALDA and WLDA in terms of the Three Metrics for

Different Types of Workloads.

Job Drop Solved Set Running

Metrics Rate (%) Number Time (µs)

ALDA 1.70 844 4549292

GT WLDA 1.62 834 86812928

Balanced ALDA 0.0195 861 6604004

ST WLDA 0.0203 859 68431633

Imbalanced ALDA 0.0257 745 6924910

ST WLDA 0.0279 739 70330281

9.09%) on average than ALDA for the GT workloads. In contrast, WLDA drops

4.49% and 8.80% more jobs (up to 7.54% and 120%) on average than ALDA for the

balanced and imbalanced ST workloads, respectively. Our results show that ALDA

can solve 2, 6 and 10, more task sets (out of 1000 task sets) than WLDA for the

balanced ST workloads, imbalanced ST workloads and GT workloads, respectively.

WLDA requires 11, 11, and 19 times more cycles on average than ALDA for the

balanced ST workloads, imbalanced ST workloads and GT workloads, respectively.

Ideally, WLDA can use its prediction mechanism to reduce the number of

dropped jobs. However, WLDA may drop a schedulable job by mistake due to

a mis-prediction of future sub-jobs. Moreover, the time overhead caused by the

prediction mechanism can greatly degrade the performance of WLDA. This time

overhead is caused by several maintenance operations (such as the update of the

timing information of the future sub-jobs already considered in the previous as-

signment, the addition and removal of some new and obsolete future sub-jobs,

118

respectively, etc.) in the prediction mechanism. The time overhead caused by the

prediction mechanism in WLDA makes some jobs not only miss their assigned

local deadlines but also violate their local deadline upper bounds. In summary,

our results indicate that ALDA performs better than WLDA for the ST work-

loads while WLDA outperforms ALDA for the GT workloads. The higher time

overhead of WLDA makes it unsuitable for ST workloads, as a sub-job Ji,k can

delay the execution of all its successors Ji,k′ ’s since a job is composed of a chain

of sub-jobs. In contrast, for the GT workloads, the time overhead incurred due to

scheduling will most likely not delay the execution of all the other active sub-jobs

Ji,k′ ’s in Ji since some active sub-jobs in Ji are not successors of Ji,k. Therefore,

we focus on ALDA for the ST workloads and WLDA for the GT workloads in the

discussion below.

4.5.3 Performance of OLDA against Other Algorithms

We compare the performance of OLDA with JA and BBW, the two repre-

sentative priority assignment methods. We use ALDA and WLDA to test the

performance of OLDA in the ST and GT workloads, respectively. In the first

experiment, we compare the average job drop rates of infeasible task sets when

using different algorithms for balanced ST workloads, imbalanced ST workloads

and GT workloads. A job is dropped either because no local-deadline assignment

can be found for the sub-job set on a processor using OLDA or the job’s end-to-end

deadline is missed using BBW and JA. The job drop rates for the three algorithms

for the balanced ST workloads, imbalanced ST workloads, and GT workloads are

shown in Figures 4.12, 4.5.3, and 4.14, respectively.

It is clear that OLDA drops much fewer jobs than the other two methods.

119

Specifically, for balanced ST workloads, BBW and JA drop 179% and 165% more

jobs on average than OLDA, respectively. For imbalanced ST workloads, the

averages are 61% and 313%, respectively. For GT workloads, 160% and 51% more

jobs are dropped by BBW and JA than those by OLDA on average, respectively.

In the second experiment, we compare the percentage of feasible task sets (over

the 100 task sets at each utilization level) found by our algorithm, with those found

by JA and BBW for the three sets of the workloads. The results are summarized

in Figures 4.15, 4.16 and 4.17, respectively. The data shows that OLDA finds

far more feasible sets than the other two methods. Specifically, for balanced ST

workloads, using OLDA leads to 71% and 22% on average (and up to 2,250%

and 124%) more feasible task sets than using BBW and JA, respectively. For

imbalanced ST workloads, using OLDA results in 60% and 48% on average (and

up to 338% and 2300%) more feasible task sets than BBW and JA, respectively.

For GT workloads, the number of solutions found by OLDA is 13% and 12%

on average (and up to 100% and 200%) more than that found by BBW and

JA. Observe that OLDA performs much better than existing techniques at high

utilization levels where there are more jobs in the system. We would also like to

point out that sometimes OLDA may not be able to find a feasible solution even

though such solutions indeed exist, since OLDA finds local sub-job deadlines for

each processor independently instead of using a global approach. For balanced ST

workloads, OLDA can find on average 98.81% and 99.86% of those found by BBW

and JA, respectively. For imbalanced ST workloads, OLDA can find on average

95.27% and 99.40% of the feasible task sets found by BBW and JA, respectively.

For GT workloads, OLDA can find on average 99.86% and 99.60% of the feasible

task sets found by BBW and JA, respectively. These results demonstrate that

120

OLDA not only finds more feasible task sets than BBW and JA, but also solves

most of the problems that BBW and JA can solve.

To see how well OLDA fares compared to an MILP solver, we randomly se-

lected 3 workloads containing 4, 20 and 26 tasks, respectively, and compared the

solutions obtained by OLDA and lp solve [3], an MILP solver. For the workload

with 4 tasks, both OLDA and lp solve find the same solution. For the workload

with 20 tasks, OLDA and lp solve find two different feasible solutions, however,

the objective function values by the two solutions are the same. For the workload

with 26 tasks, OLDA is able to solve the problem containing 10 sub-jobs within

6 ns while lp solve fails to find a solution after running for 48 hours. The com-

parisons support our earlier claim that OLDA always finds an optimal solution

to the problem stated in (3.8), (3.6) and (3.9) whenever a feasible solution exists.

Furthermore, the execution time of OLDA is more suitable for on-line use than

that of lp solve.

4.5.4 Time Overhead of OLDA

In our evaluations, we consider the time overhead due to OLDA when simu-

lating a task set. That is, every time OLDA is called by a local processor, our

simulator records the running time of OLDA and postpones the execution of all

the active local sub-jobs for that time duration to simulate the influence of the

time overhead due to OLDA. To examine whether OLDA is suitable for on-line

local-deadline assignments, we show the total running time overheads of OLDA,

BBW and JA for the balanced ST workloads, imbalanced ST workloads and GT

workloads in Figures 4.18, 4.19 and 4.20, respectively. We still use ALDA and

WLDA to test the performance of OLDA in the ST and GT workloads, respec-

tively. Based on the results, we compare the number of cycles required by OLDA

121

against those of JA and BBW. For the balanced ST workloads, OLDA requires on

average 1.76 and 2.34 times more cycles per task set (with 50 tasks) than BBW

and JA, respectively. For the imbalanced ST workloads, OLDA needs about 1.81

and 2.43 times more cycles per task set than BBW and JA, respectively. For the

GT workloads, OLDA requires on average 30 and 41 times more cycles per task set

than BBW and JA. Although OLDA has a longer running time than both BBW

and JA, the average numbers of cycles required to run OLDA for once are about

292, 295 and 4507 cycles for the balanced ST workloads, imbalanced ST workloads

and GT workloads, respectively, while the average number of the sub-jobs handled

by an activation of OLDA is 3, 3 and 8 for the balanced ST workloads, imbalanced

ST workloads and GT workloads, respectively. Such runtime overhead is tolerable

in DRTSs executing computationally demanding real-time jobs, e.g. in avionics

and automotive control applications [70, 129], where dozens of active sub-jobs are

to be executed.

TABLE 4.7

Specification of A Flight Control System

Task Execution Time (ms) Period End2End

Name AH NV FC BS FG AP SV PF (ms) Deadline (ms)

FCP 0 0 15 29 10 15 0 10 500 450

PAA 10 0 0 16 15 20 10 0 100 100

NIP 0 10 0 14 20 0 0 0 250 200

122

4.6 Case Studies

Using a large number of randomly generated task sets, we have shown that

A-OLDA outperforms existing methods. However, it is important to quantify the

performance of A-OLDA under real-world workloads. We use a simplified flight

control system [70], and a fault-tolerant distributed system based on the examples

in [48, 145], to illustrate how A-OLDA adapts to changing requirements on-line

to guarantee the end-to-end deadlines of jobs in actual DRTSs.

The flight control as shown in Figure 4.21 system contains 3 periodic chain

subtasks and 8 heterogeneous processors. Flight control processing (FCP) task

reads input data from Flight Control Processor (FC), Flight Guidance System

(FG) and Auto-Pilot (AP) process the input data sequentially, and Primary Flight

Display (PF) displays the results. Pitch adjustment actuation (PAA) subtask

receives periodic sensor readings from Attitude and Heading Reference System

(AH). The information is processed by FG and AP sequentially, and AH sends

control signals to Elevator Servo (SV). Navigation information processing (NIP)

subtask periodically receives sensor readings from Navigation Radio (NV) and

processes them using FG. All input commands and sensor readings reach FG

through a Bus (BS). The subtask execution times on the processors (in ms) are

given in columns 2 to 9 and the task end-to-end deadlines, also in ms, in column

11 of table 4.7.

We simulated the application for the time interval [0, 9000ms] (9000ms is the

least common multiplier of all the task periods before and after the emergency

situation) when applying ALDA, JA and BBW. The results show that no job

misses its end-to-end deadline, as shown in column 2 of table 4.8. Now, assume

123

TABLE 4.8

Case Study of A Flight Control System

Dropped Job Num. End2End Dropped Job Num.

Task Before Emergency Deadline After Emergency

Name A-OLDA / JA / BBW (=Period) ALDA / JA / BBW

FCP 0 / 0 / 0 120 0 / 0 / 0

PAA 0 / 0 / 0 72 0 / 30 / 5

NIP 0 / 0 / 0 75 0 / 0 / 5

that at some time interval, the airplane encounters some emergency, such as air

turbulence or a mechanical malfunction. For safety, the periods and end-to-end

deadlines of the three tasks, in ms, are decreased, as shown in column 3 of table 4.7.

Suppose we apply JA and BBW in response to the workload and deadline changes.

By using JA, 30 jobs are dropped from the PAA task. BBW performs a little

better than JA. By using BBW, 5 jobs are dropped from the NIP and PAA tasks

each (see the second and third numbers in column 4 of table 4.8). In contrast,

applying ALDA leads to all the jobs meeting their end-to-end deadlines. For both

situations, we run each algorithm for 10 times and summarize the average time

overhead of each algorithm on the 8 processors in Row 2 of Table 4.9.

In addition to applying ALDA in a real-world ST example (the flight control

system), we also tested ALDA for a real-world GT example, the fault-tolerant

distributed system studied in [48] and [145]. The system contains 6 tasks, com-

posed of 43 subtasks and 36 messages, deployed onto a hardware platform with 8

124

TABLE 4.9

Average Time Overhead for Both Case Studies

Time Overhead for Time Overhead for

Nominal Situation (µs) New Situation (µs)

ALDA / JA / BBW ALDA / JA / BBW

FCS 100 / 0 / 100 99.9 / 100 / 0

FTDS 99.9 / 0 / 0 200 / 99.9 / 100

processors and a single bus. The subtasks and their dependencies for all the tasks

are shown in Figure 4.22. The task identifiers, task periods, subtask identifiers,

subtask execution times and processor assignment are given in table 4.10, while

the message transmission between different subtasks is given in table 4.11. Here,

tasks 0, 1, 2, 3 are presented in columns 1 to 6, while tasks 4 and 5 are presented

in columns 7 to 12. The periods and execution times are in ms. The sizes (in

bytes) of the messages sent between subtasks are given in columns 6 and 12. For

example, ”500→1 1500→2” of subtask 0 indicates that two messages of 500 bytes

and 1500 bytes are sent to subtasks 1 and 2 from subtask 0, respectively. We

assume that each message is fragmented to several packets and the fragmentation

threshold is 1000 bytes, which is similar to the bus-based network system model

employed in [57]. We assume that the transmission time slot of each packet is 1

ms, which can be realized on a high-speed bus. In addition, we assume that the

relative end-to-end deadline of each task is equal to its period.

We simulated the application for the time interval [0, 4200ms] (4200ms is the

least common multiplier of all the task periods), and found that all the jobs can

meet their end-to-end deadlines by applying ALDA, JA and BBW. Now assume

125

at some time, processor 4 is down and the backup processor is used. Because the

backup processor is less powerful, the execution times of the sub-tasks on processor

4 is increased by 1.5 times. Suppose we still apply JA and BBW to adapt to the

workload change, 3 and 1 jobs out of the 112 released jobs are dropped from task

4 and task 1, respectively. In contrast, employing ALDA results in all end-to-

end deadlines being met. For both case studies, we also run each algorithm for

10 times and summarize the average time overhead of each algorithm on the 8

processors in Row 3 of Table 4.9.

126

0.0242

0.0243

0.0244

0.0245

0.0246

0.0247

0.0248

0.0249

0.025

1 2 3 4 5 6 7 8 9 10

A
v
er

a
g
e

D
ro

p
 R

a
te

 (
%

)

Max_Allowed_Drop_Num

MLET MRET

Figure 4.2. Comparison of different Max Allowed Drop Num values in
terms of average drop rate by WLDA for balanced ST workloads.

0.0386

0.0388

0.039

0.0392

0.0394

0.0396

0.0398

0.04

0.0402

1 2 3 4 5 6 7 8 9 10

A
v
er

a
g
e

D
ro

p
 R

a
te

 (
%

)

Max_Allowed_Drop_Num

MLET MRET

Figure 4.3. Comparison of different Max Allowed Drop Num values in
terms of average drop rate by WLDA for imbalanced ST workloads.

127

1.705

1.715

1.725

1.735

1.745

1.755

1.765

1.775

1.785

1 2 3 4 5 6 7 8 9 10

A
v
er

a
g
e

D
ro

p
 R

a
te

 (
%

)

Max_Allowed_Drop_Num

MLET MRET

Figure 4.4. Comparison of different Max Allowed Drop Num values in
terms of average drop rate by WLDA for GT workloads.

1.6

1.7

1.8

1.9

2

2.1

0.018

0.024

0.03

0.036

0.042

0.048

0 0.2 0.4 0.6 0.8 1 1.2

A
v

er
a

g
e

D
ro

p
 R

a
te

 (
%

)

A
v
er

a
g

e
D

ro
p

 R
a

te
 (

%
)

α

Balanced ST Imbalanced ST GT

Figure 4.5. Comparison of different α values in terms of average drop
rate by WLDA for ST and GT workloads.

128

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

4 4.25 4.5 4.75 5 5.25 5.5 5.75 6 6.25

A
v
er

a
g
e

D
ro

p
 R

a
te

 (
%

)

Utilization Level

ALDA WLDA

Figure 4.6. Average drop rate for balanced workloads (ST workloads).

0

0.02

0.04

0.06

0.08

0.1

0.12

4 4.25 4.5 4.75 5 5.25 5.5 5.75 6 6.25

A
v
er

a
g
e

D
ro

p
 R

a
te

 (
%

)

Utilization Level

ALDA WLDA

Figure 4.7. Average drop rate for imbalanced workloads (ST workloads).

129

0

1

2

3

4

5

6

7

8

9

4 4.25 4.5 4.75 5 5.25 5.5 5.75 6 6.25

A
v
er

a
g
e

D
ro

p
 R

a
te

 (
%

)

Utilization Level

ALDA WLDA

Figure 4.8. Average drop rate for GT workloads.

524288

1048576

2097152

4194304

8388608

4 4.25 4.5 4.75 5 5.25 5.5 5.75 6 6.25

R
u

n
n

in
g

 T
im

e
(M

ic
ro

se
co

n
d

)

Utilization Level

ALDA WLDA

Figure 4.9. Total running time for balanced workloads (ST workloads)

.

130

524288

1048576

2097152

4194304

8388608

4 4.25 4.5 4.75 5 5.25 5.5 5.75 6 6.25

R
u

n
n

in
g

 T
im

e
(M

ic
ro

se
co

n
d

)

Utilization Level

ALDA WLDA

Figure 4.10. Total running time for imbalanced workloads (ST
workloads).

262144

524288

1048576

2097152

4194304

8388608

16777216

4 4.25 4.5 4.75 5 5.25 5.5 5.75 6 6.25

R
u

n
n

in
g

 T
im

e
(M

ic
ro

se
co

n
d

)

Utilization Level

ALDA WLDA

Figure 4.11. Total running time for GT workloads.

131

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

4 4.25 4.5 4.75 5 5.25 5.5 5.75 6 6.25

A
v

er
a

g
e

D
ro

p
 R

a
te

 (
%

)

Utilization Level

BBW JA ALDA

Figure 4.12. Average drop rate for balanced workloads (ST workloads).

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

4 4.25 4.5 4.75 5 5.25 5.5 5.75 6 6.25

A
v

er
a

g
e

D
ro

p
 R

a
te

 (
%

)

Utilization Level

BBW JA ALDA

Figure 4.13. Average drop rate for imbalanced workloads (ST
workloads).

132

0

2

4

6

8

10

12

14

16

18

4 4.25 4.5 4.75 5 5.25 5.5 5.75 6 6.25

A
v

er
a

g
e

D
ro

p
 R

a
te

 (
%

)

Utilization Level

BBW JA WLDA

Figure 4.14. Average drop rate for GT workloads.

0

10

20

30

40

50

60

70

80

90

100

4 4.25 4.5 4.75 5 5.25 5.5 5.75 6 6.25

F
e
a

si
b

le
 S

o
lu

ti
o

n
s

F
o

u
n

d
 (

%
)

Utilization Level

BBW JA ALDA

Figure 4.15. Percentage of feasible task sets found for balanced
workloads (ST workloads).

133

0

10

20

30

40

50

60

70

80

90

100

4 4.25 4.5 4.75 5 5.25 5.5 5.75 6 6.25

F
e
a

si
b

le
 S

o
lu

ti
o

n
s

F
o

u
n

d
 (

%
)

Utilization Level

BBW JA ALDA

Figure 4.16. Percentage of feasible task sets found for imbalanced
workloads (ST workloads).

0

10

20

30

40

50

60

70

80

90

100

4 4.25 4.5 4.75 5 5.25 5.5 5.75 6 6.25

F
e
a

si
b

le
 S

o
lu

ti
o

n
s

F
o

u
n

d
 (

%
)

Utilization Level

BBW JA WLDA

Figure 4.17. Percentage of feasible task sets found for GT workloads.

134

131072

262144

524288

1048576

4 4.25 4.5 4.75 5 5.25 5.5 5.75 6 6.25

R
u

n
n

in
g
 T

im
e

(M
ic

ro
se

co
n

d
)

Utilization Level

BBW JA ALDA

Figure 4.18. Total running time for balanced workloads (ST workloads).

262144

524288

1048576

4 4.25 4.5 4.75 5 5.25 5.5 5.75 6 6.25

R
u

n
n

in
g

T

im
e

(M
ic

ro
se

co
n

d
)

Utilization Level

BBW JA ALDA

Figure 4.19. Total running time for imbalanced workloads (ST
workloads).

