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Abstract— Wireless networked control systems (WNCS) con-
sist of several dynamical systems that exchange information
over a wireless radio (RF) communication network. These RF
networks are subject to deep fades where the effective link
throughput drops precipitously. Deep fading negatively impacts
WNCS performance and stability, but in many applications the
probability of a deep fade is a function of the system state.
This suggests that one can use channel state information (CSI)
as a feedback signal to recover some of the performance lost.
This paper derives necessary and sufficient conditions for the
almost sure stability of WNCS in the presence of deep fading.
These conditions relate the channel’s state to the WNCS’s
convergence rate. This paper uses this fact to reconfigure WNCS
controllers to recover system performance in the presence of
such fades. The results are illustrated using a leader-follower
scenario found in vehicle-to-vehicle (V2V) applications.

I. INTRODUCTION

Wireless networked control systems (WNCS) consist of
several dynamical systems that coordinate their behavior by
exchanging information over a wireless radio (RF) communi-
cation network. Examples of such systems are found in smart
transportation [1] applications that anticipate automobiles
exchanging information to coordinate their maneuvers. These
RF communication channels, however, are subject to deep
fades where the channel’s throughput drops precipitously and
remains low for an extended interval of time. Such fades
clearly limit the ability of WNCS subsystems to successfully
coordinate their actions. This lack of coordination has ob-
vious negative impacts on the safety of smart transportation
applications which could be addressed by developing WNCS
that are resilient [2] to deep fading in the sense that the
system detects the fade and then adapts its controller to
maintain some minimum performance level.

Channel fading is characterized in terms of the channel
gain; the ratio of the received signal strength over the
transmitted signal strength. This gain is often modeled as
an independent and identically distributed (i.i.d.) random
process having either a Rayleigh or Rician distribution [3].
This channel model is inadequate for two reasons. In the first
place, fading possesses a memory effect which suggests it is
better modeled as a Markov process [4] with two states for a
high gain condition and a low gain condition. The transition
to the low gain state represents a deep fade. In the second
place, this model ignores the potential dependence of the
channel state on the states of the WNCS subsystems. Vehicle-
to-vehicle (V2V) applications provide an example in which
the channel state is a function of the velocity and position
of both vehicles [5], [6], [7], [8].

The loss of information resulting from a deep fade will
negatively impact the performance achievable by WNCS

subsystems. Prior work [9], [10], [11], [12], [13] charac-
terized the minimum stabilizing bit rate for linear time-
invariant (LTI) systems assuming constant channel gain. But
as noted above, the assumption of a constant channel gain
is overly simplistic since it ignores channel fading. Initial
attempts to study the impact of time-varying channels on a
control system’s mean square stability have recently appeared
[14], [15], but this work has assumed the channel gain is
decoupled from the dynamics of the control system. This
paper examines a more realistic fading model in which the
channel is exponentially bursty [16], [17] and is dependent
on the physical plant’s state. In particular, this paper char-
acterizes conditions that the physical state of the plant and
the exponential bursty channel have to satisfy to assure the
stronger stability notion of almost sure stability. The paper
uses this characterization to propose adaptive schemes that
switch feedback controllers in response to changes in the
communication channel’s state. The results are illustrated on
a leader-follower system motivated by smart transportation
applications.

II. MATHEMATICAL PRELIMINARIES

Let R and Z denote the set of real numbers and integers,
respectively. The sets of positive reals and integers are
denoted as R+ and Z+, respectively. Euclidean n-space is
denoted as Rn. The ∞-norm on the vector x ∈ Rn is |x| =
max |xi| : 1 ≤ i ≤ n, and the corresponding induced matrix
norm ‖A‖= max1≤i≤n ∑n

j=1 |A
j
i |. Given a vector x ∈ Rn, we

let xi ∈ R for i = 1,2, . . . ,n denote the ith element of vector
x. We let f (·) : R→ Rn denote a function mapping the real
line onto vectors in Rn. We let f (t) ∈ Rn denote the value
that function f takes at time t ∈ R. The left-hand limit at
t ∈ R of a function f (·) : R→ Rn is denoted as f (t−).

Consider a dynamical system whose state trajectory x(·) :
R→ Rn satisfies the following differential equation

ẋ(t) = Ax(t)+Bu(t), x(0) = x0 (1)

for all t ∈R+ where u(·) :R→Rm is an input signal, x0 ∈Rn

is the initial state, and the matrices A and B are appropriately
dimensioned. Let the output of this system be the signal
y(·) : R→ Rq that satisfies

y(t) =Cx(t)+w(t) (2)

where C is an appropriately dimensioned matrix, w(·) : R→
Rq is the stochastic disturbance process. For any T > 0, let
Φ(T ) denote the state transition matrix, and its ∞-induced
norm is denoted as ‖Φ(T )‖.



