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Abstract— Leader-follower formation control is a widely used
control strategy that often needs systems to exchange infor-
mation over a wireless radio communication network. These
wireless networks are subject todeep fades, where a severe drop
in the quality of the communication link occurs. Such deep
fades may significantly impact the formation’s performance
and stability. In many applications, however, the variation in
channel state is a function of the system’s kinematic states.
This suggests that one can use channel state information as
a feedback signal to recover the performance loss caused
by a deep fade. This paper derives sufficient conditions to
assure almost-sure asymptotic stability of a leader-follower
nonholonomic system in the presence of deep fades. These
conditions relate the channel state to the system’s convergence
rate. This paper uses this fact to reconfigure the controller.
Simulation results are used to illustrate the main results in the
paper.

I. I NTRODUCTION

In the past decade,formation control has found exten-
sive applications in industry and academia [2], [14], [11],
[13], [5]. In formation control, the agents coordinate with
each other to form and maintain a specified formation.
The coordination is often conducted over a wireless radio
communication network. It is well known that such commu-
nication networks are subject to deep fading, which causes a
severe drop in the network’s quality-of-service (QoS). These
deep fades negatively impact the formation’s performance
and stability by interfering with the coordination between
agents. The loss of coordination may cause serious safety
issues in applications like smart transportation system [19],
unmanned aerial vehicles system[16] and underwater au-
tonomous vehicles[15]. These issues can be addressed by
developing a resilient control system that detect such deep
fades and adaptively reconfigures its controller to maintain
a minimum performance level.

Channel fading is often characterized in terms of channel
gain [18]. Channel gain represents the signal strength ratio
of receiving signal over transmission signal. It is usually
modeled as anindependent and identical distributed (i.i.d)
random process with Rayleigh or Rician distribution. This
model is inadequate in two aspects. First, the fading process
exhibits memory which is better modeled as a Markov
random process with two states [20]. Second, the i.i.d.
channel model is ignores the impact that the formation’s
kinematic states have on the channel. Vehicle-to-Vehicle
(V2V)[4] systems provide an example in which the velocity
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and relative distance of the vehicles significantly affect the
channel state. Moreover, for those wireless communication
systems using directional antennae [23], [1], changes in the
relative vehicle orientation could also lead to a deep fade.

The loss of information caused by deep fades negatively
limits the performance that can be achieved by the control
system. Prior work [21], [17], [6] characterized the minimum
stabilizing bit rate for linear time-invariant system assuming
constant channel gain. As noted above, the assumption on
constant channel gain is overly simplistic for fading channels.
An initial attempt to study the impact of the time-varying
channel gains on mean square stability appeared in [12]. This
work, however, assumed the channel gain was functionally
independent from the physical system’s dynamics. In [8], the
authors examined a more realistic fading channel model in
which the channel is exponentially bursty and is dependent
on the norm of the physical system’s states. This paper
extends the prior work in [8] to a two-dimensional leader-
follower formation control problem.

Leader-follower formations are useful for their simplicity
and scalability. This paper studies the leader-follower control
scheme for nonholomonic systems using directional antennae
to access the wireless communication network. Assuming an
exponentially bursty channel model, this paper derives con-
ditions that are sufficient for the system to havealmost-sure
stability [9]. The paper uses this characterization to propose
adaptive control schemes that switch feedback controllersin
response to changes in channel state. The simulation results
demonstrate the merits of the proposed method.

II. M ATHEMATICAL PRELIMINARIES

Let Z andR denote the set of integers and real numbers,
respectively. LetZ+ and R+ denote the set of positive
integers and non-negative real numbers, respectively. LetR

n

denote then-dimensional Euclidean vector space. Consider a
continuous-time random process{x(t) ∈R

n : t ∈R+} whose
sample paths are right-continuous and satisfy the following
differential equation,

ẋ(t) = f (x(t),u(t),w(t)) (1)

where f (0,0,0) = 0, u(·) : R+ → R
m is a control input and

w(t) is a jump process

w(t) =
∞

∑
ℓ=1

wℓδ (t − τℓ) (2)

in which {wℓ, ℓ ∈ Z+} is a Markov process describing the
ℓth jump’s size at jump instants{τℓ}∞

ℓ=1. The expectation of
this stochastic process at timet will be denoted asE(x(t)).