135

131072

262144

524288

1048576

2097152

4194304

8388608

16777216

4 4.25 4.5 4.75 5 5.25 5.5 5.75 6 6.25

R
u

n
n

in
g
 T

im
e

(M
ic

ro
se

co
n

d
)

Utilization Level

BBW JA WLDA

Figure 4.20. Total running time for GT workloads.

136

Figure 4.21. Flight control system.

137

TABLE 4.10

Specification of A Fault-tolerant Distributed System

Exec. Exec.

Task Period Subtask Processor Time Task Period Subtask Processor Time

0 0 40 20 5 10

1 0 40 21 3 20

2 6 20 22 0 10

0 600 3 1 20 23 7 10

4 2 20 24 1 10

5 4 40 25 7 10

6 2 60 4 140 26 6 20

7 1 20 27 6 10

8 1 20 28 1 10

1 350 9 0 80 29 6 10

10 4 140 30 7 10

11 1 40 31 6 20

12 2 20 32 7 20

13 5 20 33 3 30

2 140 14 5 20 34 0 20

15 3 20 35 5 20

16 3 20 36 7 20

17 2 20 5 200 37 5 20

18 1 10 38 2 30

3 350 19 1 10 39 1 20

40 4 20

41 6 20

42 7 20

138

TABLE 4.11

Data Dependencies of Subtasks in A Fault-tolerant Distributed System

Messages Messages Messages

Subtask Size→Succ. Subtask Subtask Size→Succ. Subtask Subtask Size→Succ. Subtask

0 500→1, 1500→2 14 500→15 29

600→3, 15 30 500→31

1 700→4, 300→5 16 500→17 31 700→32

2 200→3 17 32

3 18 500→19 33 500→35

4 600→6 19 34 500→35

5 800→6 20 400→21 35 600→36, 600→37

6 21 36

7 400→8 22 400→23 37

8 23 400→24 38 500→40

9 900→11 24 200→25 39 500→40

10 2500→11 25 200→26 40 600→41, 600→42

11 26 200→27, 200→28 41

12 1500→13, 1500→14 27 500→29 42

13 500→15 28 300→29

139

Figure 4.22. Subtasks and their dependencies for all the tasks of the
fault-tolerant distributed system.

140

CHAPTER 5

An Adaptive Transmission Rate Control Approach to Minimize Energy

Consumption

Wireless sensor network is widely used in CPS applications, such as the health

care and environment monitoring (e.g. [103, 140]). Most of the wireless sensors

are powered by batteries and store a limited amount of energy, hence require

the transmission to be energy efficient. Lower transmission rates can greatly

reduce transmission energy. However, if the lowest transmission rate is selected,

many messages could miss their deadlines, which degrades the quality of service

(QoS) for real-time applications. Therefore, it is important to design an efficient

approach for adjusting transmission rates in order to not only achieve energy

saving, but also maximize the QoS.

There are some recent publications on the transmission rate adjustment to min-

imize energy dissipation while still satisfying the timing requirement of real-time

streams under earliest deadline first (EDF) scheduling. Some papers, [144, 155]

and [53], propose optimal approaches, by assuming a given amount of data needed

to be transmitted within an absolute deadline, to minimize the energy consump-

tion and maximize the data throughput, respectively. The works of [54, 121]

assume that all packets to be transmitted have a common absolute deadline. The

situation considered in these papers, cannot be directly applied to handle cases

where different packets have different absolute deadlines. There are works select-

141

ing rates for packets based on that each packet has its own absolute deadline.

Some of these, e.g., [4, 37, 78], assume that the energy function for all the packets

are the same, while other more general approaches, e.g., [112, 162] are proposed

based on the fact that the energy functions are influenced by the fading channel

state, transmission distance, and so on. All of these works assume that a packet

arriving earlier always has an earlier deadline. Furthermore, some of the above ap-

proaches [4, 37, 54, 121] assume that the arrival times of future packets are known

apriori precisely, and others [4, 53, 144, 155], assume that a packet transmission

can be preempted at arbitrary timing during transmission, neither of which are re-

alistic in wireless sensor networks. Moreover, the algorithms proposed by [53, 112]

is extremely time consuming. In addition to the energy-aware transmission, some

works have already proposed heuristics to guarantee the

In addition to the study of the rate control in wireless sensor networks, there is

also much research work on dynamic voltage frequency scaling (DVFS), which is

similar to the rate control in sensor nodes. Some papers, e.g., [86, 93, 148], propose

CPU speed selection approaches for a set of preemptive jobs. The preemptive

execution of CPU jobs does not map well to packet transmission in wireless sensor

networks. The work in [74] proposes a CPU speed slow down method for periodic

tasks that have maximum blocking times. However, the schedulability condition

[17, 29, 101] employed in this work [74] is not only pessimistic, but also time

consuming. A busy period decomposition method is proposed in [108] for a set of

non-preemptive jobs based on the assumption that a job arriving earlier always

has an earlier deadline. All of the proposed approaches know the release times of

jobs exactly, which is unrealistic in wireless sensor networks.

In this work, we propose an on-line transmission rate selection approach based

142

on an optimal dynamic voltage frequency scaling algorithm Lp-EDF [148]. Our

approach exploits the periodicity property of the real-time streams to predict the

future jobs’ timing information and find an optimal transmission rate schedule.

We are designing our approach to make more messages meet their deadlines. Pre-

liminary results show that our approach achieves a higher success ratio with a

lower timing cost compared with existing works, although the energy dissipation

caused by our approach sees a small increase.

5.1 System Model

We consider a system composed of a set of streams {Si} = {S1, S2, ..., SN}.

Stream Si periodically generates a message of Ci bytes with a period Ti. The

message generated at time Rij = Oi+(j−1) ·Ti−Jij is denoted as Mij, where Oi

is the release offset of the stream Si and Jij is the jitter of the message arrivals.

We assume that the jitter satisfies a uniform distribution Jij ∼ U(0, Ti). Each

message Mij has a relative deadline Di, and its absolute deadline ADij = Oi +

(j − 1) · Ti +Di − Jij. According to [55], the fragmentation threshold Threshold

is the maximum non-preemption length of each message. Each message Mij is

fragmented to Xi = ⌈ Ci

Threshold
⌉ packets, and the first Xi − 1 packets and the

last packet have the length Threshold and Ci− (Xi−1) ·Threshold, respectively.

Similar to 802.11a [55], before a node transmits a packet, it needs Overhead T ime

time to transmit the preamble and the ”Signal” part of the PLCP header. Then,

the ”Service” part of the PLCP header, with its size PLCP Length, will be

transmitted with the payload. Based on these definitions, we define the intensity

143

g(I) of a time interval I = [t, t′] to be,

g(I) =

∑N
i=1 Yi · (Ci +Xi · PLCP Length)

t′ − t−
∑N

i=1 Yi ·Xi ·Overhead T ime
, (5.1)

where Yi is the number of messages with [Rij, ADij] ⊆ I.

We consider a single wireless sensor node which has transmission rate r, which

can take on any value in [min rate,max rate], where min rate and max rate are

the minimum and maximum allowed rates for the node, respectively. The wireless

node handles the given set of streams {Si}. The transmission power P is a convex

function of the transmission rate according to [121]. In this work, we assume that

the transmission power function is,

P (r(t)) = max rate ·Noise · L2(2
2·r(t)

max rate − 1), (5.2)

where L is the transmission distance and Noise is the noise power according to

[162]. The packets of the streams are stored in a buffer, whose size is MaxSize.

We refer to [Rij, ADij] as the active interval of the message Mij. A schedule

S(t0, t1) is a pair of (r(t),Message(t)) functions defined over the given time in-

terval [t0, t1], where Message(t) defines the message being transmitted at time t

with rate r(t) (or idle if r(t) = 0). The total energy consumed during a given time

interval [t0, t1] is

E(S) =

∫ t1

t0

P (r(t))dt. (5.3)

The goal of our scheduling problem is to find a feasible schedule that minimizes

the transmission energy, while the following constraint is satisfied for any message

144

whose interval is within the time interval [t0, t1],

∫ ADij

Rij

r(t)δ(Message(t),Mij)dt = Ci, ∀Mij, [Rij, Dij] ⊆ [t0, t1], (5.4)

where δ(Message(t),Mij) = 1 if Message(t) = Mij and 0 otherwise. To make

all the messages reach their destinations within their deadlines, the constraint

(5.4) should be satisfied for any message. However, in wireless sensor networks,

the jitters of the message arrivals, the non-preemption property of a packet, and

the dynamic interference in the transmission environment will cause some of the

messages miss their deadlines inevitably. We define the message success ratio SR

within a given time interval to be

SR =
Num Message Sucess

Num Message
, (5.5)

where Num Message is the number of transmitted messages within the time

interval, while Num Message Sucess is the number of messages successfully de-

livered within the deadlines. Message success ratio SR represents the percentage

of the messages that satisfy constraint (5.4) within a given time interval if we

assume that the impact of interference has been adequately handled by the rate

assignment.

Our problem is to find rates for the messages to be transmitted within a given

time interval, in order to not only minimize the transmission energy (5.3), but

also to make as many messages as possible to satisfy the schedulability constraint

(5.4). To accomplish this, we need an adaptive rate control approach that is able

to adjust the rates efficiently in response to the jitters of the message arrivals,

and effectively reduce the influence of the packet non-preemption property on the

145

success ratio. Specifically, when a new message arrives at the buffer at time t0,

we have

min
r(t)

∫ t1

t0

P (r(t))dt (5.6)

s.t.

∫ ADij

Rij

r(t)δ(Message(t),Mij)dt = Ci, ∀Mij, [Rij, Dij] ⊆ [t0, t1], (5.7)

where t0 is the current time, i.e., the release time of the new message, and t1 is

set to be maxMij |Rij≤t0{ADij}.

We use EDF scheduling algorithm since it is optimal in scheduling a set of

periodic streams on a single sensor node. An optimal minimum energy scheduler

Lp-EDF is proposed in [148] under preemptive EDF scheduling. Though Lp-EDF

was originally for scheduling CPU tasks, it can be modified to schedule messages

in wireless sensor networks, where messages are fragmented to non-preemptive

packets and message arrival times are not known precisely.

5.2 Our Approach

Our problem is to find message transmission rates within a given time interval

such that the transmission energy is minimized and the transmission success ratio

is as high as possible. We solve the problem by an on-line approach so as to better

respond to dynamic variations including arrival time jitters, failed delivery, etc.

An outline of our approach is as follows. Every time a new message arrives at

the buffer, the sensor node will compute the rates for the messages in the buffer

by solving an optimization problem as given in (5.6) and (5.7). If a packet is

being transmitted upon the arrival of a new message, the node will finish the

transmission of this packet before computing a new schedule. To make the on-line

approach work well, we need to address issues including prediction of future load

146

and solving the resulting optimization problem. With the predicted packets and

the packets already in the buffer, solving the optimization problem defined in (5.6)

and (5.7) can employ the Lp-EDF algorithm introduced in [148].

Since future messages may compete for the time resource with the messages

already in the buffer and greatly influence the transmission success ratio and the

energy consumption, it is necessary to predict the future messages that release

within some time window. We define the time interval [t0,maxMij |Rij≤t0{ADij}]

as the scheduling window W at time t0. When computing the transmission rates

at time t0, the node considers not only the messages Mij already in the buffer,

but also the future messages Mkm whose release time Rkm is larger than t0 but

smaller than maxMij |Rij≤t0{ADij}.

We consider two ways to predict the future messages. The first one is called

proportional prediction (Lp-EDF-p). If the absolute deadline ADkm of a pre-

dicted messageMkm is within the windowW , we include message as is. However, if

ADkm > maxMij |Rij≤t0{ADij}, we modify the message size and deadline to C ′
k and

AD′
km, where C

′
k = Ck ·

maxMij |Rij≤t0
{ADij}−Rkm

ADkm−Rkm
and AD′

km = maxMij |Rij≤t0{ADij},

respectively. The packet number X ′
k under this schedule computation is equal to

⌈ C′
k

Threshold
⌉. The other way is to treat the future message Mkm with ADkm be-

yond the window W by the same way as treating the messages whose absolute

deadlines are within the window W , which is called complete prediction (Lp-

EDF-c). Any future message Mkm with its release time within the window W has

the message size Ck and absolute deadline ADkm.

The improved Lp-EDF algorithm identifies a critical interval I∗ = [t′, t′′] whose

intensity g(I∗) is maximum within the time interval [t0, t1]. We incorporate the

timing overhead of the packet transmission, such as the preamble and the PLCP

147

header, into the intensity computation as shown in (5.1). Then, the rates r of

the messages are set to be g(I∗) if their release times and absolute deadlines are

within the critical interval I∗, and these messages are deleted from the message

set. This process is repeated until all the messages obtain their rates.

5.3 Evaluation

We evaluate the performance and efficiency of our proposed on-line approach

on randomly generated stream sets and compare the modified Lp-EDF approach,

both Lp-EDF-p and Lp-EDF-c, with the original Lp-EDF and ZM algorithm

in [4]. Our modified Lp-EDF algorithm was implemented in C++, running on

an AMD Phenom(tm) II X4 940 workstation with Red Hat Enterprise Linux

4. 1000 stream sets consisting of 5 streams each were randomly generated for 9

different bandwidth levels (Bandwidthlevel = 0.1Mbps, ..., 0.9Mbps) with a total

of 9000 stream sets. The bandwidth level is defined to be Bandwidthleveli =∑5
j=1

Cj

Tj
, i = 0.1, ..., 0.9. We employ IEEE 802.11a [55] as the MAC protocol,

which has the minimum and maximum rates as 6Mbps and 54Mbps, respectively.

To fully show different performance of the stream sets at different bandwidth levels

in 802.11a, we multiply the message length of each stream by 54 times, and change

the bandwidth levels to be 5.4Mbps, ..., 48.6Mbps. In addition, the fragmentation

threshold Threshold, the overhead time Overhead T ime and the length of PLCP

header PLCP length are set to be 2346 bytes, 40 µs, and 2 bytes, respectively.

We assume that the stream Si with the highest density Ci

Di
in a stream set releases

its messages with jitter Jij, which satisfies a uniform distribution Jij ∼ U(0, Ti).

For the details of the stream set generation, readers can refer to [34].

Although Lp-EDF is optimal under preemptive EDF, its computation time is

148

0

20

40

60

80

100

5.4 10.8 16.2 21.6 27 32.4 37.8 43.2 48.6

Bandwidth Level

A
v

er
a

g
e

E
n

er
g

y
 (

1
0

8
)

Original Lp-EDF ZM Lp-EDF-p Lp-EDF-c

Figure 5.1. Comparison of original Lp-EDF, ZM, Lp-EDF-p and
Lp-EDF-c in terms of average energy consumption.

extremely long because of its time complexity O(NUM3) for NUM messages. In

addition, the performance of Lp-EDF is negatively influenced by the jitters of the

messages and the packet non-preemption property.

Another energy minimization scheduling algorithm, denoted as ZM, presented

in [4], dynamically computes the lowest rate for the messages to minimize the

energy consumption. There are two disadvantages of ZM. First, ZM is not optimal

when a message arriving later has an earlier deadline. Second, ZM suffers less but

still obviously from the jitters of message arrivals and packet non-preemption

property.

In the first experiment, we compare energy consumption resulted from applying

the original Lp-EDF, ZM and our approach, as shown in Figure 5.1. The x-axis

represents the bandwidth level, while the y-axis represents the average energy

consumption per stream set. It is illustrated that the original Lp-EDF performs

a little better than our approach and ZM in energy saving, while our approach

149

70

75

80

85

90

95

100

5.4 10.8 16.2 21.6 27 32.4 37.8 43.2 48.6

Bandwidth Level

A
v

er
a

g
e

S
u

cc
es

s
R

a
ti

o

(%
)

Original-Lp-EDF ZM Lp-EDF-p Lp-EDF-c

Figure 5.2. Comparison of original Lp-EDF, ZM, Lp-EDF-p and
Lp-EDF-c in terms of average success ratio.

achieves the energy saving comparable with that of ZM at all bandwidth levels.

The second experiment shows the average success ratio obtained by the orig-

inal Lp-EDF, ZM, and our approach in Figure 5.2. The x-axis shows the

bandwidth level, whereas the y-axis represents the average success ratio, which is

the percentage of the successfully transmitted messages among the 1000 stream

sets at each bandwidth level. First, the average success ratios resulted from the

original Lp-EDF are much lower than the results by our approach at bandwidth

levels 5.4Mbps to 43.2Mbps, because the original Lp-EDF statically computes all

the rates for the whole time interval under preemptive EDF and neglects the mes-

sage jitters. Second, for bandwidth levels greater than 16.2Mbps, the performance

of ZM degrades drastically, because ZM cannot handle the case that a message

arriving later has an earlier deadline, which appears frequently when bandwidth

levels become higher.

To further compare the performance of different approaches, the minimum suc-

150

cess ratio among the 1000 stream sets at each bandwidth level is shown in Figure

5.3. The x-axis represents the bandwidth level, while the y-axis represents the

minimum success ratio. For the bandwidth levels less than or equal to 16.2Mbps,

the minimum success ratios by ZM are a little lower than those obtained by our

approach, while for bandwidth levels greater than 16.2Mbps, the minimum suc-

cess ratios resulted by ZM are much lower than those obtained by our approach.

In contrast, for bandwidth levels 21.6Mbps to 48.6Mbps, the minimum success

ratios by the original Lp-EDF are a little higher than those by our approach.

We study the average computation time of a stream set by our approach and

compare them with the original Lp-EDF and ZM in the third experiment, as

shown in Figure 5.4. The x-axis represents the bandwidth level, while the y-axis

represents the average rate computation time. As shown in Figure 5.4, our method

runs 200 to 4000 times faster than the original Lp-EDF, while it is 10 to 36 times

slower than the ZM algorithm.

Based on the preliminary results, our approach can achieve much higher success

ratios on average than the original Lp-EDF and ZM, though the energy dissipa-

tion by applying our approach sees a small increase compared with the original

Lp-EDF. Furthermore, the computational cost of our approach is significantly

smaller than that of the original Lp-EDF. ZM takes less time than our approach

to compute the rates, but its success ratios are not satisfactory at high bandwidth

levels.

151

40

50

60

70

80

90

100

5.4 10.8 16.2 21.6 27 32.4 37.8 43.2 48.6

Bandwidth Level

M
in

im
u

m
 S

u
cc

es
s

R
a

ti
o

(%
)

Original-Lp-EDF ZM Lp-EDF-p Lp-EDF-c

Figure 5.3. Comparison of original Lp-EDF, ZM, Lp-EDF-p and
Lp-EDF-c in terms of minimum success ratio.

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

5.4 10.8 16.2 21.6 27 32.4 37.8 43.2 48.6

Bandwidth Level

A
v

er
a

g
e

C
o

m
p

u
te

 T
im

e

(M
ic

ro
se

c)

Original Lp-EDF ZM Lp-EDF-p Lp-EDF-c

Figure 5.4. Comparison of original Lp-EDF, ZM, Lp-EDF-p and
Lp-EDF-c in terms of computational cost.

