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Abstract— We formulate a model for intermittent communi-
cation in which the transmissions of information symbols are
bursty or the channel is sporadically available. We consider
a general scenario in which information and noise symbols
are grouped into packets of length l, and noise packets are
inserted in the input sequence of the channel, and the receiver
does not know a priori the positions of the information packets.
Depending on the scaling behavior of the packet length relative
to the codeword length, we identify some interesting scenarios
for the scaling behavior of the receive window relative to the
codeword length, and find achievable rates using different de-
coding structures. Interestingly, some of the decoding structures
are based on a generalization of the method of types and
properties of partial divergence. The achievable rates and the
numerical results confirm the intuitive idea that increasing the
intermittency decreases the achievable rates by increasing the
uncertainty about the positions of the information packets at
the receiver.

I. INTRODUCTION

Intermittent communication models non-contiguous trans-
mission of information symbols, i.e., communication scenar-
ios in which the receiver observes some number of noise
symbols between information symbols, but does not know a
priori the locations of the noise symbols. In many practical
applications transmitting a codeword can be intermittent due
to lack of synchronization, shortage of transmission energy,
or burstiness of the system.

Asynchronous communication is modeled in [1]–[5] by a
single block transmission that starts at a random time and the
receiver observes only noise before and after transmission,
which is a special case of the intermittent communication
model developed in this paper. Our system model can also
be interpreted as an insertion channel in which some number
of noise symbols are inserted between the codeword symbols.
Although different from the insertion channels in the liter-
ature [7]–[9], our results may provide some insights about
them. As another application, if the intermittent process is
considered as a part of the transmitter, then we say that the
transmitter is intermittent. Practical examples include energy
harvesting systems, where the transmitter harvests energy
usually from a natural source and uses it for transmission.
Assuming that the noise symbol can be transmitted with zero
energy, the transmitter sends the symbols of the codeword
if there is enough energy for transmission, and sends noise
symbols otherwise.

Depending on the structure of the intermittency, the diffi-
culty of locating the information symbols at the receiver can

Fig. 1. System model for intermittent communication.

vary, leading to different intermittent communication sce-
narios and corresponding decoding structures. In this paper,
we model the intermittency at the packet level, i.e., some
number of noise packets are inserted between the information
packets. Generally, increasing the packet length makes the
transmission of the information symbols more contiguous,
which decreases the uncertainty about their locations at the
receiver. This observation suggests that the scaling behavior
of the receive window should be determined based on the
scaling behavior of the packet length in order to identify the
regimes of interest. One extreme case arises if the packets
correspond to a single symbol, so that the intermittent
process operates at the symbol level, and the receive win-
dow scales linearly with the codeword length [6]. Another
extreme arises if the codeword is represented by a single
packet, so that the transmission of the information symbols
is contiguous, and the receive window scales exponentially
with the codeword length [3]. In this paper, we explore cases
that lie between these two extremes. Specifically, we consider
three different scenarios for the packet length relative to the
codeword length, identify the corresponding relevant scaling
behavior for the receive window, and find some achievability
results for these communication scenarios using different
decoding structures. Interestingly, some of the decoding
structures are based on a generalization of the method of
types and properties of partial divergence, which we explore
in Section IV.

II. SYSTEM MODEL

We consider a communication scenario in which a trans-
mitter communicates a single message m ∈ {1, 2, ..., ekR =
M} to a receiver over a discrete memoryless channel (DMC)
with probability transition matrix W and input and output
alphabets X and Y. Let ? ∈ X denote the noise symbol, which
is the input of the channel when the transmitter is silent.
The transmitter encodes the message as a codeword ck(m)
of length k, which is called the sequence of information



Fig. 2. Illustration of the intermittent process.

symbols. Assume that xn and yn are the input and output
sequences of the channel, respectively, where n ≥ k is the
length of the receive window at the decoder. Figure 1 shows a
block diagram for the system model in which the intermittent
process delivers the information symbols in some time slots
and outputs the noise symbol ? in the other time slots. We
refer to this general scenario as intermittent communication.

