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Abstract—We formulate a model for intermittent communi-
cations that can capture bursty transmissions or a sporadically
available channel, where in either case the receiver does not
know a priori when the transmissions occur. Focusing on the
point-to-point case, we develop two decoding schemes and their
achievable rates for such communication scenarios. One scheme
determines the transmitted codeword, and another scheme first
locates the information symbols and then uses them to decode.
The two-stage scheme leads to a higher achievable rate because
it uses a generalization of the method of types in the first stage,
which leads to a notion of partial divergence. We illustrate the
results in the case of an intermittent binary symmetric channel.

I. INTRODUCTION

Communication systems are traditionally analyzed assum-
ing continuous transmission of encoded symbols through the
channel. However, in many practical applications such an
assumption is not appropriate, and transmitting a codeword
can be intermittent due to lack of synchronization, shortage of
transmission energy, or burstiness of the system. The challenge
is that the receiver does not explicitly know whether a given
output symbol of the channel is a result of sending a symbol
of the codeword or is simply a noise symbol containing no
information about the message. In this paper, we model such
intermittent communication and determine some achievable
rates.

Asynchronous communication is modeled in [1] and [2]
by a single block transmission that starts at a random time,
unknown to the receiver, in an exponentially large window,
known to the receiver. In this model, the transmission is
contiguous; once it starts, the whole codeword is transmitted,
and the receiver observes only noise before and after transmis-
sion. However, in intermittent communication, a codeword is
not transmitted contiguously. Instead, some number of noise
symbols occur between the symbols of a codeword before
going through the channel. We assume that the receive window
and the codewords length, and therefore the number of inserted
noise symbols, is fixed. In contrast to [1], where the interesting
scenario arises if the receive window scales exponentially with
the codeword length, the interesting scenario in intermittent
communication arises if the receiver window scales linearly
with the codeword length. Our system model can be also
interpreted as an insertion channel, in which a random number
of noise symbols is inserted between consecutive symbols of
the codeword. Although different from the insertion channels
in the literature [3] and [4], our results may provide some
insights about them.

Fig. 1. System model for intermittent communication.

After formulating the problem and specifically mentioning
the applications, we describe the first decoding scheme and
analyze its achievable rate. Then, we consider a two-stage
decoding procedure and characterize its achievable rate using a
notion of partial divergence that results from a generalization
of the method of types. Finally, we illustrate the achievable
rates for an intermittent binary symmetric channel (BSC).

II. MODEL, APPLICATIONS, AND NOTATIONS

A transmitter wants to send a message m ∈ {1, 2, ..., ekR =
M} to a receiver through a discrete memoryless channel. Let
X and Y denote the input and output alphabets of the channel,
and let W denote its probability transition matrix. Assume
that {ck(m),m = 1, 2, ...,M} are the codewords of integer
length k available to the transmitter, and let Xn and Y n denote
the integer length n input and output vectors of the channel,
respectively, where n ≥ k, and α := n/k, α ≥ 1. Assume that
Xn consists of the transmitted codeword at k arbitrary time
slots and is equal to a noise symbol denoted by ? ∈ X at the
other n− k time slots, where the codeword ck appears in the
sequence Xn in the same order, i.e., ci cannot appear after
cj in the sequence if i ≤ j. It is equivalent to say that n− k
noise symbols are arbitrarily inserted between the symbols
of a codeword. Figure 1 shows a block diagram for the
system model, which we call intermittent communication and
denote by (X,Y,W, ?, α). The communication rate is defined
as logM/k. Assuming that the decoded message is denoted by
m̂, we say that rate R is achievable if there exists a sequence
of length k codes of size ekR with 1

M

∑M
m=1 P(m̂ 6= m)→ 0

as k →∞. The capacity is the supremum of all the achievable
rates. A natural question is, what is the capacity of intermittent
communication? In this paper, we find some achievable rates.

