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Abstract—THIS PAPER IS ELIGIBLE FOR THE STUDENT
PAPER AWARD. We formulated a model for intermittent multi-
access communication for two users that captures the bursty
transmission of the codeword symbols for each user and the pos-
sible asynchronism between the receiver and the transmitters as
well as between the transmitters themselves. By making different
assumptions for the intermittent process, we specialize the system
to a random access system with or without collisions, where the
collisions can be viewed either as deletions or interference. For
each model, we characterize the performance of the system in
terms of achievable rate regions. The results suggest that the
intermittency of the system comes with a cost.

I. INTRODUCTION

Multi-access communication is treated in different ways in
the literature. Gallager [1]] reviews both information theoretic
and network oriented approaches, and emphasizes the need
for a perspective that can merge elements from these two
approaches. As also pointed out in [2], information theoretic
models focus on accurate analysis of the effect of the noise and
interference, whereas network oriented models focus on bursty
transmissions and collision resolution approaches. An example
of a recent work that introduces a model for multi-access
communication capturing elements from these two approaches
is [3[], which introduces an information theoretic model for a
random access communication scenario with two modes of
operation for each user, active or inactive.

This paper can be viewed as another attempt to combine
the information theoretic and network oriented multi-access
models and characterize the performance of the system in
terms of the achievable rate regions. We formulate a model
for intermittent multi-access communication for two users that
captures two network oriented concepts. First, it models bursty
transmission of the codeword symbols for each user. Second,
it takes into account the possible asynchronism between the
receiver and the transmitters as well as between the trans-
mitters themselves. A basic system model is introduced in
Section [l which generalizes the intermittent communication
model introduced in [4]], and then by making different assump-
tions for the intermittent process, we specialize the system
to two models: random access without collisions and random
access with collisions in Sections [[V|and |V] respectively. The
collisions are treated either as deletions or as interference.

For each model, we obtain achievable rate regions, which
depend on the concept of partial divergence introduced in [4],

k n
m ci(m N
1 1(m1) Zq | y
| yn ‘ f—
R
k n ~
me 5 () Ty | my
e N >
| J
Fig. 1. System model for intermittent multi-access communication.

[S]. Because of the assumption that the receiver does not know
a priori that an output symbol corresponds to transmission by
a given user or that it corresponds to a collision, the decoder
has to both detect the positions and decode the messages.
The achievability results suggest that the intermittency of the
system comes with a significant cost, i.e., it reduces the size
of the achievable rate regions, which can be interpreted as
communication overhead [[6]. Note that as opposed to [6],
where the constraint is the lack of coordination between the
users in multi-access communication, the constraint in this
paper is the intermittency of the system.

II. SYSTEM MODEL

We consider a 2-user discrete memoryless multiple ac-
cess channel (DM-MAC) with conditional probability mass
functions W (y|z1,z2) over input alphabets X} and X and
output alphabet ). The two senders wish to communicate
independent messages m; € {1,2,...,eF" = M} and m, €
{1,2,...,e*P2 = My} to a receiver. Let x € X, X> denote
the noise symbol, which is the input of the channel when the
corresponding sender is silent. Let W., := W (y|z1, 2 = %)
denote the probability transition matrix for the point to point
channel for user 1 if user 2 becomes silent, letlV,. be defined
analogously, and let W,, := W(y|z; = x,22 = %) denote
the output distribution if both users become silent. Each user
encodes the message to a codeword of length k: ¢¥(m1) and
ck(my) denote the codewords of user 1 and user 2, respec-
tively. The symbols of the codewords are called information
symbols. Assume that z7 and z3 are the input sequences and
y™ is the output sequence of the channel, where n is the
length of the receive window at the decoder. Figure |1| shows a
block diagram for the system model in which the intermittent
process with inputs c¥(m1) and c§(ms) and outputs z} and
x4 captures the burstiness and the asynchronism of the users.



Assuming that the decoded messages are denoted by 1
and My, which are functions of the random sequence Y, we
say that the rate pair (Rj, Ry) is achievable if there exists
two sequences of length k codes of size e and eF%2 for
the two encoders with 174 2%11:1 2%3:1 P((mi1,m2) #
(m1,m2)) — 0as k — oco. We refer to this general scenario as
intermittent multi-access communication, and consider several
models for the intermittent process in Figure [I] which we
describe after introducing some preliminaries.