The intermittent process considered in this paper captures
the burstiness of the channel or the transmitter, is illustrated
in Figure 2, and can be described as follows: First, the
information symbols are grouped into packets of length
l, resulting in a total of k/l information packets. Then,
(n − k)/l noise packets, i.e., sequences of noise symbols ?
of length l, are inserted arbitrarily between the information
packets, i.e., the sequence xn contains a total of n/l packets
consisting of the k/l information packets and (n−k)/l noise
packets. In a bursty communication scenario, the process of
burstiness is usually out of the transmitter’s control, and the
receiver usually does not know the realization of the bursts.
Therefore, we assume that the transmitter cannot decide on
the positions of the information packets, so it cannot encode
any timing information, and the receiver does not know the
positions of the information packets, making the decoder’s
task more involved.

Assuming that the decoded message is denoted by m̂,
which is a function of the random sequence Y n, we say
that rate R is achievable if there exists a sequence of length
k codes of size ekR with 1

M

∑M
m=1 P(m̂ 6= m) → 0 as

k → ∞. Note that the communication rate is defined as
logM/k. The capacity is the supremum of all the achievable
rates. In this paper, we focus on achievability results for
different intermittent communication scenarios. Specifically,
we consider three different scaling behaviors for the packet
length l relative to the codeword length k, identify the
corresponding regimes of interest for scaling behavior for the
receive window n, and define the associated communication
scenarios.

Definition 1: (Small packet intermittent communication)
If the packet length l is finite and the receive window
scales linearly relative to the codeword length with factor
α ≥ 1, i.e., n = αk, then the scenario is called small packet
intermittent communication.

Definition 2: (Medium packet intermittent communica-
tion) If the packet length scales logarithmically relative to
the codeword length, i.e., l = λ log k, λ > 0, and the receive
window relative to the codeword length follows a power law
with power α ≥ 1, i.e., n = lkα, then the scenario is called

medium packet intermittent communication.
Definition 3: (Large packet intermittent communication)

If the packet length relative to the codeword length follows
a power law, i.e., l = kλ,0 < λ ≤ 1, and the receive
window scales exponentially relative to the packet length l
with exponent α > 0, i.e., n = leαl, then the scenario is
called large packet intermittent communication.

For all the intermittent communication scenarios defined
above, rate region (R,α) is said to be achievable if the rate R
is achievable for the corresponding scenario with a given α.
The reason that α is assumed to be larger than or equal to
one in Definitions 1 and 2 is the necessary condition that
n ≥ k. Note that in all of the communication scenarios
defined above, α determines the rate that the receive window
scales with the codeword length (or the packet length), even
though the scaling behavior itself depends on the scenario.
In any case, the larger the value of α, the larger the receive
window, and therefore, the more intermittent the system
becomes. Hence, α is called intermittency rate throughout
the paper. As we will see, increasing α generally reduces the
achievable rate R for each of the above scenarios, because it
makes the receive window larger, and therefore, increases the
uncertainty about the positions of the information packets at
the receiver making the decoder’s task more involved.

The special case of l = 1 for small packet intermittent
communication recovers the model and results in [6], and the
special case of λ = 1 (or l = k) for large packet intermittent
communication recovers the slotted asynchronous communi-
cation [3]. In the former case, the interesting scenario arises
if the receive window scales linearly with the codeword
length, whereas in the later case, the exponential scaling of
the receive window with the codeword length is desirable.
To motivate the different scaling behaviors for the receive
window n in the definitions, note that increasing the packet
length l adds more structure to the output sequence and
decreases the uncertainty about the positions of the the
codeword symbols at the receiver. As a result, some scalings
of the receive window length do not lead to interesting
tradeoffs. For example, if the receive window n scales
linearly relative to the codeword length k, and the packet
length l scales logarithmically with k, then the capacity of
the channel can be always achieved, and the intermittency
does not impact the communication rate.