Fig. 1. The leader-follower formation

The system in equations (1-2) is said to bealmost-surely
asymptotically stable if for allε > 0 andρ > 0, there exists
T > 0 andδ > 0 such that if|x(0)| ≤ δ , then

Pr

{

sup
t≥T

|x(t)| ≥ ε
}

≤ ρ

Any stochastic process that satisfies the above condition
will be said to be almost-surely convergent. A discrete-time
Markov process{Uk ∈ R : k ∈ Z+} will be said to be a
supermartingaleif and only if

E(Uk|Uk−1)≤Uk−1

for all k ∈ Z+. If {Uk} is a supermartingale, then one can
use the Markov inequality to infer that this process is also
almost-surely convergent.

III. SYSTEM MODEL

Figure 1 shows the leader-follower system’s geometry. The
ith vehicle’s position (i = 1,2) at time t ∈ R+ is denoted
by the ordered pair(xi(t),yi(t)). The attitude of the vehicle
relative to they = 0 axis at timet is denoted asθi(t).
The position and attitude trajectories satisfy the differential
equations

ẋi = vi cos(θi), ẏi = vi sin(θi), θ̇i = ωi (3)

where the control inputs,vi and ωi , are the vehicle’s speed
and angular velocity, respectively. Throughout this paper
vehicle 1 is the leader and vehicle 2 is the follower. The
leader can directly measure its bearing angle,α, relative to
the follower. Similarly, the follower can measure its bearing
angle,φ , relative to the leader. Both vehicle’s can measure
the distance,L between the vehicles. In the following, it will
be convenient to characterize the time rate of change of the
the relative distance,L, and leader’s relative bearing,α

L̇ = v1cosα − v2cosφ −dω2sinφ
α̇ = 1

L (−v1sinα + v2sinφ +dω2cosφ)+ω1
(4)

The control objective is to have the follower adjust its
velocity, v2 and angular rateω2, to achieve and maintain a

desired inter-vehicle distance,Ld, and relative bearing angle,
αd. We assume that the leader does not change its speed,v1,
but it regulates its angular velocityω1 = g(α) as a function of
its relative bearing,α. The functional form ofg(·) is known
to the follower. What is not directly known by the follower
is the leader’s relative bearing angle,α. This measurement
must be transmitted from the leader to the follower over a
wireless channel that is accessed using a directional antenna
whose radiation pattern is shown in Figure 1.

The leader samples and quantizes its measurement of the
bearing angle,α, before transmitting this measurement to
the follower. A sequence{τk}

∞
k=1 characterizes the sampling

instants withτk < τk+1 for k = 1,2, . . . ,∞. The kth sampled
measurement is quantized withR bits over the interval[αk−
Uk,αk+Uk]. The ordered pair(αk,Uk) represent the ”state”
of the quantizer at thekth time instant withαk representing
the ”center” of anuncertainty intervalandUk representing
the length of that interval. It is assumed that the sequence
{αk,Uk}

∞
k=1 is known to both leader and follower. We let

ck = {bik}
R
i=1 denote thekth codeword transmitted by the

leader. Thiskth codeword consists of bitsbik ∈ {−1,1} for
i = 1,2, . . . ,R that satisfy the following equation

α(τk) = αk+Uk

R

∑
j=1

1
2 j b jk

This corresponds to a uniform quantization of the sampled
state within the interval[αk−Uk,αk+Uk].

The codeword,ck, is transmitted over an unreliable wire-
less channel, so that only the firstRk bits are received at the
decoder by timeak = τk +∆. We refer toak as the arrival
time. ∆ represents adeadlineafter which the receiver stop
listening for the the leader’s transmission and uses the bits it
has received to reconstruct the leader’s bearing angle. Under
this model, the follower’s estimate of the leader’s transmitted
bearing angle takes the form,

α̂k = αk+Uk

Rk

∑
j=1

1
2 j b jk

The follower then uses the estimated bearing angle,α̂k, and
the measured inter-vehicle distance,L, to select its speed,v2,
and angular speed,ω2, to achieve the control objectives.

