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Abstract— Contrary to the common use of random coding

and typicality decoding for the achievability proofs in infor-

mation theory, the tightest achievable rates for point-to-point

Gaussian channels build either on geometric arguments or

composite hypothesis testing, for which direct generalization

to multi-user settings appears challenging. In this paper, we

provide a new perspective on the procedure of handling input

cost constraints for tight achievability results. In particular, we

show with a proper choice of input distribution and using a

change of measure technique, tight bounds can be achieved via

the common random coding argument and a modified typicality

decoding. It is observed that a codebook generated randomly

according to a uniform distribution on the “power shell” is

optimal, at least up to the second order. Such insights are

then extended to a Gaussian multiple access channel, for which

independent uniform distributions on power shells are shown

to be very close to optimal, at least up to second order.

I. INTRODUCTION

Random coding and typicality decoding have proven to
be powerful tools in information theory, to the point that,
these techniques are the standard method for proving most
source and channel coding theorems in an intuitive and
straightforward manner [1]. They can be used to prove the
asymptotic achievability results for point-to-point (P2P) and
multi-user memoryless channel models in the discrete and
Gaussian memoryless settings [2], as well as those for the
most general set of channels, including those with memory or
lacking ergodicity [3]. Recently it has been shown that these
methods are also capable of achieving the optimal second-
order coding rates for P2P discrete memoryless channels
in the near-capacity, finite-blocklength regime [4], [5]. That
random coding can operate close to capacity in the non-
asymptotic case was also shown much earlier in the context
of error exponents, although using maximum likelihood
(ML) decoding [6].

By contrast, for P2P Gaussian channels subject to a
maximal power constraint, the tightest known achievable
rates in the non-asymptotic regime do not rely on random
coding along with typicality decoding for handling the input
cost constraint. The best known achievable rate is due
to Shannon [7] who employs random coding but utilizes
relatively sophisticated geometric arguments for the analysis
of the performance of the optimal maximum likelihood
decoder. The next tightest non-asymptotic achievable rate
for P2P Gaussian channels is via the recent � bound of
Polyanskiy et al. [4], which is similar to the non-random

sequential coding of [8], but whose analysis involves a
composite hypothesis test to treat the input cost constraint.
The main part of the proof in [4] centers around the
performance analysis of this composite test. Other bounds
involving Gaussian channels are Gallager’s random coding
error exponent [6] which uses ML decoding, and the cost-
constrained version of Feinstein’s coding theorem [8], which
uses typicality decoding but with a non-random sequential
encoding procedure.

The comparison of the choice of input distribution
among all these different bounds for P2P Gaussian chan-
nels provides an initial interesting observation. Denote
the maximal power constraint by P . The loosest bound
in the non-asymptotic sense is the cost-constrained ver-
sion of Feinstein [8] with an independent and identically
distributed (i.i.d) Gaussian input distribution N (0, P I

n

)

or N (0, (P � �)I
n

) with an arbitrarily small �; however, it
can be shown that neither result yields the optimal second-
order coding rate. Gallager’s random coding error expo-
nent [6] achieves relatively better performance by truncating
the Gaussian distribution N (0, P I

n

) and selecting a thin
layer as the input distribution such that P ��  X2  P for
an arbitrary parameter �. Polyanskiy et al.’s � achievability
result [4], which is second-order optimal, is not defined
in terms of an input distribution, but the analysis involves
codewords which all lie on the n-dimensional “power shell”
of radius

p
nP . Finally, Shannon [7] selects the uniform

distribution on the aforementioned power shell as the input
distribution. These choices suggest that, as the selection of
input distribution becomes more refined and the codewords
are placed closer to the power shell, they exhibit better non-
asymptotic performance.

Motivated by these observations and following Shan-
non [7], in this paper we focus on random coding with inputs
having a uniform distribution on the power shell and derive
achievable rates resembling those of Polyanskiy et al. [4]
in the near-capacity, finite blocklength regime. Unlike [7]
and [4], however, we rely on a slightly modified typicality
decoding rule, which is more intuitive and relatively less
complicated. Our technique appears easier to generalize to
multi-user settings, specifically the Gaussian multiple access
channel (MAC) for which we provide a second-order achiev-
able region that appears to match a single-user outer bound
except for slight gaps at the two corners of the outer bound.



