
Towards a Passivity Framework for Power Control and
Response Time Management in Cloud Computing

M.D. Lemmon
Dept. of Electrical Engineering, University of Notre Dame

lemmon@nd.edu

ABSTRACT
There has been great interest in using classical control the-
ory to manage computing systems. Classical control, how-
ever, focuses on regulating a system’s state in a neighbor-
hood of an equilibrium point and it is unclear if such equi-
librium based methods are well-suited for systems providing
performance guarantees in the face of large and rapid input
fluctuations. This may be the case for cloud computing ap-
plications where consumer workloads vary in a rapid and un-
predictable manner. As an alternative to classical methods,
this paper discusses a passivity framework for power control
and response-time management in cloud computing applica-
tions. This paper suggests that passivity concepts provide
a decentralized method for certifying whether a collection
of interconnected cloud computing systems can coordinate
their actions in a stable manner.

Categories and Subject Descriptors
I.2.8 [Control Theory]:

Keywords
Control Theory, Passivity

1. INTRODUCTION
Control theoretic methods have been used to manage a

wide range of computational systems that include real-time
embedded systems [LWK05, WJLK07], computer storage
systems [KKZ05], web servers [DGH+02], and virtualized
data centers [XZSW06, RRT+08].Much of this prior work
has made extensive use of classical control methods. Clas-
sical control is well suited for designing robust controllers
of linear systems. For nonlinear systems, classical methods
only provide local guarantees on system stability and perfor-
mance. It is unclear if such local guarantees are appropriate
for computational systems that must respond to large and
rapid variations in their input streams.

Prior surveys have already identified some of the issues
encountered in using classical methods for computational
resource management [ADH+08, ZUW+09]. Some of these
issues may be recast into the following list

• Global Performance: Distributed computing appli-
cations must provide service guarantees in the face
of ”large” variations in user demand. Since classical

Feedback Computing ’12 San Jose, California USA
.

methods presume regulation within a local neighbor-
hood of the operating point, they can only provide lim-
ited guarantees of computational system performance.

• Nonlinear Dynamics: Classical methods presume
the use of linearized dynamics in which the system
state takes values over the whole real line. Compu-
tational system states, however, are usually positive
and quantized. This restriction introduces nonlinear
dynamics that may be difficult to linearize.

• Model Uncertainty: Classical methods require a
formal model of the plant dynamics with bounds on
the modeling uncertainty. Such models of computa-
tional systems may not be known beforehand.

• Evolution versus Engineering: Classical control
was developed for engineered systems; i.e. systems
whose development proceeds in a top-down manner.
Computational systems, however, are often developed
in a bottom-up manner as software upgrades and new
components are incrementally added into an existing
system. For such ad hoc systems, the use of classi-
cal methods may lead to conservative controllers that
trade away performance for safety.

Rather than using classical methods, this paper examines
the use of nonlinear passivity concepts [vdS00] that are well
suited in controlling distributed systems.

Passivity is an alternative to more commonly used stabil-
ity concepts such as asymptotic stability or bounded-input
bounded-output (BIBO) stability. Informally, one says an
input-output system is passive if the energy injected into the
system is greater than or equal to the energy stored within
the system. When this inequality is strict, then passivity is
sufficient for the asymptotic stability of the undriven system.
Passivity has its origins in network (circuit) synthesis, but
can be generalized to other types continuous-time systems.

Passivity became important in control due to its connec-
tions with classical stability theory and the fact that passive
systems are easily stabilized through high-gain feedback.
One of the most attractive features of passive systems is
that passivity is preserved under arbitrary system intercon-
nections. This is useful in the control of large-scale inter-
connected systems [MH78] and as a result passivity frame-
works have appeared for networked robotic systems [AS89],
network congestion [WA04], and networked cyber-physical
systems[SKK+12].

This paper examines the use of passivity concepts in man-
aging cloud computing systems [AFG+10]. We adopt a

market-orient viewpoint [BYV08] in which the cloud con-
sists of a set of interconnected brokers and servers where
brokers route consumer workloads to servers. The resulting
network of brokers and servers interact in a manner that
is reminiscent of network congestion problems. A passiv-
ity framework for such network congestion control problems
was introduced in [WA04] and using that framework, this
paper suggests a passivity framework for controlling cloud
systems. One of the main findings of this paper is that one
can use passivity concepts as a certificate whose satisfaction
is sufficient for the safe operation of the system.

