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Abstract— Leader-follower formation control is a widely used  and relative distance of the vehicles significantly afféxt t
control strategy that often needs systems to exchange infor channel state. Moreover, for those wireless communication
mation over a wireless radio communication network. These systems using directional antennae [23], [1], changesén th

wireless networks are subject tadeep fades, where a severe drop lati hicl ientati Id also lead t d tad
in the quality of the communication link occurs. Such deep €'@lIV€ VENICle orientation could also lead (o a deep lade.

fades may significantly impact the formation’s performance The loss of information caused by deep fades negatively
and stability. In many applications, however, the variatin in  limits the performance that can be achieved by the control

channel state is a function of the system’s kinematic states system. Prior work [21], [17], [6] characterized the minimu
This suggests that one can use channel state information as stabilizing bit rate for linear time-invariant system astig

a feedback signal to recover the performance loss caused tant ch | gain. A ted ab th i
by a deep fade. This paper derives sufficient conditions to constant channel gain. AS noted above, theé assumption on

assure almost-sure asymptotic stability of a leader-follwer ~ CONstantchannel gain is overly simplistic for fading chelsn
nonholonomic system in the presence of deep fades. TheseAn initial attempt to study the impact of the time-varying

conditions relate the channel state to the system’s conveegce  channel gains on mean square stability appeared in [12§. Thi
rate. This paper uses this fact to reconfigure the controller oy however, assumed the channel gain was functionally
Simulation results are used to illustrate the main resultsm the . ' ' . , .
paper independent from the physical system’s dynamics. In [&], th
authors examined a more realistic fading channel model in
|. INTRODUCTION which the channel is exponentially bursty and is dependent

In the past decaddprmation controlhas found exten- on the norm of the physical system's states. This paper
sive applications in industry and academia [2], [14], [11]€Xtends the prior work in [8] to a two-dimensional leader-
[13], [5]. In formation control, the agents coordinate withfollower formation control problem.
each other to form and maintain a specified formation. Leader-follower formations are useful for their simplcit
The coordination is often conducted over a wireless radiand scalability. This paper studies the leader-followerta
communication network. It is well known that such commuscheme for nonholomonic systems using directional antenna
nication networks are subject to deep fading, which caused@access the wireless communication network. Assuming an
severe drop in the network’s quality-of-service (QoS). §the exponentially bursty channel model, this paper derives con
deep fades negatively impact the formation’s performandétions that are sufficient for the system to hatmost-sure
and stability by interfering with the coordination betweerstability [9]. The paper uses this characterization to propose
agents. The loss of coordination may cause serious safé@gfaptive control schemes that switch feedback contraiters
issues in applications like smart transportation syste@j, [1 response to changes in channel state. The simulationsesult
unmanned aerial vehicles system[16] and underwater a@iemonstrate the merits of the proposed method.
tonomous vehicles[15]. These issues can be addressed by I
developing a resilient control system that detect such deep )
fades and adaptively reconfigures its controller to maintai Let Z_ andR denote the set of integers and real nur_n_bers,
a minimum performance level. _respectlvely. LetZ, an_d R, denote the set of_ positive

Channel fading is often characterized in terms of chann¥]t€gers and non-negative real numbers, respectivelyRCet
gain [18]. Channel gain represents the signal strengtb ra[(;jen(.)te then—(_j|men3|onal Euclidean vector space. Consider a
of receiving signal over transmission signal. It is usuallFontinuous-time random procegs(t) € R":t € R, } whose
modeled as amdependent and identical distributed (i.i.d) S@TPle paths are right-continuous and satisfy the follgwin
random process with Rayleigh or Rician distribution. Thiglifferential equation,
modell is inadequate i.n two aspects. First, the fading peoces X(t) = f(x(t),u(t),w(t)) (1)
exhibits memory which is better modeled as a Markov ] .
random process with two states [20]. Second, the iidvheref(0,0,0) =0, u(-): R — R™is a control input and
channel model is ignores the impact that the formation'¥/(t) is & jump process
kinematic states have on the channel. Vehicle-to-Vehicle ®
(V2V)[4] systems provide an example in which the velocity w(t) = /lef‘s(t —T) )
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Leader

