
A Bumpless Hybrid Supervisory Control Algorithm

for the Formation of Unmanned HelicoptersI

Ali Karimoddini1, Hai Lin2, Ben. M. Chen3, Tong Heng Lee3

Abstract

This paper presents a bumpless hybrid supervisory control scheme for the
formation of unmanned helicopters. The approach is based on the polar
partitioning of the space , from which a finite bisimilar quotient transition
system of the original continuous variable control system is obtained. To
implement the designed hybrid supervisory control algorithm, a hierarchical
control structure is introduced with a discrete supervisor on the top layer
that is connected to the regulation layer via an interface layer. Transiting
over the partitioned space may cause jumps on the generated control signal
which is harmful for a real flight system. Hence, a smooth control mechanism
is introduced that has no jump when the system’s trajectory transits from
one region to its adjacent region while preserving the bisimulation relation
between the abstract model and the original partitioned system. Several
actual flight tests have been conducted to verify the algorithm and the control
performance.

IFinancial supports from NSF-CNS-1239222 and NSF-EECS-1253488 for this work are
greatly acknowledged. A primary version of in this paper was submitted for presentation
in the 2013 American Control Conference.

1A. Karimoddini is with the Department of Electrical and Computer Engineering,
North Carolina Agricultural and Technical State University, Greensboro, NC 27411 USA.

2H. Lin is with the Department of Electrical Engineering, University of Notre Dame,
Notre Dame, USA.

3B. M. Chen and T. H. Lee are with Graduate School for Integrative Sciences and
Engineering (NGS) and the Department of Electrical and Computer Engineering (ECE),
National University of Singapore, Singapore.
Corresponding author: H. Lin, email: hlin1@nd.edu, Tel. 574-6313177.

Preprint submitted to Elsevier August 13, 2013

1. Introduction

Formation of the Unmanned Aerial Vehicles (UAVs) can leverage the ca-
pabilities of the team to have more e↵ective performance in missions such as
cooperative SLAM, coverage and recognisance, and security patrol [1], [2],
[3]. Hence, recent years have seen an increasing interest in the study of UAV
formation control from both theoretical and experimental points of view. In
the literature there are some methods that can partly address the formation
problem. For example, in [4], [5], [6], the problem of reaching the formation
is investigated using optimal control techniques, navigation function, and
potential field approaches. Keeping the formation can be seen as a standard
control problem in which the system’s actual position has slightly deviated
from the desired position for which many control approaches have been devel-
oped such as feedback control, rigid graph, and virtual structure [7], [8], [9],
[10]. Finally, in [11], [12], and [13], di↵erent mechanisms for collision avoid-
ance have been introduced using probabilistic methods, MILP programming,
and behavioral control. Most of these methods are suitable just for certain
aspects of these formation tasks. The traditional practice is to design con-
trollers for each task separately and switch between them based on di↵erent
situations. However, the separate design of switching logic and continuous
controllers is problematic as unexpected behaviors could be generated due to
switching between the sub-controllers. This calls for a unified way to design
formation controller and switching logic. In our recent study [14], a uni-
fied framework was introduced to address all aspects of a formation control
mission based on hybrid control theory [15] which can integrate the analysis
and design of both the discrete-event dynamics and continuous evolution of
the systems. In particular, the approach introduced in [14] was rooted from
hybrid supervisory control [15]. The basic idea is to use polar abstraction
of the motion space and utilize the properties of multi-a�ne functions [16]
over the partitioned space. The abstraction technique [17] can convert the
original continuous system with infinite states into a finite state machine for
which one can use the well developed theory of supervisory control of discrete
event systems (DES) [18]. Subjected to the bisimulation relation between the
abstracted system and the original continuous system, their behaviour will
be the same so that the discrete supervisor, designed for the discrete finite
model, can be applied to the original system.

Here, the key is how to implement this hybrid controller. For this pur-
pose, we introduce a hierarchical hybrid supervisory control structure which

2

has a discrete supervisor on the top and a continuous low level control on
the low layer. To connect the discrete supervisor to the continuous low level,
an interface layer is introduced which on the one hand interprets the contin-
uous signals for the discrete supervisor and on the other hand, converts the
generated discrete symbols to continuous control signals to be applied to the
low layer. Based on the decision made by the supervisor, the discrete com-
mands would change when the system’s trajectory passes from one region to
another region in the partitioned space. A very important problem here is
that the generated control signal may have jumps when the system transits
from one region to another one. These kind of jumps in the generated control
signal may cause serious problems for a real flight system. Therefore, here we
propose an algorithm which can generate a smooth control signal applicable
to the low level continuous layer. The basic idea is to tune the value of the
vector field at the vertices of the partitioning elements at the common edges
to provide a smooth control signal while preserving the bisimilarity relation
between the abstracted model and the original continuous system.

Hence, this paper presents a smooth hybrid supervisory control algorithm
for the formation of UAV helicopters and focuses on the implementation is-
sues of the proposed algorithm. More specifically, our main contributions
in this paper are that firstly, an interface layer is introduced to connect the
discrete supervisor layer to the continuous plant. This interface layer is re-
sponsible for converting the continuous signals of the plant into some symbols
understandable by the discrete supervisor, and vice versa. Secondly, the time
scheduling of the events being generated by the system has been investigated
and has been correspondingly considered in the implementation of the su-
pervisor. Thirdly, a control scheme is proposed to smoothly transit through
the partitioning elements so that there is no jump in the generated control
signal when the system transits from one region to its adjacent regions. Fi-
nally, a cooperative testbed is developed and the proposed algorithm has
been verified through actual flight tests.