The probability of a random variable is denoted by Pr(·)
and its expectation by E(·). Consider a random process {xt}.
We say this process is almost sure convergent to 0 if for all
ε > 0 there exists δ > 0 and T > 0 such that

Pr
{

limsup
t>T

|xt |> ε
}
< δ

One often writes this as Pr{|xt |→ 0} = 1. If the random
process {xt} is generated by the system equations (1-2) then
we say this system is almost sure stable.

The system in equations (1-2) is almost sure asymptoti-
cally observable if for any T > 0 one can use the system
inputs and outputs to generate a sequence {x̂k,Lk}∞

k=1 such
that such that ek = |x(kT )− x̂k| < Lk for all k = 1,2, . . . ,∞
and Lk → 0 as k → ∞.

The concept of almost sure asymptotic observability may
be viewed as a probabilistic extension of the asymptotic
observability concept found in [12]. Similar to what is found
in [12], a system’s almost sure asymptotic observability can
be shown to be sufficient for the system to be almost sure
stable. This paper establishes that result and then uses it
to determine conditions for the almost sure stability of the
system under study.

III. SYSTEM MODEL

The proposed system under study is shown in Figure 1.
This figure shows a plant whose state trajectory x(·) :R→Rn

satisfies the system equations (1). The input signal u is
generated by a controller and its output is the state vector.
The plant’s state is sampled by an encoder at a sequence
of time instants {τk}∞

k=1. The encoder maps the system
state x(τk) onto a codeword, c(k) = {bi(k)}R

i=1 which is a
collection of R ∈ Z+ blocks of bits with block length n. In
other words bi(k) ∈ {0,1}n is the ith block in the codeword
generated by the encoder at sampling time τk. The codeword
is transmitted over the channel. The output of the channel is
a codeword, ĉ(k) = {b̂i(k)}Rk

i=1 that is received by the decoder
at time ak = τk+∆. The interval ∆> 0 represents a finite time
delay which is constant and known to both the encoder and
decoder. The received codeword consists of Rk ≤ R blocks
and we assume that the ith received block, b̂i(k), equals the
ith transmitted block bi(k) for i= 1,2, . . . ,Rk. In other words,
the first Rk blocks of bits in the transmitted codeword are
reliably received by the decoder. The decoder then uses the
received bits in ĉ(k) to construct an estimate for the plant’s
state. We denote this estimate as x̂k (k = 1,2, . . . ,∞) and
the controller uses this state to generate the control signal
u(·) : R→Rm used by the plant. More detailed descriptions
of the channel, encoder/decoder, and controller blocks are
given below.

Channel Model: The stochastic nature of the channel is
captured by the number of received bits, nRk, at time instant
ak. In particular, we assume that Rk is a random process and
we let rk =

nRk
∆ where ∆ = ak − τk denote the instantaneous

bit rate for the kth transmission. Let hi(·) : R+ → R+ (i =
1,2) and ζ2(·) : R+ → R+ be continuous, non-negative and
monotone decreasing functions. Let ζ1(·) : R+ → R+ be

Fig. 1. System Structure

Fig. 2. Probability bounds for the channel model

continuous,non-negative and monotone increasing function.
We assume that the tail of Rk’s probability distribution
satisfies the following exponential bounds

Pr{Rk ≥ h1(|x(τk)|)+σ1} ≤ e−ζ1(|x(τk)|)σ1 (3)
Pr{Rk ≤ h2(|x(τk)|)−σ2} ≤ e−ζ2(|x(τk)|)σ2 (4)

for all real σ ≥ 0 and σ2 ∈ [0,h2(|x(τk)|)].
The tail of Rk’s probability distribution is shown in figure

2. The left tail of the distribution characterizes the instanta-
neous low bit rate region while the right tail represents the
instantaneous high bit rate region. The low bit rate region
at kth transmission interval is the set of all Rk less than
h1(|x(τk)|). One may view h1(|x(τk)|) as a threshold for the
low bit rate region, and varies as a function of the system
state. The high bit rate region is constructed in a similar
manner.