152

CHAPTER 6

Data Link Layer Scheduling in Dynamic Wireless Networked Control Systems

with Minimum On-line Schedule Update

WNCSs have received tremendous research interests recently due to their great

advantages in easier deployment, enhanced mobility, and reduced maintenance

cost. A key design challenge in such systems is to design efficient data link layer

scheduling algorithms to achieve deterministic end-to-end real-time communica-

tion. Previous research works have a common assumption that the WNCS is static

and the network communication schedule, once constructed and distributed, will

stay unchanged. This assumption, however does not hold in many real-world sys-

tem setup. In this work, we propose the data link layer scheduling problem in

dynamic WNCSs. We employ a rhythmic task in adaptive to external distur-

bances and introduce an effective approach to adjust existing schedule for all the

nodes in the WNCS when the disturbances happen. The approach determines the

time duration of dynamic schedule and generates the schedule for that time dura-

tion to minimize the impact of network dynamics on existing network flows with

bounded overheads. The effectiveness and efficiency of the proposed algorithm

are validated through sufficient experimental results. Simulation results based on

randomly generated task sets indicate that the proposed approach outperforms

existing work both in terms of the number of feasible task sets (between 122%

153

and 128% on average) and the number of feasible periodic packets (between 263%

and 321% on average).

6.1 Introduction

WNCSs have received significant attention over the past several decades [58,

67, 111, 113, 117] because WNCSs are widely used in many areas such as teler-

obotics [44], aircraft control [150], civil infrastructure monitoring [77], medication

service [63] and power management [56]. In a WNCS, sensors, controllers, ac-

tuators and other relay nodes are geographically distributed and connected over

wireless network media. A task in a WNCS generally delivers measurements

from a sensor to the gateway and sends control signals from the gateway to an

actuator within an end-to-end deadline. In the real-world, the performance of

WNCSs is usually degraded by various physical events, such as the failures of

critical civil infrastructures and malicious attacks. In response to external events,

the works [28, 81, 92] employ approaches of adjusting the sampling rates of tasks

on-line in control systems. For example, the authors in [81] proposed a rhyth-

mic task model, which continuously changes the period and relative deadline of

one specific task in mechanical subsystems. However, such approaches cannot be

applied to WNCSs straightforwardly because they do not consider the stringent

time requirement of end-to-end packet delivery in the wireless network media.

The wireless network media is usually unreliable for packet delivery due to the

intermittent connection, shifting signal strength, power outage and etc. Missing

or delaying the sensing and control packets in a WNCS may severely degrade the

performance of system or even damage the system. To address these problems,

two prevalent international standards, ISA 100 [2] and WirelessHART [36] are de-

154

veloped to guarantee the timely delivery of packets in WNCSs. In both standards,

a centralized network architecture is adopted for network resource allocation and

data management. Specifically, a gateway, sensors, actuators and relays nodes

in the WNCS are connected through wireless network technology and a network

manager residing in the gateway allocates network resource. Both standards are

based on Time Division Multiple Access (TDMA)-based data link layer, which

cannot handle the situation that the sampling rates and deadlines of tasks are

adjusted promptly.

To achieve deterministic end-to-end real-time communication in WNCSs, ex-

tensive research works have been devoted on the design of data link layer schedul-

ing algorithms. The algorithms based on TDMA are presented in works [51, 60,

126, 127, 138, 139, 146, 156]. The work [146] designed and implemented a real-time

high-speed data link layer protocol called RT-WiFi. The authors in [51, 60, 139]

utilizes Rate Monotonic (RM) algorithm [29] to generate data link layer commu-

nication schedules. In [126], the authors proposed an optimal branch and bound

scheduling algorithm and a practical heuristic to assign time slots to transmis-

sions of packets. The work in [127] designed an optimal algorithm and an efficient

heuristic for priority assignment of the periodic flows, based on which data link

layer schedules can be generated under fixed priority. The works in [138] and [156]

studied the joint data layer link scheduling and channel assignment problem for

convergecast in different network topologies. All the aforementioned works as-

sume that the network is static after an initial configuration phase, which are not

suitable for handling on-line workload changes in the WNCS.

There are also some centralized data link layer approaches [41–43, 46, 133,

134] that can adapt to the network dynamics. The work [46] and [134] proposed

155

wireless MAC protocols in adaptive to network dynamic dynamics such as a packet

loss, a node failure and route changes. The work [133] proposed an approach to

dynamically select and switch MAC protocols in response to changes in ambient

conditions and application requirements. The protocols proposed in papers [41–

43] can dynamically update the transmission schedule in response to workload

changes. The proposed protocols in [46, 134] are unable to respond to on-line

workload change while the paper in [133] assumes that only a fixed number of

MACs are stored in the system. The algorithms proposed in the papers [41–43]

are only suitable for the data aggregation in a tree-like network, which does not

support the system containing multiple tasks ending at different actuators.

In this work, we consider a WNCS adopting a centralized network architecture,

which utilizes a static schedule when there is no physical disturbances in the

WNCS. The WNCS contains a set of periodic tasks and a rhythmic task, where the

period and relative deadline of rhythmic task are reduced suddenly and then return

to their nominal values gradually. Since rhythmic task is critical for the WNCS

to respond to physical disturbances, all the packets of rhythmic task must meet

their deadlines. In contrast, packets of periodic tasks are allowed to be dropped

to give up some bandwidth to rhythmic task. After rhythmic task returns to its

nominal state, the WNCS is required to reuse the static schedule immediately

after a specific time slot (called switch point) in order to reduce the overhead of

packet transmissions and prepare for any future external event. Therefore, there

exists a transient time duration when the WNCS cannot use the static schedule.

During such a transient duration, there may be a high bandwidth competition

in the WNCS, which may result in the end-to-end deadline misses of periodic

packets. Although the WNCS allows periodic packets to miss their end-to-end

156

deadlines, frequent deadline misses can degrade the Quality of Service (QoS) of

the system. Therefore, it is critical to determine a transient time duration and

design an on-line data link scheduling algorithm to make periodic packets meet

deadlines as many as possible.

This work designs an on-line data link layer scheduling problem determining a

transient time duration and a dynamic schedule in order to minimize the number

of dropped periodic packets. In the problem, we propose various practical con-

straints of making the problem usable for real-world applications, e.g., the upper

bound on switch point, the time overhead limit for solution search process, and the

schedule update overhead limit for the dynamic schedule. To solve the problem, we

propose an on-line approach to determine a transient time duration and construct

a dynamic schedule for this time duration with bounded time and schedule update

overheads. The approach is composed of an efficient framework and an effective

heuristic to be called by the framework. The framework determines possible time

durations by judiciously choosing switch point candidates, adopts an algorithm

to generate a dynamic schedule for each possible time duration, and reduces the

schedule update overhead of constructed schedule. Our proposed heuristic is a

modified dynamic programming algorithm with a pseudo polynomial time com-

plexity, which generates a dynamic schedule minimizing the number of dropped

periodic packets. The effectiveness and efficiency of the proposed approach are

validated through thorough extensive experimental results.

6.2 System Model

This work adopts the system architecture of typical WNCSs which consist of

one gateway, a set of sensors, a set of actuators, and a set of intermediate nodes.

157

A sensor or an actuator can also serve as a relay node. A sensor samples physical

measurements and sends them to the gateway through multiple relay nodes. The

gateway extracts the sampled data, executes some given control algorithm, encap-

sulates the actuation data to packets and sends them to specific actuators through

multiple relay nodes. All these devices collectively form a node set denoted as V=

{V0, V1, V2, · · · , Vg}, where Vg represents the gateway. A direct link (Vj, Vj′) exists

if and only if Vj can send data to Vj′ reliably. This work assumes that there is a

single communication channel shared by all the data link layer communication in

the network and our future work will remove this assumption. For the reader’s

convenience, we summarize notations of system model in Table 6.1 1.

A set of tasks T = {τ0, τ1, τ2, · · · τn, τn+1} are running on the node set V in the

WNCS. Task τn+1 is a broadcast task which delivers the schedule update from the

gateway to all the nodes in the WNCS. (Such a concept has been used in many

other link layer scheduling frameworks, e.g., [1, 2, 24, 90, 152].) We will introduce

broadcast task in details in Section 6.3. Task τ0 is a rhythmic task while any task

τi (1 ≤ i ≤ n) is a periodic task . A rhythmic or periodic task generally starts

from a sensor, delivers the sensor measurements to the gateway and finally sends

the control signals to an actuator. Each task τi is associated with a period Pi, a

relative deadline Di and a hop number Hi. Hop number Hi is the number of hops

along task τi’s routing path.

A rhythmic task can be in one of two states. When τ0 is in the nominal state,

it has a constant period, i.e., P0, and a constant relative deadline, D0. When τ0

is in the rhythmic state (i.e., needs to respond to disturbances), its period and

relative deadline are reduced abruptly and then return to their nominal values

1Unless specified, task identifier i satisfies 0 ≤ i ≤ n+ 1 in this table.

158

TABLE 6.1

Summary of Notations Used for System Model

Parameter Definition

Vg, Vi, 0 ≤ i < g Gateway, sensors, actuators and other nodes

χi,k Rhythmic, periodic and broadcast packet χi,k

τ0, τn+1 Rhythmic task and broadcast task

ri,k, di,k, 0 ≤ i ≤ n Release time and deadline of χi,k

τi, 1 ≤ i ≤ n Periodic task

r̄0,k, d̄0,k Nominal release time and nominal deadline of χ0,k

Hi Hop number of τi

χi,k(h) Rhythmic, periodic and broadcast transmission

Pi, Di Period and relative deadline of τi

ri,k(h), di,k(h) Release time, deadline and finish time

f i,k(h), 1 ≤ i ≤ n of rhythmic or periodic transmission χi,k(h)

P⃗0, D⃗0 Vectors of periods and relative deadlines

Slot when τ0 leaves the nominal state

tn→r, tr→n and the rhythmic state, respectively

by following some monotonically non-decreasing functions. (The actual functions

depend on the environmental disturbance that the system suffers.) We use vectors

P⃗0 = [P0,x, x = 1, . . . ,R]T and D⃗0 = [D0,x, x = 1, . . . ,R]T to represent the periods

and relative deadlines of τ0 when it is in the rhythmic state. (To be more precise,

P0,x is the time duration between two consecutive releases but we still call it

period to simplify our notation.) The periods P0,x’s and deadlines D0,x’s satisfy

P0,x ≤ P0,x+1 ≤ P0 and D0,x ≤ D0,x+1 ≤ D0, respectively. Since the rhythmic

task enters the rhythmic state, the period and relative deadline of τ0 follow the

elements of P⃗0 and D⃗0 in sequence, respectively. Task τ0 returns to the nominal

159

state when the (R + 1)-th rhythmic packet is released.

TABLE 6.2

An Example WNCS with 4 Tasks Running on 8 Nodes

Routing Relative Period Deadline

Task Path Period Deadline Vector Vector

τ0 V0 → V7 → V4 9 6 [3, 6]T [2, 5]T

V1 → V7

τ1 → V3 → V5 9 7 N/A N/A

τ2 V2 → V7 → V6 9 9 N/A N/A

τ3 V7 → ∗2 9 N/A N/A 9

In the WNCS, a rhythmic or periodic task τi (0 ≤ i ≤ n) follows a designated

single routing path, consisting of Hi + 1 number of specific nodes that τi needs

to traverse. Rhythmic or periodic task τi transmits the sensor measurements

from a sensor to the gateway and then transmits the control signals from the

gateway to an actuator. (Here we assume that such transmissions are always

successful and leave packet loss recovery mechanisms like FEC and retransmission

for future work.) Since this work concerns data link layer scheduling, we ignore the

computation overhead in the gateway and only focus on the communication aspect

of rhythmic and periodic tasks. Broadcast task τn+1 has a fixed tree-like routing

path, starting from Vg and ending at each sensor or actuator in the WNCS. The

160

Gateway V7

Rhythmic Task τ0

on Sensor V0 Actuator V4

Actuator V5

Periodic Task τ1

on Sensor V1

Periodic Task τ2

on Sensor V2

Actuator V6

Relay Node V3

 Χ1,k(1) Χ1,k(2) Χ1,k(3)
 Χ3,k(1) Χ3,k(1) Χ3,k(2)

Figure 6.1. Topology of An Example WNCS with 4 Tasks Running on 8
Nodes.

routing path is constructed by using Breadth-First-Search (BFS) Algorithm [45].

Figure 6.1 gives an example WNCS which contains 4 tasks, i.e., τ0, τ1, τ2 and

τ3 running on 8 nodes, i.e., Vi, i = 0, . . . , 7, where V0, V1 and V2 are sensors,

V4, V5, V6 are actuators, V3 is a relay node and V7 is the gateway. Task τ0 is a

rhythmic task, tasks τ1 and τ2 are periodic tasks, and task τ3 is a broadcast task.

The routing paths of all the tasks are shown in the second column of Table 6.2 .

An instance of a task is referred to as a packet, i.e., packet χi,k corresponds to

the k-th instance of τi. An instance of a periodic task is called a periodic packet ,

an instance of the rhythmic task is called a rhythmic packet and an instance of

broadcast task is called a broadcast packet . Periodic packet χi,k is associated with

a release time ri,k (equal to (k − 1) · Pi) and an absolute deadline di,k (equal to

(k − 1) · Pi + Di). Rhythmic task τ0 is associated with actual release time r0,k

2τ3 is a broadcast packet, which has 2 hops. The 1-st hop is from V7 to V0, V1, V2, V3, V4,
V6, and the 2-nd hop is from V3 to V5.

161

and actual deadline d0,k. In this work, we assume that di,k ≤ ri,k+1 is satisfied no

matter whether χi,k is a rhythmic or periodic packet.

We assume that τ0 is in the nominal state initially. Let τ0 switches from the

nominal state to the rhythmic state at r0,m+1 (denoted as tn→r), and returns to

the nominal state from the rhythmic state at r0,m+R+1 (denoted as tr→n). Then,

τ0 stays in the rhythmic state within interval [tn→r+1, tr→n], where tn→r and tr→n

satisfy

tr→n = tn→r +
R∑
x=1

P0,x. (6.1)

Assume that the first rhythmic packet χ0,1 is released at time 0. The actual release

time r0,k+1 is determined based on the state of τ0 when r0,k is released, i.e.,

r0,k+1 =

 r0,k + P0 if k ≤ m or k > m+R

r0,k + P0,k−m if m < k ≤ m+R
. (6.2)

Similarly, d0,k of χ0,k is equal to

d0,k+1 =

 r0,k+1 +D0 if k ≤ m− 1 or k ≥ m+R

r0,k+1 +D0,k+1−m if m ≤ k < m+R
. (6.3)

To differentiate from the actual release time r0,k and actual deadline d0,k, we

define nominal release time r̄0,k and nominal deadline d̄0,k to be the release time

and deadline of χ0,k when τ0 has never entered the rhythmic state. To simplify

the paper, we use release time and deadline to refer to actual release time and

actual deadline in the rest of the paper unless we need to differ actual and nominal

release times (deadlines). Figure 6.2 shows the release times and deadlines of

rhythmic packets when rhythmic task τ0 is in the different states. The top part of

162

r0,m+1 r0,m+R

P0,1
D0,R

r0,m+R+1

P0,R
r0,m+R+2

t

r0,q* r0,q*+1

tr ntn r tsw

t

tst

r0,m

D0 D0,1

P0
D0

P0
D0

P0

r0,m r0,m+1 r0,p* r0,p*+1 r0,p*+2

Figure 6.2. Release times and deadlines of rhythmic packets when
rhythmic task τ0 is in the different states. Rhythmic task τ0 enters the
rhythmic state from the nominal state at time slot tn→r and returns to

the nominal state from the rhythmic state at time slot tr→n.

the figure shows the nominal release times of rhythmic packets while the bottom

part of the figure shows the actual release times and actual deadlines of rhythmic

packets.

Following WirelessHART and ISA100.11a standards, we apply a TDMA pro-

tocol for data link layer communication. At any given time, a node in the WNCS

always follows a schedule to transmit or receive a packet under the TDMA proto-

col. Specifically, at the h-th hop along the routing path of rhythmic or periodic

task τi, the sender sends packet χn+1,k to the receiver and receives an acknowl-

edgement packet from the receiver. In contrast, at the h-th hop of broadcast task

τn+1, the sender sends packet to one or multiple receivers by following the tree-like

routing path. Such a process is referred to as a transmission denoted by χi,k(h),

h = 1, ..., Hi, and a transmission must be completed within one time slot. Sim-

ilar to the definition of packet, a transmission can be either rhythmic, periodic

and broadcast. Due to the sequential dependence among the transmissions of a

packet, we say χi,k(h) is a (or an immediate) successor of χi,k(h
′) and χi,k(h

′) is

a (or an immediate) predecessor of χi,k(h) if h ≥ h′ + 1 (or h = h′ + 1). As an

163

example, in Figure 6.1, each task τi has one packet χi,k which is composed of a

series of transmissions χi,k(h)’s. Transmission χi,k(h) is associated with a release

time ri,k(h), an absolute deadline di,k(h) and a finish time f i,k(h). Finish time

f i,k(h) represents the time slot when χi,k completes the (h + 1)-th hop. In this

work, rn+1,k(h), dn+1,k(h) and fn+1,k(h) are designed off-line. However, ri,k(h),

di,k(h) and f i,k(h) of rhythmic or periodic packet need to be determined on-line.

6.3 Problem statement

Given the fact that most control systems must deal with unexpected distur-

bances, the rhythmic task model provides a general approach for control systems

to respond to such disturbances. However, as pointed out earlier, existing work in

data link layer scheduling for WNCS mainly focuses on static scheduling, which

would unfortunately either require excessive amount of network resource to sat-

isfy timing requirements or result in poor control performance in the WNCS with

rhythmic tasks. Dynamic data link layer scheduling could be much more respon-

sive, but its success critically depends on the efficiency of deriving and delivering

such schedules, which is the focus of our work. Below, we describe in more detail

the specific problem we aim to solve.

Initially, the system starts by following S̄. A static schedule S̄ is designed off-

line and is only used when each rhythmic packet is released at its nominal release

time. In the static schedule, all the rhythmic and periodic packets can meet their

nominal deadlines. A static schedule is defined as S̄ = {(t, i, h)}, where t is the

time slot identifier, i is a task identifier and h is a hop index. If i = −1, no task

uses the time slot and we say the slot is idle. Given any time slot t, we have

S̄[t] = (i, h). If the time slot is idle, we have S̄[t] = (−1,−1). The length L

164

of static schedule S̄ is the least common multiple of the task periods (assuming

τ0 is in the nominal state) and the schedule is followed in a cyclic fashion, i.e.,

S̄[t] = S̄[t+L]. A node only stores the information on when it should transmit or

receive a packet in the static schedule S̄, and hence the WNCS desires to use static

schedule S̄ to reduce the overhead of transmissions. (The design of static schedule

is not in the scope of this work and can be constructed using the approaches

presented in [60] and [126].)