The number of received bits,{Rk}
∞
k=1 is a random process

exhibiting exponentially bounded burstiness. Let rk = Rk
∆

denote the instantaneous bit-rate at thekth transmission. Let
h(·, ·) and γ(·, ·) denote continuous, positive and monotone
decreasing functions fromR×R+ to R+. The probability
for Rk is assumed to satisfy

Pr{Rk ≤ h(α(τk),L(τk))−σ} ≤ e−γ(α(τk),L(τk))σ (5)

for |α| ≤ π/2 and σ ∈ [0,h(α(τk),L(τk))]. The function
h(α,L) may be seen as a threshold characterizing the low
bit-rate region as a function of the formation’s current state.
The bound in (5) says that the likelihood of having low bit-
rates is an exponentially decreasing function of how far away
one is from that low bit-rate region. The exponent associated
with that exponential decrease is represented by the function



γ(α,L). What should be apparent in this model is that we
are explicitly accounting for the relationship between channel
state and formation configuration. A major goal of this paper
is to exploit that relationship in deciding how to switch
between different controllers.

In this paper, the follower switches among a group of
controllers to regulate the inter-vehicle distance,L, and
bearing angleα. The objective is to steer the system to
a desired distance,Ld, and bearing angle,αd, and then
maintain that setpoint. At timeak = τk + ∆, the follower
receives the leader’s measurement of its bearing angleα(τk)
and then reconstructs an estimate of that measurement which
we denote asα̂k. The control gains at time instantk are
(kα(k),kL(k)). These gains are selected from one pair of
a collection of valuesK = {K1,K2, . . . ,KN}, where Ki =
{(kα i ,kLi)|kα i ,kLi ∈ R+}. We make use of a standard feed-
back linearization method to generate the control inputs

v2 =
v1cosα̃ +dω2sinφ − kL(k)(L−Ld)

cosφ
= Kv(L, α̃k)

ω2 =
cosφ

d
[Lkα(k)(αd − α̃)−Lg(α̃)+ v1sinα̃

+kL(k) tanφ(L−Ld)− v1 tanφ cosα̃] = Kω(L, α̃)

over the interval[ak,ak+1]. The variableα̃ is a continuous
function of time representing the follower’s prediction ofthe
bearing angle over the time interval[ak,ak+1]. This prediction
satisfies the following initial value problem fort ∈ [ak,ak+1]

˙̃α = kα(k)(αd − α̃), α̃(ak) = (âk−αd)e
−kα (k−1)∆ +αd (6)

With this control, the inter-vehicle distance,L, and leader
bearing angleα satisfy the following differential equation
over [ak,ak+1].

L̇ = kL(k)(Ld −L)+ v1(cosα − cosα̃) (7)

α̇ =
v1

L
(sinα̃ − sinα)+ kα(k)(αd − α̃)

+g(α)−g(α̃) (8)

for all k = 1,2, . . . ,∞. Equations (6-8) represent the closed-
loop state equations for this system with inputv1. These
system equations actually form a jump process of form given
in equations (1-2) where the jumps occur at discrete times
{ak}

∞
k=1 with a magnitudêαk whose random nature is driven

by the number of received bitsRk.
Remark 3.1:The characterization of geometric changes

on inter-vehicle distanceL and bearing angleα in equation
(4) is widely used in the literature. The pioneering work on
this model can be found in [5].

Remark 3.2:The probability bound in equation (5) can be
viewed as a slight modification of the traditionalexponential
bounded burstiness(EBB) model [22]. The only difference
lies in our characterization of the system state’s impact on
the model. Traditional i.i.d. channel models are EBB, but
two-state Markov chains also satisfy an EBB bound. In this
regard, our use of the exponentially bursty channel model
can be applied to more realistic channels. In addition to
this, the probabilistic nature of the bound fits well with
the definition of almost-sure stability, thereby allowing us

to establish results for a much stronger notion of stability
than mean-square stability.

Remark 3.3:The quantization method adopted in this
paper is similar to the well known dynamic quantization ap-
proach in [17], [3], [10]. Traditionally, dynamic quantization
is used to achieve asymptotic stability for the deterministic
system. In this paper, this approach is applied to achieve
almost-sure asymptotic stability.

Remark 3.4:The use of switching controllers to adjust for
changes in system structure has been investigated in [7]. The
novelty in this paper is its use of that idea to reconfigure in
response to changes in channel state.

IV. M AIN RESULTS

The paper’s main result consists of two parts regarding the
behavior of the functionsα(t) andL(t) satisfying equations
(6-8). The first part provides sufficient conditions under
which the relative distance,L(t), is convergent to a compact
invariant interval. The second part provides sufficient condi-
tions for the almost-sure asymptotic stability of the bearing
angle,α(t).