The probability bounds in (3-4) may be viewed as slight
modifications of the exponentially bounded burstiness(EBB)
model [16]. The only difference lies in our characterization of
system state’s impact on the model. It is well established that
the two state Markov chain commonly used to characterize
the fading channel, can be approximated by the exponentially
bounded burstiness (EBB) model [16]. Although the EBB
model may turn out be conservative because it bounds
the occurrence of rare events, it is convenient to use for
establishing the system’s almost sure stability

The monotone decreasing functions hi(·), i= 1,2 are intro-
duced to model the basic relationship between channel state
and control system’s state. This is motivated by the fact that
increasing the system state’s norm will decrease the channel
state and vice versa. ζi(·), i = (1,2) is used to characterize



the exponent in the probability bounds. The further the state
is from the equilibrium, the less likely that the high data
rate region will expand, but more likely the low data rate
will move toward the origin. It models the fact that channel
is more prone to exhibit deep fading when the system states
are further from the equilibrium.

Controller: At time instant ak, the controller receives an
estimate of the sampled system state at time instant τk. This
estimate is denoted as x̂k. To generate the control over the
time interval [ak,ak+1], the controller first selects a control
gain, K ∈K where K = {K1,K2, · · · ,KN} is a collection of
state feedback gains. We let K(k) denote the controller that
was selected over the kth action interval. The controller then
generates an estimated state trajectory, x(·) : [ak,ak+1]→ Rn

that satisfies the ODE,

ẋ(t) = (A+BK(k))x(t), x(ak) = e(A+BK(k−1))∆x̂k

and the control is then

u(t) = K(k)x(t)

for t ∈ [ak,ak+1]. These equations apply for all k = 1,2, . . . ,∞.
Encoder/Decoder: The encoder/decoder is characterized

by a sequence of {(x̂k,Lk)}∞
k=1 which represent the estimated

state, x̂k, and the size of the uncertainty set Lk associated
with the kth consecutive transmission. It is assumed that at
k = 0, both encoder and decoder have the same initial state
name x̂0 = 0 and L0 = L. The encoder then maps the current
sampled state, x(τk), onto the bits bi(k) (i = 1,2, . . . ,nR)
according to the following series expansion of the sampled
state

x(τk) = x̄(τk)+‖Φ(T )‖Lk−1

∞

∑
j=1

1
2 j b j (5)

x̄(τk) = e(A+BK(k−1))(T−∆) · e(A+BK(k−2))∆x̂k−1

where ‖Φ(T )‖= ‖eAT‖ and b is an n vector whose compo-
nents are ±1. This vector is encoded with n bits with bit 0
representing value −1 and bit 1 representing value 1, and
the transmitted code word consists of the first nR bits.

We assume that the the decoder receives the first nRk bits
(or rather the first Rk blocks) in the transmitted codeword
and the reconstructed state is then

x̂k = x̄(τk)+‖Φ(T )‖Lk−1

Rk

∑
j=1

1
2 j b j (6)

Figure 3 shows a two-dimensional system with R̄ = 2
blocks (4 bits) transmitted through the channel, and only
one block Rk = 1(2 bits) is received. By using the encoder
scheme in equation (5), a codeword c(k) = {[1,1], [1,1]} is
constructed and used to label the small square on the right-
most corner with true state inside. The decoder only receives
the first block of the original codeword, i.e. ĉ(k) = {[1,1]}.
The reconstruction equation in (6) gives the estimated state
x̂k marked as red dot in the larger square. It is clear from
the picture that the reception of partial information can still
guarantee the recovery of the sensor measurement but with

Fig. 3. Encoder and Decoder mapping

a reduced precision. Such reduced precision can be quanti-
tatively bounded if the synchronization of the information is
assured on both encoder and decoder.

From the encoding scheme in equation (5), the information
needed to be synchronized includes the prior control gains
K(k−1) and K(k−2) as well as the estimated state x̂k−1. As
shown in figure 1, this information is obtained from decoder
and controller through a feedback noiseless channel at each
time interval [τk,ak]. In particular, encoder will construct
the estimated state x̂k−1 by assessing the actual number of
bits nRk−1 received at k−1th interval. The synchronization
on Rk−1 can be achieved by using acknowledgement signal
indicating the receipt of each block at the decoder side. As
for K(k− 1) and K(k− 2), their corresponding indices will
be sent to encoder provided encoder and decoder share the
selection set for the controller.

Such synchronization ensures the encoder and decoder
shares the estimation error bound at each time instant τk
as follows,

|x(τk)− x̂k|≤ 2−Rk‖Φ(T )‖Lk−1

IV. MAIN RESULTS

This section derives necessary and sufficient characteriza-
tion for the almost sure convergence of sequence {Lk}∞

k=0,
and then proves that the convergence of this sequence guaran-
tees the almost sure asymptotic observability for the system
defined in equation (1). Under a dwell time assumption
(which represents the minimum time between controller
switches), we further show that the almost sure asymptotic
observability implies almost sure asymptotic stability for the
control system in equation (1).