The remainder of this paper is organized as follows. Sec-
tion 2 introduces a formal model for the cloud computing
system. Section 3 discusses the problem of selecting an ap-
propriate feedback signal and section 4 uses passivity to ad-
dress this issue. Concluding remarks are in section 5.

2. CLOUD COMPUTING APPLICATION
This paper adopts a market-orient view [BYV08] in which

the ”cloud” consists of a set B of brokers and a set S of
servers. Brokers and servers are seen as independent eco-
nomic agents in a large-scale business enterprise. For nota-
tional convenience we assume that |B| = N and |S| = M .
Figure 1 shows a block diagram for this ”cloud”system. Bro-
kers act as admission control agents, determining how much
of the consumer’s workload, w(k), should be routed to each
server in S in the kth time interval. The servers process a
portion of the received workload. The workload that is not
completed by the server at the end of the kth time interval is
buffered as the backlogged workload. The server sends back
to the broker a throttling signal that is used by the broker to
control how much of the consumer’s workload will be routed
to the servers.

brokers

consumer workload
w

RQ

Broker Performance

servers

y = dispatched workload

 y = received workloadb = server backlog

u = throttling signal

u = feedback signal

Server Performance
s = service limit

d = dispatch limit

zB =
d-w

d[[

zS =
b
s[[

Figure 1: Cloud Computing Application

We now give a more formal description of the system in
Figure 1. At time instant k ∈ Z+, the ith broker (i ∈ B)
receives the consumer’s workload wi(k). The vector of con-
sumer workloads received by all brokers is denoted by the
vector w(k) = [w1(k), · · · , wN (k)]T . The maximum work-
load dispatched by broker i at time k is denoted as di(k).
The actual workload dispatched by broker i is

yi(k) = min{di(k), wi(k)} (1)

The maximum dispatch level, di, is a ”control” for the broker
that satisfies the difference equation

di(k + 1) = [di(k) + βi1(wi(k)− di(k))

−βi2ui(k)]+ (2)

where βi1, βi2 > 0 are real-valued control gains and [x]+ =
max{0, x}. The signal ui(·) : Z+ → R is a throttling signal
sent back to server i from the brokers. Together equations
(2) and (1) represent the systems in the upper block of Fig-
ure 1.

The workload, yi(k), dispatched by broker i at time k is
routed to the servers in S. The amount of workload routed
from broker i to server j at time k is denoted as rjiyi(k)

where
∑M

j=1 rji = 1 and 0 ≤ rji ≤ 1 for all i and j. The co-
efficient rji may be viewed as a routing decision that broker
i makes. This routing decision may be time varying. The
total workload received by server j at time k is therefore

ŷj(k) =

N∑
i=1

rjiyi(k)

Let y(k) = [y1(k), · · · , yN (k)]T and ŷ(k) = [ŷ1, · · · , yM (k)]T

with R = {rji} being the routing matrix, the forward route
from the brokers to servers may be written in matrix-vector
form as ŷ(k) = Ry(k).

At time k, we let bj(k) denote the workload that is wait-
ing for processing on server j. Clearly, ŷj(k), denotes the
new workload arriving at server j at time instant k. The
total workload that needs to be processed by server j is
therefore bj(k) + ŷj(k). Server j processes at most sj(k)
of this workload where 0 ≤ sj(k) ≤ sj . The constant
sj denotes the physical service limit for the server. Let
ej(k) = bj(k) + ŷj(k) − sj(k) denote the excess workload.
The service limit, sj(k), and the backlogged workload bj(k)
are internal states of the server that satisfy

bj(k + 1) = [ej(k)]+ (3)

sj(k + 1) = min
{
sj , [sj(k) + σjej(k)]+

}
(4)

We assume that the server generates a throttling signal

ûj(k) = h(bj(k), sj(k), ŷj(k)) (5)

where h(·, ·, ·) is a function that will be defined in the next
section. Together equations (3-5) represent the lower block
in Figure 1.