A. Convergence of Inter-vehicle Distance, L

The following lemma provides a sufficient condition on
the gainkL, under which one can showL(t) converges at
an exponential rate to an invariant setΩinv centered at the
desired inter-vehicle distanceLd.

Lemma 4.1:Consider the system (6-8) with the controller
gain pair(kα ,kL) ∈ K . If kL > 2v1

δ (Ld−d) and L(0) > d, then
for any sample path,L(t)≥ d for all t ∈R+ and there exists
a finite timeT > 0 such thatL(t) enters and remains in the
set

Ωinv ≡

{

L ∈R+ | |L−Ld| ≤
2v1

δkL

}

for all t ≥ T and anyδ ∈ (0,1].
Proof: Consider the functionV(L)= 1

2(L−Ld)
2. Taking

the directional derivative ofV, one obtains

V̇(L) = −kL(L−Ld)
2+(L−Ld) ·v1(cosα − cosα)

≤ −kL(1− δ )(L−Ld)
2− δ ·kL(L−Ld)

2

+2|L−Ld|v1

for anyδ ∈ (0,1]. The last inequality holds because|cosα −
cosα| ≤ 2. When |L− Ld| ≥

2v1
δkL

, the following dissipative
inequality holds,

V̇(L)≤−kL(1− δ )(L−Ld)
2 =−2kL(1− δ )V(L) (9)

This is sufficient to imply thatV(L(t)) is an exponentially
decreasing function of time that enters the setΩinv in finite
time. L(t)≥ d for all time since allL in Ωinv satisfy

d <
2v1

δkL
−Ld ≤ L ≤

2v1

δkL
+Ld (10)

The following corollary characterizes lower and upper
bounds on the relative distance trajectoryL(t). These char-
acterizations are used later Lemmas 4.3 and 4.6.



Corollary 4.2: Under the assumptions of Lemma 4.1, the
inter-vehicle distanceL(t) for t ≥ t0 can be bounded as

L(t)≤ [L(t0)− (Ld+
2v1

kL
)]e−kL(t−t0)+(Ld +

2v1

kL
) (11)

L(t)≥ [L(t0)− (Ld−
2v1

kL
)]e−kL(t−t0)+(Ld −

2v1

kL
) (12)

Proof: From equation (7), we have

L̇ ≤ kL(Ld −L)+2v1

L̇ ≥ kL(Ld −L)−2v1

Using Gronwall-Bellman inequality over the time interval
[t0, t], the final result is obtained.

B. Almost-sure Asymptotic Stability for Bearing Angleα
The sequence{αk,Uk}

∞
k=0 characterizes the quantizer’s

state at each time instanceτk. The following lemma gives
a recursive construction for this sequence such that the
quantization error,|α(τk)− α̂(τk)| remains bounded for all
k≥ 0.

Lemma 4.3:Given the sequences{τk}
∞
k=0, {ak}

∞
k=0 and

{kα(k),kL(k)}∞
k=0, let T = τk+1 − τk and ∆ = ak − τk. Sup-

pose the initial ordered pair(α0,U0) and controller gain
(kL(0),kα(0)) are known to both leader and follower, the
initial system stateα(0) ∈ [−U0,U0], |U0| ≤

π
2 , and the

function g(·) : R → R in equation (8) is locally Lipschitz
with Lipschitz constantL̄. If the sequence{αk,Uk}

∞
k=0 is

constructed by the following recursive equation,

Uk+1 = 2−RkΛk(kL(k−1),kL(k))Uk,∀k≥ 0 (13)

αk+1 = (α̂k−αd)e
−kα (k−1)∆−kα (k)(T−∆)+αd (14)

whereΛk = Λ1,k(kL(k−1))Λ2,k(kL(k)) satisfies

Λ1,k = (
L(τk)

(L(τk)−LM,k−1)e−kL(k−1)∆ +LM,k−1
)M1,keL̄∆

Λ2,k = (
L(ak)

(L(ak)−LM,k)e−kL(k)(T−∆)+LM,k
)M2,keL̄(T−∆)

M1,k =
v1

kL(k−1)(L(τk)−LM,k−1)

M2,k =
v1

kL(k)(L(ak)−LM,k)

LM,k−1 = Ld −
2v1

kL(k−1)

then the quantization error in the bearing state generated by
system equations (6-8) can be bounded as

|α(τk)− α̂(τk)| ≤ Ūk,∀k≥ 0. (15)

whereŪk = 2−RkUk and Rk is the number of bits received
over the time interval[τk,ak).