desired inter-vehicle distancky, and relative bearing angle,
ag. We assume that the leader does not change its spged,
but it regulates its angular velocityy = g(a) as a function of

its relative bearinggr. The functional form of(-) is known

to the follower. What is not directly known by the follower
is the leader’s relative bearing angke, This measurement
must be transmitted from the leader to the follower over a
wireless channel that is accessed using a directional maten
whose radiation pattern is shown in Figure 1.

The leader samples and quantizes its measurement of the
bearing anglea, before transmitting this measurement to
the follower. A sequencéry}y_; characterizes the sampling
Follower instants withty < 11 for k=1,2,...,0. The kth sampled
measurement is quantized wighbits over the intervaja, —
Uk, 0k + Uy]. The ordered paifay,Uy) represent the "state”

Fig. 1. The leader-follower formation of the quantizer at th&th time instant withay representing
the "center” of anuncertainty intervaland Uy representing
the length of that interval. It is assumed that the sequence

The system in equations (1-2) is said todeost-surely (@, U,}© . is known to both leader and follower. We let
asymptotically stable if for alt > 0 andp > 0, there exists C = {bik}iﬁ:j_ denote thekth codewordtransmitted by the

T >0andd > 0 such that ifx(0)| < &, then leader. Thiskth codeword consists of bitsy € {—1,1} for
i=1,2,...,R that satisfy the following equation
prdsupx(t)| > e} < p >
T

R1
Any stochastic process that satisfies the above condition a(t) = ak+Ukj;§bjk

will be said to be almost-surely convergent. A discreteetim ) o
Markov process{Uy € R : k € Z, } will be said to be a This corresponds to a uniform quantization of the sampled

supermartingaléf and only if state within the interva!ﬁk — U_k,ﬁk—i-Uk]. . _
The codewordgy, is transmitted over an unreliable wire-
E(Uk|Uk-1) < U1 less channel, so that only the filRt bits are received at the

decoder by timesy = 1+ A. We refer toag as the arrival
;}ime. A represents aleadlineafter which the receiver stop
ﬁstening for the the leader’s transmission and uses tlgeitbit
has received to reconstruct the leader’s bearing angleetnd
I1l. SYSTEM MODEL this model, the follower’s estimate of the leader’s trarttedi
htéearing angle takes the form,

for all ke Z,. If {Uy} is a supermartingale, then one ca
use the Markov inequality to infer that this process is al
almost-surely convergent.

Figure 1 shows the leader-follower system’s geometry. T
ith vehicle’s position i(= 1,2) at timet € R, is denoted R Ra 1
by the ordered paifxi(t),yi(t)). The attitude of the vehicle a = O+ Uy Z Ebjk
relative to they = 0 axis at timet is denoted asg(t). =1
The position and attitude trajectories satisfy the difféi@ The follower then uses the estimated bearing angle and
equations the measured inter-vehicle distantefo select its speeds,

: : . : and angular speedy,, to achieve the control objectives.

X =vicod ), yi =visin(6), 6 =« (3) The number of received bit§R¢}i_; is a random process
where the control inputs; and ca, are the vehicle's speed exhibiting exponentially bounded burstinesket ry =
and angular velocity, respectively. Throughout this papetenote the instantaneous bit-rate at kttetransmission. Let
vehicle 1 is the leader and vehicle 2 is the follower. Th&(-,-) andy(-,-) denote continuous, positive and monotone
leader can directly measure its bearing anglerelative to  decreasing functions fromk x R, to R,. The probability
the follower. Similarly, the follower can measure its begri for Ry is assumed to satisfy
angle, g, relative to the leader. Both vehicle’s can measure _y(a(t).L(T))o
the distancel. between the vehicles. In the following, it will Pr{Rc < h(a(n), L(w)) — o} < e e ©)
be convenient to characterize the time rate of change of tiier |a| < 1/2 and o € [0,h(a(1k),L(1«))]. The function
the relative distancd,, and leader’s relative bearing, h(a,L) may be seen as a threshold characterizing the low