II. BACKGROUND

A. Random Coding and Typicality Decoding

The basic idea in a random coding and typicality decoding
argument can be reviewed most clearly for a P2P chan-
nel P

Y

n|Xn . The channel encoder generates M codewords
of the codebook independently at random according to some
given n-letter distribution P

X

n , where n is the designated
blocklength. Observing the output yn, the decoder then
chooses the first codeword xn

(m̂) of the codebook which
looks “typical” with yn in a one-sided sense

i(xn

(m̂); yn) > log �, (1)

where � is a prescribed threshold and i(xn

(m̂); yn) is the
corresponding realization of the mutual information random

variable

i(xn

; yn) := log

P
Y

n|Xn

(yn|xn

)

P
Y

n

(yn)
. (2)

Here, the reference distribution P
Y

n is the marginal output
distribution induced by the input distribution P

X

n , i.e.,

P
Y

n

(·) =
X

x

n

P
X

n

(xn

)P
Y

n|Xn

(·|xn

). (3)

Using one realization of such a code {xn

(j)}M
j=1

, the average
error probability can be bounded as the sum of an outage

probability, that the correct codeword does not look typical,
and a confusion probability, that a preceding codeword
incorrectly looks typical, i.e.,1

✏  1

M

MX

k=1

P
Y

n|Xn

=x

n

(k)

[i(xn

(k);Y n

)  log �]

+

1

M

MX

k=1

P
Y

n|Xn

=x

n

(k)

2

4
k�1[

j=1

i(xn

(j);Y n

) > log �

3

5 ,

(4)

and the error probability averaged over all possible realiza-
tions of the codebook can be bounded as

✏  P
X

nP
Y

n|Xn

[i(Xn

;Y n

)  log �]

+

M � 1

2

P
X

nP
Y

n

[i(Xn

;Y n

) > log �]. (5)

The final result is that there exists a deterministic codebook
with M codewords whose average error probability ✏ satis-
fies (5). It is worth mentioning that, in the standard asymp-
totic analysis of memoryless channels P

Y

n|Xn

(yn|xn

) =Q
n

t=1

P
Y |X(y

t

|x
t

), the input distribution is selected i.i.d.
P
X

n

(xn

) =

Q
n

t=1

P
X

(x
t

), and the threshold is selected
as a function of the average mutual information log � =

nI(X;Y ) � o(n) = nE
P

X

P

Y |X [i(X;Y )] � o(n). This leads
to the proof of achievability for rates logM

n

< I(X;Y ). In
this paper, however, we would like to preserve the general
n-letter form of the input distribution.

1Throughout this paper, we use a non-standard notation of the
form P

X

P

Y

[f(X,Y ) 2 A] to explicitly denote the distributions with
which the probability Pr[f(X,Y ) 2 A] is calculated when X,Y follow
the joint distribution P

X

P

Y

.

One can easily extend the result (5) to input cost con-
strained settings requiring Xn 2 F

n

[4]:

✏  P
X

nP
Y

n|Xn

[i(Xn

;Y n

)  log �]

+

M � 1

2

P
X

nP
Y

n

[i(Xn

;Y n

) > log �] + P
X

n

[Fc

n

]. (6)

Considering an i.i.d. Gaussian input P
X

n ⇠ N (0, P I
n

) and
applying the central limit theorem (CLT) in (6) results in the
approximate achievability bound only useful for ✏ � 1

2

logM

n
C(P )� log ep

n

r
P

1 + P
Q�1

✓
✏� 1

2

◆
+O(1),

(7)

where2 C(P ) =

1

2

log(1 + P ). With i.i.d. Gaussian input
P
X

n ⇠ N (0, (P � �)I
n

), the bound (6) yields the following
approximation valid for any 0  ✏  1:

logMnC(P��)�log ep
n

r
P��

1 + P � �
Q�1

(✏)+O(1), (8)

where � > 0 is an arbitrarily small constant.