Proof: Let ek(t) = α(t)− α̃(t) denote the estimation
error over the time interval[τk,τk+1], we know that the
system stateα and the predictioñα satisfy,

α̇ =
v1

L
(sinα̃ − sinα)+ kα(αd − α̃)+g(α)−g(α̃),

˙̃α = kα(αd − α̃)

with kα = kα(k−1) at interval[τk,ak) andkα(k) at [ak,τk+1].
The error dynamics for ˙ek, therefore, satisfy,

ėk =
v1

L
(sinα̃ − sinα)+g(α)−g(α̃), t ∈ [τk,τk+1] (16)

With d|ek|
dt ≤ |ėk|, we have

d|ek|

dt
≤

∣

∣

∣

v1

L
(sinα̃ − sinα)+g(α)−g(α̃)

∣

∣

∣

≤

(

v1

|L|
+ L̄

)

|ek| (17)

The second inequality holds because|sinα̃−sinα| ≤ |α− α̃|
and the local Lipschitz assumption on functiong(·).

Consider the time interval[τk,ak), the inequality (17) is
further bounded as

d|ek|

dt
≤

(

v1

(L(τk)−LM,k−1)e−kL(k−1)(t−τk)+LM,k−1
+ L̄

)

|ek|

(18)

whereLM,k−1 = Ld −
2v1

kL(k−1) . The inequality holds because
of Corollary 4.2. Applying Gronwall-Bellman inequality
theorem over[τk,ak) leads to

Λ1,k =

(

L(τk)

(L(τk)−LM,k−1)e−kL(k−1)∆ +LM,k−1

)M1,k

eL̄∆

|ek(ak)| ≤ Λ1,k|e(τk)|

where M1,k =
v1

kL(k−1)(L(τk)−LM,k−1)
. Similarly, consider time

interval [ak,τk+1], one can also obtain

Λ2,k =

(

L(ak)

(L(ak)−LM,k)e−kL(k)(T−∆)+LM,k

)M2,k

eL̄(T−∆)

|e−k (τk+1)| ≤ Λ2,k|e(ak)|

where M2,k = v1
kL(k)(L(ak)−LM,k)

and e−k (τk+1) represents the
quantization error at timeτk+1 prior to receiving new infor-
mation,Rk+1. Then, the following inequality holds,

|e−k (τk+1)| ≤ Λ1,kΛ2,k|e(τk)|

= Λk(kL(k−1),kL(k))|e(τk)|

Assume|α(τk)− α̂(τk)| ≤ Ūk holds, then at timeτk+1, we
have

|e−k (τk+1)| ≤ Λk(kL(k−1),kL(k))|e(τk)|

≤ Λk(kL(k−1),kL(k))Ūk.

Since there areRk+1 bits received over the time in-
terval [τk+1,ak+1), the uncertainty on stateα(τk+1) is
reduced to Λk(kL(k − 1),kL(k))Ūk2−Rk+1. Let Ūk+1 =
Λk(kL(k−1),kL(k))Ūk2−Rk+1, which is equivalent toUk+1 =
2−RkΛk(kL(k))Uk, the quantization error atk+1th transmis-
sion time is bounded bȳUk+1, i.e. |e(τk+1)| ≤ Ūk+1. Since
k is arbitrarily chosen for the proof, the result holds for all
k≥ 0.

The center of the quantizer is reset toα̂k whenRk bits are
received at timeak, and evolves according to the following
two ODEs over time interval[τk,τk+1]

α̇ = kα(k−1)(αd −α), t ∈ [τk,ak)



with initial value α(τk) = α̂k, and

α̇ = kα(k)(αd −α), t ∈ [ak,τk+1]

The solution of above ODE leads to equation (14).
The following lemma provides a sufficient condition under

which sequence{Ūk}
∞
k=0 is a supermartingale. The super-

martingale property is later used to prove thatα(t) is almost-
surely convergent.