The following proposition bounds the quantization error
generated by the proposed encoder/decoder scheme. The
proof follows that found in [12].

Proposition 4.1: Given the sequences {τk}∞
k=0 and

{ak}∞
k=0, encoder and decoder scheme in equations (5-6),

suppose the initial state x(0) ∈ [−L̄, L̄]n,L0 > 0, if the
sequence {Lk}∞

k=0 is constructed by the following equation

Lk+1 = 2−Rk+1‖Φ(T )‖Lk (7)



then the quantization error can be bounded as,

‖x(τk)− x̂(τk)‖ ≤ Lk,∀k ≥ 0 (8)

with initial value L0 = 2−R0 L̄, where Rk is the number of
blocks received during time interval [τk,ak).

A. Almost sure asymptotic observability
The following lemma establishes a necessary condition for

the almost sure asymptotic convergence of sequence {Lk}∞
k=0

with convergence rate δ ∈ (0,1]. The necessary condition
is derived based on the probability bound on the high data
rate region. The necessity comes from the fact that if the
system performance cannot be assured under the high data
rate scenario, there is no way for the system performance to
be better under other scenarios.

Lemma 4.2: Consider the system in equation (1), suppose
right tail of Rk probability distribution satisfies the probabil-
ity bound in (3), then a necessary condition to ensure

E(Lk|Lk−1)≤ δLk−1,∀k ∈ Z+

is

|x(τk)|≤ G−1
1

(
δ

‖Φ(T )‖

)
,∀k ∈ Z (9)

where ‖Φ(T )‖ = ‖eAT‖, δ ∈ (0,1] and function G1(y) =
2−h1(y) · ζ1(y)

ζ1(y)+ln2 .
Proof: In order to prove the necessary condition

ensuring E(Lk|Lk−1) ≤ δLk−1, we prove the case that the
E(Lk|Lk−1) > δLk−1 holds when condition (9) is violated,
i.e.

|x(τk)|> G−1
1 (

δ
‖Φ(T )‖ ),∀k ∈ Z

First, Let us consider the condition that makes E(Lk|Lk−1)>
δLk−1 hold, i.e.

‖Φ(T )‖E[2−Rk ]> δ

Let R̃ := 2−Rk , h1k := h1(|x(τk)|) and ζ1k := ζ1(|x(τk)|). The
probability bound in (3) implies

Pr{2−Rk ≤ 2−(h1k+σ1)}= Pr{Rk ≥ h1k +σ1}≤ e−ζ1kσ1

Now, the expectation of 2−Rk can be written as

E(R̃) =
∫ 1

0
Pr{R̃ > x}dx

= 1−
∫ 1

0
Pr{R̃ ≤ x}dx (10)

Since
∫ 1

0
Pr{R̃ ≤ x}dx =

∫ 2−h1k

0
Pr{R̃ ≤ x}dx+

∫ 1

2−h1k
Pr{R̃ ≤ x}dx

=
∫ ∞

0
Pr{R̃ ≤ 2−h1k−σ1}(2−h1k ·2−σ1 ln2 ·dσ1

+1−2−h1k

≤
∫ ∞

0
e−ζ1kσ1 2−h1k 2−σ1 ln2 ·dσ1

+1−2−h1k

we have the following lower bound of E(R̃)

E(R̃)≥ 2−h1k −2−h1k ln2
∫ ∞

0
e−ζ1kσ1 2−σ1 dσ1

= 2−h1k · ζ1k

ζ1k + ln2
! G1(|x(τk)|) (11)

Taking the derivative of G1(y) = 2−h1(y) · ζ1(y)
ζ1(y)+ln2 with

respect to y, we obtain

Ġ1 =− ln2 · ḣ12−h1 [1− ln2
ζ1 + ln2

]+2−h1
ln2 · ζ̇1

(ζ1 + ln2)2

=
ln2 ·2−h1

ζ1 + ln2
[−ζ1 · ḣ1 +

ζ̇1

ζ1 + ln2
] (12)

Note that the function h1 is positive and monotone decreasing
while function ζ1 is positive monotone increasing. It is
clear that Ġ1 > 0 holds. This implies the violation of the
condition in (9) will lead to E(R̃) > δ

‖Φ(T )‖ , which implies
E(Lk|Lk−1)> δLk−1. Therefore, condition (9) is a necessary
condition for E(Lk|Lk−1) ≤ δLk−1 to hold. The proof is
complete.

The following lemma derives a sufficient condition for the
controller so that the necessary condition derived in lemma
4.2 can be achieved.