B. Polyanskiy et al.’s � Bound

A tighter achievability result for the P2P Gaussian channel
is provided in the recent � bound of Polyanskiy et al. [4].
Using a slightly different language from that in [4], this
bound fixes an arbitrary output distribution Q

Y

n , similar
to [9], and employs this as the reference distribution for the
definition of a modified mutual information random variable:

˜i(xn

; yn) := log

P
Y

n|Xn

(yn|xn

)

Q
Y

n

(yn)
. (9)

Building upon the maximal coding idea, the sequential
codeword generation process stops after M codewords
{xn

(j)}M
j=1

if the error probability for any choice of the
(M + 1)-th sequence exceeds the target maximal error
probability ✏, i.e.,

✏ < P
Y

n|Xn

=x

n

[

˜i(xn

;Y n

)  log �]

+ P
Y

n|Xn

=x

n

2

4
M[

j=1

˜i(xn

(j);Y n

) > log �

3

5 (10)

for all sequences xn 2 F
n

where F
n

is the feasible set of
codewords according to the input cost constraint. Thinking
of the union in the brackets of the second term above as
a binary test, one can cast the problem into the framework
of the following composite hypothesis test which is used to
treat the input cost constraint:


⌧

�
{P

Y

n|Xn

=x

n}
x

n2F

, Q
Y

n

�

:= min

Z:P

Y

n|Xn=x

n

[Z(Y

n

)=1]>⌧,8xn2F

Q
Y

n

[Z(Y n

) = 1],

(11)

where Z(Y n

) is a binary test choosing either the class of
conditional channel laws {P

Y

n|Xn

=x

n}
x

n2F

if Z = 1, or

2As usual, Q

�1(·) is the inverse of the complementary cumulative
distribution function (CDF) of a standard Gaussian distribution Q(x) =

1p
2⇡

R1
x

e

�t

2
/2

dt.



the unconditional output distribution Q
Y

n if Z = 0. Notice
that rearranging (10) yields

P
Y

n|Xn

=x

n

2

4
M[

j=1

˜i(xn

(j);Y n

) > log �

3

5

> ✏� P
Y

n|Xn

=x

n

[

˜i(xn

;Y n

)  log �] � ⌧⇤

where

⌧⇤ = ✏� sup

x

n2F

P
Y

n|Xn

=x

n

[

˜i(xn

;Y n

)  log �]. (12)

The � bound of [4] for maximal error probability can then
be stated as follows:


⌧

⇤
�
{P

Y

n|Xn

=x

n}
x

n2F

, Q
Y

n

�

 Q
Y

n

2

4
M[

j=1

˜i(xn

(j);Y n

) > log �

3

5 (13)

 M sup

x

n2F

Q
Y

n

[

˜i(xn

;Y n

) > log �]. (14)

Interpretation of the composite hypothesis test 
⌧

and
accordingly its evaluation for the P2P Gaussian channel
is quite involved. Polyanskiy et al. [4] invoke arguments
from abstract algebra to analyze the performance of this test
for the feasible set F

n

= {xn 2 Rn

: ||xn|| =

p
nP}

being the “power shell” and the special choice Q
Y

n ⇠
N (0, (1 + P )I

n

) with the selection ⌧⇤ = 1/
p
n, finally

concluding that

log 
⌧

⇤ � 1

2

log n+O(1), (15)

which with application of the CLT results in the following
second-order optimal achievable rate for the P2P Gaussian
channel

logM

n
 C(P )�

r
V (P )

n
Q�1

(✏) +O(1), (16)

where V (P ) is the dispersion of the Gaussian P2P channel

V (P ) =

log

2 e

2

P (P + 2)

(1 + P )

2

. (17)

Comparing the � bound of [4] with the random coding
and typicality decoding method discussed earlier suggests
an important insight. Introducing the composite hypothe-
sis bound 

⌧

in [4] enables a change of measure from
P
Y

n|Xn

=x

n in (10) to Q
Y

n in (14) in computing the con-
fusion probability. A similar process occurs in the random
coding argument with typicality decoding, as the random
generation of the codebook makes it possible to change the
measure for computation of the confusion probability from
P
Y

n|Xn

=x

n in (4) to its average P
Y

n in (5). We suspect the
reason why the composite 

⌧

test is introduced in [4] is to
enable such a change of measure argument which is required
for the evaluation of the confusion probability, but is not
directly available in the sequential generation of a maximal
coding, which does not incorporate any random generation
process. This insight is one of the main ideas we will use in
this paper for the analysis of the Gaussian P2P channel and
MAC with a random coding and typicality decoding.

C. Shannon’s Geometric Bound

As mentioned before, the best known achievable rate for
P2P Gaussian channel is due to Shannon [7] who starts
with a random codebook generation according to the uniform
distribution on the n-dimensional sphere of radius

p
nP , i.e.

the power shell, but follows with the optimal ML decoding
method. Since this rule is equivalent to minimum Euclidian
distance in Rn, he employs geometric arguments to evaluate
and bound the code-ensemble-average probability that the
i.i.d. Gaussian channel noise moves the output closer to
some incorrect codeword than to the originally transmitted
codeword.