bit-rate region as a function of the formation’s currentesta
(4) The bound in (5) says that the likelihood of having low bit-
rates is an exponentially decreasing function of how fanawa
The control objective is to have the follower adjust itsone is from that low bit-rate region. The exponent assodiate
velocity, v, and angular ratev,, to achieve and maintain a with that exponential decrease is represented by the famcti

L = vicosa —Vycosp—dw,sing

a = % (—visina + v sing + dw, cosp) + wy



y(a,L). What should be apparent in this model is that weo establish results for a much stronger notion of stability
are explicitly accounting for the relationship betweenroiel  than mean-square stability.
state and formation configuration. A major goal of this paper Remark 3.3:The quantization method adopted in this
is to exploit that relationship in deciding how to switchpaper is similar to the well known dynamic quantization ap-
between different controllers. proach in [17], [3], [10]. Traditionally, dynamic quantixan

In this paper, the follower switches among a group ofs used to achieve asymptotic stability for the determinist
controllers to regulate the inter-vehicle distandg, and system. In this paper, this approach is applied to achieve
bearing anglea. The objective is to steer the system toalmost-sure asymptotic stability.
a desired distance,.4, and bearing anglegy, and then Remark 3.4:The use of switching controllers to adjust for
maintain that setpoint. At timey = 14 + A, the follower changes in system structure has been investigated in [€]. Th
receives the leader's measurement of its bearing am@lg)  novelty in this paper is its use of that idea to reconfigure in
and then reconstructs an estimate of that measurement whielsponse to changes in channel state.
we denote asi. The control gains at time instarkt are
(Ka (K),k_(k)). These gains are selected from one pair of
a collection of values? = {Ky,Ka,...,Kn}, whereK; = The paper’'s main result consists of two parts regarding the
{ (Kai, kii)|Kai, ki € R }. We make use of a standard feed-behavior of the functions(t) andL(t) satisfying equations

back linearization method to generate the control inputs (6-8). The first part provides sufficient conditions under
V1c0sd + dapsing — k (K)(L — Lq) i which the relative distancé,(t), is convergent to a compact

IV. MAIN RESULTS

Vo = = Ky(L, ay) invariant interval. The second part provides sufficientdion
co cosy tions for the almost-sure asymptotic stability of the begri
w = TS“’ [Lkq (K)(atg — &) — Lg(&) + vy sind angle,a(t).

+ki (k) tang(L — Lg) — vitangcosd] = Ky(L, &)  A. Convergence of Inter-vehicle Distance, L

The following lemma provides a sufficient condition on
the gaink_, under which one can show(t) converges at
an exponential rate to an invariant ®¢,, centered at the
desired inter-vehicle distandg.

] Lemma 4.1:Consider the system (6-8) with the controller
b =ka(K)(ag— &), da(ay) = (&—oag)e & V2L ay (6) gain pair (kg,k ) € . If k. > % andL(0) > d, then
for any sample path,(t) > d for all t € R, and there exists
a finite timeT > 0 such that_(t) enters and remains in the

over the intervallay,ax,1]. The variabled is a continuous
function of time representing the follower’s predictiontbé
bearing angle over the time interjal, ax, 1]. This prediction
satisfies the following initial value problem for [ay, ax. 1]

With this control, the inter-vehicle distanck, and leader
bearing anglea satisfy the following differential equation

over [a, 3 1] set

: 2v

L = ko(k)(Lg—L)+vi(cosa —cosd) (7) Qinv:{L€R+||L—Ld|S5—kl}

a = YL(sing —sina)+ ka(K)(ag — &) ;