The intermittent communication model can also represent
bursty communication in which either the transmitter or the
channel is bursty. We assume that the receiver does not know
the positions of the codeword symbols in the channel input
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sequence. As we will see, this natural assumption seems to
make the decoder’s task more difficult. We also assume that
the transmitter cannot decide on these positions, so it cannot
encode any timing information. Note that in a bursty com-
munication scenario, the process of burstiness is usually out
of the transmitter’s control, and the receiver usually does not
know the realization of the bursts, which are consistent with
these assumptions. The level of intermittency (or burstiness)
is controlled by how large n is compared to k. The larger
the value of α, the more intermittent the system is; if α = 1,
the system is not intermittent and corresponds to contiguous
communication. Not surprisingly, the achievable rates obtained
in this paper are a function of α: increasing α generally
reduces the achievable rates.

The described system model applies to several practical
communication scenarios. If the intermittent process compo-
nent in Figure 1 is considered as a part of the channel behavior,
then we say that the channel is intermittent in the sense that it
takes a symbol of the codeword as an input at some time slots,
and takes a noise symbol as an input at other time slots. As
an example, consider an insertion channel in which, after the
ith symbol from the codeword, Ni noise symbols are inserted,
where Ni’s are i.i.d. random variables with mean α−1. At the
decoder, there are N symbols, where N is a random variable,
but we have

N

k
=
k +N1 +N2 + ...+Nk

k

p−→ 1 + E(N1) = α.

It turns out that the achievability results in the sequel are
valid for such insertion channels, as we discuss in more detail
in Section IV. Note that this is a specific class of insertion
channels, and we refer the interested reader to See [3], [4]
for more general classes of insertion channels and associated
results.

On the other hand, if the intermittent process component
in Figure 1 is considered as a part of the transmitter, then
we say that the transmitter is intermittent. Practical examples
are energy harvesting systems, where the transmitter harvests
energy usually from a natural source and uses it for transmis-
sion. Assuming that the noise symbol can be transmitted with
zero energy, the transmitter sends the symbols of the codeword
if there is enough energy for transmission, and sends noise
symbols otherwise. If the transmitter can store energy in an
energy buffer with enough capacity, then it can decide when
to send the symbols of the codeword and when to transmit a
noise symbol to save some energy based on the amount of the
available energy. In that case, the transmitter can also encode
some timing information, which is beyond the scope of this
paper.

Notation: We use o(·) to denote quantities that grow strictly
slower than their arguments. Most of the notation in this
paper follows that in [1] and [5]. By X ∼ P (x), we mean
X is distributed as P . The empirical distribution (or type)
of a sequence xn ∈ Xn is denoted by P̂xn . Joint empirical
distributions are denoted similarly. We say a sequence xn has
type P if P̂xn = P and denote it by xn ∈ TnP , where TnP or

more simply TP is the set of all sequences that have type P .
We use PX to denote the set of distributions over the finite
alphabet X. For simplicity, we define W?(·) := W (·|x = ?).
In this paper, we use the convention that

(
n
k

)
= 0 if k < 0 or

n < k, and the entropy H(P ) = −∞ if P is not a probability
mass function, i.e., one of its elements is negative or the sum
of its elements is larger than one. h(·) is the binary entropy
function. Finally, if 0 ≤ ρ ≤ 1, then ρ̄ := 1− ρ.

III. MAIN RESULTS

We first introduce a simple decoding scheme, obtaining an
achievable rate (Proposition 1) in addition to providing some
ingredients for obtaining an achievable rate for a two stage
decoding scheme (Theorem 1).

A. One-Stage Decoding

For a fixed input distribution P , the codebook is ran-
domly and independently generated, i.e., all Ci(m), i ∈
{1, 2, ..., k},m ∈ {1, 2, ...,M} are i.i.d. according to P . For a
fixed typicality parameter µ > 0, the decoder observes the
sequence yn, chooses k symbols out of those n symbols,
denoted by ỹk, and performs joint typicality decoding, i.e.,
checks if

|P̂ck(m),ỹk(x, y)− Pm(x, y)| ≤ µ (1)

for all (x, y) ∈ X × Y and a unique index m, where Pm
is the joint probability mass function induced by the type of
codeword ck(m) and the channel W , defined by [1]

Pm(x, y) := P̂ck(m)(x)W (y|x), (x, y) ∈ X× Y.