Lemma 4.3: Consider the system in equation (1) with a
family of control gain matrices {Ki}N

i=1, suppose right tail
of Rk probability distribution satisfies the probability bound
in (3), if the selected controller K ∈ {Ki}N

i=1 satisfies the
condition

‖AK‖ ≤
1

T −∆
ln

G−1
1 ( δ

‖Φ(T )‖ )−‖Φ(T )‖Lk−1

|x̂(ak−1)|
(13)

AK = A+BK

the necessary condition derived in lemma 4.2, i.e. |x(τk)|≤
G−1

1

(
δ

‖Φ(T )‖

)
,∀k ∈ Z is achieved.

Proof: Consider the upper bound of |x(τk)| that is
derived from the dynamics of the quantization error. Using
encoding and decoding scheme in (5-6), the quantization
error at time τ−k can be bounded as

|x(τ−k )− x̂(τ−k )|≤ ‖Φ(T )‖Lk−1 (14)

Because of the continuity of original state at time τ−k , x(τk)=
x(τ−k ), then

|x(τk)|= |x(τ−k )|≤ |x̂(τ−k )|+‖Φ(T )‖Lk−1 (15)

Since controller reconfiguration will only be conducted at
time sequence {ak}∞

k=0, x̂(τ−k ) can be calculated as follows
if a controller K is selected,

x̂(τ−k ) = e(A+BK)(T−∆) · x̂(ak−1) (16)

Now, let the controller K satisfies the condition (13), consider
the inequalities (16-15), we have |x(τk)|≤G−1

1 ( δ
‖Φ(T )‖ ),∀k ∈

Z holds. The proof is complete.
It is worth noting that the necessary condition may turn

out to be optimistic since it only captures the high data rate



region. The following lemma establish sufficient conditions
for the same performance specification. In contrast, the
sufficient conditions are derived based on the probability
bound on the low bit rate region, which is the worst case
scenario.

Lemma 4.4: Consider the system in equation (1), and sup-
pose the left tail of Rk’s distribution satisfies the probability
bound (4), then a sufficient condition to ensure

E(Lk|Lk−1)≤ δLk−1,∀k ∈ Z+ (17)

is

|x(τk)|≤ G−1
2

(
δ

‖Φ(T )‖

)
,∀k ∈ Z (18)

where ‖Φ(T )‖ = ‖eAT‖, δ ∈ (0,1] and function G2(y) =
e−h2(y)ζ2(y)(1+h2(y)ζ2(y)).

Proof: Unlike the logic used to prove necessary condi-
tion, here, we want to a condition that ensures E(Lk|Lk−1)≤
δLk−1,∀k ∈ Z+. Establishing this is equivalent to proving

‖Φ(T )‖E[2−Rk ]≤ δ ,δ ∈ (0,1] (19)

Since we assume the probability bound (4) holds, we have

Pr{2−Rk ≥ 2−h2(|x(τk)|)+σ2}≤ e−ζ2(|x(τk)|)σ2

σ2 ∈ [0,h2(|x(τk)|)]

let R̃k := 2−Rk ,h2k := h2(|x(τk)|) and ζ2k := ζ2(|x(τk)|), then

E(R̃k) =
∫ 1

0
Pr{R̃k > x}dx

=
∫ 2−h2k

0
Pr{R̃k > x}dx

+
∫ 1

2−h2k
Pr{R̃k > x}dx

Following the same technique in lemma 4.2, we obtain

E(R̃k)≤ 2−h2k +2−h2k ln2 ·
∫ h2k

0
e−ζ2kσ2 2σ2 ·dσ2 (20)

Let C :=
∫ h2k

0 e−ζ2kσ2 2σ2 · dσ2, integration by parts gives
rise to

C =
1

ln2
[e−ζ2kσ2 2σ2 |h2k

0 +ζ2kC] (21)

Hence, we have

C =
eh2k(ln2−ζ2k)−1

ln2−ζ2k
> 0 (22)

Substituting equation (22) into inequality (20), E(R̃k) is
bounded by

E(R̃k)≤
e−h2kζ2k ln2−2−h2k ζ2k

ln2−ζ2k
(23)

Note that 2−h2k = e−h2k·ln2, the above upper bound can be
further rewritten as

E(R̃k)≤
e−h2kζ2k [ln2− e−h2k·(ln2−ζ2k)ζ2k]

ln2−ζ2k

= e−h2kζ2k

[
1+ζ2k ·

1− e−h2k(ln2−nζ2k)

ln2−ζ2k

]
(24)