Notation: We use o(·) and poly(·) to denote quantities that
grow strictly slower than their arguments and are polynomial
in their arguments, respectively. Most of the notation in
this paper follows that in [2] and [10]. By X ∼ P (x),
we mean X is distributed according to P . The empirical
distribution (or type) of a sequence xn ∈ Xn is denoted by
P̂xn . Joint empirical distributions are denoted similarly. We
say a sequence xn has type P if P̂xn = P and denote it
by xn ∈ TnP , where TnP or more simply TP is the set of
all sequences that have type P . We use PX to denote the
set of distributions over the finite alphabet X. For simplicity,
we define W?(·) := W (·|x = ?). In this paper, we use the
convention that

(
n
k

)
= 0 if k < 0 or n < k, and the entropy

H(P ) = −∞ if P is not a probability mass function, i.e.,



one of its elements is negative or the sum of its elements
is larger than one. h(·) is the binary entropy function. We
use the conventional definition x+ := max{x, 0}. Finally, if
0 ≤ ρ ≤ 1, then ρ̄ := 1− ρ.

III. DECODING STRUCTURES

In this section, three decoding structures are introduced
of which one or more is used in Section V to obtain
achievable rates for the communication scenarios defined in
Section II. The encoding structure is identical for all the
schemes: Given an input distribution P , the codebook is
randomly and independently generated, i.e., all Ci(m), i ∈
{1, 2, ..., k},m ∈ {1, 2, ...,M} are i.i.d. according to P . The
three decoding structures include: decoding from exhaustive
search, which attempts to decode the transmitted codeword
from a selected set of output symbols without any attempt to
first locate or detect the information symbols; decoding from
pattern detection, which attempts to decode the transmitted
codeword only if the selected outputs appear to be a pattern
of information packets; and decoding from packet detection,
which first detects the individual information packets, and
then uses them to decode based on a conventional channel
decoding procedure.

Although we focus on typicality for detection and decod-
ing for ease of analyzing the probability of error, other algo-
rithms such as maximum likelihood decoding can in principle
be used in the context of these decoding structures. However,
detailed specification and analysis of such structures and
algorithms are beyond the scope of this paper.

For ease of presentation, let s := k/l denote the number of
information packets, and b := n/l denote the total number of
packets at the receiver, so that the number of inserted noise
packets is equal to b− s.
A. Decoding From Exhaustive Search

In decoding from exhaustive search, the decoder observes
the b packets of the output sequence yn, chooses s of them,
resulting in a sequence of sl = k symbols denoted by ỹk,
and performs joint typicality decoding with a fixed typicality
parameter µ > 0, i.e., checks if

|P̂ck(m),ỹk(x, y)− Pm(x, y)| ≤ µ (1)

for all (x, y) ∈ X × Y and a unique index m, where Pm
denotes the joint probability mass function induced by the
type of codeword ck(m) and the channel W , defined by [2]

Pm(x, y) := P̂ck(m)(x)W (y|x), (x, y) ∈ X× Y.

For convenience, we write ỹk ∈ T[W ]µ(ck(m)), if (1) is
satisfied for m. In words, the condition (1) corresponds
to the joint type for codeword ck(m) and selected outputs
ỹk being close to the joint distribution induced by ck(m)
and the channel W (y|x). If the decoder finds a unique m
satisfying (1), it declares m as the transmitted message.
Otherwise, it makes another choice for the s packets from the
b packets of the sequence yn and again attempts typicality
decoding. If at the end of all

(
b
s

)
choices the typicality

decoding procedure did not declare any message as being
transmitted, then the decoder declares an error.

B. Decoding From Pattern Detection
Decoding from pattern detection involves two stages for

each choice of the output symbols. As in decoding from
exhaustive search, the decoder chooses s of the b packets
from the output vector yn. Let ỹk denote the sequence of
the chosen output packets, and ŷn−k denote the sequence
of the other output packets. For each choice, the first stage
checks if this choice of the output symbols is a good one,
which consists of checking if ỹk is induced by a codeword,
i.e., if ỹk ∈ TPW , and if ŷn−k is generated by noise, i.e.,
if ŷn−k ∈ TW?

. If both of these conditions are satisfied,
then we perform typicality decoding to ỹk over the codebook
as described in Section III-A, which is called the second
stage here. Otherwise, we make another choice for the s
packets and repeat the two-stage decoding procedure. At any
step that we run the second stage, if the typicality decoding
declares a message as being sent, then decoding ends. If the
decoder does not declare any message as being sent by the
end of all

(
b
s

)
choices, then the decoder declares an error.