A key observation in Shannon’s work is his use of the
uniform distribution on the power shell, which enables him
to develop sharp non-asymptotic bounds. In this paper, we
will follow Shannon in this respect, but rely on the more
familiar and less complex method of typicality decoding
which we show is still capable of achieving sharp non-
asymptotic bounds for the Gaussian channel, at least up to
the second order.

Having reviewed the basic elements of the different pro-
cedures for handling cost constraints, especially in Gaussian
settings, we now move on to the formal statement of our
problems and results.

III. P2P GAUSSIAN CHANNEL

A general P2P channel with input cost constraint and
without feedback consists of an input alphabet X , an output
alphabet Y , and an n-letter channel transition probability
given by P

Y

n|Xn

(yn|xn

) : F
n

! Yn, where F
n

✓ Xn is
the feasible set of n-letter input sequences.

In particular, a P2P memoryless Gaussian channel without
feedback consists of an input and an output taking values
on the real line R and a channel transition probability
density P

Y |X(y|x) : R ! R whose n-th extension follows
N (xn, I

n

), i.e.,

P
Y

n|Xn

(yn|xn

)=

nY

t=1

P
Y |X(y

t

|x
t

)=(2⇡)�n/2e�||yn�x

n||2/2.

For such a P2P Gaussian channel, an (n,M, ✏, P ) code is
composed of a message set M = {1, ...,M} and a corre-
sponding set of codewords and mutually exclusive decoding
regions {(xn

(j), D
j

)} with j 2 M, such that the average
error probability satisfies

P (n)

e

:=

1

M

MX

j=1

Pr[Y n /2 D
j

|Xn

(j) sent]  ✏,

and each codeword satisfies a maximal power constraint:
1

n
||xn

(j)||2  P, 8j 2 M.

Accordingly, a rate logM

n

is achievable for the P2P Gaussian
channel with finite blocklength n, average error probability
✏, and maximal power P if such an (n,M, ✏, P ) code exists.

This section summarizes our main results for P2P Gaus-
sian channels. We first state a modified random coding



and typicality decoding achievability result for general P2P
channels with input cost constraints, which expresses a
non-asymptotic achievable rate valid for any blocklength.
It basically describes the error probability in terms of the
outage, confusion, and constraint-violation probabilities, and
is based on the dependence testing (DT) bound of [4].

Theorem 1: For a P2P channel (X , P
Y

n|Xn

(yn|xn

),Y),
any input distribution P

X

n and any output distribution Q
Y

n ,
there exists an (n,M, ✏) code satisfying the input cost
constraint F

n

with

✏  P
X

nP
Y

n|Xn

[

˜i(Xn

;Y n

)  log �(Xn

)]

+

M � 1

2

P
X

nP
Y

n

[

˜i(Xn

;Y n

) > log �(Xn

)] + P
X

n

[Fc

n

],

(18)

where the modified mutual information random vari-
able ˜i(Xn

;Y n

) is defined as

˜i(xn

; yn) := log

P
Y

n|Xn

(yn|xn

)

Q
Y

n

(yn)
, (19)

and � : Xn ! [0,1) is an arbitrary measurable function
whose optimal choice to give highest rates is �(xn

) ⌘ M�1

2

.
Proof: For brevity, we do not include a complete proof.

The main idea is to use the conventional random coding
and typicality decoding method, as reviewed in Section II,
but instead to define typicality using the modified mutual
information random variable. The input cost constraint can
be addressed similar to [4] by simply taking the decoding
threshold �=1 for the randomly generated sequences that
do not belong to the feasible input set F

n

and remapping all
of them to an arbitrary sequence belonging to F

n

.
If the input distribution is chosen to be i.i.d., then an

evaluation of the modified DT bound above would have
been straightforward, using a CLT for the first term, the
outage probability, and a large deviation bound for the second
term, the confusion probability. However, for non-i.i.d. input
distributions, such as the uniform distribution on the power
shell, the evaluation of the second term, the confusion
probability, can be especially challenging due to the potential
complicated nature of the actual output distribution P

Y

n

induced by the input distribution P
X

n . We are therefore
interested in changing the measure with which the confusion
probability is analyzed, as follows:

P
X

nP
Y

n

[

˜i(Xn

;Y n

) > log �(Xn

)]