When χ0,m reaches the gateway Vg at time slot f 0,m(h) and Vg determines the

state switch of τ0 at tn→r, Vg generates a dynamic schedule S. Before the time slot

update information reaches all the nodes in the WNCS, the WNCS still follows S̄

to guarantee the coordination among all the nodes in the WNCS. To reduce the

communication overhead, the WNCS expects to employ S̄ again at a certain time

slot after tr→n. Therefore, Vg is responsible for generating a dynamic schedule

S which all the nodes will follow during a specific time interval [tst, tsw], where

tst and tsw are the start point and switch point of S, respectively. We choose

fn+1,m(Hn+1) + 1 as the start point tst of the dynamic schedule when τ0 enters

the rhythmic state immediately after r0,m+1. This is because fn+1,m(Hn+1) is the

earliest time when all the nodes in the WNCS know the dynamic schedule. To

guarantee the WNCS to use S immediately after tn→r, S̄ is designed to satisfy

fn+1,m(Hn+1) ≤ tn→r. Dynamic schedule S[tst, tsw] = {(t, i, h)} stores information

on the assignment of each time slot within time interval [tst, tsw]. If t is assigned

to packet χi,k(h), S[t] = (i, h) is satisfied. If t is set to idle in S, S[t] = (−1,−1)

is satisfied.

When Vg generates a dynamic schedule S, Vg piggybacks the information of

S to the nearest-in-time broadcast packet χn+1,k. Without loss of generality

165

(WLOG), the instance index k of such a nearest-in-time broadcast packet χn+1,k

is set to the instance index m of rhythmic packet χ0,m which just arrives at Vg.

Then, χn+1,m is transmitted to all the nodes in the WNCS along the broadcast

routing tree by following S̄. Since it is unpredictable when τ0 enters the rhythmic

state, S̄ pre-allocates slots to τn+1 periodically by setting Pn+1 = P0. In this

work, we require Dn+1 = P0 to be satisfied in S̄ to make χn+1,m be broadcast

to all the nodes in the WNCS by tn→r such that the WNCS can use S when τ0

enters the rhythmic state. Meanwhile, transmission χn+1,m(1) is assigned a time

slot fn+1,m(1) as late as possible in S̄ to guarantee Vg to have enough time to

construct S.

Since transmitting S is done through piggybacking S to a broadcast packet,

only the information about those slots whose assignments (i.e., task identifier

and hop index) have been changed from S̄ is required to be broadcast to all the

nodes in the WNCS. A slot t whose assignment is different between S[t] and

S̄[t] is called an updated slot. Let ∆u and S[tst, tsw].δ represent the maximum

allowed and actual number of updated slots in S[tst, tsw], respectively. To further

constrain S[tst, tsw].δ, t is not regarded as an updated time slot when t is idle, i.e.,

S[t] = (−1,−1). Hence, a time slot is an updated slot if and only if it satisfies

S[t] = (i, h) ̸= (−1,−1) and S̄[t] ̸= (i, h). (6.4)

Since the gateway determines a dynamic schedule S within time interval [tst, tsw],

the gateway only needs to schedule a set of packets, Ω(tsw). Packet set Ω(tsw) con-

tains any packet if and only if this packet has at least one transmission required

to be completed within [tst, tsw]. If and only if a transmission is to be finished

in [tst, tsw], this transmission is contained in transmission set Ψ(tsw). If Ω(tsw)

166

is unschedulable, periodic packets are dropped to make Ω(tsw) schedulable. In

addition, when S[tst, tsw] updates more than ∆u slots, S[tst, tsw].δ can be reduced

by dropping periodic packets. This is because an idle slot is not regarded as an

updated slot in S[tst, tsw]. However, the performance of WNCS is degraded by

dropping packets according to the works [88, 96, 97, 105, 123]. Therefore, the

primary goal of dynamic data link layer scheduling is to make all the rhythmic

packets and as many periodic packets as possible satisfy the end-to-end (E2E)

deadlines. Thus, the objective of dynamic scheduling is

min S[tst, tsw].ρ. (6.5)

Each rhythmic packet χ0,k in Ω(tsw) meets its deadline d0,k if and only if its last

transmission χ0,k(H0) is completed by d0,k, i.e.,

Constraint 1. f 0,k(H0) ≤ d0,k.

To guarantee the performance of the WNCS, switch point is required to be smaller

than or equal to a switch point upper bound (denoted as tusw), which is the latest

time slot when the WNCS is desired to respond to new physical disturbances.

Thus, we have constraint

Constraint 2. tsw ≤ tusw.

To make the information of updated slots in S[tst, tsw] be piggybacked to packet

χn+1,m, S[tst, tsw] must be generated within the time interval [f 0,m(h)+1, fn+1,m(1)−

1], i.e.,

Constraint 3. the computation time of S must be smaller than or equal to the

maximum allowed running time Tmax = fn+1,m(1)− 1− f 0,m(h).

167

Since a broadcast transmission can deliver the information for at most ∆u updated

slots within one time slot, we require

Constraint 4. S[tst, tsw].δ ≤ ∆u.

In addition, in the case S̄[t] = (i, h) ̸= (−1,−1) and S[t] = (−1,−1), χi,k(h)

should have either not been released at t or been completed earlier than t. Oth-

erwise, the WNCS will transmit χi,k(h) at slot t by following S̄ because slot t is

not updated when S[t] = (−1,−1), which is called an implicit schedule conflict.

Thus, we have

Constraint 5. if S̄[t] = (i, h) ̸= (−1,−1), ri,k(h) ≤ t and f i,k(h) ≥ t, then t

cannot be set idle, i.e., S[t] ̸= (−1,−1).

Based on the above discussion, our aim is to solve the following problem:

Problem 1. Given task set T , static schedule S̄, tn→r and tst, determine tsw and

S[tst, tsw] such that objective function (6.5) is achieved subject to Constraints 1, 2, 3, 4

and 5 are satisfied.

We summarize the notations used for Problem 1 in Table 6.3. In the next section,
we will use a motivational example to show the necessity of solving our problem.

6.4 Motivation

We use a simple example to show the deficiency of using the static schedule

in a WNCS when physical disturbance is present. Consider the example shown

in Figure 6.1. There is one rhythmic task τ0, two periodic tasks τ1 and τ2 and

one broadcast task τ3. The periodic tasks and rhythmic task are synchronous and

packets χ0,1, χ1,1 and χ2,1 are released at time slot 0. The routing paths, periods

168

TABLE 6.3

Summary of Notations Used for Problem 1

Start point, switch point, switch point

tst, tsw, t
c
sw, t

u
sw candidate and switch point upper bound

Γ(tusw) Set of switch point candidates

Set of packets to be scheduled within

Ω(tsw), Ω(t
c
sw) [tst, tsw] and [tst, t

c
sw], respectively

Set of transmissions to be scheduled within

Ψ(tsw), Ψ(tcsw) [tst, tsw] and [tst, t
c
sw], respectively

S̄, S Static schedule and dynamic schedule

S[tst, t] Dynamic schedule within [tst, t]

S̄[t], S[t] Assignment of slot t in S̄ and S, respectively

The maximum allowed numbers of updated

∆u, ∆u[tst, t] slots for S[tst, tsw] and S[tst, t], respectively

S[tst, t].ρ Number of dropped periodic packets due to S[tst, t]

S[tst, t].δ Number of updated slots due to S[tst, t]

χ∗
i,k(h) Ready transmission

and relative deadlines of tasks are presented in columns 2, 3 and 4, respectively,

of Table 6.2. Let tusw and ∆u are 18 and 5, respectively. The static schedule S̄ for

the task set is shown in Figure 6.3(a).

Suppose at time slot tn→r(=9), τ0 switches its state, and employs P⃗0 = [3, 6]T

and D⃗0 = [2, 5]T as the vectors of periods and relative deadlines, respectively, when

τ0 is in the rhythmic state. Hence, the rhythmic packet returns to the nominal

state at time slot tr→n(=18). Then, it is found that packet χ0,3 which is released

at time slot 12 cannot meet its end-to-end deadline 17 if we still use the static

schedule S̄ after tn→r. Therefore, WNCS cannot make use of the static schedule

169

(3,2)

(3,2) (0,1) (0,2) (2,1) (2,2)(1,1) (1,2) (1,3)(0,1) (0,2)

(3,2) (0,1) (0,2) (1,1) (1,2) (1,3) (0,1) (0,2) (2,1) (2,2)

(3,1) (3,2)(0,1) (0,2) (2,1) (2,2) (1,1) (1,2) (1,3)(3,2) (3,1) (3,2)(0,1) (0,2) (2,1) (2,2) (1,1) (1,2) (1,3)

r0,1 r0,2d0,1

t

(a) static schedule

0 1 2 3 4 5 6 7 8 9

(3,2) (0,1) (0,2) (1,1) (1,2) (1,3) (0,1) (0,2) (2,1) (2,2) t

9 10 11 12 13 14 15 16 17 18

r0,2=tn→r r0,3tst d0,2 d0,3 tr→n

(b) dynamic schedule generated by EDF

(3,2) (0,1) (0,2) (2,1) (2,2)(1,1) (1,2) (1,3)(0,1) (0,2)
t

9 10 11 12 13 14 15 16 17 18

(c) an ideal dynamic schedule

r0,2=tn→r r0,3tst d0,2 d0,3 tr→n

Figure 6.3. Time slot assignment in the static schedule and possible
dynamic schedules in the motivational example.

S̄ shown in Figure 6.3(a) to adapt to the changes of periods and deadlines for τ0.

A possible method to make all the rhythmic packets schedulable is to calcu-

late the minimal allowed period of rhythmic task τ0 while scheduling rhythmic

and period tasks under EDF. Then, the WNCS can employ a static schedule S̄ ′

whose size is the least common multiple of rhythmic task and period tasks. In this

schedule, rhythmic task τ0 always transmits its packets with the minimal allowed

period, therefore it is not necessary to reserve time slots for broadcast task. Ac-

cording to task set schedulability analysis under EDF in [17, 29, 101], the minimal

allowed period of τ0 is 5, which is larger than the first period 3 in P⃗0. Hence, we

cannot employ such a method to satisfy the requirement of period when τ0 enters

170

the rhythmic state. This approach is also too pessimistic and cannot be scalable

since it reserves too much unnecessary resource.

Suppose we set tsw to tusw, which is equal to 18. An alternative method is

to employ EDF on packet set Ω(18), which generates a dynamic schedule shown

in Figure 6.3(b). Although the generated schedule does not drop any packets,

it updates 7 time slots, which is higher than ∆u(=5). To make Constraint 4

satisfied, at least one packet needs to be dropped. In contrast, there exists another

dynamic schedule S[10, 18] without dropping any periodic packet and satisfying

all the constraints in Problem 1, which is shown in Figure 6.3(c). In the next

section, we present an approach on how to design such a dynamic schedule, i.e.,

to minimize the number of dropped periodic packets while meeting constraints in

Problem 1.

6.5 Overall Approach

In order to solve Problem 1, we present an on-line approach in this section,

which determines a transient time duration and constructs a dynamic schedule

for this time duration with bounded time and schedule update overheads. We

first discuss which time slots can be the switch point of the dynamic schedule in

Section 6.5.1 and then propose a framework that integrates the determination of

possible switch points and the generation of the best dynamic schedule in mini-

mizing the number of dropped periodic packets in Section 6.5.2.

6.5.1 Determining Switch Point Candidates

Choosing the right tsw can be quite challenging as it impacts not only the

schedulability of the system but also the running time of generating a dynamic

171

schedule and the number of updated slots in the dynamic schedule. In addition,

tsw ≤ tusw is required in Constraint 2. To tackle this challenge, we first identify the

following sufficient condition under which the static schedule S̄ can be employed

immediately after tsw.

Theorem 8. Given time slot tsw, suppose r̄0,p∗+1 and r0,q∗+1 are the earliest nom-

inal and actual release times of rhythmic packets later than or equal to tsw, re-

spectively, as is shown in Figure 6.2. The static schedule S̄ can be employed

immediately after tsw without dropping any rhythmic packet if the following three

conditions are satisfied by S[tst, tsw].

Condition 1. tsw ≥ tr→n and r̄0,p∗+1 = r0,q∗+1.

Condition 2. All the rhythmic packets released earlier than r0,q∗ must meet their

deadlines.

Condition 3. We assume that S̄[th̆] = (0, h̆) and S̄[tH0] = (0, H0) are satisfied,

where th̆ and tH0 are the earliest time slots reserved for any hop and the H0-th

hop of task τ0 after tsw, respectively. If tH0 > d0,q∗, all the transmissions of χ0,q∗

are finished by min{tsw, d0,q∗}. If tH0 ≤ d0,q∗, χ0,q∗(h̆− 1) is finished by tsw.

Proof. Condition 1 guarantees that τ0 has returned to the nominal state and all the

rhythmic packets released later than or equal to r0,q∗+1 can meet their deadlines

if the WNCS employs S̄ immediately after r0,q∗+1. Condition 2 ensures that all

the rhythmic packets released earlier than r0,q∗ can meet their deadlines.

Condition 3 guarantees that χ0,q∗ can meet its deadline d0,q∗ while using S̄

immediately after tsw. In the case tH0 > d0,q∗ , all the transmissions of χ0,q∗ are

finished by min{tsw, d0,q∗}. Hence, χ0,q∗ can meet its deadline d0,q∗ . If there is a

time slot reserved for a hop of τ0 in S̄[tsw + 1, r̄0,p∗+1], the WNCS just keeps idle

172

at this slot. In the case tH0 ≤ d0,q∗ , χ0,q∗(h̆ − 1) is finished by tsw in S. Thus,

χ0,q∗(h̆), . . . , χ0,q∗(H0) can be completed by d0,q∗ by following S̄. If transmission

χ0,q∗(h) (h > h̆) has been completed by tsw and S̄[th] = (0, h) is satisfied, node

just keeps idle at slot th. Hence, S̄ can be employed immediately after tsw without

dropping any rhythmic packet.

Unfortunately, r̄0,p∗+1 = r0,q∗+1 is not always the case. In this case, we investi-

gate different methods to make the WNCS still employ the static schedule S̄ after

tsw. The first method is to shorten the time interval between r0,q∗ and r0,q∗+1,

and shift r0,q∗+1 to r̄0,p∗+1, which makes Condition 1 in Theorem 8 satisfied. If

d0,q∗ > r̄0,p∗+1 is satisfied, d0,q∗ is adjusted to r̄0,p∗+1. If the conditions in Theo-

rem 8 are still satisfied, then S̄ can be employed after tsw immediately according

to Theorem 8. Since S̄ is used by the WNCS after tsw, the earliest rhythmic

packet released later than or equal to tsw should be released at r̄0,p+1. Hence, this

method requires tsw ∈ [r0,q∗ + 1, r̄0,p∗+1], as is shown in Figure 6.2.

It is possible that any time slot later than or equal to tr→n can be a switch

point candidate. However, it is very time consuming to check if each time slot

later than or equal to tr→n can be the switch point tsw. According to the following

lemma, we only need to check whether the nominal release times of rhythmic

packets can be the switch point.

Lemma 11. Suppose S[tst, t
∗] satisfies the conditions in Theorem 8 when we shift

r0,q∗+1 to r̄0,p∗+1 and adjust d0,q∗ to min{d0,q∗ , r̄0,q∗+1}, where t∗ ∈ [r0,q∗+1, r̄0,p∗+1−

1] is satisfied. If we select r̄0,p∗+1 as the switch point, there exists S[tst, r̄0,p∗+1]

satisfying (i) the conditions in Theorem 8, (ii) S[tst, t
∗].ρ = S[tst, r̄0,p∗+1].ρ and

(iii) S[tst, t
∗].δ = S[tst, r̄0,p∗+1].δ.

173

Proof. If we combine S[tst, t
∗] and S̄[t∗+1, r̄0,p∗+1], we can construct the dynamic

schedule S[tst, r̄0,p∗+1]. Since r̄0,p∗+1 = r0,q∗+1 > t∗ ≥ tr→n, we have Condition 1

satisfied. Since the combination of S[tst, t
∗] and S̄[t∗ + 1, r̄0,p∗+1] does not change

the time slot assignment in [tst, r̄0,q∗], S[tst, r̄0,p∗+1] guarantees all the rhythmic

packets released earlier than r0,q∗ meet their deadlines, i.e., Condition 2 is sat-

isfied. In addition, when setting switch point to r̄0,p∗+1, tH0 > d0,q∗ is satisfied.

Meanwhile, S[tst, t
∗] ensures that all the transmissions of χ0,q∗ are completed by

d0,q∗ according to Condition 3. Therefore, S[tst, r̄0,p∗+1] also satisfies Condition 3.

Furthermore, since there is neither packet drop nor updated slot in S̄[t∗+1, r̄0,p∗+1],

S[tst, t
∗].ρ = S[tst, r̄0,p∗+1].ρ and S[tst, t

∗].δ = S[tst, r̄0,p∗+1].δ are satisfied.

Based on Lemma 11, each nominal release time r̄0,p+1 of rhythmic packet within

[tr→n, t
u
sw] can be a switch point candidate (denoted as tcsw). All such switch

point candidates are grouped to switch point candidate set Γ(tusw) = {tcsw|tcsw =

r̄0,p+1,∀r̄0,p+1 ∈ [tr→n, t
u
sw]}.

The other method is to shorten the nominal release time interval between

r̄0,p∗ and r̄0,p∗+1 and shift r̄0,p∗+1 to r0,q∗+1 when r̄0,p∗+1 > r0,q∗+1. Such a shift

also makes Condition 1 in Theorem 8 be satisfied. However, this method needs

to adjust and deliver the static schedule S̄ to all the affected nodes, which is

very complex. There are also other possible methods to make r̄0,p∗+1 equal to

r0,q∗+1. For example, we can either reduce the periods P0,x’s or evenly shorten

the constant period P0 of rhythmic task to make r0,q+1 equal to r̄0,p+1. Such

methods may result in a high computational overhead within [tst, tsw], which not

only increase the number of updated slots in S but also make a feasible S hard to

be found. Hence, in this work, we will only focus on the first method.

174

6.5.2 Framework

Algorithm 7 On-Line Scheduling (OLS)
1: Upon rhythmic task τ0 enters the rhythmic state:
2: S = ∅
3: tr0 = tst − 1, tr1 = tst − 1, Sr0 = NULL, Sr1 = NULL
4: Determine switch point candidate set Γ(tusw)
5: for (∀tcsw ∈ Γ(tusw)) do
6: Construct Ω(tcsw) and Ψ(tcsw)
7: b = 1
8: while (b ≥ 0) do
9: if (b == 1) then
10: Drop periodic packets and periodic transmissions from Ω(tcsw) and Ψ(tcsw),

respectively
11: end if
12: Generate dynamic schedule S[tst, t

c
sw] based on Ψ(tcsw), t

r
b and reusable schedule

Srb
13: while (S[tst, t

c
sw].δ > ∆u and at least one periodic packet exist in S[tst, t

c
sw])

do
14: Drop the periodic packet causing the maximum number of updated slots

and update Γ(tusw) correspondingly
15: end while
16: if (S[tst, t

c
sw].δ ≤ ∆u) then

17: S = S ∪ {S[tst, tcsw]}
18: Calculate trb and record S[tst, t

r
b] as S

r
b , where Srb ⊆ S[tst, t

c
sw] is satisfied

19: end if
20: b = b− 1
21: end while
22: end for

23: Upon the maximum allowed running time Tmax is run out:
24: Stop generating any new dynamic schedule
25: Select the best dynamic schedule S[tst, tsw] ∈ S

To solve Problem 1, we design an on-line scheduling (OLS) approach to gen-

erate a dynamic schedule. Every time rhythmic task enters the rhythmic state at

tn→r, OLS generates a basic dynamic schedule and an ordinary dynamic sched-

175

ule for each switch point candidate tcsw in Γ(tusw). A basic schedule only assigns

time slots to rhythmic transmissions by dropping all the periodic transmissions.