The throttling signal, ûj , is routed back to the brokers

through a return matrix, Q = {qij}. where
∑M

j=1 qij = 1

and 0 ≤ qij ≤ 1. If we let u(k) = [u1(k), · · · , uN (k)]T and

û(k) = [û1(k), · · · , ûM (k)]T , then the relation between the
throttling signal, û, generated by the servers and that signal
u received by the brokers can be written in matrix-vector
form as u(k) = Qû(k).

The broker’s system equation 2 forms a control system
in which the gain βi1 is chosen to ensure tracking of the
consumer’s workload wi and βi2 is selected to adjusted how
strongly the server’s feedback signal ui(k) throttles the bro-
ker. The first gain, particular, may be selected indepen-
dently of the throttling signal to minimize the broker’s ”cost”
function

JB
i = lim

L→∞

1

L

L∑
k=0

(
(di(k)− wi(k))2 + ρBi d

2
i (k)

)
(6)

where ρBi > 0 is a weighting coefficient. This objective may
be seen as trying to minimize the mean square error between
the consumer’s workload and the broker’s dispatch rate.

The server’s system equation (4) is also a control system
with control gain σj . This control gain may be selected to

minimize a local ”cost” function of the form,

JS
j = lim

L→∞

1

L

L∑
k=0

(
b2j (k) + ρSj s

2
j (k)

)
(7)

where ρSj > 0 is a weighting coefficient. This objective may
be seen as trying to minimize the server’s power consump-
tion (i.e. keep sj small) while simultaneously reducing the
server’s response time (i.e., keeping the backlog, bj , small).
In general, these two objectives conflict with each other and
the coefficient ρSj is chosen to balance the tradeoff between
these two objectives.

3. PROBLEM STATEMENT
As noted in earlier papers, assuring the asymptotic stabil-

ity of a number of systems in isolation, does not guarantee
stability of the interconnection. One must select an appro-
priate feedback or throttling signal to ensure the server back-
logs remain bounded under overload scenarios. To explore
this problem, let us consider the impact that the selection of
throttling signal, uj(k), has on the system’s ability to handle
overloads.

We first have the brokers and servers select gains that
minimize the two cost functions in equations (6) and (7) for
the weighting coefficients ρBi = 01 and ρSj = 0.5. With these
gains the brokers place a high value on tracking consumer
workload closely, whereas the server places a high value on
minimizing power costs. For this simulation example, the
optimal server gain is σ∗j = 0.2 and the optimal broker gain
is β∗i1 = 0.95. These gains assure the asymptotic stability
of the broker and server equilibria when the subsystems are
disconnected from each other.

We now consider the feedback interconnection of brokers
and servers in which the feedback signal, uj , used to throttle
the broker’s dispatch level is

ûj(k) = min{sj(k), bj(k) + ŷj(k)}

We call this the serviced workload and it is the total amount
of work returned to the broker by the server at the end
of the kth time interval. Since this is passed through the
return routing matrix, Q, this signal is something that can
be measured directly by the broker and serves as a crude
measure of congestion.

We now simulate this system with a consumer workload
that is modeled as an anomalous Brownian motion. Fluc-
tuations in the consumer workload are generated by two
processes; a normally distributed i.i.d random process with
mean 2 and variance 1 and a Poisson jump process that in-
jects large jumps in consumer demand at random points in
time. In this simulation example there are 3 brokers and 6
servers with a forward routing matrix R that is randomly
selected at the start of the simulation. The capacity limit
on the servers, sj , is taken to be 3. The first Poisson jump
occurs at time instant 250 and jumps the workload to 25.
The second Poisson jump occurs at time 500 and returns to
the nominal consumer workload of 2. The system is over-
loaded over the time interval [250, 500] since the consumer
workload exceeds the server capacity limit, sj over this time
interval.