The rest of this paper is organized as follows. First, the developed co-
operative testbed is explained in Section 2. Then, Section 3 describes the
preliminaries of the hybrid supervisory control algorithm for a formation mis-
sion. In Section 4, a hierarchical hybrid control structure is proposed which
has a discrete supervision layer on the top that is connected to the continuous
low layer via an interface layer. Section 5 describes implementation issues for
the algorithm and provides a mechanism to generate a smooth control signal.
Flight test results are demonstrated in Section 6. The paper is concluded in

3

Section 7.

2. Test-bed Infrastructure

For the implementation of the proposed hybrid formation algorithm we
have used a set of two UAV helicopters, HeLion and SheLion (Fig. 1) which
are developed by our research group at the National University of Singapore.

Figure 1: NUS Cooperative UAVs test-bed.

These UAVs are radio-controlled helicopter, Raptor 90. The size of these
helicopters is 1410 mm in length and 190 mm in width of the fuselage. The
maximum takingo↵ weight is 11 kg including 4.9 kg as the dry weight of
helicopter and 6 kg as the e↵ective payload. Their main rotors and tail
rotors have the diameter of 1,605 mm and 260 mm, respectively

These helicopters have been provided with an avionic system that make
them able to autonomously accomplish di↵erent individual or cooperative
maneuvers. Their avionic systems are equipped with a PC/104 ATHENA,
as an onboard airborne computer system which has four RS-232 serial ports,
a 16-pin digital to analog (D/A) port, two counters/ timers and runs at 600
MHz.

Moreover, for the navigation a compact fully integrated INS/GPS, NAV
420, Crossbow, is used to provide three-axis velocities, acceleration, and

4

angular rates in the body frame, as well as longitude, latitude, relative height,
and heading, pitch, and roll angles. For the reliable communication between
the UAVs, and also between the UAVs and the ground station, we have
used serial wireless radio modems, IM-500X008, FreeWave, with the working
frequency of 2.4 GHz, which can cover a wide range up to 32 km in an open
field environment.

The onboard program is implemented using QNX Neutrino real time op-
erating system. For this onboard program a multi-thread structure is de-
veloped which includes several threads for flight control; reading from data
acquisition board; driving the servo actuators; making dual-directional wire-
less communication with other UAVs or with the ground station; and logging
data in an onboard compact flash card.

Furthermore, for these helicopters, a hardware-in-the-loop simulation soft-
ware has been developed by integrating the developed hardware and embed-
ded software together with the nonlinear dynamic model of the UAV heli-
copters. In this platform, the nonlinear dynamics of the UAVs have been
replaced with their nonlinear model, and all software and hardware compo-
nents that are involved in a real flight test, remain active during the simula-
tion. Consequently, the simulation results of this simulator are very close to
the actual flight tests, and it can provide a safe and reliable environment for
the pre-evaluation of the control algorithms.

The modelling and low level control structure of the NUS UAV helicopters
are explained in [19], [20], [21]. For the regulation layer of these helicopters we
have proposed a two-layer control structure in which the inner-loop controller
stabilizes the system using H1 control design techniques, and their outer-
loop is used to derive the system towards the desired location (Fig. 2). As
it has been discussed in [20], in this control structure, the inner-loop is fast
enough to track the given references, so that the outer-loop dynamics can be
approximately described as follows:

ẋ = u, x 2 R2, u 2 U ✓ R2, (1)

where x is the position of the UAV; u is the UAV velocity reference
generated by the formation algorithm, and U is the convex set of velocity
constraints.

5

Figure 2: The control structure of the NUS UAVs.

3. Preliminaries on Hybrid Formation Control

In a leader follower formation scenario, consider the follower velocity in
the following form:

V
follower

= V
leader

+ V
rel

. (2)

For these helicopters, our aim is to design the formation controller to generate
the relative velocity of the follower, V

rel

, such that starting from any initial
point inside the control horizon, it eventually reaches the desired relative
distance with respect to the leader, while avoiding the collision between the
leader and the follower. Moreover, after reaching the formation, the follower
UAV should remain at the desired position.

To solve this problem, in [14], a method is introduced for the polar ab-
straction of the motion space which uses the properties of multi-a�ne vector
fields over the polar partitioned space. Within this framework, a DES model
can be achieved for which we can design a decentralized supervisor to achieve
three major goals: reaching the formation, keeping the formation, and colli-
sion avoidance. This method is briefly explained in the following sections.

3.1. Polar partitioning of the state space

Consider a relatively fixed frame, in which the follower moves with the
velocity of V

rel

and the leader has a relatively fixed position. In this frame-
work, imagine a circle with the radius of R

m

that is centered at the de-
sired position of the follower. With the aid of the partitioning curves {r

i

=
R

m

n

r

�1(i � 1), i = 1, ..., n
r

} and {✓
j

= 2⇡
n

✓

�1(j � 1), j = 1, ..., n
✓

}, this cir-
cle can be partitioned into (n

r

� 1)(n
✓

� 1) partitioning elements. An ele-
ment R

i,j

= {p = (r, ✓)| r
i

 r r
i+1, ✓j ✓ ✓

j+1}, has four vertices,
v0, v1, v2, v3 (Fig. 3(a)), four edges, E+

r

, E�
r

, E+
✓

, E�
✓

(Fig. 3(b)), and corre-
spondingly, four outer normal vectors n+

r , n
�
r , n

+
✓

, n�
✓

(Fig. 3(c)). In region

6

(a) (b) (c)

Figure 3: (a) Vertices of the element Ri,j . (b) Edges of the element Ri,j . (c) Outer normals
of the element Ri,j .