In this structure, we constrain the search domain for the
typicality decoding (the second stage) only to typical patterns
by checking that our choice of information packets satisfies
the conditions in the first stage.

The first stage in this structure essentially distinguishes a
sequence obtained partially from the codewords and partially
from the noise from a codeword sequence or a noise se-
quence. As a result, in the analysis of the probability of error,
partial divergence and its properties described in Section IV
play a role. This structure always outperforms the decoding
from exhaustive search structure, and their difference in
performance indicates how much the results on the partial
divergence improve the achievable rates.

C. Decoding From Packet Detection
Decoding from packet detection consists of two separate

stages. In the first stage, the decoder completely locates
the s information packets by checking if the ith packet of
the output sequence denoted by yil(i−1)l+1 is an information
packet, i.e., if yil(i−1)l+1 ∈ TPW , i = 1, 2, ..., b. The decoder
declares an error if after the first stage there are not exactly
s detected information packets. In the second stage, the
decoder forms a sequence consisting of all the detected
information symbols in the first stage, and decodes the
message with a conventional channel decoding procedure.

The complexity of this structure is significantly less than
decoding from exhaustive search and decoding from pattern
detection, because decoding from packet detection requires b
typicality tests for locations, whereas the two other structures
require

(
b
s

)
typicality tests. However, this structure requires

the packet length l to be sufficiently large in order to locate
the individual information packets correctly. Obviously, this
structure does not lead to an achievability result if the packet
length is finite as in small packet intermittent communi-
cation. It also turns out that this structure does not work
for medium packet intermittent communication. Therefore,
decoding from packet detection is considered only for the
large packet intermittent communication.



IV. PARTIAL DIVERGENCE

We will see in Section V that the functional dρ(P ||Q),
which we call partial divergence is relevant. Partial diver-
gence is a generalization of the Kullback-Leibler divergence.
In this section, we examine some of the interesting properties
of partial divergence, which help develop insights about some
of the achievable rates in Section V. Loosely speaking, partial
divergence is the exponent of the probability that a sequence
with independent elements generated partially according to
one distribution and partially according to another distribu-
tion has a specific type. This exponent is useful in order to
distinguish a sequence obtained partially from the codewords
and partially from the noise from a codeword sequence
or a noise sequence. The following Lemma from [6] is a
generalization of the method of types in [10].

Lemma 1: Consider an alphabet with t symbols, i.e., X =
{0, 1, ..., t− 1}. Consider three distributions P,Q,Q′ ∈ PX,
where P := (p0, p1, ..., pt−1), Q := (q0, q1, ..., qt−1), and
Q′ := (q′0, q

′
1, ..., q

′
t−1), and where P is a type with denom-

inator k. We assume that all of the elements of these three
PMF’s are nonzero. A random sequence Xk is generated as
follows: k1 symbols are i.i.d. according to Q and k2 symbols
are i.i.d. according to Q′, where k1 +k2 = k and ρ := k1/k.
The probability that Xk has type P is upper bounded as

P(Xk ∈ TP ) ≤ eo(k)e−kd(P,Q,Q
′,ρ), (2)

where

d(P,Q,Q′, ρ) := H(P ) +D(P ||Q)

− ρ̄ log
q′t−1
qt−1

− e(P,Q,Q′, ρ), (3)

e(P,Q,Q′, ρ) := max
0≤θj≤1,j=0,1,...,t−2

{ρH(P1) + ρ̄H(P2)

+

t−2∑
j=0

θjpj log aj},

(4)

aj :=
q′jqt−1

qjq′t−1
, j = 0, 1, ..., t− 2, (5)

P1 := (
θ̄0p0
ρ

,
θ̄1p1
ρ

, ...,
θ̄t−2pt−2

ρ
, 1−

∑t−2
j=0 θ̄jpj

ρ
), (6)

P2 := (
θ0p0
ρ̄

,
θ1p1
ρ̄

, ...,
θt−2pt−2

ρ̄
, 1−

∑t−2
j=0 θjpj

ρ̄
). (7)