Lemma 4.4:Consider the system in (6-8) and suppose the
number of bitsRk received over time interval[τk,ak) satisfies
the probability bound (5). Let

G(α,L) = e−h(α ,L)γ(α ,L)(1+h(α,L)γ(α,L))

be non-negative, monotone increasing function with respect
to α andL, respectively. If

G(α(τk),L(τk))≤ ηΛk−1(kL)
−1,∀k∈ Z+ (19)

then for anyη ∈ (0,1],

E(Ūk|Ūk−1)≤ ηŪk−1,∀k∈ Z+ (20)
Proof: The proof is identical to Lemma 4.4 in [8], and

is omitted here for space.
Remark 4.5:Inequality (19) can be interpreted as a parti-

tion of the system state space with respect to the performance
specificationη . The parameterη may be viewed as the
convergence rate for sequence{Ūk}

∞
k=0. It provides a way

to relate the channel state to the physical state.
The following lemma provides a sufficient condition for

selecting a controller pair(kα ,kL) that enforces the above
Lemma 4.4.

Lemma 4.6:Consider the closed-loop system in equations
(6-8). Suppose the wireless channel theEBB model (5).
Given the functionG in Lemma 22, if there exists a sequence
of controller gains {(kα(k),kL(k))}∞

k=0,(kα(k),kL(k)) ∈
K ,k∈ Z such that forη ∈ (0,1),

G̃(kα(k),kL(k))Λk(kL(k−1),kL(k)) ≤ η (21)

G̃(kα(k),kL(k)) = G(αk+1,Lk+1)

αk+1 = (α̂(ak)−αd)e
−kα (k)(T−∆)+αd +Λk(kL(k))Ūk

Lk+1 = [L(ak)− (Ld+
2v1

kL(k)
)]e−kL(k)(T−∆)+Ld +

2v1

kL(k)

Then, the following supermartingale property for{Ūk}
∞
k=0

holds, i.e.

E(Ūk+1|Ūk)≤ ηŪk,∀k∈ Z+ (22)
Proof: From Lemma 4.4, we know that one sufficient

condition to ensure (22) is

G(α(τk+1),L(τk+1))≤ ηΛk(kL(k−1),kL(k))
−1,∀k∈ Z

Since

|e−(τk+1)|= |α(τk+1)− α̂(τk+1)| ≤ Λk(kL(k−1),kL(k))Ūk,

we have

α(τk+1)≤ α̂(τk+1)+Λk(kL(k−1),kL(k))Ūk

Becauseα̂(τk+1) = (α̂(ak)−αd)e−kα (k)(T−∆)+αd, then

α(τk+1) ≤ (α̂(ak)−αd)e
−kα (k)(T−∆)+αd

+Λk(kL(k−1),kL(k))Ūk
.
= αk+1 (23)

From inequality (11), we obtain

L(τk+1) ≤

[

L(ak)− (Ld+
2v1

kL(k)
)

]

e−kL(k)(T−∆)

+Ld +
2v1

kL(k)
.
= Lk+1 (24)

Moreover, given the fact thatG(α(τk+1),L(τk+1)) is a non-
negative monotone increasing function with respect toα and
L, then combining inequalities (23) and (24) leads to

G(α(τk+1),L(τk+1))≤ G(αk+1,Lk+1)

Therefore, the inequality condition (21) on the selection
of controller gain assures supermartingle property (22) for
sequence{Ūk}

∞
k=0.

Remark 4.7:At time instantak,∀k≥ 0, one controller pair
(kα(k),kL(k)) is selected based on condition (21). There
might exist more than one controller pairs satisfying con-
dition (21). We could select the pair that minimizesη .

The following corollary proves that the sequence{Ūk}
∞
k=0

is almost-surely convergent when Lemma 4.6 holds.
Corollary 4.8: Suppose sequence{Ūk}

∞
k=0 is generated by

equation (13), if there exists a sequence of controller pair
{(kα(k),kL(k))}∞

k=0 such that equation (22) holds for allk≥
0, then the sequence{Ūk}

∞
k=0 is almost-surely convergent to

zero.
Proof: SinceE(Ūk+1|Ūk)≤ηŪk,∀k∈Z holds, this also

implies

E(Ūk)≤ ηE(Ūk−1)≤ . . .≤ ηkŪ0

Let k→ ∞, the limit yields

limsup
k↑∞

E[Ūk]≤ lim
k↑∞

δ kŪ0 = 0

We can then use the Markov property to show that{Ūk}
∞
k=0

is almost-surely convergent to zero.
With Corollary 4.8, the following theorem proves almost-

sure asymptotic stability for theα-system in equation (7).
Theorem 4.9:Consider the closed-loop system in equa-

tions (6-8). If there exists a sequence of controller pair
{kα(k),kL(k)}∞

k=0 such that Lemma 4.4 holds, then the
random process{α(t) : t ∈R+} is almost-surely convergent
to αd.