R
i,j

, the notation E
p,q

is used for the edge which is incident with the vertices
v
p

and v
q

, and correspondingly, n
p,q

is used to denote its outer normal vector.
To implement the formation algorithm, we will deploy multi-a�ne func-

tions over the partitioned space. A multi-a�ne function f : Rn ! Rm,
has the property that for any 1 i n and any a1, a2 � 0 with a1 +
a2 = 1, f(x1, ..., (a1xi1 + a2xi2), xi+1, ...xn

) = a1f(x1, ..., xi1 , xi+1, ...xn

) +
a2f(x1, ..., xi2 , xi+1, ...xn

). The following proposition shows that the value
of a multi-a�ne function over the partitioning element R

i,j

, can be uniquely
expressed in terms of the values of the function at the vertices of R

i,j

.

Proposition 1. [14] Consider a multi-a�ne function g(x) : R2 ! R2 over
the region R

i,j

. The following property always holds true:

8x = (r, ✓) 2 R
i,j

: g(x) =
3X

m=0

�
m

g(v
m

), (3)

where �
m

, m = 0, ..., 3, are obtained as follows:

�
m

= � r

(v
m

)
r

(1� �
r

)1� r

(v
m

)� ✓

(v
m

)
✓

(1� �
✓

)1� ✓

(v
m

), (4)

where �r =
r�r

i

r

i+1�r

i

, �
✓

= ✓�✓

j

✓

j+1�✓

j

,
r

(v
m

) =

⇢
0 m = 0, 2
1 m = 1, 3

and
✓

(v
m

) =
⇢

0 m = 0, 1
1 m = 2, 3

.

Remark 1. It can be verified that the resulting coe�cients �
m

, m = 0, 1, 2, 3,
have the property that �

m

� 0 and
P

m

�
m

= 1.

7

The above proposition holds true for the edges as described in the follow-
ing corollary.

Corollary 1. For a multi-a�ne function g(x) defined over the element R
i,j

and for all of the edges Es

q

of R
i,j

, q 2 {r, ✓} and s 2 {+,�}, the following
property holds true:

8x = (r, ✓) 2 Es

q

: g(x) =
X

v

m

2V (Es

q

)

�
m

g(v
m

), (5)

where �
m

can be obtained as follows:

• For edges E+
r

and E�
r

: �
m

= � ✓

(t)
✓

(1� �
✓

)1� ✓

(t).

• For edges E+
✓

and E�
✓

: �
m

= � r

(u)
r

(1� �
r

)1� r

(u).

Using these properties of multi-a�ne functions, it is possible to flexibly
design a hierarchical control structure for the formation control of the UAVs
as described in the following section.

4. Hierarchical Control Structure for the Formation of Unmanned
Helicopters

For the above discussed model of the plant defined over the partitioned
space, we will design a discrete supervisor which pushes the system trajec-
tories to pass through the desired regions to achieve the desired behaviour.
The designed discrete supervisor cannot be directly connected to the contin-
uous plant. Hence, it is required to construct an interface layer which can
translate continuous signals of the plant to a sequence of discrete symbols
understandable for the supervisor. Also, the interface layer is responsible for
converting discrete commands received from the supervisor, to continuous
control inputs to be given to the plant. These two jobs are respectively real-
ized by the blocks Detector and Actuator embedded in the interface layer as
it is shown in Fig. 4. The elements of this control hierarchy are discussed in
the following parts.

8

Figure 4: Linking the discrete supervisor to the plant via an interface layer.

4.1. The interface layer

4.1.1. The detector block

When the system’s trajectory crosses the boundaries of the region, a de-
tection event will be generated which informs the supervisor that the system
has entered a new region.

More specifically, a detection event d
i,j

will happen at t(d
i,j

) when the
system’s trajectory x(t) satisfies the following conditions:

• 9⌧ > 0 such that x(t) /2 R
i,j

for t 2 (t(d
i,j

)� ⌧, t(d
i,j

)).

• 9⌧
d

> 0 such that x(t) 2 R
i,j

for t 2 [t(d
i,j

), t(d
i,j

) + ⌧
d

).

Also, if the leader position is on the way of the follower towards the
desired position, the event Ob will be generated to inform the supervisor
about the risk of collision.

4.1.2. The actuator block

Having the information about the newly entered region, the supervisor
can issue a discrete command to push the system trajectory to move to-
wards the desired region. However, the discrete symbols generated by the
supervisor need to be translated to a continuous form. For this purpose,
the properties of multi-a�ne functions are utilized by which we can design
continuous controllers that drive the system’s trajectory to either stay in the
current region for ever (invariant region) or exit from one of its edges (exit

9

edge). Next, the invariant region and exit edge are formally defined and the
su�cient conditions which make a region invariant or one of its edges an exit
edge are investigated.