Figure 2 shows the results when βi2 = 0.1. This figure
plots the time histories for the server’s maximum dispatch
level, di, the backlogged workload, bj , the service limit, sj ,
and the cost functionals, JB and JS . There are two things to

0

10

20

30

Broker Dispatched Workload, d

0

10

20

30

Server Backlog, b

0
1
2
3
4
5

Served Workload, s

0 500 1000 1500
0

50
100
150
200

Server and Broker Performance, JS and JB

time (k)

Figure 2: Throttle with Serviced Workload

note in these results. First, the system is ”unstable” when
the consumer input jumps to 25. Secondly, the system is
not very ”resilient”, since it takes nearly 100 time-steps for
the system to return to ”normalcy” after the consumer’s in-
put, wi, returns to its normal level. The unstable nature of
the system is seen in the cost functional time history, which
exhibits an exponential rate of growth when the consumer
demand jumps up. This is to be expected, of course, be-
cause the increase in workload arrival is greater than the
maximum service rate sj supplied by the servers. After the
consumer demand returns to normal, however, the plots in
Figure 2 show that it takes a relatively long time (100 time
steps) before the server states return to their normal levels.
We take this time of return as a measure of the system’s
resilience to the overload situation.

We now consider a different throttling signal. In particu-
lar, let’s assume that the server sends information about its
backlogged workload, bj , through the return routing matrix.
In particular, we let

ûj(k) = 2σbj(k) + 2σsj(k) (8)

Again we set the broker’s throttling gain, β2i = 0.1, and an
overloading input drives one of the brokers between [250, 500].
The results for this simulation are shown in figure 3. In this
case, we see a more ”controlled” increase in the cost func-
tionals. In particular, the cost JS no longer grows in an
uncontrolled exponential manner. Instead, these costs grow
and appear to converge to a constant value. This system,
therefore, appears to be ”stable” during the overload sce-
nario. As a result, when the overloading input is removed,
we see the server states quickly return to normal. Since the
return time to normalcy is much shorter than the 100 time
steps seen in Figure 2, we can conclude that the throttling
signal used in equation (8) results in a system that is more
resilient to overloads.

0

10

20

30

Broker Dispatched Workload, d

0

10

20

30

Server Backlog, b

0
1
2
3
4
5

Served Workload, s

0 500 1000 1500
0

50
100
150
200

Server and Broker Performance, JS and JB

time (k)

Figure 3: Throttle with Server Backlog

The preceding simulations in Figures 2 and 3 demonstrate
that the choice of feedback signal, uj(k) can have a profound
impact on the behavior of the networked system during over-
load scenarios. What is the fundamental difference between
the use of ”serviced workload” and ”backlogged workload”
that makes one a better feedback than the other? The next
section shows that the selection of an appropriate feedback
signal can be made using a passivity framework.

4. PASSIVITY FRAMEWORK
Passivity refers to the basic idea that the power flowing

into a system should not exceed the energy stored within it.
In particular, consider a discrete-time system whose state-
space representation may be written as

x(k + 1) = x(k) + f(x(k), u(k))

y(k) = h(x(k), u(k))

where u is the input signal and y is the output signal. We say
that this system is passive if there exists a positive definite
function V (·) : Rn → R such that

∆V (x(k)) ≤ uT (k)y(k) (9)

The function V is usually called a storage function. It rep-
resents the energy stored within the system. The inner
product, uT y, represents the instantaneous power flowing
into the system. If there is a positive definite function
W (·) : Rn → R such that

∆V (x(k)) ≤ uT (k)y(k)−W (x(k)) (10)

then this system is strictly passive. If one replacesW (x) with
W (y), then the system is said to be strictly output passive.
We sometimes refer to equations (9) and (10) as dissipative
inequalities. Finally, if no solution of the difference equation

x(k+1) = f(x(k), 0) other than the trivial solution x(k) = 0
can satisfy 0 = h(x(k), 0), then we say the system is zero-
state observable.

Passivity is useful in control theory due to its connections
with asymptotic stability as summarized in the following
proposition,

Proposition 1. [vdS00] Consider an input-output sys-
tem, G, such that f(0, 0) = 0. If this system is strictly
output passive and zero-state observable, then the origin of
x(k + 1) = x(k) + f(x(k), 0) is asymptotically stable.