In contrast, an ordinary schedule aims at making periodic packets as many as

possible meet their deadlines. A backup schedule can be used when no ordinary

schedule is found. If the number of updated slots in a generated dynamic schedule

is smaller than or equal to ∆u, this schedule is accepted by OLS. Each accepted

schedule is stored in the schedule set S. Then, among all the dynamic schedules in

S, OLS selects the best dynamic schedule in terms of reducing the fewest number

of dropped periodic packets first and the fewest number of updated slots second.

To speed up the search of a best dynamic schedule, OLS can reuse partial

slot assignments generated for the previous value of tcsw after the value of tcsw is

updated. Specifically, every time a basic or ordinary schedule is generated for

Ω(tcsw), a reusable slot trb is calculated and partial slot assignments S[tst, t
r
b] of

S[tst, t
c
sw] is stored as reusable schedule Srb . Note that tr1 and Sr1 are used to

generate the next basic schedule while tr0 and Sr0 are used to generate the next

ordinary schedule. We calculate trb by using

trb = min{ri,k|∀χi,k ∈ Ω(tcsw), di,k ≤ tcsw} (6.6)

when employing the heuristic to be presented in Section 6.6.2 to generate S[tst, t
c
sw].

Since S[tst, t
r
b] does not schedule any packet χi,k satisfying di,k > tcsw, reusing

S[tst, t
r
b] after updating t

c
sw has a negligible influence on packets whose deadlines

are larger than the previous value of tcsw. After updating tcsw, OLS only needs

to design dynamic schedule S[trb + 1, tcsw] and generates S[tst, t
c
sw] by combining

S[trb + 1, tcsw] and S
r
b together. The details of OLS are shown in Algorithm 7.

In Algorithm 7, every time rhythmic task enters the rhythmic state at tn→r,

176

the gateway initializes dynamic schedule set S (Line 2). Next, OLS sets trb to ts−1

and assigns Srb to NULL, where b is 0 and 1 (Line 3). Then, OLS determines

switch point candidate set Γ(tusw) (Line 4). For each t
c
sw, the gateway Vg constructs

packet set Ω(tcsw) and transmission set Ψ(tcsw) (Line 6), which is described in more

details in the end of this section, and sets b to 1 initially (Line 7). Then, OLS

first generates a basic schedule and next generates an ordinary schedule for each

switch point candidate (Lines 8-21). When b is 1 (Line 9), all the periodic packets

and transmissions are dropped from Ω(tcsw) and Ψ(tcsw), respectively (Line 10).

Then, the approach generates dynamic schedule S[tst, t
c
sw] in Line 12, which will

be discussed in Section 6.6 in details. While S[tst, t
c
sw] has more than ∆u number of

updated slots and Ω(tcsw) has more than one periodic packets (Line 13), OLS keeps

dropping the periodic packet resulting in the maximum number of updated slots

in S[tst, t
c
sw] in Line 14. If S[tst, t

c
sw].δ ≤ ∆u is satisfied (Line 16), S[tst, t

c
sw] will be

included in schedule set S (Line 17). Meanwhile, reusable point trb and reusable

schedule Srb are updated in Line 18. When a dynamic schedule is generated, b is

updated in Line 20. Such a process is repeated until each tcsw ∈ Γ(tusw) has been

checked. When Tmax is used out (Line 23), Vg stops generating any new dynamic

schedule, and selects S[tst, tsw] from S such that

S[tst, tsw].ρ ≤ S[tst, t
c
sw].ρ, ∀S[tst, tcsw] ∈ S. (6.7)

Ties are broken in favour of the minimum number of updated slots first and the

earliest switch point candidate next.

For each switch point candidate tcsw in Γ(tusw), we construct a packet set Ω(tcsw)

and a transmission set Ψ(tcsw) in Line 6 of Algorithm 7. It is required that any

feasible schedule for Ψ(tcsw) found by OLS satisfies Conditions 2 and 3 in Theo-

177

rem 8. Then, the WNCS can reuse S̄ immediately after tcsw when we adopt tcsw as

switch point tsw and shift r0,q∗+1 to r̄0,p∗+1 according to Theorem 8. Meanwhile,

any periodic packet can be dropped although a minimum number of dropped pe-

riodic packets is desired. In the rest of the paper, we use χi,k to represent either a

rhythmic or a periodic packet in Ω(tcsw) unless we specify the type of packet χi,k.

We assume that χi,k(h̃) and χi,k(ĥ) are the first and last transmissions in Ψ(tcsw)

for packet χi,k (1 ≤ h̃ ≤ ĥ ≤ Hi) in Ω(tcsw), respectively. Any packet χi,k in Ω(tcsw)

is associated with an adjusted deadline d′i,k by which χi,k(ĥ) must be completed.

Suppose χi,k(h̄) is the first transmission of χi,k, which is to be completed later

than or equal to tst.

We first determine which rhythmic packets belong to Ω(tcsw) based on the

following lemma.

Lemma 12. Rhythmic packet χ0,k belongs to Ω(tcsw) if and only if r0,k < tcsw

is satisified and χ0,k has not been completed before tst, χ0,k belongs to Ω(tcsw).

In addition, we have d′0,k = min{d0,k, tcsw}, h̃ = h̄ and ĥ = H0. Then, any

dynamic schedule S[tst, t
c
sw] ensuring all the rhythmic packets in Ω(tcsw) to meet

their adjusted deadlines satisfies Conditions 2 and 3 in Theorem 8 if tcsw is used

as the switch point tsw.

Proof. We consider two cases of rhythmic packet χ0,k in Ω(tcsw), (i) r0,k < r0,q∗ and

(ii) r0,k = r0,q∗ , where r0,q∗ is the actual release time of rhythmic packet earlier

than tcsw. In case (i), packet χ0,k satisfies d
′
0,k = d0,k < r0,q∗ < tcsw. Since χ0,k meets

its adjusted deadline d′0,k, χ0,k also meets its actual deadline d0,k, i.e., Condition 2

is satisfied. In case (ii), all the transmissions are finished by d′0,k = min{tcsw, r0,q∗}.

According to the definition of tcsw, tH0 > tcsw > d0,q∗ is satisfied. Hence, Condition 3

is satisfied.

178

In order to reuse static schedule S̄ immediately after tcsw, we partition the

workload of periodic packets proportionally based on the time slot assignment for

periodic packets in S̄. Specifically, any periodic packet χi,k which has at least

one transmission to be finished within [tst, t
c
sw] according to S̄ must belong to

Ω(tcsw). Suppose χi,k(ḧ) is the last transmission of χi,k to be completed within

[tst, t
c
sw] according to S̄. For any periodic packet χi,k in Ω(tcsw), we have d′0,k =

min{d0,k, tcsw}, h̃ = h̄ and ĥ = ḧ.

After Vg constructs packet set Ω(t
c
sw), it gets transmission set Ψ(tcsw) containing

transmissions χi,k(h)’s, h = h̃, . . . , ĥ, of each packet χi,k ∈ Ω(tcsw). Each transmis-

sion χi,k(h) ∈ Ψ(tcsw) is associated with release time ri,k(h), deadline di,k(h) and

finish time fi,k(h), which are calculated by

ri,k(h) =

ri,k if h = h̃ = 1

tst − 1 if h = h̃ > 1

fi,k(h− 1) if h̃+ 1 ≤ h ≤ ĥ

(6.8)

and

di,k(h) = d′i,k − (ĥ− h). (6.9)

Packet χi,k ∈ Ω(tcsw) can meet its deadline di,k if χi,k can meet its adjusted deadline

d′i,k. Meanwhile, packet χi,k ∈ Ω(tcsw) can meet its adjusted deadline d′i,k if and

only if each transmission χi,k(h) can meet deadline di,k(h). If packet χi,k has a

transmission χi,k(h) violate its deadline, χi,k is dropped out of Ω(tcsw), and any

transmission of χi,k is dropped out of Ψ(tcsw). In the next section, we will propose

a heuristic to determine the finish time of each transmission in Ψ(tcsw), which is

to be called in Line 12 of OLS.

179

6.6 Heuristic

In this section, we proposed a dynamic programming based heuristic to assign

time slots to Ψ(tcsw), which is called in Line 12 of Algorithm 7. An exact method

is to employ dynamic programming, which is presented in Section 6.6.1. Dynamic

programming checks an exponential number of schedules to search for a solution,

which is very time consuming and unsuitable for on-line use. Our heuristic pre-

sented in Section 6.6.2 modifies the structure of dynamic programming to search

for solutions, which is called modified dynamic programming (mDP). However,

mDP is constrained to check a limited number of schedules such that the time

slot assignment can be completed with a pseudo polynomial time complexity.

6.6.1 Dynamic Programming

The key idea of dynamic programming is to construct a dynamic schedule

S[tst, t] by determining the assignment of time slot t given a dynamic schedule

S[tst, t − 1]. Schedule S[tst, t − 1] is a child schedule of S[tst, t] for slot t while

S[tst, t] is a parent schedule of S[tst, t − 1] for slot t. If a transmission either

obtains a time slot or has been removed from Ψ(tcsw) by t according to S[tst, t],

S[tst, t] accommodates this transmission. Note if a transmission is removed from

Ψ(tcsw) by t, all of its successor are also removed from Ψ(tcsw) by t and hence

S[tst, t] also accommodates all of its successors. Schedule S[tst, t] accommodates

transmission subset ψ if S[tst, t] accommodates any transmission in ψ but does not

accommodate any transmission outside ψ. If S[tst, t] and S
′[tst, t] accommodates

the same transmission subset, S[tst, t] is S
′[tst, t]’s equivalent schedule (denoted to

be S[tst, t] ≡ S ′[tst, t]). We now define a ready transmission of time slot t, which

is the candidate to obtain t.

180

Definition 3. Given a dynamic schedule S[tst, t−1], transmission χ∗
i,k(h) ∈ Ψ(tcsw)

is a ready transmission of slot t if (i) it is not finished by t− 1 and (ii) ri,k(h) <

t ≤ di,k(h) is satisfied. Transmission subset ψ̃ of Ψ(tcsw) is a ready transmission

subset of t if (i) any transmission in ψ̃ is a ready transmission of t and (ii) ψ̃

contains all the ready transmissions of t.

Let ∆u[tst, t] represent the upper bound on the number of updated time slots for

S[tst, t]. Given dynamic schedule S[t+ 1, tcsw], ∆
u can be calculated by

∆u[tst, t] = ∆u − S[t+ 1, tcsw].δ. (6.10)

Suppose that opt(t, ψ,∆u[tst, t]) returns S[tst, t].ρ, where S[tst, t] drops the fewest

number of periodic packets among all the schedules S[tst, t]’s accommodating ψ

and have S[tst, t].δ ≤ ∆u[tst, t] satisfied. The goal of dynamic programming is to

find S[tst, t
c
sw] to achieve

opt(tcsw,Ψ(tcsw),∆
u[tst, t

c
sw]). (6.11)

The value of opt(t, ψ,∆u[tst, t]) is determined not only by the time slot assign-

ment on t but also by the selection of parent schedule S[tst, t − 1]. We employ

function ϕ(S[t] = (i, h), ψ) to return the number of periodic packets which miss

their deadlines at t due to the assignment of S[t] = (i, h) while S[tst, t] accommo-

dates ψ. A periodic packet misses its deadline at t when one of its transmission

is a ready transmission of t, has its deadline equal to t but is not assigned on t

in the dynamic schedule. As soon as a periodic packet misses its deadlines, this

packet and all of its unfinished transmissions are dropped from Ω(tcsw) and Ψ(tcsw),

respectively. To calculate opt(t, ψ,∆u[tst, t]), we consider two cases, (i) t = tst and

181

(ii) tst < t ≤ tcsw. In case (i), opt(tst, ψ,∆
u[tst, tst]) is only determined by the time

slot assignment of t since there is no parent schedule at t, which is the initial case

of opt(t, ψ,∆u[tst, t]). In case (ii), if t is set idle, we have

opt(t, ψ,∆u[tst, t])|(−1,−1) = opt(t− 1, ψ,∆u[tst, t]) + ϕ(S[t] = (−1,−1), ψ), tst <

t ≤ tcsw, (6.12)

where function opt(t, ψ,∆u[tst, t])|(−1,−1) is a special case of opt(t, ψ,∆u[tst, t]) by

setting t to be idle. If t is assigned to a ready transmission χ∗
i,k(h), we have

opt(t, ψ,∆u[tst, t])|(i,h) = opt(t− 1, ψ − {χ∗
i,k(h)},∆u[tst, t]− S[t]|(i,h).δ) + ϕ(S[t] =

(i, h), ψ), tst < t ≤ tcsw, (6.13)

where function opt(t, ψ,∆u[tst, t])|(i,h) is a special case of opt(t, ψ,∆u[tst, t]) by

assigning t to χ∗
i,k(h). S[t]|(i,h).δ returns 0 if S̄[t] = (i, h) and 1 otherwise. In order

to reuse equations (6.12) and (6.13), we have

opt(tst − 1, ψ,∆u[tst, tst − 1]) = 0. (6.14)

By combining equations (6.12), (6.13) and (6.14), we have

opt(t, ψ,∆u[tst, t]) = min{opt(t, ψ,∆u[tst, t])|(−1,−1), min
χ∗

i,k(h)∈ψ∩ψ̃
{opt(t, ψ,∆u[tst, t])|(i,h)

}}, tst ≤ t ≤ tcsw. (6.15)

In order to satisfy Constraint 4 of Problem 1, opt(t, ψ,∆u[tst, t]) has already

considered the maximum allowed number of updated slots for S[tst, t]. Specifi-

182

cally, dynamic programming never considers any schedule S[tst, t] which satisfies

S[tst, t].δ > ∆u. We now define the urgent time slot and favourite time slot

to ensure any considered schedule S[tst, t] in dynamic programming satisfy Con-

straints 1 and 5.

Definition 4. A time slot t is an urgent time slot of χ∗
0,k(h) if ready transmission

χ∗
0,k(h) ∈ ψ̃ satisfies d∗0,k(h) = t.

An urgent time slot t of χ∗
0,k(h) must be assigned to rhythmic transmission χ∗

0,k(h)

since no rhythmic packet can be dropped according to Constraint 1. Hence, we

have

ϕ(S[t] = (i′, k′, h′), ψ) = +∞ if t is an urgent slot of χ∗
0,k(h), and i′ ̸= 0. (6.16)

Definition 5. A time slot t is a favourite time slot of χ∗
i,k(h) if ready transmission

χ∗
i,k(h) ∈ ψ̃ satisfies S̄[t] = (i, h).

A favourite time slot t of χ∗
i,k(h) cannot be set to be idle because an idle slot is not

regarded as an update slot. Otherwise, the WNCS still follows S̄ to send χ∗
i,k(h)

and Constraint 5 is violated. Therefore, we have

ϕ(S[t] = (−1,−1), ψ) = +∞ if t is a favourite slot of χ∗
i,k(h). (6.17)

Although dynamic programming is optimal in solving Problem 1, it is time con-

suming and not suitable for the on-line use. In the experiment, we also demon-

strate the running time of dynamic programming. To make the search process

effective and efficient, we propose a dynamic programming based heuristic in the

next section.

183

6.6.2 Modified Dynamic Programming (mDP)

The dynamic programming approach is very time consuming because it re-

serves an exponential number of child schedules for time slot t and use them as

the parent schedules for time slot t + 1. Algorithm mDP employs a variable β

to judiciously limit the maximum allowed number of reserved child schedules for

each time slot in [trb + 1, tcsw] to speed up the generation of dynamic schedule.

The critical challenge of designing mDP is how to generate a dynamic schedule

which minimizes the number of dropped periodic packets while still ensuring all

the rhythmic packets meet their deadlines (Constraint 1) and avoiding any im-

plicit schedule conflict (Constraint 5). The main idea of mDP is that at most

β number of child schedules dropping the fewest number of periodic packets are

reserved for time slot t and used as the parent schedules for time slot t+ 1. Such

a process is repeated from trb + 1 to tcsw.

The details of mDP are summarized in Algorithm 8. The inputs to mDP are

transmission set Ψ(tcsw), start time tst, reusable time slot trb, switch point candi-

date tcsw, static schedule S̄, reusable schedule Srb , the maximum allowed number

of updated slots, ∆u, the number of periodic tasks, n, and the maximum al-

lowed number of reserved schedules for each slot, β. Without loss of generality, a

transmission is always associated with its release time, deadline and finish time.

Algorithm mDP starts with initializing set of parent schedules, Sp, to be {Srb}

(Line 1). Then, the program enters the main loop of Algorithm mDP (Lines 2-38)

to generate child schedules S[tst, t]’s based on each parent schedule S[tst, t− 1] for

each slot t starting from trb + 1 to tcsw. Given the parent schedule S[tst, t− 1], the

generation of child schedules is composed of two parts. The first part (Lines 4-

5) determines if t is an urgent or favourite time slot of some ready transmissions

184

Algorithm 8 mDP(Ψ(tcsw), tst, t
r
b, t

c
sw, S̄, S

r
b , n, β)

1: Sp = {Srb}
2: for (t = trb + 1; t ≤ tcsw; t++) do
3: for (∀S[tst, t− 1] ∈ Sp) do
4: urgent flag = Is Slot Urgent(Ψ(tcsw), S[tst, t− 1], t)
5: favourite flag = Is Slot Favourite(Ψ(tcsw), S[tst, t− 1], t)
6: for (i = −1; i ≤ n; i++) do
7: if (urgent flag == 1 and i ̸= 0) then
8: continue
9: end if
10: if (favourite flag == 1 and i == −1) then
11: continue
12: end if
13: if (i==-1) then
14: (i, h) = (−1,−1) //Set t to be idle
15: else
16: χ∗

i,k(h) = Get Ready Tx(Ψ(tcsw), i, S[tst, t− 1])
17: end if
18: S[t] = (i, h)
19: S[tst, t] = S[tst, t− 1] + S[t]
20: S[tst, t] = Calculate Dropped Packet Number(Ψ(tcsw), S[tst, t], n)
21: S[tst, t] = Calculate Updated Slot Number(S̄[t], S[tst, t])
22: accept flag = 1
23: for ∀S′[tst, t] ∈ Sc do
24: if (S′[tst, t] ≡ S[tst, t]) then
25: if (S[tst, t].δ ≥ S′[tst, t].δ and S[tst, t].ρ ≥ S′[tst, t].ρ) then
26: accept flag = 0
27: else if (S[tst, t].δ ≤ S′[tst, t].δ and S[tst, t].ρ ≤ S′[tst, t].ρ) then
28: Sc = Sc − {S′[tst, t]}
29: end if
30: end if
31: end for
32: if (accept flag == 1) then
33: Sc = Insert to Child Schedule Set(Sc, S[tst, t]) //Insert S[tst, t] to the

child schedule list
34: end if
35: end for
36: end for
37: Sp = Reserve Schedules(Sc, β)
38: end for
39: S[tst, t

c
sw] = Select A Best Schedule(Sp)

40: return S[tst, t
c
sw]

185

according to Definitions 4 and 5, respectively. If t is an urgent slot of χ∗
0,k(h), vari-

able urgent flag is set to 1. Similarly, if t is a favourite slot of χ∗
i,k(h), variable

favourite flag is set to 1. Based on the values of urgent flag and favourite flag

for slot t, the second part (Lines 6-35) generates child schedules S[tst, t]’s.