L B d for allt > T and anyd € (0,1].
+9(a) —g(a) (8) Proof: Consider the functio (L) = 3(L—Lq)?. Taking
forall k=1,2,...,0. Equations (6-8) represent the closed-the directional derivative o¥, one obtains
loop state equations for this system with inpyt These V(L) = —k(L—Lg)%+(L—Lg)-vi(cosa —cosq)
system equations actually form a jump process of form given < k(1= L —L2—3 ki (L—Lq)2
in equations (1-2) where the jumps occur at discrete times - +2'|‘|E L |)( d) ki a)
—LaV1

{a}i_; with a magnituder, whose random nature is driven
by the number of received bi. for any & € (0,1]. The last inequality holds becaussosa —
Remark 3.1:The characterization of geometric changegosw| < 2. When|L — Lg| > %, the following dissipative

on inter-vehicle distance and bearing angler in equation  jnequality holds, -

(4) is widely used in the literature. The pioneering work on . )

this model can be found in [5]. V(L) € -k (1-9)(L—Lg)*=-2k (1-0)V(L)  (9)
_Remark 3.2:The probability bound in equation (5) can beryjs js sufficient to imply thaw/(L(t)) is an exponentially

viewed as a slight modification of the traditioredponential decreasing function of time that enters the ©gt, in finite

bounded burstineséEBB) model [22]. The only difference 4o L(t) > d for all time since allL in Qin, satisfy
lies in our characterization of the system state’'s impact on -

the model. Traditional i.i.d. channel models are EBB, but g2 Slg<Ll< ﬂH_d (10)
two-state Markov chains also satisfy an EBB bound. In this ok okL
regard, our use of the exponentially bursty channel model ]

can be applied to more realistic channels. In addition to The following corollary characterizes lower and upper
this, the probabilistic nature of the bound fits well withbounds on the relative distance trajectdry). These char-
the definition of almost-sure stability, thereby allowing u acterizations are used later Lemmas 4.3 and 4.6.



Corollary 4.2: Under the assumptions of Lemma 4.1, thewith ky = ky (k— 1) at interval[1, ax) andkq (K) at [ax, Tks1]-
inter-vehicle distancé(t) for t >ty can be bounded as The error dynamics foe, therefore, satisfy,

L(t) < [L(to) — (Lg+ %)]efkdtfto) +(Lg+ %) (11) & = %(sin& —sina) +g(a) —g(a),t € [T, Tra]  (16)
o dlegd .
LO) 2 L) - (Lg— 2 jje ettty (Lg— D) (1) With g < [&d, we have
. ; k dle] \%
Proof: From equation (7), we have 5t < ’rl(sin&—sina)+g(a) —g(a)
L < k(lg—L)+2v vio—
L > ka-L)-2u < (et)e )

Using Gronwall-Bellman inequality over the time interval | N€ Second inequality holds becaysma —sina| < |a —aj
[to,t], the final result is obtained and the local Lipschitz assumption on functigf).

Consider the time intervdlry, ax), the inequality (17) is
B. Almost-sure Asymptotic Stability for Bearing Angle  further bounded as

The sequencgdy,Ux}_ o characterizes the quantizer’sd|a<| < ( Vi +[) &l
state at each time instanag. The following lemma gives dt =\ (L(T) — Lyx-1)e D10 + Ly g
a recursive construction for this sequence such that the (18)
El;agflzatlon error]a(1x) — @ (1¢)| remains bounded for all where Ly 1 = Lg — kL(lelil . The inequality holds because

of Corollary 4.2. Applying Gronwall-Bellman inequality

Lemma 4.3:Given the sequencefti}y o {ak}go and theorem ovelty, ay) leads to

{Ka (K), kL (K) }_or 1€t T = Tp1 — Tc and A = a — T. Sup-
pose the initial ordered paifdp,Up) and controller gain A L(tk) Mik A
(k.(0),kq(0)) are known to both leader and follower, the 1k ((L(Tk)—LM ek kDA k1> €
initial system statea (0) € [~Uo,Uo], |Uo| < 7, and the aa)| < Asle(t)l ' ,