Another important property of passivity is that feedback
interconnections of passive systems are again passive. Feed-
back connections such as those shown in Figure 1 are strictly
output passive when their constituent subsystems possess
some degree of passivity. This well known result is summa-
rized in the following proposition.

Proposition 2. [vdS00] Consider the feedback intercon-
nection of two systems, G1 and G2 in which one system is
strictly passive and the other is passive and zero-state ob-
servable, then the feedback system is strictly output passive
and zero-state observable.

Since the ”cloud” system in Figure 1 is a feedback sys-
tem, if we can show that the broker is strictly passive and
the servers are passive and zero-state observable, then one
can conclude that the equilibrium for the cloud computing
system will be asymptotically stable. The passivity of the
server system is proven below.

Proposition 3. The server system defined in equations
(3-5) is passive and zero-state observable.

Proof: Equations (3-5) may be rewritten as

ξ(k + 1) = min
{
ξ, [Aξ(k) +Bŷ(k)]+

}
û(k) = Cξ(k)

where ξ = [b, s]T , ξ = [∞, s]T , A =

[
1 −1
σ 1− σ

]
, B =[

1
σ

]
, and C =

[
2σ 2σ

]
. Note that for notational con-

venience, we’ve dropped the subscript on the server states.
From these equations it can be readily seen that the system
is zero-state observable. Let’s consider a storage function of
the form

V (ξ) = ξTPξ

where P =

[
σ −σ/2
−σ/2 1

]
. With this choice for V , we

can now go ahead and compute the first difference

∆V (ξ) = V (ξ(k + 1))− V (ξ(k))

Due to the non-smooth nature of the right-hand side of the
difference equations, there are a number of conditions we
need to consider. We classify these conditions on the basis of
the backlog projection in equation (3) being active/inactive.
It can be readily seen that the projection operator in equa-
tion (4) can never be active.

Backlog Projection is inactive: In this case, the first dif-
ference can be written as

∆V (ξ) = ξT (k + 1)Pξ(k + 1)− ξT (k)Pξ(k)

This bound holds whether s(k + 1) hits its upper limit or
not. This difference may be rewritten as

∆V (ξ) ≤ ξT
(
ATPA− P

)
ξ + 2ξTATPBŷ

For the given choice of P , we have ATPA − P = 0 and we
have 2ξATPBŷ ≤ ξTCŷ which implies ∆V ≤ ûŷ and so the
dissipative inequality is satisfied.

Back Projection active: Let’s consider

∆V (ξ) = ((1− σ)s+ σ(b+ ŷ))2

−σb2 + σbs− s2

Since the backlog project is active, we know that b+ ŷ < s
and in particular since b and ŷ are non-negative this means
that σbs ≤ σs2 and we rewrite the above inequality as

∆V (ξ) ≤ ((1− σ)s+ σ(b+ ŷ))2

−σb2 + (σ − 1)s2

We now expand out the first square term and collect terms
in the states b and s to obtain

∆V (ξ) ≤ (−1 + σ + (1− σ)2)s2

+2σ(1− σ)bs+ (σ2 − σ)b2

+2σ2bŷ + σ2ŷ2 + 2σ(1− σ)sŷ

It can be shown that the largest value the first two lines can
take is zero, so the above inequality reduces to

∆V (ξ) ≤ 2σ2bŷ + σ2ŷ2 + 2σ(1− σ)sŷ

Again ŷ < s since the backlog projection is active. Using
this fact in the second term we obtain

∆V (ξ) ≤ 2σ2bŷ + (2σ − σ2)sŷ

≤ 2σ2bŷ + 2σsŷ

≤ 2σbŷ + 2σsŷ

= ûŷ

where we used the fact that 0 < σ < 1. So the dissipative
inequality is again satisfied. Since the dissipative inequality
is satisfied for all conditions, this system is passive. ♦

We now establish that the broker subsystem is strictly
passive

Proposition 4. The broker system defined in equations
(1-2) is strictly passive.