Proof: See [12].
Specializing Lemma 1 for Q′ = Q results in [10, Lemma

2.6], and we have d(P,Q,Q, ρ) = D(P ||Q). However, we
will be interested in a special case of Lemma 1 for which
Q′ = P . In other words, we need to upper bound the
probability that a sequence has a type P if its elements
are generated independently partially according to Q and
partially according to P , where the ratio of the mismatched
symbols, i.e., generated from Q, to all the symbols is ρ =
k1/k. For this case, we call dρ(P ||Q) := d(P,Q, P, ρ) the
partial divergence between P and Q with mismatch ratio
0 ≤ ρ ≤ 1. Proposition 1 gives an explicit expression for

the partial divergence by solving the optimization problem
in (4) and simplifying (3) for the special case of Q′ = P .

Proposition 1: Partial divergence can be written as

dρ(P ||Q) = D(P ||Q)−
t−1∑
j=0

pj log(c∗+
pj
qj

)+ρ log c∗+h(ρ),

(8)
where c∗ is a function of ρ, P , and Q, and can be uniquely
determined from

c∗
t−1∑
j=0

pjqj
c∗qj + pj

= ρ. (9)

Proof: See [12].
The next proposition states some of the properties of the

partial divergence, which will be used in Section V to prove
some of the properties of the achievable rates.

Proposition 2: The partial divergence dρ(P ||Q), 0 ≤ ρ ≤
1 has the following properties:
(a) d0(P ||Q) = 0.
(b) d1(P ||Q) = D(P ||Q).
(c) Partial divergence is zero if P = Q, i.e., dρ(P ||P ) = 0.
(d) Let d′ρ(P ||Q) :=

∂dρ(P ||Q)
∂ρ denote the derivative of the

partial divergence with respect to ρ, then d′0(P ||Q) = 0.

(e) If P 6= Q, then d′ρ(P ||Q) > 0, for all 0 < ρ ≤ 1, i.e.,
partial divergence is increasing in ρ.

(f) If P 6= Q, then d′′ρ(P ||Q) > 0, for all 0 ≤ ρ ≤ 1, i.e.,
partial divergence is convex in ρ.

(g) 0 ≤ dρ(P ||Q) ≤ ρD(P ||Q).
Proof: See [12].

Figure 3 shows examples of the partial divergence for
PMF’s with alphabets of size 4. Specifically, dρ(P ||Q)
versus ρ is sketched for P = (0.25, 0.25, 0.25, 0.25), and
two different Q’s, Q1 = (0.1, 0.1, 0.1, 0.7) and Q2 =
(0.1, 0.4, 0.1, 0.4). The properties in Proposition 2 are ap-
parent in the figure for these examples.

V. ACHIEVABLE RATES

In this section, we develop achievable rates for each of the
intermittent communication scenarios defined in Section II
based on the decoding structures introduced in Section III
and the results on partial divergence developed in Section IV.

A. Small Packet Intermittent Communication

Using decoding from exhaustive search introduced in
Section III-A for small packet intermittent communication
model, we obtain the following achievability result.

Theorem 1: For small packet intermittent communica-
tion with parameters l and α, rates not exceeding
(C − αh(1/α)/l)

+ are achievable, where C is the capacity
of the DMC with stochastic matrix W .

Proof: See [12].
The form of the achievable rate is reminiscent of com-

munications overhead as the cost of constraints [11], where
the constraint is the system’s burstiness or intermittency, and
the overhead cost is αh(1/α)/l. Note that the overhead cost
is increasing in the intermittency rate α, is equal to zero
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at α = 1, and approaches infinity as α → ∞. These ob-
servations suggest that increasing the receive window makes
the decoder’s task more difficult. Also, note that the overhead
cost and the packet length l are inversely proportional, which
indicates that if the packet length is sufficiently large, then
the achievable rate approaches the capacity of the channel.
This is because increasing the packet length decreases the
uncertainty about the positions of the information symbols
at the decoder yielding a better achievability result.

Using decoding from pattern detection introduced in Sec-
tion III-B for small packet intermittent communication model
and the results on partial divergence developed in Section IV,
we obtain the following achievability result.