In the second part, mDP first determines the assignment of t, i.e., t can be

set idle (Line 14) or assigned to a ready transmission χ∗
i,k(h) (Line 16). If t is an

urgent slot of χ∗
0,k(h) (urgent flag = 1), t can only be assigned to χ∗

0,k(h) to make

each rhythmic packet meet its deadline (Lines 7-9). Similarly, if t is a favourite

slot of any ready transmission χ∗
i,k(h) (favourite flag = 1), t cannot be set to

be idle to avoid any implicit schedule conflict (Lines 10-12). For each possible

assignment of time slot t, mDP records such an assignment in S[t] (Line 18),

and attaches S[t] to parent schedule S[tst, t − 1] to get a child schedule S[tst, t]

(Line 19). Next, mDP calculates the number of dropped packets for S[tst, t] in

function Calculate Dropped Packet Number() (Lines 20), which is introduced in

more details in Algorithm 9. Similarly, mDP calculates the number of updated

slots in S[tst, t] in function Calculate Updated Slot Number() (Line 21), which is

introduced in more details in Algorithm 10.

Every time a new child schedule S[tst, t] for slot t is generated, mDP determines

which child schedules should be reserved in set of child schedules, Sc (Lines 22-31).

Specifically, mDP initializes accept flag to 1 and compares the new child schedule

S[tst, t] to any other equivalent child schedule S ′[tst, t] already stored in Sc. If a

child schedule dropping more periodic packets and updating more time slots than

any other equivalent schedule, this child schedule should not be stored in Sc. If

such a schedule is the newly generated schedule S[tst, t], accept flag is set to 0 in

Line 26. If such a schedule is an existing schedule S ′[tst, t] in Sc, S
′[tst, t] needs

186

to be moved out of Sc in Line 28. If accept flag is 1 (Line 32), i.e., S[tst, t] is

inserted into Sc in the non-decreasing order of the number of dropped periodic

packets first and the number of updated slots next in Line 33. After mDP has

obtained Sc, it only reserves the first β number of child schedules in Sc and put

them to Sp in Line 37. Such a process is repeated for each time slot t from tst to

tcsw.

After the main loop, mDP selects the schedule S[tst, t
c
sw] dropping the fewest

number of periodic packets among all the schedules in Sp (Line 39). Ties are

broken in favour of the fewest number of updated slots. Finally, mDP returns

S[tst, t
c
sw] (Line 40). The time complexity of mDP is dominated by the main for

loop starting at Line 2. For each time slot t, mDP will generate at most O(n · β)

number of child schedules. Within the main for loop, the most time consuming

part is comparing the newly generated child schedule S[tst, t] to each existing

child schedule S ′[tst, t] in Sc (Lines 23-31). Since there are at most (n + 1) · β

number of child schedules to be generated at slot t, there are O(n2 ·β2) number of

comparisons for slot t. Hence, the time complexity of mDP is O(tcsw ·n2 ·β2) since

trb may be 0. Suppose there are κ number of switch point candidates in Γ(tusw).

Then, OLS-mDP needs O(κ · tcsw · n2 · β2) time to find the best dynamic schedule

S[tst, tsw].

Algorithm 9 presents function Calculate Dropped Packet Number(), which

starts with initializing S[tst, t].ρ (Lines 1-5) and then updates S[tst, t].ρ (Lines 6-

11). Specifically, if a ready transmission χi′,k′(h
′) has its deadline di′,k′(h

′) equal

to t but does not obtain t (Line 8), S[tst, t].ρ is incremented by 1 (Line 9) presents

function Calculate Updated Slot Number(), which initializes S[tst, t].δ (Lines 1-

5), and increments S[tst, t].δ by 1 (Line 7) if t is not set idle and there is an

187

assignment conflict between S[t] and S̄[t] (Line 6).

Algorithm 9 Calculate Dropped Packet Number(Ψ(tcsw), S[tst, t], n)

1: if (t==tst) then
2: S[tst, t].ρ = 0
3: else
4: S[tst, t].ρ = S[tst, t− 1].ρ
5: end if
6: for i′ = 1; i′ ≤ n; i′ ++ do
7: χ∗

i′,k′(h
′) = Get Ready Tx(Ψ(tcsw), i

′, S[tst, t− 1])
8: if (di′,k′(h

′) == t and S[t] ̸= (i′, h′)) then
9: S[tst, t].ρ = S[tst, t].ρ+ 1
10: end if
11: end for
12: return S[tst, t]

Algorithm 10 Calculate Updated Slot Number(S̄[t], S[tst, t])

1: if (t = tst) then
2: S[tst, t].δ = 0
3: else
4: S[tst, t].δ = S[tst, t− 1]
5: end if
6: if (S̄[t] ̸= (i, h) and i ̸= −1) then
7: S[tst, t].δ = S[tst, t− 1].δ + 1
8: end if
9: return S[tst, t]

An astute reader may notice that we do not require S[tst, t
c
sw].δ ≤ ∆u in mDP.

Since the first β child schedules dropping the minimum number of packets for

188

slot t can be reserved, it is possible that the reserved schedules for t have already

updated nearly ∆u number of slots. Based on such reserved schedules, the child

schedules for slots t′ larger than tmay update more than ∆u slots. If mDP does not

accept a child schedule updating more than ∆u slots, probably no child schedule

can be generated in a time slot larger than t. Hence, we do not employ the

constraint S[tst, t
c
sw].δ ≤ ∆u in mDP. However, the reservation of child schedules

(Lines 22-31), updating set of parent schedules (Line 37), and selection of best

dynamic schedule (Line 39) still consider the numbers of updated slots in generated

child schedules. Furthermore, OLS-mDP ensures that dynamic schedule S[tst, t
c
sw]

returned by mDP satisfies S[tst, t
c
sw].δ ≤ ∆u by adjusting S[tst, t

c
sw] (Lines 13-15

of Algorithm 7).

6.7 Performance Evaluation

In this section, we evaluate the performance and efficiency of our mDP ap-

proach using generated task sets on a generated network topology. We start to

evaluate OLS-mDP by calibrating different numbers of reserved schedules, β’s,

and setting different switch point upper bounds tusw’s. Then, we select best pa-

rameters for OLS-mDP and compare the performance of OLS-mDP and another

efficient approach under different types of workloads. Finally, we apply OLS-mDP

on a real-world case study to show its effectiveness of our OLS-mDP approach.

6.7.1 Simulation Setup

There are 36 nodes in total deployed in a 6× 6 square mesh grid, as is shown

in Figure 6.4. The wireless network consists of gateway V35, 17 sensors and 18

actuators. Both sensors and actuators can serve as relay nodes. The wireless

189

V14 V22 V12 V26 V33 V1

V6 V20 V23 V17 V8 V29

V15 V34 V0 V2 V10

V28 V30 V19 V9 V24 V32

V16 V18 V11 V21 V25 V27

V7 V4 V5 V3 V31 V13

V35

Figure 6.4. Topology of wireless network used in the simulation, which is
composed of gateway V35, 17 sensors and 18 actuators, which are

represented as a square, solid circles and dashed circles, respectively. A
solid and dashed direct link serves the routing path from a sensor to the

gateway and from the gateway to an actuator, respectively.

network topology is a connected graph, i.e., the gateway Vg can reach any other

node in the graph. Each routing path from a sensor to the gateway or from the

gateway to an actuator is pre-determined. In Figure 6.4, a solid and dashed direct

link serves the routing path from a sensor to the gateway and from the gateway

to an actuator, respectively.

We use 20 groups of task sets to different types of WNCSs and each group

is labelled as “(n+1)-u”, where (n+1) represents the number of rhythmic and

190

periodic tasks while u is the utilization level
∑n+1

i=0
Hi

Pi
in a task set. We select

(n+1) to be 5, 10, 15 and 20 while assigning utilization levels to be 50%, 60%,

70%, 80% and 90%. The routing path of each rhythmic or periodic task is pre-

selected randomly such that each rhythmic or periodic task is composed of a chain

of 4 to 13 hops. We use UUnifast algorithm [22] to generate the initial period of

each task since UUnifast provides better control on how to assign periods to tasks

than a random assignment. The unit of period is one time slot, which represents 10

milliseconds. Similar to the WirelessHART protocol, we then adjust the generated

period to the closest value 2a (a ≤ 11) in order to limit the size of static schedule

S̄. Each task set is generated with the guarantee that the total utilization level

of task set is always equal to the specified utilization level. A static schedule

containing L slots is designed for each task set.

We compare OLS-mDP to another time slot assignment approach which also

uses the framework of OLS but employs a modified EDF to generate dynamic

schedules (called OLS-mEDF). For each tcsw in Γ(tusw), mEDF first uses On-Line

Distributed Algorithm (OLDA)3 to test the schedulability of Ω(tcsw). If Ω(tcsw)

is found to be unschedulable, some periodic packets are dropped to ensure the

schedulability of Ω(tcsw) by following packet drop policy MLET presented in the

work [65]. Then, mEDF applies EDF on Ω(tcsw) to generate a basic dynamic

schedule and an ordinary dynamic schedule for each tcsw. Although OLS-mEDF

is very efficient in generating dynamic schedules, mEDF ignores the constraint on

the maximum allowed number of updated slots. This may cause OLS-mEDF to

drop extra periodic packets to reduce the number of updated slots in Lines 13-15

of Algorithm 7.

3OLDA [65] is an on-line algorithm which combines local-deadline assignment with schedu-
lability analysis on the workload in a uniprocessor.

191

We implement OLS-mDP and OLS-mEDF in C++. Experimental data were

collected on a Sun Ultra 20 (x86-64) workstation with Red Hat Enterprise Linux

6.5. We compare the performance of both approaches using two metrics. The first

metric is the number of solved task sets by OLS-mDP and OLS-mEDF, and the

second metric is the average drop rate for the commonly solved task sets by both

approaches. The average drop rate is the ratio between the number of dropped

periodic packets and the number of periodic packets in Ω(tcsw). It is possible

that OLS-mDP and OLS-mEDF may not employ the same switch point for a

commonly solved task set. To ensure the fairness of comparison, we use the larger

one out of the two switch points selected by two approaches when calculating the

number of periodic packets in Ω(tcsw). Both metrics indicate the capability of both

approaches in responding to the external disturbances.

6.7.2 Parameter Selection for OLS-mDP

Since the performance of OLS-mDP depends on the parameters β and tusw, we

start by calibrating these parameters to fully exploit the potential of OLS-mDP

in reducing the number of periodic packets. As a starting point, we first test

OLS-mDP using different values (10, 20, 30, . . . , 100) for β while fixing ∆u and

tusw to +∞ and +∞, respectively. The numbers of dropped packets for groups of

5-task, 10-task, 15-task and 20-task sets are shown in Figures 6.5, 6.6, 6.7 and 6.8,

respectively. Our results show that increasing β can reduce the number of

dropped periodic packets initially. Then, the number of dropped packets fluctuates

for a while with the increasing of β, and finally rises abruptly when β increases to a

certain extent. Although the increasing of β may improve the performance of OLS-

mDP, it simultaneously results in a larger computational overhead for using each

192

switch point candidate. Thus, OLS-mDP may try fewer switch point candidates

within a maximum allowed running time Tmax and drops more packets. If no

ordinary schedule is found and Tmax is run out, a backup schedule for a specific

tcsw is used and all the periodic packets in Ω(tcsw) are dropped (see Section 6.5.2).

We observe that 90, 50, 50 and 40 are the best values of β which make OLS-

mDP drop the fewest number of packets for groups of 5-task, 10-task, 15-task and

20-task sets, respectively.

Next, we choose the value of tusw for OLS-mDP, which is expected to be as small

as possible without sacrificing the performance of OLS-mDP. This is because a

small tusw could reduce the computational workload of running OLS-mDP on the

gateway such that the gateway could perform other services. Since each switch

point candidate is a nominal release time of rhythmic packet in OLS-mDP, we can

calculate tusw as follows:

tusw = tr→n + (α− 1) · P0, (6.18)

where α ∈ N+ is called switch point scaling factor. By fixing β to the values

selected above, we measured the numbers of dropped packets under OLS-mDP

with different α values, 1 ≤ α ≤ 3, for all the groups of task sets, as is shown in

Figure 6.9. It is observed that increasing α from 1 to 2 and from 2 to 3 can reduce

the dropped packet number by 16% and 1% on average (56% and 9% at most),

respectively. Without sacrificing the performance of OLS-mDP, we set α to 2 to

reduce the computational workload on the gateway.

193

6.7.3 Performance of OLS-mDP against OLS-mEDF

We compared the performance of OLS-mDP with OLS-mEDF in terms of num-

ber of solved task sets and number of dropped packets while we employ different

values of ∆u. We set parameters β and α of OLS-mDP to the values selected

above for different groups of task sets. To ensure the fairness of comparison, we

also set α to 2 for OLS-mEDF. We assume that the payload size of packet in

the WNCS is 90 bytes, which is similar to WirelessHART. We can use 3 bytes

(24bits) to represent one updated slot when we use 13, 7 and 4 bits for specifying

a slot identifier, a task identifier and a hop index, respectively. Therefore, one

broadcast packet can accommodate information of at most 30 updated slots, i.e.,

∆u = 30. Suppose other advanced technology allows the payload size of packet in

the WNCS is 180 bytes. Then, we also consider the situation when ∆u is set to

60. Figures 6.10 and 6.11 show the numbers of solved task sets by OLS-mDP and

OLS-mEDF when ∆u is set to 30 and 60, respectively. It is found that OLS-mDP

can solve more task sets than OLS-mEDF by 41% and 11% on average (at most

108% and 31%) for ∆u = 30 and ∆u = 60, respectively. Out of 2000 task sets, 431

and 1765 task sets are solved by both OLS-mDP and OLS-mEDF for ∆u = 30

and ∆u = 60, respectively.

The average drop rates of periodic packets for commonly solved task sets by

both approaches are shown in Figure 6.12 and 6.13. It is observed that OLS-

mEDF drops more packets than OLS-mDP by 122% and 128% on average (at

most 321% and 263%) when setting ∆u to 30 and 60, respectively. Since more

updated slots can be tolerated in a dynamic schedule with the increasing of ∆u,

both approaches can find more task sets and drop fewer dropped packets. When

the number of rhythmic and periodic tasks is smaller, fewer updated slots will

194

be caused by mDP and mEDF. Hence, OLS can avoid dropping extra packets to

reduce the number of updated slots (Lines 13-15 of Algorithm 7) for more task

sets when ∆u is set to 60. Since EDF used in mEDF is optimal in terms of

meeting packet deadlines for the WNCS containing a single channel, mEDF may

drop more packets than mDP. Therefore, OLS-mEDF drops more packets than

OLS-mDP for task set groups 5-0.7 and 5-0.9 when ∆u is set to 60.

6.7.4 Case Study

Using a large number of randomly generated task sets, we have shown that

OLS-mDP outperforms OLS-mEDF for most of task sets. However, it is impor-

tant to validate the performance of OLS-mDP under real-world workload. In

this section, we compare OLS-mDP with OLS-mEDF in a bio-reactor application

presented in the Hart Communication Protocol WirelessHART Device Specifica-

tion [1]. The bio-reactor application is composed of 10 periodic tasks measuring

physical conditions, 5 periodic tasks actuating regulating valves and 3 aperiodic

tasks actuating blocking valves. Tasks are either assigned periods or average re-

sponse times in the specification. We assume that periods are equal to relative

deadlines. To improve the performance of the application, we change the 3 ape-

riodic tasks to be periodic tasks and set their periods to half of their average

response times. We also add a broadcast task to the bio-reactor application such

that the dynamic schedule can be broadcast to all the nodes in the WNCS. Sup-

pose that the bio-reactor application is running in the 6×6 square mesh presented

in Section 6.7.1. The routing path of each rhythmic or periodic task is randomly

selected, which is composed of 1 to 6 hops. In addition, a static schedule is

generated off-line for the WNCS.

195

Assume that the rhythmic task is in the nominal state and the WNCS fol-

lows the static schedule from time slot 0. Suppose at time slot 1600, rhythmic

task enters the rhythmic state and employs the following vectors of periods and

deadlines,

P⃗0 = D⃗0 = [6, 12, 25, 50, 100, 150, 200, 400, 600, 800]T . (6.19)

When setting ∆u to 30, OLS-mEDF cannot find a solution. In contrast, OLS-

mDP only drops 5 periodic packets out of 510 periodic packets. When we increase

∆u to 60, OLS-mDP and OLS-mEDF drops 7 and 1 packets out of 512 periodic

packets, respectively.

196

40
60
80

100
120
140
160
180
200
220
240
260
280
300
320
340
360
380
400

10 20 30 40 50 60 70 80 90 100

N
u

m
b

e
r

o
f

D
ro

p
p

e
d

 P
a

ck
e

ts

Number of Reserved Schedules β

5-0.5 5-0.6 5-0.7 5-0.8 5-0.9

Figure 6.5. Number of dropped periodic packets in different groups of
5-task sets under OLS-mDP with different β values.

100
130
160
190
220
250
280
310
340
370
400
430
460
490
520
550
580

10 20 30 40 50 60 70 80 90 100

N
u

m
b

e
r

o
f

D
ro

p
p

e
d

 P
a

ck
e

ts

Number of Reserved Schedules β

10-0.5 10-0.6 10-0.7 10-0.8 10-0.9

Figure 6.6. Number of dropped periodic packets in different groups of
10-task sets under OLS-mDP with different β values.

197

210

250

290

330

370

410

450

490

530

570

610

10 20 30 40 50 60 70 80 90 100

N
u

m
b

e
r

o
f

D
ro

p
p

e
d

 P
a

ck
e

ts

Number of Reserved Schedules β

15-0.5 15-0.6 15-0.7 15-0.8 15-0.9

Figure 6.7. Number of dropped periodic packets in different groups of
15-task sets under OLS-mDP with different β values.