= E
P

X

n

⇥
E
P

Y

n

⇥
1

�
˜i(Xn

;Y n

) > log �(Xn

)

 ⇤⇤

=

Z Z
1

�
˜i(xn

; yn) > log �(xn

)

 
dP

Y

n

(yn)dP
X

n

(xn

)

=

ZZ
1

�̃
i(xn

; yn)>log �(xn

)

 dP
Y

n

(yn)

dQ
Y

n

(yn)
dQ

Y

n

(yn)dP
X

n

(xn

)

= E
P

X

n


E
Q

Y

n


dP

Y

n

(Y n

)

dQ
Y

n

(Y n

)

1

�
˜i(Xn

;Y n

)> log �(Xn

)

 ��
.

(20)

The final expression (20) enables us to compute the
confusion probability with respect to the more convenient

measure Q
Y

n , but at the expense of the additional fac-
tor dP

Y

n

(Y

n

)

dQ

Y

n

(Y

n

)

. If we can uniformly bound this factor for
all yn by some positive constant K (or even an slowly
growing function K

n

independent of yn), then we will be
able to further bound (18) in a very simple way as follows:

✏  P
X

nP
Y

n|Xn

[

˜i(Xn

;Y n

)  log �(Xn

)]

+K
M � 1

2

P
X

nQ
Y

n

[

˜i(Xn

;Y n

)> log �(Xn

)]+P
X

n

[Fc

n

].

(21)

A close examination of [4] shows that the 
⌧

performance
characteristic in the � bound is also mainly concerned about
the factor dP

Y

n

(Y

n

)

dQ

Y

n

(Y

n

)

introduced above, and the bound (15)
is analogous to the uniform bounding by K in the analysis
above. The difference is that our analysis using random
coding, typicality decoding, and change of measure is a more
transparent procedure and more closely follows conventional
lines of argument.

We now specialize the analysis above to the P2P Gaussian
channel. First, we choose the input distribution to be the
uniform distribution on the power shell

P
X

n

(xn

) =

�(||xn|| =
p
nP )

S
n

(

p
nP )

, (22)

where � is the Dirac delta function and S
n

(r) = 2⇡

n/2

�(n/2)

rn�1

is the surface area of an n-dimensional sphere of radius r.
Notice that this distribution satisfies the input power con-
straint with probability one, so that

P
X

n

[Fc

n

] = 0. (23)

Moreover, the output distribution induced by this input is

P
Y

n

(yn)

=

1

2

⇡�n/2

�

⇣n
2

⌘
e�||yn||2/2e�nP/2

I
n/2�1

(||yn||
p
nP )

(||yn||
p
nP )

n/2�1

,

(24)

where I
v

(·) is the modified Bessel function of the first kind
and v-th order. It is worth mentioning that the general form
of the above marginal distribution is obtained in [10] up
to its ||yn||-independent coefficient. Next, we choose the
output distribution Q

Y

n to be the capacity-achieving output
distribution N (0, (1+P )I

n

). The following proposition will
then bound the divergence term introduced in (20). The
reader is referred to [11] for the proof, which is a slight
generalization of that in [4, p. 2347].

Proposition 1: Let P
Y

n be the distribution (24) induced
on the output of the P2P Gaussian channel by the uniform
input distribution (22) on the power shell, and let Q

Y

n be
the capacity-achieving output distribution N (0, (1 + P )I

n

).
There exists a positive constant K such that, for sufficiently
large n,

dP
Y

n

(yn)

dQ
Y

n

(yn)
 K, 8 yn 2 Rn. (25)

Remark. Using some more complicated manipulations, this
proposition can be shown to be valid for any finite n, but
the above statement is enough for our asymptotic analysis.



Combining the modified random coding and typicality
decoding bound in Theorem 1, the change of measure
argument (20), and the uniform bound of Proposition 1, along
with an application of the CLT as in [4], leads to the second-
order-optimal achievability bound [4], [5]

logM

n
 C(P )�

r
V (P )

n
Q�1

(✏) +O(1),

where C(P ) and V (P ) are the capacity and dispersion of
the P2P Gaussian channel, respectively.

IV. GAUSSIAN MAC

A general 2-user multiple access channel (MAC) with
input cost constraints and without feedback consists of
two input alphabets X

1

and X
2

, an output alphabet Y ,
and an n-letter channel transition probability given by
P
Y

n|Xn

1 X

n

2
(yn|xn

1

, xn

2

) : F
1n

⇥ F
2n

! Yn, where F
1n

✓
Xn

1

and F
2n

✓ Xn

2

are the feasible sets of n-letter input
sequences for the two users, respectively.