function g(-) : R — R in_equation (8) is locally Lipschitz - ’

with Lipschitz constant. If the sequencedy,Ux}g o is Where Mgy = kL(k,l)(L(VTb,LM'H)- Similarly, consider time

constructed by the following recursive equation, interval [ax, Tx; 1], one can also obtain
Uar = 2 RA(ke(k— 1),k (K)Uovk>0  (13) or — ( L(a) )MZ* LT
O1 = (Gg—ag)e  akDo-ka((T=A) L g, (14) ’ (L(ak) — Lp)e K T=A) 4 Ly
le (Tke1)] < Aokle(ay)]

whereA = Aq (ke (k—1))Azk(k (k) satisfies

where My = W and g (T11) represents the

(
(

_ T
Nk = ( L (T) - YMakehd guantization error at tim&il prior to receiving new infor-
' (L(tk) — Lmk-r)e DA+ Ly g mation, R, 1. Then, the following inequality holds,
L (ax) Mok (T2 _
Mo = (g Tape 0T oLy 8 St = Aualen
M Vi = Ni(ke(k—1),ke(k))|e(Ti)|
k = . — .
b ke (k—1)(L(Tk) — Lmk-1) Assume|a (1) — &(1i)| < Uy holds, then at time,1, we
Moy = kL(k)(L(Vl) ™ have
' ax) —Lmk _
2V, & ()] < Awke(k=1), ke (k) e(Td)|
LMk-1 = La— Kk—1) < Ag(ke(k— 1),k (K))Ug.
then the quantization error in the bearing state generated Bince there areRy; bits received over the time in-
system equations (6-8) can be bounded as terval [Tk 1,81), the uncertainty on statex(t1) is
A _ reduced to Ax(ki(k — 1),ki(K)Uk2 Rt Let Ugyq =
o (Tic) — & ()| < Uk, vk > 0. (15)  Aw(ke(k—1),k (K))U2 Rert, which is equivalent tdJy; =

2-RAy (kL (K))Uk, the quantization error &+ 1th transmis-
sion time is bounded by, 1, i.e. |e(tki1)| < Uky1. Since
k is arbitrarily chosen for the proof, the result holds for all
k>0.

The center of the quantizer is resetdpwhenR bits are
received at timea,, and evolves according to the following
two ODESs over time intervalty, Tic;1]

whereUy = 2-RUy and R, is the number of bits received
over the time intervalty, ay).

Proof: Let g(t) = a(t) — a(t) denote the estimation
error over the time intervalt, 1, 1], we know that the
system statexr and the predictior&r satisfy,

a = %(sin& —sina) +kq(ag — @) +9(a) —9(a),

& = ke(ag—a) 0 = ko (k—1)(ag — @), t € [T, &)



with initial value @(1) = ax, and

T =ka(K)(ag—T),t € [ay, Tkr1]
The solution of above ODE leads to equation (14). =

The following lemma provides a sufficient condition undeirrom inequality (11), we obtain
which sequence{Uk}k o Is a supermartingale. The super-

martingale property is later used to prove thét) is almost-

surely convergent.

Lemma 4.4:Consider the system in (6-8) and suppose the
ay) satisfies

number of bitsR, received over time intervaty,
the probability bound (5). Let

G(a,L) =e "TMEL (14 hia,L)y(a,L))

Becaused (tky1) = (G (&) — ag)e k(T4 4 ay, then
a(ter) < (a(a) —ag)e kM8 4 gy
FAk(k(k—=1), ke (K)Uk = a1 (23)
2vq
L(tpr) < |L(ax)—(La+ kL(k)) ek (T-2)
vy .
+La+ F'i) =L (24)

Moreover, given the fact tha®(a(1x.1),L(1ks1)) is @ non-
negative monotone increasing function with respeat tand
L, then combining inequalities (23) and (24) leads to

be non-negative, monotone increasing function with respec

to a andL, respectively. If

G(a (), L(Tc) < NA-a(k) Yk € Zy (19)
then for anyn < (0, 1],
E(Uk|Uk-1) < NUx_1,Yk € Z; (20)

Proof: The proof is identical to Lemma.4 in [8], and
is omitted here for space.