280
300
320
340
360
380
400
420
440
460
480
500
520
540
560
580
600
620
640

10 20 30 40 50 60 70 80 90 100

N
u

m
b

e
r

o
f

D
ro

p
p

e
d

 P
a

ck
e

ts

Number of Reserved Schedules β

20-0.5 20-0.6 20-0.7 20-0.8 20-0.9

Figure 6.8. Number of dropped periodic packets in different groups of
20-task sets under OLS-mDP with different β values.

198

40

110

180

250

320

390

460

530

600

670

5
-0

.5

5
-0

.6

5
-0

.7

5
-0

.8

5
-0

.9

1
0

-0
.5

1
0

-0
.6

1
0

-0
.7

1
0

-0
.8

1
0

-0
.9

1
5

-0
.5

1
5

-0
.6

1
5

-0
.7

1
5

-0
.8

1
5

-0
.9

2
0

-0
.5

2
0

-0
.6

2
0

-0
.7

2
0

-0
.8

2
0

-0
.9

N
u

m
b

e
r

o
f

D
ro

p
p

e
d

 P
a

ck
e

ts

Task Sets

α=1 α=2 α=3

Figure 6.9. Number of dropped periodic packets in different groups of
sets under OLS-mDP with different α values.

0

10

20

30

40

50

60

5
-0

.5

5
-0

.6

5
-0

.7

5
-0

.8

5
-0

.9

1
0

-0
.5

1
0

-0
.6

1
0

-0
.7

1
0

-0
.8

1
0

-0
.9

1
5

-0
.5

1
5

-0
.6

1
5

-0
.7

1
5

-0
.8

1
5

-0
.9

2
0

-0
.5

2
0

-0
.6

2
0

-0
.7

2
0

-0
.8

2
0

-0
.9

N
u

m
b

e
r
 o

f
S

o
lv

e
d

 T
a

s
k

 S
e

t
s

Task Set

OLS-mDP OLS-mEDF

∆u=30

Figure 6.10. Number of solved task sets by OLS-mDP and OLS-mEDF
with ∆u equal to 30.

199

70

75

80

85

90

95

100

5
-0

.5

5
-0

.6

5
-0

.7

5
-0

.8

5
-0

.9

1
0

-0
.5

1
0

-0
.6

1
0

-0
.7

1
0

-0
.8

1
0

-0
.9

1
5

-0
.5

1
5

-0
.6

1
5

-0
.7

1
5

-0
.8

1
5

-0
.9

2
0

-0
.5

2
0

-0
.6

2
0

-0
.7

2
0

-0
.8

2
0

-0
.9

N
u

m
b

e
r
 o

f
S

o
lv

e
d

 T
a

s
k

 S
e

t
s

Task Set

OLS-mDP OLS-mEDF

∆u=60

Figure 6.11. Number of solved task sets by OLS-mDP and OLS-mEDF
with ∆u equal to 60.

0

5

10

15

20

25

30

5
-0

.5

5
-0

.6

5
-0

.7

5
-0

.8

5
-0

.9

1
0

-0
.5

1
0

-0
.6

1
0

-0
.7

1
0

-0
.8

1
0

-0
.9

1
5

-0
.5

1
5

-0
.6

1
5

-0
.7

1
5

-0
.8

1
5

-0
.9

2
0

-0
.5

2
0

-0
.6

2
0

-0
.7

2
0

-0
.8

2
0

-0
.9

A
v

e
ra

g
e

 D
ro

p
 R

a
te

 (
%

)

Task Set

OLS-mDP OLS-mEDF

∆u=30

Figure 6.12. Average drop rates of dropped periodic packets for
commonly solved task sets by OLS-mDP and OLS-mEDF with ∆u equal

to 30.

200

2

4

6

8

10

12

14

5
-0

.5

5
-0

.6

5
-0

.7

5
-0

.8

5
-0

.9

1
0

-0
.5

1
0

-0
.6

1
0

-0
.7

1
0

-0
.8

1
0

-0
.9

1
5

-0
.5

1
5

-0
.6

1
5

-0
.7

1
5

-0
.8

1
5

-0
.9

2
0

-0
.5

2
0

-0
.6

2
0

-0
.7

2
0

-0
.8

2
0

-0
.9

A
v

e
ra

g
e

 D
ro

p
 R

a
te

 (
%

)

Task Set

OLS-mDP OLS-mEDF

∆u=60

Figure 6.13. Average drop rates of dropped periodic packets for
commonly solved task sets by OLS-mDP and OLS-mEDF with ∆u equal

to 60.

201

BIBLIOGRAPHY

1. Hart communication protocol wirelesshart device specification hcf spec-290,

revision 1.1. May 2008.

2. ISA100. http://www.isa.org/isa100.

3. http://lpsolve.sourceforge.net/5.5/.

4. M. Z. and E. Modiano. A calculus approach to energy-efficient data trans-

mission with quality-of-service constraints. In IEEE/ACM Transactions on

Networking, volume 17, 2009.

5. R. Agarwal and A. Goldsmith. Joint rate allocation and routing for multi-hop

wireless networks with delay-constrained data. In Technical Report, Wireless

Systems Lab, Stanford University, 2004.

6. Ahmed Rahni, Emmanuel Grolleau, and Michael Richard. Feasibility Analy-

sis of Non-Concrete Real-Time Transactions With EDF Assignment priority.

In 16th International Conference on Real-Time and Network Systems, pages

109–117, Oct. 2008.

7. P. Albertos, A. Crespo, I. Ripoll, M. Valles, and P. Balbastre. Rt control

scheduling to reduce control performance degrading. In Proceedings of the

39th IEEE Conference on Decision and Control, volume 5, pages 4889–4894,

2000.

202

8. A. Antunes and A. Mota. Improving control loop performance using dy-

namic rate adaptation in networked control systems. In Proceedings of the

14th IEEE international conference on Emerging technologies & factory au-

tomation, pages 1507–1510, 2009.

9. J. Bai, E. Eyisi, Y. Xue, and X. Koutsoukos. Distributed sampling rate

adaptation for networked control systems. In IEEE Conference on Computer

Communications Workshops (INFOCOM WKSHPS), pages 768–773, April

2011.

10. J. Bai, E. Eyisi, F. Qiu, Y. Xue, and X. D. Koutsoukos. Optimal cross-layer

design of sampling rate adaptation and network scheduling for wireless net-

worked control systems. In 2012 IEEE/ACM Third International Conference

on Cyber-Physical Systems (ICCPS), pages 107–116, April 2012.

11. P. Balbastre, I. Ripoll, and A. Crespo. Control tasks delay reduction under

static and dynamic scheduling policies. In Proceedings. of Seventh Interna-

tional Conference on Real-Time Computing Systems and Applications, page

522, 2000.

12. P. Balbastre, I. Ripoll, J. Vidal, and A. Crespo. A task model to reduce

control delays. In Real-Time Systems, volume 27, pages 215–236, Sept. 2004.

13. P. Balbastre, I. Ripoll, and A. Crespo. Optimal deadline assignment for

periodic real-time tasks in dynamic priority systems. In 18th Euromicro

Conference on Real-Time Systems, pages 65–74, 2006.

14. P. Balbastre, I. Ripoll, and A. Crespo. Minimum deadline calculation for

203

periodic real-time tasks in dynamic priority systems. In IEEE Transactions

on Computers, volume 57, 2008.

15. S. Baruah and A. Burns. Sustainable scheduling analysis. In 27th IEEE

International Real-Time Systems Symposium, 2006.

16. S. K. Baruah. Dynamic- and static-priority scheduling of recurring real-time

tasks. In Real-Time Systems, volume 24, pages 93–128, Jan 2003.

17. S. K. Baruah, L. E. Rosier, and R. R. Howell. Algorithms and complexity

concerning the preemptive scheduling of periodic, real-time tasks on one

processor. In Real-Time Systems, volume 2, pages 301–324, Oct. 1990.

18. M. Behnam. Flexible scheduling for real time control systems based on jitter

margin. In Master Thesis, Malardalen Research and Technology Center,

Malardalen University, 2005.

19. M. Behnam and D. Isovic. Real-time control and scheduling co-design for

efficient jitter handling. In 13th IEEE International Conference on Embedded

and Real-Time Computing Systems and Applications, 2007.

20. R. Bettati and J. W.-S. Liu. End-to-end scheduling to meet deadlines in

distributed systems. In Proceedings of the 12th International Conference on

Distributed Computing Systems,, pages 452–459, June 1992.

21. E. Bini and G. Buttazzo. The space of edf deadlines: the exact region and a

convex approximation. In Real-Time Systems, volume 41, 2009.

22. E. Bini and G. C. Buttazzo. Biasing effects in schedulability measures. In

Proceedings of the 16th Euromicro Conference on Real-Time Systems, pages

196–203, July 2004.

204

23. E. Bini. and A. Cervin. Delay-aware period assignment in control systems.

In Real-Time Systems Symposium, 2008.

24. B. D. Bui, R. Pellizzoni, M. Caccamo, C. F. Cheah, and A. Tzakis. Soft real-

time chains for multi-hop wireless ad-hoc networks. In Proceedings of the 13th

IEEE Real Time and Embedded Technology and Applications Symposium,

RTAS ’07, pages 69–80, 2007.

25. G. Buttazzo and L. Abeni. Adaptive workload management through elastic

scheduling. In Real-Time Systems, volume 23, pages 7–24, 2002.

26. G. Buttazzo and A. Cervin. Comparative assessment and evaluation of jitter

control methods. In Proc. of 15th International Conference on Real-Time

and Network Systems, 2007.

27. G. Buttazzo, E. Bini, and Y. Wu. Partitioning parallel applications on mul-

tiprocessor reservations. In Proceedings of the 22nd Euromicro Conference

on Real-Time Systems, pages 24–33, July 2010.

28. G. Buttazzo, E. Bini, and D. Buttle. Rate-adaptive tasks: Model, analysis,

and design issues. In Design, Automation and Test in Europe Conference

and Exhibition (DATE), 2014, pages 1–6, March 2014.

29. G. C. Buttazzo. Hard real-time computing systems: Predictable scheduling

algorithms and applications. Springer, 2005.

30. S. Cavalieri. Meeting real-time constraints in CAN. In IEEE Transactions

on Industrial Informatics, volume 1, pages 124–135, May 2005.

31. A. Cervin. Integrated control and real-time scheduling. In PHD Thesis,

Department of Automatic Control, Lund Institute of Technology, 2003.

205

32. A. Cervin and B. Lincoln. Jitterbug 1.21 reference manual. Feb. 2006.

33. A. Cervin, B. Lincoln, J. Eker, K.-E. Arzen, and G. Buttazzo. The jitter

margin and its application in the design of real-time control systems. In Pro-

ceedings of the 10th International Conference on Real-Time and Embedded

Computing Systems and Applications, Aug. 2004.

34. T. Chantem, X. S. Hu, and M. Lemmon. Generalized elastic scheduling for

real-time tasks. In IEEE Transactions on Computers, volume 58, 2009.

35. S. Chatterjee and J. Strosnider. Distributed pipeline scheduling: A frame-

work for distributed, heterogeneous real-time system design. In The Com-

puter Journal, volume 38, pages 271–285, 1995.

36. D. Chen, M. Nixon, and A. Mok. WirelessHART: Real-Time Mesh Net-

work for Industrial Automation. Springer Publishing Company, Incorpo-

rated, 2010.

37. W. Chen, M. Neely, and U. Mitra. Energy-efficient transmissions with in-

dividual packet delay constraints. In IEEE Transactions on Information

Theory, volume 54, 2008.

38. W.-P. Chen, J. Hou, L. Sha, and M. Caccamo. A distributer, energy-aware,

utility-based approach for data transport in wireless sensor networks. In

Military Communications Conference, volume 3, pages 1761–1767, Oct. 2005.

39. H. Chetto and M. Chetto. Scheduling periodic and sporadic tasks in a real-

time system. In Information Processing Letters, volume 30, pages 177–184,

Feb. 1989.

206

40. H. Chetto, M. Silly, and T. Bouchentouf. Dynamic scheduling of real-time

tasks under precedence constraints. In Real-Time Systems, volume 2, pages

181–194, Sept. 1990.

41. O. Chipara, C. Lu, and J. A. Stankovic. Dynamic conflict-free query schedul-

ing for wireless sensor networks. pages 321–331, 2006.

42. O. Chipara, C. Lu, and G.-C. Roman. Real-time query scheduling for wireless

sensor networks. In RTSS, pages 389–399, 2007.

43. O. Chipara, C. Wu, C. Lu, and W. G. Griswold. Interference-aware real-time

flow scheduling for wireless sensor networks. In ECRTS, pages 67–77, 2011.

44. T. Chiueh, R. Krishnan, P. De, and J.-H. Chiang. A networked robot system

for wireless network emulation. In Proceedings of the 1st International Con-

ference on Robot Communication and Coordination, RoboComm ’07, 2007.

45. T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to

algorithms. The MIT Press, 2002.

46. T. L. Crenshaw, S. Hoke, A. Tirumala, and M. Caccamo. ACM Trans.

Embed. Comput. Syst., 6(4), Sept. 2007.

47. A. Crespo, I. Ripoll, and P. Albertos. Reducing delays in rt control: The

control action interval, decision and control. In The International Federation

of Automatic Control, November 1999.

48. A. Davare, Q. Zhu, M. D. Natale, C. Pinello, S. Kanajan, and A. Sangiovanni-

Vincentelli. Period optimization for hard real-time distributed automotive

systems. In Proceedings of the 44th annual Design Automation Conference,

pages 278–283, June 2007.

207

49. R. P. Dick, D. L. Rhodes, and W. Wolf. TGFF: task graphs for free. In Pro-

ceedings of the Sixth International Workshop on Hardware/Software Code-

sign, pages 97–101, Mar. 1998.

50. T. Facchinetti and M. D. Vedova. Real-time modeling for direct load con-

trol in cyber-physical power systems. In IEEE Transactions on Industrial

Informatics, volume 7, pages 689–698, Nov. 2011.

51. G. Fiore, V. Ercoli, A. Isaksson, K. Landernas, and M. D. Benedetto. Multi-

hop multi-channel scheduling for wireless control in WirelessHART networks.

In IEEE Conference on Emerging Technologies Factory Automation, pages

1–8, Sept. 2009.

52. D. Fontanelli, L. Greco, and A. Bicchi. Anytime control algorithms for em-

bedded real-time systems. In Proceedings of the 11th international workshop

on Hybrid Systems: Computation and Control, 2008.

53. A. Fu, E. Modiano, and J. Tsitsiklis. Optimal energy allocation for delay-

constrained data transmission over a time-varying channel. In Twenty-Second

Annual Joint Conference of the IEEE Computer and Communications, 2003.

54. A. E. Gamal, C. Nair, B. Prabhakar, E. Uysal-Biyikoglu, and S. Zahedi.

Energy-efficient scheduling of packet transmissions over wireless networks. In

Proceedings of Twenty-First Annual Joint Conference of the IEEE Computer

and Communications Societies, volume 3, 2002.

55. M. S. Gast. 802.11@wireless networks: The definitive guide creating and

administering wireless networks. In O’REILLY, 2002.

208

56. K. Gatsis, A. Ribeiro, and G. Pappas. Optimal power management in wireless

control systems. In American Control Conference (ACC), 2013, pages 1562–

1569, June 2013.

57. S. Gopalakrishnan, L. Sha, and M. Caccamo. Hard real-time communication

in bus-based networks. In Proceedings. of 25th IEEE International Real-Time

Systems Symposium, pages 405–414, Dec. 2004.

58. R. Gupta and M.-Y. Chow. IEEE Transactions on Industrial Electronics, 57

(7):2527–2535, 2010.

59. A. Hagiescu, U. D. Bordoloi, S. Chakraborty, P. Sampath, P. V. V. Ganesan,

and S. Ramesh. Performance analysis of FlexRay-based ECU networks. In

Proceedings of the 44th annual Design Automation Conference, pages 284–

289, June 2007.

60. S. Han, X. Zhu, A. Mok, D. Chen, and M. Nixon. Reliable and real-time

communication in industrial wireless mesh networks. In 2011 17th IEEE

Real-Time and Embedded Technology and Applications Symposium (RTAS),

pages 3–12, April 2011.

61. J. Hatcliff, A. L. King, I. Lee, A. Macdonald, A. Fernando, M. Robkin,

E. Y. Vasserman, S. Weininger, and J. M. Goldman. Rationale and architec-

ture principles for medical application platforms. In 2012 IEEE/ACM Third

International Conference on Cyber-Physical Systems (ICCPS), pages 3–12,

April 2012.

62. W. Hawkins and T. Abdelzaher. Towards feasible region calculus: An end-to-

end schedulability analysis of real-time multistage execution. In Proceedings

209

of the 26th IEEE International Real-Time Systems Symposium, pages 75–86,

Dec. 2005.

63. X. Hei, X. Du, S. Lin, and I. Lee. Pipac: Patient infusion pattern based

access control scheme for wireless insulin pump system. In INFOCOM, 2013

Proceedings IEEE, pages 3030–3038, April 2013.

64. H. Hoang, G. Buttazzo, M. Jonsson, and S. Karlsson. Computing the min-

imum edf feasible deadline in periodic systems. In Proceedings. 12th IEEE

International Conference on Embedded and Real-Time Computing Systems

and Applications, pages 125–134, 2006.

65. S. Hong, T. Chantem, and X. S. Hu. Meeting end-to-end deadlines through

distributed local deadline assignments. In 2011 IEEE 32nd Real-Time Sys-

tems Symposium (RTSS), pages 183–192, Dec. 2011.

66. T. Horvath, T. Abdelzaher, K. Skadron, and X. Liu. Dynamic voltage scaling

in multitier web servers with end-to-end delay control. In IEEE Transactions

on Computers, volume 56, pages 444–458, April 2007.

67. B. Hu and M. D. Lemmon. Using channel state feedback to achieve resilience

to deep fades in wireless networked control systems. In Proceedings of the

2Nd ACM International Conference on High Confidence Networked Systems,

HiCoNS ’13, pages 41–48, 2013.

68. S. Hua, G. Qu, and S. S. Bhattacharyya. ACM Trans. Embed. Comput. Syst.,

6(3), July 2007.

69. O. Imer and T. Basar. To measure or to control: Optimal control with sched-

uled measurements and controls. In American Control Conference, 2006.

210

70. P. Jayachandran and T. Abdelzaher. Transforming distributed acyclic sys-

tems into equivalent uniprocessors under preemptive and non-preemptive

scheduling. In Proceedings of the 20nd Euromicro Conference on Real-Time

Systems, pages 233–242, July 2008.

71. P. Jayachandran and T. Abdelzaher. End-to-end delay analysis of distributed

systems with cycles in the task graph. In Proceedings of the 21st Euromicro

Conference on Real-Time Systems, pages 13–22, July 2009.

72. P. Jayachandran and T. Abdelzaher. Bandwidth allocation for elastic real-

time flows in multihop wireless networks based on network utility maxi-

mization. In The 28th International Conference on Distributed Computing

Systems, pages 849–857, June 2008.

73. P. Jayachandran and T. Abdelzaher. Delay composition in preemptive and

non-preemptive real-time pipelines. In Real-Time Systems, volume 40, pages

290–320, Dec. 2008.