For convenience, we write ỹk ∈ T[W ]µ(ck(m)), if (1) is
satisfied for m. If the decoder finds a unique m satisfying (1),
it declares m as the transmitted message. Otherwise, it makes
another choice for the k symbols from the sequence yn and
again attempts typicality decoding. If at the end of all

(
n
k

)
choices the typicality decoding procedure did not declare any
message, then the decoder declares an error. In order to analyze
the probability of error, we state the following fact, which is
proved in [1, Equations (24) and (25)] based on the method
of types [5, Chapter 1.2].

Fact 1. Assume that Ck(m) and Ỹ k are independent,
Ck(m) is generated i.i.d. according to P , and (X,Y ) ∼
P (x)W (y|x), then the probability that Ck(m) together with
Ỹ k satisfy (1) for this specific m, is upper bounded as

P(Ỹ k ∈ T[W ]µ(Ck(m))) ≤ poly(k)e−k(I(X;Y )−ε) (2)

for all k sufficiently large, where ε can be made arbitrarily
small by choosing a small enough typicality parameter µ.

Proposition 1. For intermittent communication with
(X,Y,W, ?, α), rates not exceeding C − αh(1/α) are
achievable, where C is the capacity of the DMC with
stochastic matrix W .

Proof: Let P be the capacity achieving input distribution
for the DMC with stochastic matrix W , and consider the
encoding and decoding strategies described above. For any

1352



ε > 0, we prove that if R = C − αh(1/α) − 2ε, then the
average probability vanishes as k →∞.

pavge =p1
e = P(m̂ 6= 1|m = 1)

≤P(m̂∈{2, 3, ...,M}|m=1)+P(Y k /∈ T[W ]µ(Ck(1))),
(3)

where p1
e is the probability of error conditioned on the sending

of message w = 1, and where (3) results from the union bound
in which the second term is the probability that the typicality
decoding fails for the right codeword given that the k chosen
output symbols are the correct ones, which vanishes as k →∞
according to [5, Lemma 2.12]. Using the union bound for the
first term in (3), we have

P(m̂ ∈ {2, 3, ...,M}|m = 1)

≤
(
n

k

)
(M − 1)P(Ỹ k ∈ T[W ]µ(Ck(2))|m = 1), (4)

because there are
(
n
k

)
choices for the k output symbols, and

for each choice, we use the union bound for all M − 1 =
ekR − 1 messages other than m = 1. Using the Stirling’s
approximation, we have(

n

k

)
≤ e

1
12

√
2π

√
n

k(n− k)
enh(k/n) = ek(o(1)+αh(1/α)), (5)

as k → ∞. Note that, conditioned on message m = 1 being
sent, Ck(2) and Ỹ k are independent for any choice of output
symbols. Therefore, using Fact 1 with the capacity achieving
input distribution, we have

P(Ỹ k ∈ T[W ]µ(Ck(2))|m = 1) ≤ poly(k)e−k(C−ε) (6)

Combining (3), (4), (5), and (6), we obtain

pavge ≤ek(o(1)+αh(1/α))ek(C−αh(1/α)−2ε)e−k(C−ε) + o(1)

≤e−k(ε−o(1))poly(k) + o(1)→ 0,

as k →∞, which proves the proposition.
Note that the maximum probability of error vanishes as

well using standard expurgation arguments. The form of the
achievable rate is reminiscent of communications overhead as
the cost of constraints [6], where the constraint is the system’s
burstiness, and the overhead cost is αh(1/α).

B. Two-Stage Decoding

In this section, we introduce a two-stage decoding procedure
that strictly improves upon the achievable rate in Proposition 1.
As before, the decoder chooses k of the n symbols from the
output vector yn. Let ỹk denote the chosen output symbols,
and ŷn−k denote the other output symbols. The first stage
consists of checking if ỹk is the transmitted sequence (if ỹk ∈
TPW ), and if ŷn−k is generated by noise (if ŷn−k ∈ TW? ).
If both of these conditions are satisfied, then we perform the
typicality decoding as described in Section III-A, which is
called the second stage here. Otherwise, we make another
choice for the k symbols and repeat the two-stage decoding
procedure. At any step that we run the second stage, if the
typicality decoding declares a message as being sent, then

decoding ends. If the decoder does not declare any message
as being sent by the end of all

(
n
k

)
choices, then the declares

an error.
In order to analyze the probability of error, we need to

generalize the method of types in [5] to be able to bound the
probability of certain events in the first stage of the two-stage
decoding procedure. To that end, we establish Lemma 1, which
is a generalization of [5, Lemma 2.6].