Proof: Without loss of generality, we letαd = 0.
Considert ∈ [τk,τk+1), we have

α̂−(τk+1) = e−kα (k)(T−∆)e−kα (k−1)∆α̂(τk)

Let E(τk+1) := α̂(τk+1)− α̂−(τk+1), then

α̂(τk+1) = e−kα (k)(T−∆)e−kα (k−1)∆α̂(τk)+E(τk+1)

Let k∗α = min{kα |kα ∈ K },

|α̂(τk+1)| ≤ e−k∗α T |α̂(τk)|+ |E(τk+1)| (25)



The term|E(τk+1)| can be further bounded by

|E(τk+1)| ≤ Λk(kL(k−1),kL(k))Ūk(1−2−Rk+1)

≤ Λk(kL(k−1),kL(k))Ūk (26)

Similarly, let

Λ∗ = max{Λk(kL(k−1),kL(k))|kL(k−1),kL(k) ∈ K },

then inequality (26) may be further bounded as|E(τk+1)| ≤
Λ∗Ūk. Taking the expectation on both sides of inequalities
(25) and using the above bound on|E(τk+1)| yields

E(|α̂(τk+1)|)≤ e−k∗α T
E(|α̂(τk)|)+Λ∗

E(Ūk)

With the result from Corollary 4.8, we have

E(|α̂(τk+1)|)≤ e−k∗α T(k+1)
E(|α̂(0)|)

+Ū0Λ∗ηk
k

∑
i=0

(
e−k∗α T

η
)i

≤ e−k∗α T(k+1)
E(|α̂(0)|)

+
ηk+1−e−k∗αT(k+1)

η −e−k∗α T
Ū0Λ∗

Here, it is straightforward to see that

lim
k→∞

E(|α̂(τk)|)→ 0

With the result from Corollary 4.8, i.e. limk→∞E(|Ūk|)→ 0,
we have

lim
k→∞

E(|α(τk)|)≤ lim
k→∞

E(|α̂(τk)|+ |Ūk|)

= lim
k→∞

E(|α̂(τk)|)+ lim
k→∞

E(|Ūk|)→ 0

As noted before, one can then use the Markov inequality to
verify almost-sure convergence of the sequence{|α(τk)|}
to zero. We also know, however, that the time between
successive sampling instants is a constant and that the system
trajectory is uniformly bounded between these instants (due
to the Lipschitz assumption). We can therefore conclude that
all sample paths of the continuous-time signalα(t) must be
almost-surely convergent to 0.

V. SIMULATION RESULTS

This section presents simulation experiments examining
the resilience of our proposed switched controller’s to deep
fades.

A two-state Markov chain model was used to simulate the
fading channel between the leader and follower. One state
represents the good channel condition, which simply means
the transmitted bit is successfully received. The other state
is the bad channel condition, which represents the failure of
receiving the bit. The conditional probabilities of remaining

in the good or bad channel state arep11 = e
−3×10−3(

L(t)
cosα(t) )

2

and p22 = e
−6×102(

cosα(t)
L(t) )2

, respectively. The corresponding
transition probabilities between these states are 1− p11 and
1− p22. The EBB model for this channel has the parameters

h(α,L) = R̄e
−3×10−4(

L(t)
cosα(t) )

2

,γ(α,L) = e
−4.5×10−3(

L(t)
cosα(t) )

2

The other simulation parameters are

T = 0.1,∆ = 0.02, R̄= 2;

v1 = 20,Ld = 5,αd =
π
3
,d = 1.

The regulation lawg(·) for the leader’s heading angle is
assumed to be a linear functiong(α) = 2α. The initial inter-
vehicle distance isL(0) = 80 and the initial bearing angle is
α(0) = π/12. The initial bearing estimate iŝα(0) = 0 with
theU0 = π/12. The selection pool for the controller pair is

K =

{

(kL,kα) :
2v1

Ld −d
≤ kL ≤ 100,5≤ kα ≤ 100

}

.