74. R. Jejurikar and R. Gupta. Energy-aware task scheduling with task syn-

chronization for embedded real-time systems. In IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, volume 25, 2006.

75. Y. Jiang and A. Striegel. An exploration of the effects of state granularity

through (m, k) real-time streams. In IEEE Transactions on Computers,

volume 58, pages 784–798, June 2009.

76. J. Jonsson and K. G. Shin. Robust adaptive metrics for deadline assignment

in distributed hard real-time systems. In Real-Time Systems, volume 23,

pages 239–271, Nov. 2002.

211

77. V. M. Karbhari and F. Ansari. Structural health monitoring of civil infras-

tructure systems. CRC Press, 2009.

78. M. Khojastepour and A. Sabharwal. Delay-constrained scheduling: power

efficiency, filter design, and bounds. In Twenty-third AnnualJoint Conference

of the IEEE Computer and Communications Societies, volume 3, 2004.

79. A. Kim, F. Hekland, S. Petersen, and P. Doyle. When hart goes wireless:

Understanding and implementing the wirelessHART standard. In IEEE In-

ternational Conference on Emerging Technologies and Factory Automation,

pages 899–907, Sept. 2008.

80. H. Kim and K. G. Shin. Scheduling of battery charge, discharge, and rest.

In IEEE Real-Time Systems Symposium, pages 13–22, Dec 2009.

81. J. Kim, K. Lakshmanan, and R. Rajkumar. Rhythmic tasks: A new

task model with continually varying periods for cyber-physical systems. In

IEEE/ACM Third International Conference on Cyber-Physical Systems (IC-

CPS), pages 55–64, April 2012.

82. N. Kim, M. Ryu, S. Hong, M. Saksena, C.-H. Choi, and H. Shin. Visual

assessment of a real-time system design: a case study on a cnc controller. In

17th IEEE Real-Time Systems Symposium, pages 300 –310, Dec 1996.

83. T. Kim, H. Shin, and N. Chang. Deadline assignment to reduce output jitter

of real-time tasks. In Proceedings of The 16th IFAC Workshop on Distributed

Computer Control Systems (DCCS), November 2000.

84. H. Kopetz. Real-time systems design principles for distributed embedded

applications. Springer, 2011.

212

85. G. Kulkarni, V. Raghunathan, and M. Srivastava. Joint end-to-end schedul-

ing, power control and rate control in multi-hop wireless networks. In Global

Telecommunications Conference, volume 5, pages 3357–3362, Nov.-3 Dec.

2004.

86. W.-C. Kwon and T. Kim. Optimal voltage allocation techniques for dy-

namically variable voltage processors. In ACM Transactions on Embedded

Computing Systems, volume 4, 2005.

87. J. Lee, I. Shin, and A. Easwaran. Journal of Systems and Software, 85(10):

2331–2339, 2012.

88. M. Lemmon and X. S. Hu. Almost sure stability of networked control systems

under exponentially bounded bursts of dropouts. In Proceedings of the 14th

international conference on Hybrid systems: computation and control, pages

301–310, 2011.

89. F. Leonardi, A. Pinto, and L. P. Carloni. Synthesis of distributed execution

platforms for cyber-physical systems with applications to high-performance

buildings. In 2011 IEEE/ACM International Conference on Cyber-Physical

Systems (ICCPS), pages 215–224, April 2011.

90. H. Li, P. Shenoy, and K. Ramamritham. Scheduling messages with dead-

lines in multi-hop real-time sensor networks. In 11th IEEE Real Time and

Embedded Technology and Applications Symposium, pages 415–425, March

2005.

91. L. Li and M. Lemmon. Performance and average sampling period of

sub-optimal triggering event in event triggered state estimation. In 50th

213

IEEE Conference on Decision and Control and European Control Confer-

ence (CDC-ECC), pages 1656–1661, Dec. 2011.

92. L. Li, B. Hu, and M. Lemmon. Resilient event triggered systems with limited

communication. In Decision and Control (CDC), 2012 IEEE 51st Annual

Conference on, pages 6577–6582, Dec 2012.

93. M. Li and F. F. Yao. An efficient algorithm for computing optimal discrete

voltage schedules. In Journal SIAM Journal on Computing, volume 35, 2005.

94. C. Lin, T. Kaldewey, A. Povzner, and S. A. Brandt. Diverse soft real-time

processing in an integrated system. In 27th IEEE International Real-Time

Systems Symposium, 2006., pages 369–378, Dec. 2006.

95. B. Lincoln and A. Cervin. Jitterbug: a tool for analysis of real-time control

performance. In Proceedings of the 41st IEEE Conference on Decision and

Control, volume 2, pages 1319–1324, Dec. 2002.

96. Q. Ling and M. Lemmon. Input-to-state stabilizability of quantized linear

control systems under feedback dropouts. In American Control Conference

(ACC), pages 241–246, June 30-July 2, 2010 2010.

97. Q. Ling and M. D. Lemmon. A necessary and sufficient feedback dropout

condition to stabilize quantized linear control systems with bounded noise.

In IEEE Transactions on Automatic Control, volume 55, pages 2590–2596,

2010.

98. C. Liu and J. Anderson. Supporting graph-based real-time applications in

distributed systems. In IEEE 17th International Conference on Embedded

214

and Real-Time Computing Systems and Applications (RTCSA), pages 143–

152, Aug. 2011.

99. C. L. Liu and J. W. Layland. Scheduling algorithms for multiprogramming

in a hard-real-time environment. In Journal of the ACM, volume 20, pages

46–61, Jan. 1973.

100. D. Liu, X. S. Hu, M. D. Lemmon, and Q. Ling. Firm real-time system

scheduling based on a novel qos constraint. In IEEE Transactons on Com-

puters, volume 55, pages 320–333, 2006.

101. J. W. Liu. Real-time systems. Prentice Hall, 2000.

102. M. Lluesma, A. Cervin, P. Balbastre, I. Ripoll, and A. Crespo. Jitter evalu-

ation of real-time control systems. In Proceedings. 12th IEEE International

Conference on Embedded and Real-Time Computing Systems and Applica-

tions, pages 257–260, 2006.

103. G. Loandpez, V. Custodio, and J. Moreno. Lobin: E-textile and wireless-

sensor-network-based platform for healthcare monitoring in future hospi-

tal environments. In IEEE Transactions on Information Technology in

Biomedicine, volume 14, 2010.

104. C. Locke, D. Vogel, and T. Mesler. Building a predictable avionics platform in

ada: a case study. In Proceedings. of Twelfth Real-Time Systems Symposium,

pages 181–189, Dec 1991.

105. W.-J. Ma and V. Gupta. Input-to-state stability of hybrid systems with re-

ceding horizon control in the presence of unreliable network packet dropouts.

In American Control Conference (ACC), pages 1243–1247, June 2012.

215

106. S. Manolache, P. Eles, and Z. Peng. Optimization of soft real-time systems

with deadline miss ratio constraints. In 10th IEEE Real-Time and Embedded

Technology and Applications Symposium., May 2004.

107. S. Manolache, P. Eles, and Z. Peng. Task mapping and priority assign-

ment for soft real-time applications under deadline miss ratio constraints. In

Transactions on Embedded Computing Systems, volume 7, January 2008.

108. J. Mao, C. G. Cassandras, and Q. Zhao. Optimal dynamic voltage scaling in

energy-limited nonpreemptive systems with real-time constraints. In IEEE

Transactions on Mobile Computing, 2007.

109. D. Marinca, P. Minet, and L. George. Analysis of deadline assignment meth-

ods in distributed real-time systems. In Computer Communications, vol-

ume 27, pages 1412–1423, June 2004.

110. S. Matic and T. Henzinger. Trading end-to-end latency for composability. In

Proceedings of the 26th IEEE International Real-Time Systems Symposium,

pages 99–110, Dec. 2005.

111. S. K. Mazumder. Wireless networking based control. Springer New York,

2011.

112. L. Miao and C. G. Cassandras. Optimal transmission scheduling for energy-

efficient wireless networks. In 25th IEEE International Conference on Com-

puter Communications, 2006.

113. P. Naghshtabrizi and J. P. Hespanha. Implementation considerations for

wireless networked control systems. In Wireless Network Based Control,

pages 1–27. Springer, 2011.

216

114. S. G. Nash and A. Sofer. Linear and nonlinear programming. McGraw-Hill,

1996.

115. L. Niu and G. Quan. A hybrid static/dynamic dvs scheduling for real-time

systems with (m, k)-guarantee. In 26th IEEE International Real-Time Sys-

tems Symposium, 2005. RTSS 2005., pages 356–365, Dec. 2005.

116. M. Nixon, D. Chen, T. Blevins, and A. Mok. Meeting control performance

over a wireless mesh network. In IEEE International Conference on Automa-

tion Science and Engineering, pages 540–547, Aug. 2008.

117. M. Pajic, S. Sundaram, G. J. Pappas, and R. Mangharam. IEEE Trans.

Automat. Contr., 56(10):2305–2318, 2011.

118. J. Palencia and M. G. Harbour. Offset-based response time analysis of dis-

tributed systems scheduled under EDF. In Proceedings of the 15th Euromicro

Conference on Real-Time Systems, pages 3–12, July 2003.

119. P. Park and C. Tomlin. Investigating communication infrastructure of next

generation air traffic management. In Proceedings of the 2012 IEEE/ACM

Third International Conference on Cyber-Physical Systems, pages 35–44,

April 2012.

120. P. Pillai and K. G. Shin. Real-time dynamic voltage scaling for low-power

embedded operating systems. In Proceedings of the eighteenth ACM sympo-

sium on Operating systems principles, SOSP ’01, pages 89–102, 2001.

121. B. Prabhakar, E. U. Biyikoglu, and A. E. Gamal. Energy-efficient trans-

mission over a wireless link via lazy packet scheduling. In Proceedings. of

217

Twentieth Annual Joint Conference of the IEEE Computer and Communi-

cations Societies, volume 1, 2001.

122. Z. Qin, Q. Li, and M.-C. Chuah. Unidentifiable attacks in electric power sys-

tems. In Proceedings of the 2012 IEEE/ACM Third International Conference

on Cyber-Physical Systems, pages 193–202, April 2012.

123. D. Quevedo and D. Nesic. Input-to-state stability of packetized predictive

control over unreliable networks affected by packet-dropouts. In IEEE Trans-

actions on Automatic Control, volume 56, pages 370–375, Feb. 2011.

124. R. Rajkumar, I. Lee, L. Sha, and J. Stankovic. Cyber-physical systems: The

next computing revolution. In Proceedings of Design Automation Conference,

pages 731–736, June 2010.

125. M. Saad, A. Leon-Garcia, and W. Yu. Optimal network rate allocation

under end-to-end quality-of-service requirements. In IEEE Transactions on

Network and Service Management, volume 4, pages 40–49, Dec. 2007.

126. A. Saifullah, Y. Xu, C. Lu, and Y. Chen. Real-time scheduling for wire-

lessHART networks. In 2010 IEEE 31st Real-Time Systems Symposium

(RTSS), pages 150–159, Nov. 30-Dec. 3 2010.

127. A. Saifullah, Y. Xu, C. Lu, and Y. Chen. Priority assignment for real-time

flows in WirelessHART networks. In 23rd Euromicro Conference on Real-

Time Systems (ECRTS), pages 35–44, July 2011.

128. A. Saifullah, Y. Xu, C. Lu, and Y. Chen. End-to-end delay analysis for

fixed priority scheduling in wirelessHART networks. In 2011 17th IEEE

218

Real-Time and Embedded Technology and Applications Symposium (RTAS),

pages 13–22, April 2011.

129. S. Samii, P. Eles, Z. Peng, and A. Cervin. Quality-driven synthesis of embed-

ded multi-mode control systems. In Proceedings of the 46th Annual Design

Automation Conference, pages 864–869, July 2009.

130. J. Schlick. Cyber-physical systems in factory automation - towards the 4th

industrial revolution. In 2012 9th IEEE International Workshop on Factory

Communication Systems (WFCS), page 55, May 2012.

131. N. Serreli and E. Bini. Deadline assignment for component-based analysis

of real-time transactions. In 2nd Workshop on Compositional Real-Time

Systems, Dec. 2009.

132. N. Serreli, G. Lipari, and E. Bini. The distributed deadline synchronization

protocol for real-time systems scheduled by EDF. In IEEE Conference on

Emerging Technologies and Factory Automation (ETFA), pages 1–8, Sept.

2010.

133. M. Sha, R. Dor, G. Hackmann, C. Lu, T.-S. Kim, and T. Park. Self-adapting

mac layer for wireless sensor networks. In IEEE 34th Real-Time Systems

Symposium (RTSS), pages 192–201, 2013.

134. W. Shen, T. Zhang, M. Gidlund, and F. Dobslaw. Wireless Networks, 19(6):

1155–1170, 2013.

135. C.-S. Shih and J. W. S. Liu. State-dependent deadline scheduling. In 23rd

IEEE Real-Time Systems Symposium, pages 3–14, 2002.

219

136. S. Shih and S. Liu. Acquiring and incorporating state-dependent timing

requirements. In Proceedings. 11th IEEE International Requirements Engi-

neering Conference, volume 9, pages 121–131, 2004.

137. D. Shin, J. Kim, and S. Lee. Intra-task voltage scheduling for low-energy,

hard real-time applications. In IEEE Design Test of Computers, volume 18,

pages 20–30, 2001.

138. P. Soldati, H. Zhang, and M. Johansson. Deadline-constrained transmission

scheduling and data evacuation in wirelesshart networks. In proceeding of

the 10th European Control Conference (ECC), 2009.

139. J. Song, S. Han, A. K. Mok, D. Chen, M. Lucas, M. Nixon, and W. Pratt.

WirelessHART: Applying wireless technology in real-time industrial process

control. In Real-Time and Embedded Technology and Applications Sympo-

sium, 2008.

140. W.-Z. Song, R. Huang, M. Xu, B. Shirazi, and R. LaHusen. Design and

deployment of sensor network for real-time high-fidelity volcano monitoring.

In IEEE Transactions on Parallel and Distributed Systems, volume 21, 2010.

141. M. Spuri. Analysis of deadline scheduled real-time systems. In Technical

Report, INRIA, 1996.

142. P. Tabuada. Event-triggered real-time scheduling of stabilizing control tasks.

In IEEE Transactions on Automatic Control, volume 52, pages 1680–1685,

Sept. 2007.

143. J. Tang, G. Xue, C. Chandler, and W. Zhang. Link scheduling with power

220

control for throughput enhancement in multihop wireless networks. In IEEE

Transactions on Vehicular Technology, volume 55, pages 733–742, May 2006.

144. A. Tarello, J. Sun, M. Zafer, and E. Modiano. Minimum energy transmission

scheduling subject to deadline constraints. In Third International Symposium

on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks,

2005.

145. K. W. Tindell, A. Burns, and A. J. Wellings. Allocating hard real-time

tasks: an NP-hard problem made easy. In Real-Time Systems, volume 4,

pages 145–165, May 1992.

146. Y.-H. Wei, Q. Leng, S. Han, A. K. Mok, W. Zhang, and M. Tomizuka.

RT-WiFi: Real-time high-speed communication protocol for wireless cyber-

physical control applications. In 2013 IEEE 34th Real-Time Systems Sym-

posium (RTSS), 2013.

147. Y. Yang, J. Hou, and L.-C. Kung. Modeling the effect of transmit power

and physical carrier sense in multi-hop wireless networks. In 26th IEEE

International Conference on Computer Communications, pages 2331–2335,

May 2007.

148. F. Yao, A. Demers, and S. Shenker. A scheduling model for reduced cpu

energy. In Proceedings. of 36th Annual Symposium on Foundations of Com-

puter Science, 1995.

149. W. Ye, J. Heidemann, and D. Estrin. Medium access control with coordi-

nated adaptive sleeping for wireless sensor networks. In IEEE/ACM Trans-

actions on Networking, volume 12, pages 493–506, June 2004.

221

150. R. Yedavalli and R. Belapurkar. Journal of Control Theory and Applications,

9(1):28–33, 2011.

151. J. Yi. Dynamic reservation medium access for multihop wireless real-time

communications. In PHD Thesis, Department of Computer Science and En-

gineering, University of Notre Dame, 2012.

152. J. Yi, C. Poellabauer, X. S. Hu, T. Chantem, and L. Zhang. Dynamic

channel reservations for wireless multihop communications. In SIGMOBILE

Mob. Comput. Commun. Rev., volume 14, pages 43–45, Dec. 2010.

153. H. Yu and P. Antsaklis. Event-triggered real-time scheduling for stabiliza-

tion of passive and output feedback passive systems. In American Control

Conference (ACC), 2011, pages 1674 –1679, June 29-July 1 2011.

154. Y. Yu, B. Krishnamachari, and V. Prasanna. Energy-latency tradeoffs for

data gathering in wireless sensor networks. In Twenty-third AnnualJoint

Conference of the IEEE Computer and Communications Societies, volume 1,

March 2004.

155. M. Zafer and E. Modiano. Optimal adaptive data transmission over a fading

channel with deadline and power constraints. In 40th Annual Conference on

Information Sciences and Systems, 2006.

156. H. Zhang, P. Soldati, and M. Johansson. Optimal link scheduling and channel

assignment for convergecast in linear wirelesshart networks. In Proceedings

of the 7th international conference on Modeling and Optimization in Mobile,

Ad Hoc, and Wireless Networks, pages 1–8, June 2009.

222

157. H. Zhang, P. Soldati, and M. Johansson. Time- and channel-efficient link

scheduling for convergecast in wirelessHART networks. In IEEE 13th Inter-

national Conference on Communication Technology (ICCT), pages 99–103,

Sept. 2011.

158. Y. Zhang and R. West. End-to-end window-constrained scheduling for real-

time and communication. In IEEE 10th International Conference on Em-

bedded and Real-Time Computing Systems and Applications, pages 143–152,

Aug. 2004.

159. Y. Zhang, R. West, and X. Qi. A virtual deadline scheduler for window-

constrained service guarantees. In Proceedings. of the 25th IEEE Interna-

tional Real-Time Systems Symposium, pages 151–160, Dec. 2004.

160. W. Zheng, M. D. Natale, C. Pinello, P. Giusto, and A. S. Vincentelli. Synthe-

sis of task and message activation models in real-time distributed automotive

systems. In Proceedings of the conference on Design, automation and test in

Europe, pages 93–98, Apr. 2007.

161. W. Zheng, M. D. Natale, C. Pinello, P. Giusto, and A. S. Vincentelli. Defini-

tion of task allocation and priority assignment in hard real-time distributed

systems. In 28th IEEE International Real-Time Systems Symposium, pages

161–170, Dec. 2007.

162. X. Zhong and C.-Z. Xu. Online energy efficient packet scheduling with de-

lay constraints in wireless networks. In The 27th Conference on Computer

Communications, pages 421 –429, 2008.

This document was prepared & typeset with LATEX2ε, and formatted with
nddiss2ε classfile (v3.0[2005/07/27]) provided by Sameer Vijay.

223