Lemma 1. Consider an alphabet with t symbols, i.e., X =
{0, 1, ..., t − 1}. Consider three distributions P,Q,Q′ ∈ PX,
where P := (p0, p1, ..., pt−1), Q := (q0, q1, ..., qt−1), and
Q′ := (q′0, q

′
1, ..., q

′
t−1). We assume that all of the elements

of these three PMF’s are nonzero. A random sequence Xk

is generated as follows: k1 symbols are i.i.d. according to Q
and k2 symbols are i.i.d. according to Q′, where k1 + k2 = k
and ρ := k1/k. The probability that Xk has type P is upper
bounded as

P(Xk ∈ TP ) ≤ eo(k)e−kd(P,Q,Q′,ρ), (7)

where

d(P,Q,Q′, ρ) := H(P ) +D(P ||Q)

− ρ̄ log
q′t−1

qt−1
− e(P,Q,Q′, ρ), (8)

e(P,Q,Q′, ρ) := max
0≤θj≤1,j=0,1,...,t−2

{ρH(P1) + ρ̄H(P2)

+

t−2∑
j=0

θjpj log aj}, (9)

aj :=
q′jqt−1

qjq′t−1

, j = 0, 1, ..., t− 2,

P1 := (
θ̄0p0

ρ
,
θ̄1p1

ρ
, ...,

θ̄t−2pt−2

ρ
, 1−

∑t−2
j=0 θ̄jpj

ρ
),

P2 := (
θ0p0

ρ̄
,
θ1p1

ρ̄
, ...,

θt−2pt−2

ρ̄
, 1−

∑t−2
j=0 θjpj

ρ̄
).

Because of space limitations, we prove the lemma for
the case of binary alphabets, i.e, t = 2, in Appendix A.
The generalization to t > 2 is straightforward, but lengthy.
Specializing Lemma 1 for Q′ = Q results in [5, Lemma 2.6],
and we have d(P,Q,Q, ρ) = D(P ||Q). Lemma 1 enables
us to evaluate the probability that a sequence consisting of
symbols from two different distributions has a specific type
P , which will be useful in proving the result in Theorem 1.
Basically, we are interested in a special case of Lemma 1
for which Q′ = P . In other words, we need to upper bound
the probability that a sequence has type P when partially
generated according to Q and partially according to P , where
the ratio of the mismatched symbols (generated from Q) to
all the symbols is ρ = k1/k. For this special case, we define
dρ(P ||Q) := d(P,Q, P, ρ). The function dρ(P ||Q), which we
call partial divergence between P and Q, has some interesting
properties (such as 0 ≤ dρ(P ||Q) ≤ ρD(P ||Q)), on which we
will elaborate in another paper.

1353



Theorem 1. For intermittent communication with
(X,Y,W, ?, α), rates not exceeding maxP {I(X;Y ) −
f(P,W,α)} are achievable, where

f(P,W,α):=max
0≤β≤1

{(α− 1)h(β) + h((α− 1)β)

−d(α−1)β(PW ||W?)−(α−1)dβ(W?||PW )}.
(10)

Proof: Fix the input distribution P , and consider the
encoding and decoding strategies described in Sections III-A
and III-B, respectively. For any ε > 0, we prove that if
R = I(X;Y )− f(P,W,α)− 2ε, then the average probability
vanishes as k →∞.

pavge = p1
e ≤ P(m̂ ∈ {2, 3, ...,M}|m = 1)+P(m̂ = e|m = 1),

(11)
where the second term is the probability that the decoder
declares an error (does not find any message) at the end of
all
(
n
k

)
choices, which implies that even if we pick the correct

output symbols, the decoder either does not pass the first stage
or does not declare m = 1 in the second stage. Therefore,

P(m̂ = e|m = 1) ≤P(Y k /∈ T[PW ]µ) + P(Y n−k? /∈ T[W?]µ)

+ P(Y k /∈ T[W ]µ(Ck(1))) (12)

→ 0, as k →∞ (13)

where Y k is the output of the channel if the input is Ck(1),
and Y? is the output of the channel if the input is the noise
symbol, and where we use union bound to establish (12). The
limit (13) is because all the three terms in (12) vanish as k →
∞ according to [5, Lemma 2.12].