As a particular example, a memoryless Gaussian MAC
without feedback consists of two inputs and an output
taking values on the real line R and a channel transition
probability density P

Y |X1X2
(y|x

1

, x
2

) : R ⇥ R ! R whose
n-th extension follows N (xn

1

+ xn

2

, I
n

), i.e.,

P
Y

n|Xn

1 X

n

2
(yn|xn

1

, xn

2

) =

nY

t=1

P
Y |X1X2

(y
t

|x
1t

, x
2t

)

= (2⇡)�n/2e�||yn�x

n

1 �x

n

2 ||
2
/2.

An (n,M
1

,M
2

, ✏, P
1

, P
2

) code for a Gaussian MAC
is composed of two message sets M

1

= {1, ...,M
1

}
and M

2

= {1, ...,M
2

}, and a corresponding set of
codeword pairs and mutually exclusive decoding regions
{(xn

1

(j), xn

2

(k), D
j,k
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and each codeword satisfies a maximal power constraint:
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This section summarizes our main results for the Gaussian

MAC. We first state a modified random coding and typicality
decoding achievability result for a general MAC with input
cost constraints, which expresses a non-asymptotic achiev-
able rate valid for any blocklength. It basically describes
the error probability in terms of the outage, confusion, and
constraint-violation probabilities, and is based on the DT
bound for the discrete MAC [12].
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where the modified mutual information random variables are
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The above expression for the random coding and typicality
decoding bound is to match our outage-splitting approach
later in Theorem 4. However, it is possible to strengthen this
bound by focusing on the three outages jointly.
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where the modified mutual information random variables are
defined in (27), (28), and (29) and where �

1

, �
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3

: Xn

1

⇥
Xn

2

! [0,1) are arbitrary measurable functions.
Proof: (Theorems 2 and 3) The complete proof, which

again uses random coding and typicality decoding, is similar
to that for the discrete MAC [12] and is not included here for
brevity. Analogous to the proof of Theorem 1, the modified
mutual information random variables are used for defining
typicality, and the input cost constraints are included via
infinite decoding thresholds.

Similar to the P2P case, an evaluation of the three confu-
sion probabilities in the modified DT bounds of Theorems 2
and 3 with respect to (w.r.t.) a pair of non-i.i.d. input
distributions is challenging due to the complicated nature of
the induced (conditional) output distributions. Thus, we again
appeal to a change of measure argument for computing these
confusion probabilities. Analogous to (20), we can show that
the following equalities hold.
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Therefore, we may compute the confusion probability w.r.t.
the more convenient measures Q
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, but
at the expense of additional factors. If we can uniformly
bound these factors for all xn
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, yn), respectively, then we
will be able to compute the random coding and typicality
decoding bound in a relatively simple form.

Here, we will take the same P2P approach for a Gaussian
MAC. First, we choose the pair of input distributions to be
independent uniform distributions on the respective power
shells
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Notice that this pair of distributions satisfies the input power
constraint with probability one, that is,
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Moreover, analogous to the P2P Gaussian channel, the con-
ditional output distributions induced by this input pair are
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where I
v

(·) is again the modified Bessel function of the first
kind and v-th order. The analysis of the unconditional output
distribution P
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n for such an input pair is more complicated,
but results in
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Next, we choose the triple of (conditional) output distribu-
tions to be the capacity-achieving output distributions w.r.t.
each case, that is,
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The following proposition will then bound the factor intro-
duced in (31) and (32) and (33). The reader is referred to [11]
for the proof, which is similar to that of Proposition 1.
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Remark. Using some more complicated manipulations, the
proposition can be shown to be valid for any finite n, but
the above statement is enough for our asymptotic analysis.

Combining the modified outage-splitting random coding
and typicality decoding bound in Theorem 2, the change of



measure arguments (31), (32), (33), and the uniform bounds
of Proposition 2, along with an application of the CLT
leads to the following second-order achievable region for
the Gaussian MAC. Details of the analysis of the outage
and confusion probabilities are provided in [11].