Remark 4.5:Inequality (19) can be interpreted as a parti-
tion of the system state space with respect to the performanc
specificationn. The parameter) may be viewed as the
convergence rate for sequenféi}y . It provides a way

to relate the channel state to the physical state.

The following lemma provides a sufficient condition for
k.) that enforces the above

selecting a controller paitkq,
Lemma 4.4.

Lemma 4.6:Consider the closed-loop system in equations

(6-8). Suppose the wireless channel thBB model (5).

Given the functiorG in Lemma 22, if there exists a sequence

of controller gains {(Kq(K),ke
ke Z such that fom € (0,1),

(K) ios (Ka (K), ki (K)) &

é(ka(k)vkL(k))/\k(kL( 1),k(k) < n (21)
Gka(K),kL(K) = G(ay1,Lk;1)
Ay = (G(a) —ag)e e OT8 4ag 4+ Ak (K)Ux
2V1 ke _ 2V1
Lk+l = [L(ak) - ( kL(k) )]e k(k)(T—A) + Ld + kL(k)

Then, the following supermartingale property f{ier}f;O
holds, i.e.

E(Ug;1/Uk) < nUx, VK € Z (22)

Proof: From Lemma 4.4, we know that one sufficient

condition to ensure (22) is

G(a(Tkr1), L(Tkr1)) < Nk (k= 1), ke (K)) ™

Since

lvkeZ

& (tkea)] = @ (Tira) — &(Tira)| < Aw(ke (k= 1), ke (K))Ug,

we have

a(Tki1) < G(Tipa) + Mk (k= 1), ke (K))Ug

G(a(tki1),L(Tki1)) < G(Qy15Lki1)

Therefore, the inequality condition (21) on the selection
of controller gain assures supermartingle property (22) fo
sequencegUy}y o u
Remark 4.7:At time instantay, vk > 0, one controller pair
(ko (K),k_(K)) is selected based on condition (21). There
might exist more than one controller pairs satisfying con-
dition (21). We could select the pair that minimizgs
The following corollary proves that the sequer{ts}
IS almost-surely convergent when Lemma 4.6 holds.
Corollary 4.8: Suppose sequem{élk}kzo is generated by
equation (13), if there exists a sequence of controller pair
{(ka (k),kL(K)) }i_o such that equation (22) holds for &>
0, then the sequengdy}y  is almost-surely convergent to
zero.
Proof: SinceE(Ug.1|Ux) < nUy,Vk € Z holds, this also
implies

E(Ux) < NE(Ugx 1) <... <n"Uo

Let k — oo, the limit yields

lim supE[Uy] < I|m 3*Up =0
Kfoo

We can then use the Markov property to show tfag}
is almost-surely convergent to zero. ]

With Corollary 4.8, the following theorem proves almost-
sure asymptotic stability for the-system in equation (7).

Theorem 4.9:Consider the closed-loop system in equa-
tions (6-8). If there exists a sequence of controller pair
{ka(K),kL(K)} o such that Lemma 4.4 holds, then the
random proces$a (t) : t € R} is almost-surely convergent
to ag.

Proof: Without loss of generality, we letrg = O.