Proof: We assume that the consumer input wi = 0 and
only consider the input-output system from u to d. In this
case, the state equations may be rewritten as

d(k + 1) = [(1− β1)d(k)− β2u(k)]+

where the gains β1, β2 > 0. In this case u(k) is the input
and the output y(k) = d(k). We select the storage function
V (d) = d2 and compute the first difference. Again we need
to consider the case when the projection operator is active
and inactive.

Projection Inactive: This means that the first difference
is

∆V (d) = ((1− β1)d− β2u)2 − d2

= (−1 + (1− β1)2)d2

−2β2(1− β1)ud+ β2
2u

2

Since the projection is inactive, we know that (1 − β1)d >
β2u. Inserting this into the last term yields,

∆V (d) ≤ (−1 + (1− β1)2)d2

−β2(1− β1)ud

which implies this block is strictly passive since the output
y = d.

Projection Active. In this case the first difference is

∆V (d) ≤ −d2 ≤ 0

which implies this system is also strictly passive. ♦.
Propositions 3 and 4 establish that the broker is strictly

passive and that the server is passive and zero-state observ-
able. Combining this result with proposition 1 and 2, allows
us to conclude that the overall cloud system’s equilibrium
point is asymptotically stable as was seen in the earlier sim-
ulations of section 3.

It is important to note that other methods could have been
used to establish asymptotic stability when server backlog is
used as a throttling signal. The passivity framework, how-
ever, possesses certain attractive features. One feature re-
laxes the requirement for precise system models; particularly
with regard to system gains. For example as long as the lo-
cal gains, σ and β1 are chosen to assure the isolated subsys-
tem’s stability, then the closed loop system is stable under
any positive throttling gain and under any routing matrix
(Q and R). There may, of course, be a wide variation in
the performance attainable under such a wide range of pa-
rameters, but the important structural property of system
stability is preserved.

Perhaps the most important feature of the passivity frame-
work rests with its modularity. The fact that passivity is
preserved under any arbitrary interconnection of subsystems
means that passivity of the overall system can be effectively
assured by simply checking the passivity of each individual
subsystem. This is something that can be checked locally, in
a way that keeps private a subsystem’s internal state infor-
mation. For a cloud built on free market principles, such a
local method for subsystem certification provides a scalable
way of upgrading the overall system. In particular, one can
introduce a passivity certificate

C(x, u, y) = uT y −∆V (x) (11)

for each broker and server in the system. The certificate
in equation (11) is simply the dissipative inequality charac-
terizing the local system’s passivity and by verifying that
C(x(k), u(k), y(k)) ≥ 0 for all k, then we know this subsys-
tem is passive and hence can be ”safely” interconnected into
the larger system.

Figure 4 shows the passivity certificate for two simulation
runs presented above. The top plot shows the servers pas-
sivity certificates when the server transmits the backlogged
workload as the throttle. As predicted in propositions 3 and
4, these certificates are positive, which is consistent with the
fact that the server systems are passive. The bottom plot
shows the same certificates for the case using the served
workload as a throttle. the throttling Figure 4 we see that
server’s certificate is negative when the system is overloaded,
which is consistent with the loss of system stability.

Passivity certificates, of course, only represent sufficient
conditions for a passive system, but these are certificates
that the individual subsystem ”publishes”to the entire group
as a certificate of the subsystem’s ability to work safely (i.e.

0 500 1000 1500
−200

0
200
400
600
800

Server Passivity Certificate
Backlog used as throttle

0 500 1000 1500
−200

0
200
400
600
800

Server Passivity Certificate

Serviced Workload used as throttle

Figure 4: Passivity Certificates for Examples

stably) with its neighbors. Violation of the certificate can
be detected locally in time and may therefore be used as a
method for detecting potential faults. This ”certification”
procedure is highly decentralized since no central authority
is needed to monitor and observe the internal states of the
subsystems. The certificate can be computed locally by an
agent based on its published inputs and outputs and another
published function of state ∆V (x). In no case is complete
knowledge of the internal and potentially private operations
of the agent exposed to the outside world. The use of such
passivity certificates may therefore provide a secure mecha-
nism for detecting faults within the cloud system.