III. PRELIMINARIES
A. Notation

Most of the notation in this paper follows that in [7].
By X ~ P(z), we mean X is distributed according to P.
The empirical distribution (or type) of a sequence z" € X"
is denoted by Py,n. Joint empirical distributions are denoted
similarly. We say a sequence z” has type P if P =P
and denote it by 2™ € Tp5, where T5 or more simply Tp
is the set of all sequences that have type P. We use PV to
denote the set of distributions over the finite alphabet X'. The
set of sequences y™ that have a conditional type W given x™
is denoted by Ty (2™). The Kullback-Leibler divergence is
denoted by D(P||Q). We use o(-) to denote quantities that
grow strictly slower than their arguments. In this paper, we
use the convention that (Z) =0if k <0orn <k, and the
entropy H(P) = —oc if P is not a probability mass function,
i.e., one of its elements is negative or the sum of its elements
is larger than one. h(+) is the binary entropy function, and for
B1 + B2 < 1, let h(B1, B2) denote the entropy of the ternary
probability mass function (f31,82,1 — f1 — [2). Finally, if
0<p<1l thenp:=1—p.

B. Partial Divergence and Its Generalization

Partial divergence d,(P||Q) between distributions P and
) with mismatched factor p is introduced in [4], [5] to
characterize the exponent of the probability that a sequence
with length £ has a type P if pk of its elements are generated
independently according to ) and pk of them are generated
independently according to P. For alphabets of size ¢, e.g.,
X = {0,1,....,t — 1}, and distributions P,Q € P¥, where
P := (po,p1,-,pt-1), and Q = (qo,q1, .-, q¢—1), partial
divergence can be expressed as [5]]
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where ¢* is a function of p, P, and @), and can be uniquely
determined from
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We now state a generalization for [4, Lemma 1] for which

the sequence is generated according to three distributions.

Lemma 1. Consider the alphabet X = {0,1,...,t — 1}, and
distributions P,Q1,Q2,Q3 € P¥. A random sequence X*

is generated as follows: p1k symbols are i.i.d. according to
Q1, p2k symbols are i.i.d. according to Qo, and psk are i.i.d.
according to QQ3, where p1 + pa + p3 = 1. Then, the exponent
of the probability that X* has type P is

1 X
lim ——logP(X* € Tp)
k—oo k
= min

o PD(P1]|Q1)+p2 D(P||Q2)+ps D(P3[|Qs)
Py ,Py, P3P~
p1P1+p2PatpsPs=P
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The proof is omitted due to space considerations. We will be
interested in a special case of Lemma [l in which )3 = P. In
other words, we need to find the exponent of the probability
that a sequence has a type P if its elements are generated
independently according to ()1, @2, and P. For this case, we
denote the right-hand side of () by d,, ,, (P||Q1, Q2), where

p1 + p2 < 1. This function will be used in Section [V-B|

C. Deletion Channels

As we treat collisions as deletions in Section [V-A] we state
some results on deletion channels in this section. There is
considerable work concentrating on achievability results for
the deletion channel [8]-[10]. In [8]], in addition to i.i.d.
codewords with uniform distribution over the alphabet, code-
words from first order Markov chains are used to improve
the achievability results for deletion channels. However, we
require i.i.d. codewords in order to simplify the analysis of
the probability of error for the decoding algorithm used in
Section[V-A] We first introduce a different model for the noisy
deletion channel for which the number of deleted symbols is
assumed to be fixed, and then give an achievability result,
which is similar to the one in [§]], but allows for arbitrary
input distribution rather than the uniform one, and is valid for
a general discrete memoryless channel (DMC) rather than the
symmetric one. Note that our result is also valid for the i.i.d.
deletion channel.

Consider the cascade of a deletion channel with a DMC,
where the deletion channel deletes d symbols of its input
sequence of length & > d arbitrarily at random so that the
output of the deletion channel and the DMC has length k£ —d,
where ¢ := d/k < 1 is the ratio of the deleted symbols to
the codeword length. Let X', V), W, and C denote the input
alphabet, output alphabet, probability transition matrix, and the
capacity of the DMC, respectively. After stating the following
lemma from [[11]], we state the achievability result.

Lemma 2. [|/1] For a given |Y|-ary sequence y*~¢ of length
k — d, the number of |Y|-ary sequences of length k which
contain sequence y*=% as a subsequence is given by
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Lemma 3. For the noisy deletion channel described above,
rates not exceeding Cs — h(0) —0log(|Y| —1) are achievable.

Proof. Encoding: Fix an input distribution P. Randomly
and independently generate €% sequences cf(m), m €



{1,2,...,e*R} each i.i.d. according to P. To send message
m, the encoder transmits c*(m).

Decoding: The decoder observes the output sequence <%
and constructs all possible 7/* which contain sequence y"~
as a subsequence. Then it checks if any of these sequences
are jointly typical with any of the codewords, i.e., if §* €
T[WS]M(CIC(TAYL)), then we declare that message as being sent.
If this condition is not satisfied for any of the sequences 7"
and any of the messages, then the decoder declares an error.