It is easy to check that the right hand side of above inequality
is bounded away from zero. Let ϕ := ln2 − ζ2k, consider
function f (ϕ) = 1− e−h2kϕ −h2kϕ , since

d f (ϕ)
dt

= h2k(e−h2kϕ −1)≤ 0,ϕ ≥ 0

d f (ϕ)
dt

= h2k(e−h2kϕ −1)> 0,ϕ < 0 (25)

f (ϕ) obtains maximum value at ϕ = 0, i.e. f (ϕ)≤ f (0) = 0.
It implies

1− e−h2kϕ ≤ h2kϕ

⇒ 1− e−h2kϕ

ϕ ≤ h2k (26)

By applying above inequality, E(R̃k) is further bounded as

E(R̃k)≤ e−h2kζ2k [1+h2kζ2k] (27)

Recall that h2k = h2(|x(τk)|) and ζ2(|x(τk)|) are both nonneg-
ative and monotone decreasing functions. Hence, function
g(y) = h2 ·ζ2 is also nonnegative and monotone decreasing.
Let G2(y) = e−h2(y)ζ2(y)(1+h2(y)ζ2(y)),

dG2(y)
dy

=−dg(y)
dy

·g(y)e−g(y) ≥ 0 (28)

Hence, G2(y) is nonnegative and monotone increasing func-
tion. And we have

E(R̃k)≤ G2(‖x(τk))‖) (29)

Now, it is clear that if condition (18) holds, with inequality
(29), we have E(R̃k) ≤ δ

‖Φ(T )‖ , which completes the proof.

The following corollary proves that the bound given by the
necessary condition will always be great than that obtained
from the sufficient condition.

Corollary 4.5: For any y ≥ 0, G1(y) < G2(y), i.e.
G−1

1 (y)> G−1
2 (y).

Proof: Consider the equations (11) and (20-22), we
have

G1(y) = 2−h1(y)−2−h1(y) ln2
ln2+ζ1(y)

G2(y)≥ 2−h2(y) +2−h2(y) ln2 ·C

Since h1(y) > h2(y),∀y ≥ 0,C > 0 and ζ1(y) ≥ 0, then
G1(y)< G2(y). Because G1(y) and G2(y) are both monotone
increasing functions, then G−1

1 (y) > G−1
2 (y) follows imme-

diately.
The following lemma derives a sufficient condition for the
selection of the controller in the low bit rate region.

Lemma 4.6: Consider the system in equation (1) with a
family of control gain matrices {Ki}N

i=1, suppose left tail
of Rk probability distribution satisfies the probability bound
in (4) and let AK = A+BK. If the selected controller K ∈
{Ki}N

i=1 satisfies the condition

‖AK‖ ≤
1

T −∆
ln

G−1
2 ( δ

‖Φ(T )‖ )−‖Φ(T )‖Lk−1

|x̂(ak−1)|
(30)



then the necessary condition derived in lemma 4.4, i.e.
|x(τk)|≤ G−1

2 ( δ
‖Φ(T )‖ ),∀k ∈ Z is satisfied.

Proof: The proof is omitted since it is similar to what
was used in lemma 4.3.

With the sufficient conditions in Lemma 4.4 and Lemma
4.6, we proceed to state one the paper’s main theorems,
which establishes the almost sure asymptotic observability
for the system in equation (1).

Theorem 4.7: Given a sequence of {Lk}∞
k=0 constructed

by equation (7), the encoding/decoding scheme in (5-6), and
a collection of controller gain matrices {Ki}N

i=1, suppose the
communication channel satisfies the probability bounds (3-
4). If there exists a sequence of switching signals {sk}∞

k=0,
in which sk ∈ [1, . . . ,N] is constant over [ak,ak+1), such that
the sufficient condition in Lemma 4.6 is satisfied under the
selected controller {Ksk}∞

k=0, then the system in equation (1)
is almost sure asymptotically observable.

Proof: Suppose there always exists a controller
K ∈ {Ki}N

i=1 such that lemma 4.6 holds, then we have
E(Lk+1|Lk)≤ δLk,∀k ∈ Z+. This also implies [18]

E[Lk]≤ δE[Lk−1]≤ . . .≤ δ kL0

⇒ E[Lk]≤ δ kL0 (31)

Since δ ∈ [0,1), taking the limit k → ∞ leads to

limsup
k↑∞

E[Lk]≤ lim
k↑∞

δ kL0 = 0 (32)

which implies almost sure convergence Pr(limk↑∞ Lk = 0) =
1. Since Lk is the upper bound for the quantization error, the
almost sure asymptotic observability immediately follows.
The proof is complete.