Definition 1. (Invariant region)
In the circle C

R

m

and the vector field ẋ = g(x) , g : R2 ! R2, the region R
i,j

is said to be invariant region, if 8x(0) 2 int(R
i,j

), and x(t) 2 R
i,j

for t � 0.

The following theorem and corollary show how we can construct an in-
variant region:

Theorem 1. Given a continuous multi-a�ne vector field ẋ = g(x), g :
R2 ! R2, defined over the region R

i,j

, the systems trajectory cannot leave the
region through the edge E

p,q

with the outer normal n
p,q

if n
p,q

(y)T .g(v
m

) < 0,
for all v

m

2 {v
p

, v
q

} and all y 2 E
p,q

.

Proof : According to Corollary 1, 8x 2 E
p,q

: g(x) =
P

v

m

�
m

g(v
m

) , v
m

2
{v

p

, v
q

}. Substituting this value of g(x), we will have n
p,q

(y)T .g(x) = n
p,q

(y)T .P
v

m

�
m

g(v
m

) =
P

v

m

�
m

n
p,q

(y)T .g(v
m

). Since, n
p,q

(y)T .g(v
m

) < 0 for both
v
m

= v
p

and v
m

= v
q

, and all y 2 E
p,q

, and since �
m

� 0 and
P

m2{p,q} �m

=

1, it can be concluded that n
p,q

(y)T .g(x) < 0 for all x, y 2 E
p,q

, which means
that the trajectories of the system cannot leave R

i,j

through the edge E
p,q

.⌅

Corollary 2. (Su�cient condition for R
i,j

to be an invariant re-

gion) For a continuous multi-a�ne vector field ẋ = h(x, u(x)) = g(x), h :
R2 ! R2, R

i,j

is an invariant region if there exists a controller u : R2 !
U ✓ R2, such that for each vertex v

m

, m = 0, 1, 2, 3, with incident edges
Es

q

2 E(v
m

), and corresponding outer normals ns

q

, q 2 {r, ✓} and s 2 {+,�}:

U
m

= U \ {u 2 R2|ns

q

(y)T . g(v
m

) < 0, for all Es

q

2 E(v
m

), and for all y 2
Es

q

} 6= ;,
(6)

where the convex set U represents the velocity bounds.

Proof: If (6) holds true, since U
m

6= ;, there exists u
m

2 U
m

,m = 0, 1, 2, 3,
such that based on Theorem 2, the value of the vector field at the vertices
does not let the trajectory of the system leave the region from any of the
edges. ⌅

The exit edge then can be defined as follows:

10

Definition 2. (Exit edge)
In the circle C

R

m

and the vector field ẋ = g(x) , g : R2 ! R2, the edge
Es

q

, q 2 {r, ✓} and s 2 {+,�}, is said to be an exit edge, if 8x(0) 2 int(R
i,j

),
there exist ⌧ (finite) > 0 and ⌧

d

> 0 satisfying:

1. x(t) 2 int(R
i,j

) for t 2 [0, ⌧),
2. x(t) 2 Es

q

for t = ⌧,
3. x(t) /2 R

i,j

for t 2 (⌧, ⌧ + ⌧
d

).

The following theorem shows the way that we can construct an exit edge:

Theorem 2. (Su�cient condition for an exit edge) For a continuous
multi-a�ne vector field ẋ = h(x, u(x)) = g(x), g : R2 ! R2, the edge Es

q

with
the outer normal ns

q

, q 2 {r, ✓} and s 2 {+,�}, is an exit edge if there exists
a controller u : R2 ! U ✓ R2, such that for each vertex v

m

, m = 0, 1, 2, 3,
the following property holds true:

U
m

= U
T
{u 2 R2| ns

q

(y)T . g(v
m

) > 0, for all v
m

and all y 2 Es

q

} \ {u 2 R2|
ns

0
q

0(y)T . g(v
m

) < 0, for all v
m

2 V (Es

0
q

0)withEs

0
q

0 6= Es

q

and all y 2 Es

0
q

0} 6= ;,
(7)

where the convex set U represents the velocity bounds.

Proof : Since U
m

6= ;, there exists u
m

2 U
m

, such that ns

0
q

0(y)T .g(v
m

) < 0,

for all Es

0
q

0 6= Es

q

and all y 2 Es

0
q

0 . Therefore, based on Theorem 1, the
trajectories of the system do not leave R

i,j

through the non-exit edges. On the
other hand, we have ns

q

(y)T .g(v
m

) > 0 for all v
m

and all y 2 Es

q

. According
to Proposition 1, for the multi-a�ne function g, there exist �

m

such that
8x 2 R

i,j

: g(x) =
P

m

�
m

g(v
m

), m = 0, 1, 2, 3. Since �
m

� 0 and
P

m

�
m

=
1, then ns

q

(y)T .�
m

g(v
m

) � 0 for all v
m

and all y 2 Es

q

. This will lead to have
ns

q

(y)T .g(x) > 0 for all x 2 R̄
i,j

, which means that the trajectories of the
system have a strictly positive velocity in the direction of ns

q

steering them
to exit from R

i,j

through the edge Es

q

. ⌅
Solving the inequalities given in Theorem 2 and Corollary 2, for the sys-

tem dynamics given in (1), the following control values at the vertices of the
region R

i,j

can make it an invariant region or can make one of its edges an
exit edge. For the invariant controller, the control label is C0 and the control
values at the vertices are:

11

8
>>><

>>>:

u(v0) = 1\(✓
j

+ 0.5 | ✓
j

� ✓
j+1 +

⇡

2 |)
u(v1) = 1\(✓

j

+ ⇡ � 0.5 | ✓
j

� ✓
j+1 +

⇡

2 |)
u(v2) = 1\(✓

j+1 � 0.5 | ✓
j

� ✓
j+1 +

⇡

2 |)
u(v3) = 1\(✓

j+1 + ⇡ + 0.5 | ✓
j

� ✓
j+1 +

⇡

2 |)
To have the edge E+

r

as the exit edge, the control label is C+
r

and the control
values at the vertices are:(
u(v0) = u(v1) = 1\(✓

j

+ 0.5 | ✓
j

� ✓
j+1 +

⇡

2 |)
u(v2) = u(v3) = 1\(✓

j+1 � 0.5 | ✓
j

� ✓
j+1 +

⇡

2 |)
To have the edge E�

r

as the exit edge, the control label is C�
r

and the control
values at the vertices are:(
u(v0) = u(v1) = 1\(✓

j

+ ⇡ � 0.5 | ✓
j

� ✓
j+1 +

⇡

2 |)
u(v2) = u(v3) = 1\(✓

j+1 + ⇡ + 0.5 | ✓
j

� ✓
j+1 +

⇡

2 |)
To have the edge E+

✓

as the exit edge, the control label is C+
✓

and the control
values at the vertices are:8
>>><

>>>:

u(v0) = 1\(✓
j

+ 0.5 | ✓
j

� ✓
j+1 +

⇡

2 |)
u(v1) = 1\(✓

j

+ ⇡ � 0.5 | ✓
j

� ✓
j+1 +

⇡

2 |)
u(v2) = 1\(✓

j+1 + 0.5 | ✓
j

� ✓
j+1 +

⇡

2 |)
u(v3) = 1\(✓

j+1 + ⇡ � 0.5 | ✓
j

� ✓
j+1 +

⇡

2 |)
To have the edge E�

✓

as the exit edge, the control label is C�
✓

and the control
values at the vertices are:8
>>><

>>>:

u(v0) = 1\(✓
j

� 0.5 | ✓
j

� ✓
j+1 +

⇡

2 |)
u(v1) = 1\(✓

j

+ ⇡ + 0.5 | ✓
j

� ✓
j+1 +

⇡

2 |)
u(v2) = 1\(✓

j+1 � 0.5 | ✓
j

� ✓
j+1 +

⇡

2 |)
u(v3) = 1\(✓

j+1 + ⇡ + 0.5 | ✓
j

� ✓
j+1 +

⇡

2 |)

Now, the responsibility of the actuator is to relate the discrete symbol
u
d

2 {C0, C�
r

, C+
r

, C+
✓

, C�
✓

} to the continuous control signal u
c

(x). Using the
properties of multi-a�ne functions as described in Proposition 1, the control
signal can be constructed as u

c

(x) = f(x, u
d

) =
P3

m=0 �m

(x)u(v
m

), where
u(v

m

),m = 0, ..., 3, are the control values at the vertices corresponding to
the control label u

d

.

12

Figure 5: The formation supervisor.

4.2. The supervisor layer

Using these control labels, a discrete supervisor is designed for a follower
UAV involved in a formation mission. In this supervisor, shown in Fig. 5,
when a detection event d

i,j

appears, the supervisor will be informed that
the system has entered the new region R

i,j

. If the detection event is d1,j, it
means that the system has entered the first circle of the partitioned space
and the formation is achieved. Hence, to keep the formation, the system
should remain in this region for the rest of the mission. In this case, keeping
the formation can be done by activating the controller C0. If the trajectory
has not reached one of the partitions in the first circle (i > 1), then the event
C�

r

should be activated to move towards the origin. Meanwhile if the leader
is located on the way of the follower towards the origin, the event Ob will
be generated which alarms the supervisor about the collision. To avoid the
collision, it is su�cient to drive the follower’s path to turn anticlockwise and
then, resume the mission. Hence, after observing the event Ob, the supervisor
activates the event C+

✓

.

5. Implementation Issues

5.1. Smooth Control

When the system trajectory enters a new region, a new discrete command
will be generated. This may cause the discontinuity in the generated control
signal to be applied to the lower levels of the control structure. For example,
Fig. 6 shows a case that the control command C�

r

has pushed the system’s
trajectory to transit from the region R1 to the region R2. After reaching

13

Figure 6: The control values at the vertices when the system trajectory transits from
region R1 to region R2 and the discrete command changes from C�

r to C+
✓ .

the region R2, the control command has changed from C�
r

to C+
✓

. Since
the generated continuous control signal is a multi-a�ne function, based on
Corollary 1, the control value at any point on the edges is determined by
the control values at its vertices. In this example, u(v0(R1)) = u(v1(R2))
but u(v2(R1)) 6= u(v3(R2)). Since, the control values at the vertices of the
common edge between R1 and R2 changes, there is a jump on the gener-
ated continuous control signal. Next theorem shows how we can resolve this
problem.