Theorem 2: For small packet intermittent communica-
tion with parameters l and α, rates not exceeding
maxP {

(
I(X;Y )− fSPl (P,W,α)

)+} are achievable, where

fSPl (P,W,α) := max
0≤β≤1

{ (α− 1)h(β) + h((α− 1)β)

l

− d(α−1)β(PW ||W?)

− (α− 1)dβ(W?||PW )}. (10)
Proof: See [12].

The achievable rate in Theorem 2 is larger than the one in
Theorem 1, because decoding from pattern detection utilizes
the fact that the choice of the information packets at the
receiver might not be a good one, and therefore, restricts the
typicality decoding only to the typical patterns and decreases
the search domain. In Theorem 2, the overhead cost for
a fixed input distribution is fSPl (P,W,α), and the next
proposition states some of its properties.

Proposition 3: The overhead cost fSPl (P,W,α) in (10)
has the following properties:
(a) The maximum of the term in (10) occurs in the interval

[0, 1/α], i.e., instead of the maximization over 0 ≤ β ≤
1, fSPl (P,W,α) can be found by the same maximization
problem over 0 ≤ β ≤ 1/α.

(b) fSPl (P,W,α) is increasing in α.
(c) fSPl (P,W, 1) = 0.
(d) If l and D(PW ||W?) are finite, then fSPl (P,W,α) →
∞ as α→∞.

(e) fSPl (P,W,α) ≤ fSP1 (P,W,α)/l for all integers l ≥ 1,
and the overhead cost is decreasing in l.
Proof: See [12].

Note that part (b) in Proposition 3 indicates that increasing
the intermittency rate or the receive window increases the
overhead cost, resulting in a smaller achievable rate. Parts (c)
and (d) show that the achievable rate is equal to the capacity
of the channel for α = 1 and approaches zero as α → ∞.
Also, part (e) implies that if the packet length is sufficiently
large, then the achievable rate approaches the capacity of the
channel.

B. Medium Packet Intermittent Communication

Using decoding from exhaustive search introduced in Sec-
tion III-A for the medium packet intermittent communication
model, we obtain the following achievability result.

Theorem 3: For medium packet intermittent communica-
tion with parameters λ and α, rates not exceeding (C−(α−
1)/λ)+ are achievable, where C is the capacity of the DMC
with stochastic matrix W .

Proof: The proof is similar to the proof of Theorem 1.
See [12] for details.

Here, the overhead cost is (α− 1)/λ, which is increasing
in the intermittency rate α and decreasing in λ, and the same
conclusions as in Section V-A can be drawn.

Using decoding from pattern detection introduced in Sec-
tion III-B for medium packet intermittent communication
model and the results on partial divergence developed in
Section IV, we obtain the following achievability result.

Theorem 4: For medium packet intermittent communi-
cation with parameters λ and α, rates not exceeding
maxP {

(
I(X;Y )− fMP

λ (P,W,α)
)+} are achievable, where

fMP
λ (P,W,α) := max

0≤β≤1
{βα− 1

λ
− dβ(PW ||W?)}. (11)

Proof: The proof is similar to the proof of Theorem 2.
See [12] for details.

For the same reason as in Section V-A, the achievable
rate in Theorem 4 is larger than the one in Theorem 3. The
overhead cost in Theorem 4 is equal to fMP

λ (P,W,α), which
is increasing in the intermittency rate α, equals zero at α = 1,
approaches infinity as α→∞, and is decreasing in λ as can
be seen from (11). The same conclusions as in Section (V-A)
can be drawn.

C. Large Packet Intermittent Communication

Using decoding from packet detection introduced in Sec-
tion III-C for large packet intermittent communication model,
we obtain the following achievability result.

Theorem 5: For large packet intermittent communica-
tion with parameters λ and α, rates not exceeding
maxP {

(
I(X;Y )− fLP (P,W,α)

)+} are achievable, where

fLP (P,W,α) := (α−D(PW ||W?))
+
. (12)



Fig. 4. Graphical description of the transition matrix for the DMC we
consider in this section.