B. Almost sure asymptotic stability

The result in Theorem 4.7 indicates that the quantization
error will converge to zero with probability 1, however, it
does not say anything about the stability of the original
system in equation (1). Theorem 4.9 shows that under the
dwell-time condition, almost sure asymptotic observability
indeed implies the almost sure asymptotic stability for the
system in equation (1).

Assumption 4.8: (Dwell Time)[19], [20] Given a family
of switched closed-loop system {A+BKi}C

i=1, there exists a
constant fixed dwell time τD and integer π ∈ Z+, such that
two consecutive switching time interval π ∗T ≥ τD.

Since the switching decision is always made at time instant
ak, we know the time interval between two consecutive
switches must be a multiple of the sampling period T . One
may either select large π or large T to satisfy the dwell-time
assumption.

Theorem 4.9: Consider the system in (1) and suppose that
there exists positive c and λ such that

∥∥eAit
∥∥≤ ce−λ t

where Ai = A+BKi and Ki is the ith controller. If the dwell
time assumption holds with τD > lnc

λ , then the system in (1)
is almost sure asymptotically stable.

Proof: Without loss of generality we assume π = 1 in
the dwell-time assumption. Consider t ∈ [τk,τk+1), we have

x̂(τ−k+1) = eAq(T−∆)eAp∆x̂(τk) (33)

Let E(τk+1) := x̂(τk+1)− x̂(τ−k+1), then

x̂(τk+1) = eAq(T−∆)eAp∆x̂(τk)+E(τk+1) (34)

Taking the infinity norm on both side leads to

|x̂(τk+1)|≤ ‖eAq(T−∆)‖‖eAp∆‖|x̂(τk)|+ |E(τk+1)| (35)

By inserting inequality (33), we obtain

|x̂(τk+1)|≤ c̄e−λT |x̂(τk)|+ |E(τk+1)| (36)

where c̄ := c2. The term |E(τk+1)| can be further bounded
by

|E(τk+1)|≤ ‖Φ(T )‖Lk(1−2−Rk+1)≤ ‖Φ(T )‖Lk (37)

Combining inequality (36) and (37) and taking the expecta-
tion on both side gives

E(|x̂(τk+1)|)≤ c̄e−λTE(|x̂(τk)|)+‖Φ(T )‖E(Lk) (38)

Since the almost sure asymptotic observability holds, i.e.
E(Lk)≤ δ kL0, replacing it into above inequality and propa-
gating backwards in time, we obtain

E(|x̂(τk+1)|)≤ c̄k+1e−λT (k+1)E(|x̂(τ0)|)

+L0‖Φ(T )‖δ k
k

∑
i=0

(
c̄e−λT

δ )i

≤ e(k+1)(ln c̄−λT )E(|x̂(τ0)|)

+
δ k+1 − e(k+1)(ln c̄−λT )

δ − e(ln c̄−λT ) L0‖Φ(T )‖ (39)

Here, if the switching time interval T > ln c̄
λ , then

lim
k→∞

E(|x̂(τk)|)→ 0

With lim
k→∞

E(Lk)→ 0, the almost sure asymptotic stability for
the original system is achieved, which completes the proof.

V. SIMULATION

In this section, a vehicle to vehicle tracking example
is used to demonstrate lemma 4.4 and lemma 4.6 which
provide the sufficient conditions for almost sure asymptotic
stability. The simulation compares two control strategies, one
is using lemma 4.6 to switch the controller in response to the
changes in communication channel state, while the other one
is applying a non-switching control strategy without using
the channel information.



A. vehicle tracking model
Consider the following vehicle model,

ẏi = vi

v̇i = ui, i = 1,2

where yi and vi represent the longitudinal position and
velocity for each vehicle. ui is the control policy used by each
vehicle to manage their accelerations. The control objective
is to maintain a specified separation distance between the
leader and follower, and achieve velocity tracking for the fol-
lower. To make the tracking problem nontrivial, we consider
the case that the leader changes its control profile over time.
The control input u1 to the leader is a piecewise constant
signal, which models a vehicle traveling on road sections
with different speed limits. We assume the leader’s control
profile changes slowly enough to be perfectly known by the
follower. We can therefore develop the following model for
the tracking error,

η̇1 = η2

η̇2 = ū (40)

with η1 = y1 − y2 − Ls, η2 = v1 − v2 and ū = u1 − u2. Ls
denotes the safe distance margin for the two vehicles. Since
u1 is known to the follower, it can be treated as a known
disturbance. As we can see in the tracking model, in order
to achieve the control objective, The leader must transmit its
longitudinal position (y1) and velocity (v1) to the follower
in order to meet the control objectives. This transmission
is done over a wireless fading channel. which satisfies the
probabilistic bounds (3-4).