Theorem 3. Let the command Cs

q

steers the system’s trajectory from the
region R

i,j

to the region R
i

0
,j

0 and then, the supervisor issues the new com-
mand Cs

0
q

0 . For this transition, the multi-a�ne controller u(x) =
P

v

m

2V
c

�
m

~(u(v
m

)
new

, u(v
m

)
old

) +
P

v

m

2V
n

�
m

(u(v
m

)) provides a smooth control sig-

nal, and drives all the system’s trajectories to exit from the exit edge Es

0
q

0 .
Here �

m

, m = 0, 1, 2, 3, are given in Proposition 1, V
n

is the set of vertices
whose control values do not change due to the transition, and V

c

is the set of
vertices whose control values change after the system’s trajectory enters the
region R

i

0
,j

0. For these vertices, u(v
m

)
old

and u(v
m

)
new

are the control values
at the vertex v

m

before and after transiting to R
i

0
,j

0, respectively. The func-
tion ~ provides a smooth rotation from u(v

m

)
old

to u(v
m

)
new

and it can be pre-

sented as ~(u(v
m

)
new

, u(v
m

)
old

) =

⇢
r
m

\(t

4t

✓
m

new

+ (1� t

4t

)✓
m

old

) t < �t
r
m

\✓
m

new

t � �t

14

where u(v
m

)
new

= r
m

\✓
m

new

, u(v
m

)
old

= r
m

\✓
m

old

. Also, �t is the tran-
sition time.

Proof: Let Cs

q

= C�
r

and Cs

0
q

0 = C+
✓

. As shown in Fig. 6, for this sequence
of control commands, after transiting from R

i,j

to R
i

0
,j

0 , the control value at
the vertex v3 changes from u(v3)old to u(v3)new, and for the other vertices v

m

,
m = 0, 1, 2, there is no jump on the control values.

From the definition of the transition rule, ~, since for the whole transition
time, the control values at the vertices satisfy the conditions of Corollary 2,
the system’s trajectory cannot leave the region through the non-exit edges
E0,2, E0,1, E1,3. Also, at the beginning of the transition mode, the control
values at the vertex v3 does not satisfy the conditions of Theorem 2, and
hence, it cannot be concluded that the system’s trajectory leaves the region
through E2,3. But, at some time, u(v3) will eventually reach u(v3)new, and the
configuration of the vector field at the vertices will satisfy the conditions of
Theorem 2 so that it can be guaranteed that the system’s trajectory for sure
leaves the region R

i

0
,j

0 through the edge E2,3, while there is no jump at the
value of the control signal due to the smooth transition of the control values
at the vertices. The same reasoning can be done for the other sequences of
the control commands.⌅

Remark 2. In [14], it was shown that the polar abstracted model is bisimi-
alr to the original system meaning that for any transition in the abstracted
model, there is a transition in the original system and vice versa. From The-
orem 3, it can be immediately concluded that the result is also valid for the
case of smooth transition mechanism. This is due to the fact that based on
Theorem 3, all of the trajectories finally will leave the region through the de-
sired exit edge and the smooth transition mechanism does not let the system’s
trajectories to exit from non-exit edges, leading to the following corollary:

Corollary 3. The smooth transition mechanism introduced in Theorem 3
preserves the bisimilarity relation between the abstracted model and the orig-
inal hybrid system.

5.2. Time sequencing of the events

In the proposed framework, we assume that the discrete control signals,
C0, C+

r

,C�
r

, C+
✓

, or C�
✓

, can be applied after entering a new region, unless

15

Figure 7: The schematic of the scenario with a real follower and a virtual fixed leader.

0 5 10 15 20 25 30

0

20

40

60

P
o

si
ti

o
n

(m

)

x

y

z

0 5 10 15 20 25 30
−2

0

2

4

V
el

o
ci

ty
 (

m
/s

)

u

v

w

0 5 10 15 20 25 30
−4

−2

0

2

A
n

g
u

la
r

 p
o

si
ti

o
n

 (
ra

d
)

Time (s)

φ

θ

ψ

Figure 8: The state variables of the follower.

0 5 10 15 20 25 30
−0.5

0

0.5

δ
ro

l

0 5 10 15 20 25 30
−0.2

0

0.2

δ
p

it
ch

0 5 10 15 20 25 30
−0.2

−0.1

0

δ
p

ed

0 5 10 15 20 25 30
−0.1

0

0.1

δ
co

l

Time (s)

Figure 9: Control signals of the follower UAV.

16

Figure 10: The leader position in the relative frame.

a collision alarm be generated which requires an immediate reaction. But,
the question is that, transiting to a new region, when should exactly the new
control signals be applied to the system?

Indeed, from practical reasons, the detector cannot recognize entering a
region until the system trajectory crosses the region’s boundary. This is why
in the definition of the exit edge we have considered a time delay ⌧

d

> 0.
Only after this time delay, the controller can be ensured that the system
trajectory has transited to a new region and hence, a new actuation event
C0, C+

r

,C�
r

, C+
✓

, or C�
✓

, can be generated based on the desired behavior. The
time delay, ⌧

d

> 0, could be very small but cannot be zero. This guarantees
that the resulting model is not Zeno [22], meaning that the number of discrete
transitions in a finite time is finite.