Proof: See [12].
Remark 1. As we mentioned before, decoding from

packet detection cannot be used for the small packet inter-
mittent communication model in which the packet length l
is finite. Decoding from packet detection cannot be used for
the medium packet intermittent communication model either,
because there are too many smaller packets compared to the
large packet scenario. See [12] for more details.

Remark 2. For the large packet intermittent communi-
cation model, we can use decoding from exhaustive search
and decoding from pattern detection. However, it turns out
that the resulting achievable rates are strictly smaller than
the one in Theorem 5. Therefore, we only focus on decod-
ing from packet detection for the large packet intermittent
communication model.

This achievability result is identical to the capacity of the
asynchronous communication obtained in [5]. Note that the
overhead cost fLP (P,W,α) is independent of the value of λ.
Intuitively, this happens because, as λ increases in the large
packet intermittent communication model, the scaling behav-
ior of the receive window relative to the codeword length
changes (the receive window is exponentially scaled with
the packet length l) in a way that compensates this increase
in the packet length, and therefore, the achievable rate does
not change. As before, the overhead cost fLP (P,W,α) is
increasing in the intermittency rate α, which indicates that
increasing the receive window results in a smaller achievable
rate.

VI. NUMERICAL RESULTS

We consider a DMC with a symmetric transition matrix
with input and output alphabets of size 4 as is depicted in
Figure 4 in which all the cross over probabilities are equal to
p/3 and the direct probabilities are equal to 1−p. The reason
that we consider a channel with 4-ary input and output is that
the benefit of using the concept of partial divergence and the
results in Section IV is more apparent for a channel with non-
binary alphabets. Numerical results for the case of binary
symmetric channel are provided in [6] for the special case
of l = 1 for the small packet intermittent communication
model.

The boundary of the achievable rate region (R,α) char-
acterizes the tradeoff between the achievable rates and the
intermittency rate α. Figure 5 illustrates the achievable rate
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Fig. 5. Achievable rate region (R,α) for the small packet intermittent
communication model over the channel depicted in Figure 4 with p = 0.1.

region (R,α) for the small packet intermittent communi-
cation model over the channel depicted in Figure 4 with
p = 0.1, for which the capacity is approximately 1.37 bits
per channel use. The achievable rate regions correspond to
the results in Theorems 1 and 2 for two values of the packet
length: l = 1 and l = 2. The achievable rates are decreasing
in the intermittency rate α as we have discussed in Section V,
which is because increasing α increases size of the receive
window and therefore the uncertainty about the positions of
the information packets at the receiver. All the achievable
rates approach the capacity of the channel as α → 1. Also,
note that the achievable rate region is larger for a larger
packet length, because increasing l adds more structure to
the input and output of the channel reducing the uncertainty
about the positions of the output symbols at the receiver.

The arrows in Figure 5 show the differences between
the rates obtained from Theorems 1 and 2, i.e., how much
decoding from pattern detection outperforms decoding from
exhaustive search. As can be seen from the figure, decoding
from pattern detection increases the achievable rate as well
as substantially increases the range of intermittency rates for
which the achievable rate is non-zero. The reason is that
as the receive window becomes larger, the search domain
increases exponentially, and the need for restricting the
search domain by decoding the codeword only from typical
patterns becomes more critical.

Figure 6 illustrates the achievable rate region (R,α) for
the medium packet intermittent communication model over
the channel depicted in Figure 4 with p = 0.1. The achiev-
able rate regions corresponds to the results in Theorems 3
and 4 for two values of λ: λ = 1 and λ = 2. Similar
observations and conclusions can be made as those for
Figure 5.

Finally, Figure 7 illustrates the achievable rate region
(R,α) in Theorem 5 for the large packet intermittent com-
munication model over the channel depicted in Figure 4
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Fig. 6. Achievable rate region (R,α) for the medium packet intermittent
communication model over the channel depicted in Figure 4 with p = 0.1.
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Fig. 7. Achievable rate region (R,α) for the large packet intermittent
communication model over the channel depicted in Figure 4 with p = 0.1.

with p = 0.1. As before, increasing the intermittency rate α
reduces the achievable rate since it increases the uncertainty
about the information symbols at the receiver, and if α is
small enough, then the capacity of the DMC can be achieved,
which is similar to the observation in [5].