A Monte Carlo method was used to verify that the system
had almost-sure asymptotic stability when Lemma 4.4 holds.
In the simulation, we selected the controller pair fromK that
minimizesη at each time instanceak. The simulation was
run 100 times over the time interval from 0 to 2 seconds.
Figure 2 shows the maximum and minimum value of the
system stateα andL with the switching policy over all the
100 runs. The top plot in the figure is the trajectory for
stateα, with maximum value marked as blue solid line, and
minimum value as red dashed-dot line. The two dashed lines
represent the upper and lower bound for the relative bearing
α, i.e. |α| ≤ π/2. The bottom plot is the trajectory for the
relative distanceL with the same marking rule. We can see
from the plots that the maximum and minimum values of the
system state converge to the desired set-pointαd = π

2 and
Ld = 5 asymptotically. These results are consistent with our
statements in Lemma 4.6 for almost-sure asymptotic stability.

We also studied the benefits of such a switching policy
over a non-switching strategy. For a fair comparison, we
selected two types of controllers as representatives of the
non-switching strategy, which are(20,20) and (100,100).
The pair(20,20) represents the small-gain controller, while
(100,100) is the high-gain controller. We ran the simulation
for 2 seconds over 100 runs with the same simulation param-
eters. Figure 3 shows the maximum and minimum value for
the state trajectory with the small-gain controller(20,20),
while Figure 4 is for the high-gain controller(100,100).
The system trajectories also asymptotically converge to the
set-points for both cases. This is not surprising since the
result in Lemma 4.6 are only a sufficient condition. However,
as is shown in these figures, the relative bearing angles
α generated by either controller fail to satisfy the bound
|α| ≤ π

2 . This bound is important due to the directional
nature of the antenna. When|α|> π

2 , the antenna will have
no gain in that direction and hence the communication link
between leader and follower will be broken. On the other
hand, the switching strategy generated a smoother trajectory
with smaller variance. More importantly, Figure 2 clearly
shows that the bearing angle constraint was always satisfied.

One sample path of the switching profile is shown in
Figure 5. The bottom plot is the channel state (Rk) along
the time line. The top plot is the switching profile that
reacts to the change ofRk. As shown in the figure, the
controller kL switches from lower gain to the high gain
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Fig. 2. Almost-sure asymptotic stability with switching strategy
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Fig. 3. The maximum and minimum system trajectory with non-switching
controller kL = 20 andkα = 20

after 0.2 seconds when the system state is close enough
to the desired set-point. The controllerkα exhibits different
switching behaviors. It first selects the low gain controller
because of the low channel state, and then switches back
and forth in response to changes in the channel state. After
the system state reaches the set-point,kα stays high all the
time.

The channel state profile in Figure 5 represents just one
possible sample path. It is possible (though unlikely) for the
channel to generate a ”string” of dropouts. We’re interested
in seeing how well our switched controller performs even
under such low probability events. A simulation run was
therefore done in which the communication link was broken
for N = 10 consecutive transmissions, starting 1 second into
the simulation. We refer to this sequence of dropouts as a
”fault”. The simulation was again run 100 times from 0
second to 10 second with the same parameters. Figure 6
shows the response of the system state in terms of maximum
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Fig. 4. The maximum and minimum system trajectory with non-switching
controller kL = 100 andkα = 100
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Fig. 5. One sample of the switching profile and channel state (Rk)

and minimum value with the switching control strategy. At
time interval [0,1], the system is steering to the set-point
without fault. The fault occurs at around 1 second, and drives
the system out of the antenna’s radiation range. The system
detects this fault, and switches the controller to drive the
system back to the set-point after around 2 second.

For comparison purposes, we also simulated faulty system
using two control strategies that used no channel state infor-
mation to combat the fault. The first strategy employs the
non-switching safe controller(20,20). The second strategy
uses only system state information to switch the controller
between small gain(20,20) and high gain(100,100). This
was done when the system uncertainty|α − α̂| exceeded a
specified thresholdθ0. Neither of these controllers was able
to stabilize the system in the presence of the fault. A sample
path for the system under the second controller is shown in
Figure 7.
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Fig. 6. System response to unexpected fault using switchingstrategy
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Fig. 7. System response to unexpected fault using state-based switching
strategy with thresholdπ6

VI. CONCLUSION

This paper studied the almost-sure stability for leader-
follower formation control of nonholomonic systems in the
presence of deep fades exhibiting exponentially bounded
burstiness. The paper establishes sufficient conditions to
switch the controller to assure almost-sure asymptotic sta-
bility. Preliminary simulation results support the analysis’
conclusions. Future work will extend these concepts from
leader-follower formations to more general formation control
problems.
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