Considert € [Ty, Tk, 1), Wwe have

& (Tip1) = e KaT-Bgka(-DAg (7,.)
Let E(1yy1) = a(TkJrl) _ a—(rk+1) then
6(Tery) = @M alDRG (1) 4+ E(14)

|6 (Tie1)] < €T |G (1) + |E(Tiera)| (25)



The term|E(1x,1)| can be further bounded by The other simulation parameters are
|E(Tir1)| Aw(kL(k— 1),k (K))Ug(1 — 27 Rern) T=01,A=002R=2;

<
< Ak (k= 1),k (K)Ux (26) Vi=20Lg=5,a4 = g,d ~1

Similarly, let . . .
imiiarty, 1e The regulation lawg(-) for the leader’s heading angle is

N =max{Ax(ky (k— 1),k (k))|k.(k— 1),k (k) € £}, assumed to be a linear functigfa) = 2a. The initial inter-
: . vehicle distance i§(0) = 80 and the initial bearing angle is
then meqqallty (26) may b_e further boun_ded|E$r_k+1)| = a(0) =m/12. The i(ni'zial bearing estimate (0) :gO w?th
N*Ug. Taking the expectation on both sides of |nequal|t|e§heU — 71/12. The selection pool for the controller pair is
(25) and using the above bound 1y, 1)| yields 0 '

E(|&(t1)]) < € TE(|& (1)]) + A"E(Uk) H = {(kL,ka> : Ldzvld <k <1005<kq < 100}.
With the result from Corollary 4.8, we have A Monte Carlo method was used to verify that the system
E(|& (T 1)|) < e T DE(a(0))) had almost-sure asymptotic stability when Lemma 4.4 holds.
K okeT In the simulation, we selected the controller pair frafnthat
+UoA*nX Z)(—)i minimizesn at each time instance,. The simulation was
=N run 100 times over the time interval from O to 2 seconds.
< efkéT(kJrl)]E(m(o)D Figure 2 shows the maximum and minimum value of the
il _ g kaTlkiD) _ system stater and L with _the SW|t_ch|ng _pollcy over all the
+ T UoN* 100 runs. The top plot in the figure is the trajectory for
n-¢€ statea, with maximum value marked as blue solid line, and
Here, it is straightforward to see that minimum value as red dashed-dot line. The two dashed lines

represent the upper and lower bound for the relative bearing
a, i.e.|a| < /2. The bottom plot is the trajectory for the
relative distancd. with the same marking rule. We can see
from the plots that the maximum and minimum values of the
A _ system state converge to the desired set-point= 7 and
IlmEﬂa(Tk)D < ;lmE(m(Tk)' + Uk Ly = 5 asymptotically. These results are consistent with our
— Jim E(|& (1)) + im IE(|U_k|) 50 statements in Lemma 4.6 for almost-sure asymptotic stabili
K—se0 koo We also studied the benefits of such a switching policy

As noted before, one can then use the Markov inequality V€' & non-switching strategy. For a fair comparison, we
verify almost-sure convergence of the sequefif(t)|} selected two types of controllers as representatives of the

to zero. We also know, however, that the time betweeRON-Switching strategy, which ar20,20) and (100,100).
successive sampling instants is a constant and that thensyst! Ne pair (20,20) represents the small-gain controller, while
trajectory is uniformly bounded between these instante (dd 100 100) is the high-gain controller. We ran the simulation

to the Lipschitz assumption). We can therefore conclude thiPr 2 seconds over 100 runs with the same simulation param-
all sample paths of the continuous-time sigo4t) must be  Eters. Figure 3 shows_the maximum a_nd minimum value for
almost-surely convergent to 0. m the state trajectory with the small-gain controll&0, 20),

while Figure 4 is for the high-gain controll€r100, 100).
V. SIMULATION RESULTS The system trajectories also asymptotically converge ¢o th

This section presents simulation experiments examinirggt-points for both cases. This is not surprising since the
the resilience of our proposed switched controller's topdeeresult in Lemma 4.6 are only a sufficient condition. However,
fades. as is shown in these figures, the relative bearing angles