5. SUMMARY
This paper describes a passivity framework for the cloud

computing systems in which brokers and servers act in a
market-oriented manner. The passivity framework provides
modular stability guarantees for ad hoc interconnections of
subsystems. This means system designs can be done on
a piece-by-piece basis and as long as these systems satisfy
a published passivity certificate, the interconnection of the
system is guaranteed to assure stable operation.
Acknowledgements: The authors acknowledge the partial
financial support of the National Science Foundation (CNS-
0931195).

6. REFERENCES
[ADH+08] T. Abdelzaher, Y. Diao, J.L. Hellerstein, C. Lu,

and X. Zhu. Introduction to control theory and
its application to computing systems.
Performance Modeling and Engineering, pages
185–215, 2008.

[AFG+10] M. Armbrust, A. Fox, R. Griffith, A.D. Joseph,
R. Katz, A. Konwinski, G. Lee, D. Patterson,
A. Rabkin, I. Stoica, et al. A view of cloud
computing. Communications of the ACM,
53(4):50–58, 2010.

[AS89] R.J. Anderson and M.W. Spong. Bilateral
control of teleoperators with time delay.
Automatic Control, IEEE Transactions on,
34(5):494–501, 1989.

[BYV08] R. Buyya, C.S. Yeo, and S. Venugopal.
Market-oriented cloud computing: Vision,
hype, and reality for delivering it services as
computing utilities. In High Performance
Computing and Communications, 2008.
HPCC’08. 10th IEEE International Conference
on, pages 5–13. Ieee, 2008.

[DGH+02] Y. Diao, N. Gandhi, J.L. Hellerstein,
S. Parekh, and D.M. Tilbury. Using mimo
feedback control to enforce policies for
interrelated metrics with application to the
apache web server. In Network Operations and
Management Symposium, 2002. NOMS 2002.
2002 IEEE/IFIP, pages 219–234. IEEE, 2002.

[KKZ05] M. Karlsson, C. Karamanolis, and X. Zhu.
Triage: Performance differentiation for storage
systems using adaptive control. ACM
Transactions on Storage (TOS), 1(4):457–480,
2005.

[LWK05] C. Lu, X. Wang, and X. Koutsoukos. Feedback
utilization control in distributed real-time
systems with end-to-end tasks. Parallel and
Distributed Systems, IEEE Transactions on,
16(6):550–561, 2005.

[MH78] P. Moylan and D. Hill. Stability criteria for
large-scale systems. Automatic Control, IEEE
Transactions on, 23(2):143–149, 1978.

[RRT+08] R. Raghavendra, P. Ranganathan, V. Talwar,
Z. Wang, and X. Zhu. No power struggles:
Coordinated multi-level power management for
the data center. ACM SIGOPS Operating
Systems Review, 42(2):48–59, 2008.

[SKK+12] J. Sztipanovits, X. Koutsoukos, G. Karsai,
N. Kottenstette, P. Antsaklis, V. Gupta,
B. Goodwine, J. Baras, and Shige Wang.
Toward a science of cyber physical system
integration. Proceedings of the IEEE, 100(1):29
–44, jan. 2012.

[vdS00] A.J. van der Schaft. L2-gain and passivity
techniques in nonlinear control. Springer
Verlag, 2000.

[WA04] J.T. Wen and M. Arcak. A unifying passivity
framework for network flow control. Automatic
Control, IEEE Transactions on, 49(2):162–174,
2004.

[WJLK07] X. Wang, D. Jia, C. Lu, and X. Koutsoukos.
Deucon: Decentralized end-to-end utilization
control for distributed real-time systems.
Parallel and Distributed Systems, IEEE
Transactions on, 18(7):996–1009, 2007.

[XZSW06] W. Xu, X. Zhu, S. Singhal, and Z. Wang.
Predictive control for dynamic resource
allocation in enterprise data centers. In
Network Operations and Management
Symposium, 2006. NOMS 2006. 10th
IEEE/IFIP, pages 115–126. IEEE, 2006.

[ZUW+09] X. Zhu, M. Uysal, Z. Wang, S. Singhal,
A. Merchant, P. Padala, and K. Shin. What
does control theory bring to systems research?
ACM SIGOPS Operating Systems Review,
43(1):62–69, 2009.