B. Simulation setup
A two-state Markov chain model is used to simulate the

communication channel between the two vehicles. One state
represents the bad channel condition, another one represents
the good channel condition. The bad channel condition is
characterized in terms of those channel states satisfying
Rk ≤ 1.8e−10−4|η |2 , while the good channel condition is Rk ≥
2.4e−10−4|η |2 . The probability associated with the bad state is
p11(|η‖) = e−1.8e−0.0251|η |2 , while the probability for the good
state is p22(|η |) = e−2.4e0.009|η |2 . The corresponding transition
probabilities are 1− p11(|η |) and 1− p22(|η |). Under these
assumptions on the Markov chain, one can then evaluate the
bounds in equations (3-4) as

h1(|η |) = 2.4e−10−4‖η |2 ,h2(|η |) = 1.8e−10−4‖η |2 ;

ζ1(|η |) = e0.001|η |2 ,ζ2(|η |) = e−0.025|η |2 .

The other simulation parameters are set as follows

T = 0.1,∆ = 0.02, R̄ = 2,δ = 0.8;
K1 = [−1−1];K2 = [−36−12]

By Lemma 4.4, the state set assuring specific performance is
determined as |η | ≤ G−1

2 ( δ
‖Φ(T )‖ ) = 20.86. The initial state

(20,10) is selected to satisfy the sufficient condition. Two

controllers K1 = [−1− 1];K2 = [−36− 12] are selected to
ensure different performance levels. K1 is the controller with
small gain, which leads to slow response time but is less
sensitive to the uncertainty. K2 is the controller with high
gain, which leads to fast response times but is more sensitive
to uncertainty.

A Monte Carlo method is used to verify the almost sure
asymptotic stability of the system. The simulation is run
1000 times over the time interval from 0 to 10 seconds.
Figure 4 shows the maximum and minimum values of each
state ηi, i = 1,2 as a function of time over all 1000 runs.
The top plot in the figure is the trajectory for state η1, with
maximum value marked as blue solid line, and minimum
value marked as red dash line. The black line represents
the sufficient bound on the state derived from lemma 4.4.
The bottom plot is for the state η2. We can see from the
plots that the maximum and minimum values of the system
state converge to zero almost surely after about 3.5 seconds.
These results are consistent with our statement in lemma 4.4
that establishes the almost sure asymptotic stability of the
switched system.

We also studied the benefits of switching controllers in re-
sponse to the changes of channel state. Two control strategies
were compared in this simulation. One is the non-switching
policy, which applies the conservative controller K1 all the
time without considering the changes of channel state. The
other one is the switching control policy that switches the
controller in response to the changes of channel state to
compensate the deep fading and achieve a fast convergent
rate.

In figure 5, the top plot shows the channel state (Rk)
profile along the time line. The bottom plot is the switching
policy that reacts to the changes of channel state. We can
see from the top plot that there is a string of zero bits
over the time interval [0,2] which represents a deep fading
scenario. At that time interval, the switching policy selects
the conservative controller (index 1) to make a safe control
decision. Shortly after 2 seconds, the channel state switches
to the high bit rate, which makes the system switch to the
high gain controller (index 2) to achieve better performance.
The channel exhibits another long string of zero bits which
is shown between time interval [2,4]. The system detects
this deep fade and switches back to small gain controller.
After about 3.5 seconds, the high gain controller is always
switched on because the channel condition remains good.

Figure 6 shows the system trajectories for both switching
policy and non-switching policy. The top plot in the figure
shows the comparison for state η1, while the bottom one is
for η2. The blue solid line represents the trajectory generated
by switching policy while the red dashed one is by non-
switching policy. As shown in the figure, the system perfor-
mance is comparatively the same for both control policies
before 3.5 seconds, since both of them are using low control
gain. After 3.5 seconds, the switching policy selects the high
gain controller. The state converges to the equilibrium at
around 4 seconds for the switching strategy, while it takes
more than 8 seconds for the non-switching one to converge.
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Fig. 4. Almost sure asymptotic stability with switching strategy
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Fig. 5. The switching policy in response to the changes of channel state

Although non-switching control policy can preserve safety
in the deep fading scenario, it sacrifices system performance
when the channel condition is good.

VI. CONCLUSION

This paper studies the almost sure asymptotic stability
of the control system in the presence of wireless fading
channel whose outages are a function of the system state.
Necessary and sufficient conditions are established for a
switching controller that assures almost sure asymptotic
stability. Preliminary simulations results support the analysis.
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