VII. CONCLUSION

In this paper, we focused on obtaining achievable rates for
intermittent communication, which models a bursty transmit-
ter or a sporadically available channel. Inspired by network
applications, we considered packetized transmission of data
and introduced three intermittent communication scenarios
depending on the scaling behavior of the packet length,
which models different levels of asynchronism. We intro-
duced three receiver structures. We can conclude that if the
packet length is sufficiently large, then decoding from packet
detection gives the largest achievable rate. The achievable

rates and the numerical results confirm the intuitive idea
that increasing the intermittency and therefore the receive
window decreases the achievable rates by increasing the
uncertainty about the positions of the information packets
at the receiver, and increasing the packet length increases
the achievable rates by adding more structure to the output
sequence or reducing the level of asynchronism at the
receiver. We introduced the concept of partial divergence
and studied some of its properties in order to obtain stronger
achievability results. The results on the partial divergence
may be of independent interest, such as in asynchronous
random access communication models in which the decoder
does not know a priori that a received symbol or packet
corresponds to which user.

REFERENCES

[1] A. Tchamkerten, V. Chandar, and G. W. Wornell, “Communication under strong
asynchronism,” IEEE Trans. on Inf. Theory, vol. 55, no. 10, pp. 4508-4528, Oct.
2009.

[2] ——, “Asynchronous communication: Capacity bounds and suboptimality of
training,” IEEE Trans. on Inf. Theory, submitted 2012. [Online]. Available:
http://arxiv.org/pdf/1105.5639v2.pdf

[3] D. Wang, V. Chandar, S.-Y. Chung, and G. Wornell, “Error exponents in
asynchronous communication,” in Proc. IEEE Int. Symp. Information Theory
(ISIT), St. Petersburg, Russia, Aug. 2011.

[4] V. Chandar, A. Tchamkerten, and D. N. C. Tse, “Asynchronous capacity per unit
cost,” IEEE Trans. on Inf. Theory, submitted 2011. [Online]. Available: http:
//arxiv.org/abs/1007.4872v1

[5] Y. Polyanskiy, “Asynchronous communication: universality, strong converse and
dispersion,” IEEE Trans. on Inf. Theory, submitted 2012.

[6] M. Khoshnevisan and J. N. Laneman, “Achievable Rates for Intermittent Commu-
nication,” in Proc. IEEE Int. Symp. Information Theory (ISIT), Cambridge, MA,
USA, July 2012.

[7] M. Mitzenmacher, “A survey of results for deletion channels and related synchro-
nization channels,” Probability Surveys, vol. 6, pp. 1-33, 2009.

[8] ——, “Capacity bounds for sticky channels,” IEEE Trans. on Inf. Theory, vol.
54, pp. 72-77, Jan. 2008.

[9] R. Venkataramanan, S. Tatikonda, and K. Ramchandran, “Achievable Rates for
Channels with Deletions and Insertions,” in Proc. IEEE Int. Symp. Information
Theory (ISIT), St. Petersburg, Russia, Aug. 2011.

[10] I. Csiszár and J. Körner, Information Theory: Coding Theorems for Discrete
Memoryless Systems, New York: Academic, 1981.

[11] J. N. Laneman and B. P. Dunn, “Communications Overhead as the Cost of
Constraints,” in Proc. IEEE Information Theory Workshop (ITW), Paraty, Brazil,
Oct. 2011.

[12] M. Khoshnevisan and J. N. Laneman, “Intermittent Communication and Partial
Divergence,” in preparation for submission to IEEE Trans. on Inf. Theory, 2012.

http://arxiv.org/pdf/1105.5639v2.pdf
http://arxiv.org/abs/1007.4872v1
http://arxiv.org/abs/1007.4872v1

	Introduction
	System Model
	Decoding Structures
	Decoding From Exhaustive Search
	Decoding From Pattern Detection
	Decoding From Packet Detection

	Partial Divergence
	Achievable Rates
	Small Packet Intermittent Communication
	Medium Packet Intermittent Communication
	Large Packet Intermittent Communication

	Numerical Results
	Conclusion
	References