More precisely, as described in Section. 4.2, when the last visited region
is R

i,j

and the supervisor detects an event d
i

0
,j

0 , it means that the system
trajectory has entered the new region R

i

0
,j

0 . Then, a control command Cs

q

will be generated which pushes the system trajectory to enter another re-
gion R

i

00
,j

00 . Again, when the system’s trajectory crosses the boundaries of
the region R

i

00
,j

00 , this will cause the event d
i

00
,j

00 to appear. Hence, for the
successive events d

i

0
,j

0 , Cs

q

, d
i

00
,j

00 , we will have:

t(d
i

0
,j

0) < t(Cs

q

) < t(d
i

00
,j

00). (8)

17

To consider the time delay ⌧
d

> 0, the sequence of the events should
respect the following condition:

t(Cs

q

) � t(d
i

0
,j

0) + ⌧
d

. (9)

6. Implementation results

To verify the algorithm, we have conducted several flight tests. In the
first scenario, to monitor reaching the formation behavior of the UAVs, the
follower should reach the desired position with respect to a fixed leader. In
this test the control horizon R

m

= 50m, n
r

= 10, and n
✓

= 20. The follower
is initially located at a point which has a relative distance of (dx, dy) =
(�40,�5) with respect to the desired position as shown in Fig. 7. The
follower state variables and control signals are shown in Fig. 8 and Fig. 9,
respectively. The follower UAV position in the relative frame is shown in Fig.
10. As it can be seen the follower UAV has started from the region R9,11 and
finally has reached the region R1,11 which is located in the first circle and
hence, the formation has been achieved.

In the second scenario, to monitor how the follower is able to maintain
the achieved formation, the leader tracks a line path, and the follower should
reach and keep the formation. In this test, the control horizon R

m

is 50
meter, n

r

= 10, and n
✓

= 20. The follower is initially located at a point
which has a relative distance of (dx, dy) = (�17.8, 11.4) with respect to the
desired position and the distance between the desired position and the leader
is (dx, dy) = (�5,�15) as shown in Fig. 11.

Figure 11: The schematic of the scenario with for a leader-follower case tracking a line.

18

The position of the UAVs in x-y plane is shown in Fig. 12. The follower
state variables and control signals are shown in Fig. 13 and Fig. 14, respec-
tively. The state variables of the leader are shown in Fig. 15. The relative
distance of the follower UAV from the desired position is shown in Fig. 16.
As it can be seen the follower UAV has finally reached the first circle after
17 sec and then, it has been able to maintain the formation.

Figure 12: The position of the UAVs in the x-y plane.

In the third flight test, the leader path is a circle which is a more complex
path. Here, the control horizon R

m

is 50 meter, n
r

= 10, and n
✓

= 20.
The follower is initially located at a point which has a relative distance of
(dx, dy) = (�30.5, 13.2) with respect to the desired position and the distance
between the desired position and the leader is (dx, dy) = (�5,�15) as shown
in Fig. 17. In this test the leader tracks a circle path with a diameter
of 40 m. After a while, the follower reaches the formation and can keep
it for the rest of the mission. The position of the UAVs in x-y plane is
shown in Fig. 18. The follower state variables and control signals are shown
in Fig. 19 and Fig. 20, respectively. The state variables of the leader
during the mission is shown in Fig. 21. The relative distance of follower
UAV from the desired position is shown in Fig. 22. As it can be seen the
follower UAV has finally reached the first circle and the formation has been

19

Figure 13: The state variables of the follower.

0 10 20 30 40 50 60 70
−0.1

0

0.1

δ
ro

l

0 10 20 30 40 50 60 70
−0.1

0

0.1

δ
p

it
ch

0 10 20 30 40 50 60 70
−0.2

−0.1

0

δ
p

ed

0 10 20 30 40 50 60 70
−0.1

0

0.1

δ
co

l

time (s)

Reaching the formation Keeping the formation

Control signals on the follower UAV

Figure 14: Control signals of the follower UAV.

20

Figure 15: The state variable of the leader.

Figure 16: The distance of the follower from the desired position.

21

achieved. The video for the second and third experiments is available at
uav.ece.nus.edu.sg/video/2dHybridFormation.mpg.

Figure 17: The schematic of the scenario with for a leader-follower case tracking a circle.

6.1. Extension to the 3-D space

In [23], the result is extended to the 3-D space. For the 3-D case, the
DES model is di↵erent and accordingly, the designed supervisor need to be
redesign; however, the procedure for the design and implementation of the
supervisor is similar to what was discussed here. For this case, a flight
test is conducted in which the initial relative distance between the follower
and the desired position is (dx, dy, dz) = (�16.1, 22.5,�14.7), and the dis-
tance between the desired position and the desired position is (dx, dy, dz) =
(15, 10, 10). The UAVs’ position are shown in Fig. 23. The projection of the
relative distance onto the x-y plane is shown in Fig. 24. In this experiment,
after a while, the formation has been reached and it has been successfully
maintained. A video of this experiment is available at:
http://uav.ece.nus.edu.sg/video/hybridformation.mpg.

7. Conclusion

In this paper a bumpless hybrid supervisory control algorithm was ap-
plied to the formation control of the UAVs. The method was based on polar
abstraction of the motion space and the use of properties of multi-a�ne
functions over the partitioned space. The implementation issues for this con-
trol method were investigated. To implement the algorithm, an interface

22

Figure 18: The position of the UAVs in the x-y plane.

Figure 19: The state variables of the follower.

23

Figure 20: Control signals of the follower UAV.

Figure 21: The state variables of the leader.

24

Figure 22: The distance of the follower from the desired position.

Figure 23: The position of the UAVs in the actual flight test.