A two-state Markov chain model was used to simulate thg generated by either controller fail to satisfy the bound
fading channel between the leader and follower. One staté| < 5. This bound is important due to the directional
represents the good channel condition, which simply mean@ture of the antenna. Whea| > 7, the antenna will have
the transmitted bit is successfully received. The othetestano gain in that direction and hence the communication link
is the bad channel condition, which represents the failire #etween leader and follower will be broken. On the other
receiving the bit. The conditional probabilities of reeriaiy hand, the switching strategy generated a smoother trajecto
in the good or bad channel state qvg = efsx10*3(c0£><t))2 with smaller variance. More |mp0rtqntly, Figure 2 clegrly

e 10P(2X) 12 _ ~shows that the bearing angle constraint was al\{vays satlsf_|ed
® 7, respectively. The corresponding One sample path of the switching profile is shown in

lim E(|& (n)]) — 0

With the result from Corollary 4.8, i.e. lign, E(|Uy|) — 0,
we have

and py; =e L
transition probabilities betwee_n these states arepl; and Figure 5. The bottom plot is the channel stak)(along
1— p22. The EBB model for this channel has the parametefige time line. The top plot is the switching profile that
— 351074t _)2 _45x10°3(_ LD 2 reacts to the change d®.. As shown in the figure, the
h(a,L) =Re coa®” y(a,L) =e cosatt controller k. switches from lower gain to the high gain
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Fig. 3. The maximum and minimum system trajectory with nesitehing

controllerk, =20 andkq = 20 Fig. 5. One sample of the switching profile and channel s (

after Q2 seconds when the system state is close enough

to the desired set-point. The controlley exhibits different and minimum value with the switching control strategy. At
switching behaviors. It first selects the low gain contmolletime interval [0,1], the system is steering to the set-point
because of the low channel state, and then switches ba&khout fault. The fault occurs at around 1 second, and drive
and forth in response to changes in the channel state. Affée system out of the antenna’s radiation range. The system
the system state reaches the set-pdﬂatstays h|gh all the detects this fault, and switches the controller to drive the
time. system back to the set-point after around 2 second.

The channel state profile in Figure 5 represents just one For comparison purposes, we also simulated faulty system
possible sample path. It is possible (though unlikely) feg t using two control strategies that used no channel state-info
channel to generate a "string” of dropouts. We're intergstemation to combat the fault. The first strategy employs the
in seeing how well our switched controller performs evemon-switching safe controllef20,20). The second strategy
under such low probability events. A simulation run wasises only system state information to switch the controller
therefore done in which the communication link was brokebetween small gairi20,20) and high gain(100,100). This
for N =10 consecutive transmissions, starting 1 second iniwas done when the system uncertaifdy— &| exceeded a
the simulation. We refer to this sequence of dropouts asspecified threshold,. Neither of these controllers was able
"fault”. The simulation was again run 100 times from Oto stabilize the system in the presence of the fault. A sample
second to 10 second with the same parameters. Figurepéth for the system under the second controller is shown in
shows the response of the system state in terms of maximuFigure 7.



(4

' (5]

0 2 4 6 8 10
6]
80
60} i [7]
=40 B
20 1 (8]
0 ’ ’ ’ ’
0 2 4 6 8 10
time (sec)

[9]
) . - [10]
Fig. 6. System response to unexpected fault using switctiredegy

. [11]

10
[12]

sl
c [13]
0 /

s ‘ ‘ ‘ ‘ [14]

0 2 4 6 8 10
80 [15]
60 — [16]

~ 40 B

20 | [17]
= : : : [18]

0 2 4 6 8 10
time (sec) [19]

Fig. 7. System response to unexpected fault using statsgbasitching (20]

strategy with threshold}
[21]

VI. CONCLUSION

This paper studied the almost-sure stability for leadeif22]
follower formation control of nhonholomonic systems in the
presence of deep fades exhibiting exponentially boundegk
burstiness. The paper establishes sufficient conditions to
switch the controller to assure almost-sure asymptotie sta
bility. Preliminary simulation results support the anays
conclusions. Future work will extend these concepts from
leader-follower formations to more general formation coht
problems.
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