Theorem 4: An achievable region for the Gaussian MAC
with maximal power constraints P
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for some choice of positive constants �
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,�
2

,�
3

satisfying
�
1
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3

= 1.
In the above theorem, the average error probability ✏ is

basically split among the three outage events of a 2-user
Gaussian MAC according to some (�

1

,�
2

,�
3

) partitioning.
Instead, we can assign essentially all the average error prob-
ability ✏ to the joint outage event. Therefore, upon repeating
the same procedure as in Theorem 4, but with the joint-
outage bound in Theorem 3 and the multi-dimensional CLT,
we obtain the following achievable region for the Gaussian
MAC, which is similar to the results of [13] and [14] for the
discrete MAC.

Theorem 5: An achievable region for the Gaussian MAC
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where Q�1

(✏;⌃) is the inverse complementary CDF of a
3-dimensional Gaussian random variable defined as
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where with shorthand u = 1, 2, we have

V
1,2

(P
1

, P
2

) =

log

2 e

2

P
1

P
2

(1 + P
1

)(1 + P
2

)

, (51)

V
u,3

(P
1

, P
2

) =

log

2 e

2

P
u

(2 + P
1

+ P
2

)

(1 + P
u

)(1 + P
1

+ P
2

)

. (52)

Both achievable regions in Theorems 4 and 5 suggest
that taking finite blocklength into account introduces a rate
penalty (for the interesting case of ✏ < 1

2

) that depends
on blocklength, error probability and Gaussian MAC dis-
persions.

V. NUMERICAL EVALUATION

In this section, we numerically evaluate the performance
of our achievable rate region for a symmetric Gaussian MAC
with finite blocklength n = 500 in the (noise-limited) low-
power P

1

= P
2

= 0 dB regime. For comparison, we also
evaluate and depict the following: the conventional asymp-
totic capacity [1]; the simple single-user finite-blocklength
outer bounds [13]; the finite-blocklength achievable region
via a random Gaussian codebook, and that via TDMA.

To explore how tight the two achievable regions we have
characterized in our Theorems 4 and 5 are, we consider a
simple outer bound that can be developed using single-user
results as follows. The achievable rate for each user cannot
exceed that when the other user is silent. In addition, one
can combine the two users into a super-user transmitting a
super-message consisting of the two messages of the users
over a P2P Gaussian channel using the sum power P

1

+P
2

.
For each case, the total error probability ✏ is assigned to
only one of the outage events. Combining these arguments,
we obtain the following simple outer bound:
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To illustrate the tightness of the random codebooks with
power shell input distribution, we compare our achievable re-
gion with the region achieved by a pair of random codebooks
which are, as usual [1], generated according to independent
Gaussian distributions. One can easily show an extension
of (8) to a Gaussian MAC such that
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for an arbitrarily small constant � > 0 and any choice of
constants satisfying �

1

+ �
2

+ �
3

= 1.
It is also interesting to compare the achievable rate region

with that of time-division multiple access (TDMA). For
TDMA with power control, the two users can share the n
channel uses, use single-user coding strategies, and average



the error probability ✏. Specifically, user 1 transmits in
the first ↵n channel uses with power P

1

/↵ and rate such
that an average error probability �✏ is achieved, and user
2 transmits in the remaining ↵̄n := (1 � ↵)n channel
uses with power P

2

/↵̄ and rate such that an average error
probability ˜�✏ is achieved. Since the average error probability
of this scheme can be characterized as ✏ = �✏+ ˜�✏� � ˜�✏2,
we choose ˜� = (1 � �)/(1 � �✏). Using the power shell
uniform input distribution for each user and relying on the
Gaussian P2P results [4], [5], the TDMA strategy achieves
the following set of rate pairs:
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for some 0  ↵  1 and 0  �  1.
Figures 1 illustrates the comparison between our two

(splitting and joint) achievable regions for the Gaussian
MAC using independent power shell inputs, the achievable
region using Gaussian inputs, the achievable region using
TDMA with power control, the simple single-user outer
bound, and the asymptotic capacity region. We observe
that coding with power shell inputs outperforms that using
a Gaussian distribution and TDMA. Specifically, Gaussian
random codebooks, while optimal for achieving capacity,
are not second-order optimal and their finite blocklength
achievable rate region falls inside that of power shell inputs.
The independent power shell inputs are also seen to closely
approach the simple single-user outer bounds everywhere,
except for a slight gap at the two corners that shrinks with
increasing blocklength. It is also interesting to notice that,
contrary to the infinite blocklength case, the TDMA strategy
with power control is not even sum-rate optimal.
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Fig. 1. Symmetric Gaussian MAC in the low-power regime
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