The first term in (11) is more challenging. It is the proba-
bility that for at least one choices of the output symbols, the
decoder passes the first stage and then the typicality decoder
declares an incorrect message. Let the index ki denote the
condition on the ith choice of the output symbols out of all

(
n
k

)
choices. We characterize the choices based on the number of
incorrectly chosen output symbols, i.e., the number of symbols
in ỹk that are in fact outputs corresponding to a noise input,
which is equal to the number of symbols in ŷn−k that are in
fact outputs corresponding to an input symbol of the codeword.
Let the index k1 denote the condition that the number of
wrongly chosen output symbols is equal to k1. For a specific
k1 there are

(
k
k1

)(
n−k
k1

)
choices (According to Vandermonde’s

identity, we have ∑n−k
k1=0 ( kk1)(

n−k
k1

)=(nk)). Using the union bound
for all the choices and all the messages ŵ 6= 1, we have

P(m̂∈{2, 3, ...,M}|m=1)≤
(nk)∑
i=1

(M − 1)Pki(m̂ = 2|m = 1)

= (ekR − 1)

n−k∑
k1=0

(
k

k1

)(
n− k
k1

)
Pk1(m̂ = 2|m = 1). (14)

Note that message m̂ = 2 is declared at the decoder only if it
passes the first stage, and then it is the unique message that

satisfies (1). Therefore,

Pk1(m̂ = 2|m = 1) = Pk1
(
{Ỹ k ∈ TPW } ∩ {Ŷ n−k ∈ TW?

}

∩ {Ỹ k ∈ T[W ]µ(Ck(2))}|m = 1

)
=Pk1(Ỹ k ∈ TPW ) · Pk1(Ŷ n−k ∈ TW?

)

·P(Ỹ k ∈ T[W ]µ(Ck(2))|m = 1, Ỹ k ∈ TPW , Ŷ n−k ∈ TW?
)

(15)

≤eo(k)e−kdk1/k(PW ||W?)e−(n−k)dk1/(n−k)(W?||PW )

· e−k(I(X;Y )−ε), (16)

where (15) follows from the independence of the events {Ỹ k ∈
T[W ]µ} and {Ŷ n−k ∈ TW?

} conditioned on k1 mismatched
symbols, and (16) follows from using Lemma 1 for the first
two terms in (15) and using Fact 1 for the last term in (15),
because conditioned on message m = 1 being sent, Ck(2)
and Ỹ k are independent regardless of the other conditions in
the last term. Substituting (16) into the summation in (14), we
have

P(m̂ ∈ {2, 3, ...,M}|m = 1) ≤ eo(k)(ekR − 1)e−k(I(X;Y )−ε)

·
n−k∑
k1=0

(
k

k1

)(
n− k
k1

)
e−kdk1/k(PW ||W?)−(n−k)dk1/(n−k)(W?||PW )

(17)

≤ eo(k)ekRe−k(I(X;Y )−ε)ekf(P,W,α) (18)

= eo(k)e−kε → 0 as k →∞, (19)

where (18) is obtained by finding the exponent of the sum
in (17), which is equal to the largest exponent of each term in
the summation, since the number of terms is polynomial in k.
To that end, let β := k1/(n− k) (0 ≤ β ≤ 1), using Stirling’s
approximation as in (5) for each of the combinatorial terms
in (17), we find that the largest exponent is f(P,W,α), which
is defined in (10); and where (19) is obtained by substituting
R = I(X;Y )− f(P,W,α)− 2ε. Now, combining (11), (13),
and (19), we have pavge → 0 as k → ∞, which proves the
Theorem.

IV. EXAMPLE: BSC
Consider a BSC with crossover probability 0 ≤ p ≤ 0.5.

Figure 2 shows the two achievable rates obtained in Proposi-
tion 1 and Theorem 1 versus p for different values of α ≥ 1.