25

Figure 24: The relative distance between the UAVs projected onto x-y plane.

layer was introduced which connects the discrete supervisor to the regula-
tion layer of the UAV. This interface layer is composed of two main blocks:
the detection block to generate the detection events based on the plant con-
tinuous signals; and the actuator block to convert discrete commands of the
supervisor to a continuous form , applicable to the plant. Also, a method
was introduced to smoothly generate control signals during the transition
through the partitioned regions. The implementation issues were discussed
in details. Several actual flight tests were conducted to verify the algorithm.
The proposed formation algorithm can be extended to a multi-follower case,
however, it is required to develop a more sophisticated collision avoidance
mechanism as we will consider this issue as as the future direction of this
research.

ACKNOWLEDGMENT

The authors would like to thank Dr. Xiangxu Dong, Dr. Guowei Cai,
and Dr. Feng Lin for their technical support during the implementations and
flight tests.

26

References

[1] B. Anderson, B. Fidan, C. Yu, D. Walle, Uav formation control: The-
ory and application, in: V. Blondel, S. Boyd, H. Kimura (Eds.), Recent
Advances in Learning and Control, Lecture Notes in Control and Infor-
mation Sciences, Springer Berlin / Heidelberg, 2008.

[2] D. van der Walle, B. Fidan, A. Sutton, C. Yu, D. Anderson, Non-
hierarchical uav formation control for surveillance tasks, in: American
Control Conference, 2008, pp. 777–782.

[3] J. Hu, J. Xu, L. Xie, Cooperative search and exploration in robotic
networks, Unmanned Systems (2013) 1–22.

[4] J. How, E. King, Y. Kuwata, Flight demonstrations of cooperative con-
trol for uav teams, in: AIAA 3rd Unmanned Unlimited Technical Con-
ference, 2004.

[5] M. De Gennaro, A. Jadbabaie, Formation control for a cooperative
multi-agent system using decentralized navigation functions, in: Amer-
ican Control Conference, 2006.

[6] T. Paul, T. Krogstad, J. Gravdahl, Modelling of uav formation flight us-
ing 3d potential field, Simulation Modelling Practice and Theory 16 (9)
(2008) 1453–1462.

[7] G. Hassan, K. Yahya, I. ul Haq, Leader-follower approach using full-
state linearization via dynamic feedback, in: International Conference
on Emerging Technologies, 2006, pp. 297–305.

[8] I. Shames, B. Fidan, B. D. Anderson, Minimization of the e↵ect of noisy
measurements on localization of multi-agent autonomous formations,
Automatica 45 (4) (2009) 1058–1065.

[9] N. Linorman, H. Liu, Formation uav flight control using virtual structure
and motion synchronization, in: American Control Conference, IEEE,
2008, pp. 1782–1787.

[10] M. Zamani, H. Lin, Structural controllability of multi-agent systems, in:
American Control Conference, 2009, pp. 5743–5748.

27

[11] J. Jansson, F. Gustafsson, A framework and automotive application of
collision avoidance decision making, Automatica 44 (9) (2008) 2347–
2351.

[12] R. Schlanbusch, R. Kristiansen, P. J. Nicklasson, Spacecraft formation
reconfiguration with collision avoidance, Automatica 47 (7) (2011) 1443–
1449.

[13] B. Cetin, M. Bikdash, F. Hadaegh, Hybrid mixed-logical linear program-
ming algorithm for collision-free optimal path planning, Control Theory
Applications, IET 1 (2) (2007) 522–531.

[14] A. Karimoddini, H. Lin, B. M. Chen, T. H. Lee, Hybrid formation con-
trol of the unmanned aerial vehicles, Mechatronics 21 (5) (2011) 886–
898.

[15] X. Koutsoukos, P. Antsaklis, J. Stiver, M. Lemmon, Supervisory control
of hybrid systems, Proceedings of the IEEE 88 (7) (2000) 1026–1049.

[16] P. Tabuada, Verification and control of hybrid systems: a symbolic ap-
proach, Springer-Verlag New York Inc, 2009.

[17] R. Alur, T. Henzinger, G. La↵erriere, G. Pappas, Discrete abstractions
of hybrid systems, Proceedings of the IEEE 88 (7) (2000) 971 –984.

[18] P. Ramadge, W. Wonham, The control of discrete event systems, Pro-
ceedings of the IEEE 77 (1) (1989) 8–98.

[19] G. Cai, B. M. Chen, K. Peng, M. Dong, T. H. Lee, Modeling and con-
trol system design for a uav helicopter, in: 14th IEEE Mediterranean
Conference on Control and Automation, 2006, pp. 1–6.

[20] A. Karimoddini, G. Cai, B. M. Chen, H. Lin, T. H. Lee, Hierarchical
Control Design of a UAV Helicopter,” in Advances in Flight Control
Systems, INTECH, Vienna, Austria, 2011.

[21] A. Karimoddini, G. Cai, B. M. Chen, H. Lin, T. H. Lee, Multi-layer
flight control synthesis and analysis of a small-scale uav helicopter, in:
IEEE Conference on Robotics Automation and Mechatronics, 2010, pp.
321–326.

28

[22] K. H. Johansson, M. Egerstedt, J. Lygeros, S. Sastry, On the regulariza-
tion of zeno hybrid automata, Systems and amp, Control Letters 38 (3)
(1999) 141–150.

[23] A. Karimoddini, H. Lin, B. M. Chen, T. H. Lee, Hybrid three-
dimensional formation control for unmanned helicopters, Automatica
49 (2) (2012) 424–433.

29