Not surprisingly, the achievable rate in Theorem 1 (indicated
by “Thm 1”) is always larger than the one in Proposition 1
(indicated by “Prop 1”) since the two-stage decoding proce-
dure takes advantage of the fact that the choice of the k output
symbols might not be a good one. Specifically, the exponent
obtained in Lemma 7 in terms of the partial divergence helps
the decoder detect the right symbols, and therefore, achieve a
larger rate. The arrows in Figure 2 show this difference and
suggests that the benefit of using the two-stage decoding is
larger for increasing α. Note that the larger α is, the smaller
the achievable rate would be for a fixed p. Also, note that as
p → 0 the achievable rates approach a limit, which is equal
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Fig. 2. Achievable rate for the BSC verses cross over probability p for
different intermittency levels α’s.

1 1.2 1.4 1.6 1.8 20

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
(b

its
/s

)

 

 

RInsertion (p=0)

p=0.001, Thm 1
p=0.001, Prop 1
p=0.01, Thm 1
p=0.01, Prop 1
p=0.1, Thm 1
p=0.1, Prop 1

Fig. 3. Achievable rate for the BSC verses the intermittency level α for
different cross over probabilities p’s.

to 1−αh( 1
α ) (bits/s) for the first achievable rate. However, it

is more involved to obtain it for the second achievable rate,
which is denoted by RInsertion and can be proven to be equal to
max0≤p0≤1{2h(p0)−max0≤β≤1{(α−1)h(β)+h((α−1)β)+

(1−(α−1)β)h(p0−(α−1)β
1−(α−1)β )}}. Note that this is the achievable

rate if the channel is noiseless (p = 0), which models the
insertion channel we discussed in Section II.

Figure 3, shows the value of RInsertion and the value of
achievable rates for different p, versus α. Not surprisingly,
as α→ 1, the capacity of the BSC is approach for both of the
achievable rates. Again, the difference between the achievable

rates is more obvious for larger α. In this example, we cannot
achieve a positive rate if α ≥ 2, even for the case of a noiseless
channel (p = 0). However, this is not true in general, because
even the first achievable rate can be positive for a large α, if
the capacity of the channel is sufficiently large. Figure 3 can
be interpreted as the achievable region for (R,α). The results
suggest that, as communication becomes more intermittent
and α becomes larger, the achievable rate is decreased due to
the additional uncertainty in the positions of the information
symbols at the decoder.

APPENDIX A
PROOF OF LEMMA 1 FOR THE BINARY CASE

We have t = 2, X = {0, 1}, P = (p0, p1), Q = (q0, q1),
and Q′ = (q′0, q

′
1). Let N(0) denote the number of 0’s in Xk1

1 ,
and N ′(0) denote the number of 0’s in Xk

k1+1. We have

P(Xk ∈ TP ) = P(N(0) +N ′(0) = kp0)

=

kp0∑
l=0

P(N ′(0) = l)P(N(0) = kp0 − l) (20)

=

kp0∑
l=0

(
k2

l

)
(q′0)l(q′1)k2−l

(
k1

kp0 − l

)
qkp0−l0 q

k1−(kp0−l)
1 (21)

=(q′1)k2qkp00 qk1−kp01

kp0∑
l=0

(
k2

l

)(
k1

kp0 − l

)
al0; a0 =

q′0q1

q0q′1

=e−k(H(P )+D(P ||Q)−ρ̄ log
q′
1
q1

)
kp0∑
l=0

(
k2

l

)(
k1

kp0 − l

)
al0 (22)

≤e−k(H(P )+D(P ||Q)−ρ̄ log
q′
1
q1

)eo(k)eke(P,Q,Q
′,ρ) (23)

=eo(k)e−kd(P,Q,Q′,ρ), (24)

where (20) and (21) follow from the fact that N(0) and
N ′(0) are independent and have binomial distributions, (22)
follows from the definition of the entropy and divergence
functions, (23) follows by the same procedure used to ob-
tain (18) from (17), i.e., finding the largest exponent of the
sum by defining θ0 := l/(kp0), where with simple algebraic
manipulation the exponent becomes e(P,Q,Q′, ρ) defined
in (9); and where (24) follows from definition (8).
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