Analysis of the probability of error: For any € > 0, we prove
that if R = I(X;Y) — h(0) — 0log(]Y| — 1) — 2¢, then the
average probability of error vanishes as k — oco. Considering
uniform distribution on the messages and assuming that the
message m = 1 is transmitted, we have

P9 <P(m=elm=1)+P(n € {2,3,...,e"}m=1), (3)

where (3) follows from the union bound in which the first
term is the probability that the decoder declares an error, i.e.
does not find any codeword being jointly typical with any of
the possible sequences ¥, which contain sequence 3%~ as
a subsequence. This implies that even if the correct deletion
pattern is considered and all possible choices for the deleted
symbols are evaluated, none of them are jointly typical with
c*(1). The probability of this event vanishes as k — oo
according to [[7, Lemma 2.12]. Using Lemma [2] and the union
bound for all possible §*’s and all the messages 7 # 1, we
have

P € {2,3,...,e"}m = 1)

k ~ .
< b, S )T DR Ty, (@) =)
< 009 (O 0 Tog(1Y]=1)) R~ k(XY ) —) @
_ eo(}’c)e—ke7 (5)

where (@) results from Stirling’s approximation and the pack-
ing lemma [[12| Lemma 3.1] since conditioned on message
m = 1 being sent, C*(2) and Y* are independent; and
where (B) follows by substituting R = I(X;Y) — h(6) —
6log(]Y] — 1) — 2e. Therefore, the second term in (3) also
vanishes as k — oo, and the lemma is proved by considering
the capacity achieving input distribution for the DMC. O

IV. RANDOM ACCESS WITHOUT COLLISIONS

In this section, we focus on an intermittent process in
Figure [I] that models a random access channel in which at each
time slot exactly one of the users sends an information symbol
and the other remains silent by sending the noise symbol =,
until both users send their codewords. In this model, the output
pair (x1, x2) of the intermittent process at each time slot takes
one of the two following forms: (c1, %) or (%, c2), where ¢; and
co denote a code symbol from the first and the second user,
respectively. The length of the receive window in this model
is n = 2k. The receiver observes the sequence y”, wishes to
decode both messages, but does not know a priori which output
symbol corresponds to which user’s codeword. Motivating
examples include a cognitive radio application in which the

primary user is bursty, i.e., sends information symbols in some
time slots and remains silent in the other time slots, and a
secondary user also wants to communicate with the same
receiver and can sense the channel and transmit its information
symbols whenever the first user is silent. As another motivating
example, consider an ALOHA random access protocol with a
collision-avoidance mechanism. In the following theorem, we
obtain an achievable rate region for (Ry, Rs).

Theorem 1. For intermittent multi-access communication with
the intermittent process described above, rates (Ry, Rz) sat-

isfying

Rl<H(X1;Y|x2:*)_fl(PhPQaW) (6)
Ry < I(X2;Y |2y = %) — f1(P1, P2, W) @)

are achievable for any (X1, X2) ~ Pi(x1)Pa(x2), where

Si(PL P2 W) = max (20(5) — da(PV..|P2Y..)
—dg(PaW,.||PiW.,)}, 3

and d.(-||-) is the partial divergence given in ().

Proof. Encoding: Fix two input distributions P; and P, for
user 1 and user 2, respectively. Randomly and independently
generate e*f1 sequences cf(m1), m1 € {1,2,...,e*1} each
i.i.d. according to P; for user 1, and e*f2 sequences c5(ms),
my € {1,2,...,e"%} each i.i.d. according to P for user 2. To
send message m1, encoder 1 transmits c¥(m;), and to send

message 1o, encoder 2 transmits c§ (1ms).

Decoding: Similar to decoding from pattern detection de-
scribed in [5]], the decoder chooses £ of the 2k output symbols
y?*. Let §* denote the sequence of the chosen symbols, and
¢* denote the sequence of the other & symbols. For each
choice, there are two stages. In the first stage, the decoder
checks if §* is induced by user 1, ie., if §¥ € Tpw.,
and if §* is induced by user 2, ie., if ¥ € Tp,w, . If
both of these conditions are satisfied, then we proceed to the
second stage; otherwise, we make another choice for the k
symbols and restart the two-stage decoding procedure. In the
second stage, we perform joint typicality decoding with a fixed
typicality parameter ;. > 0 for both sequences §* and ", i.e.,
if g% € Ty, (ci(r)) and §* € Ty, ), (c5(1ng)) for a
unique message pair (1m,m3), then we declare them as the
transmitted messages; otherwise, we make another choice for
the k£ symbols and repeat the two-stage decoding procedure. If
at the end of all (zkk) choices the typicality decoding procedure
has not declared any message pair as being sent, then the
decoder declares an error.

Analysis of the probability of error: For any ¢ > 0, we
prove that if R1 = H(Xl,Y|$2 = *) — fl(Pl,P27W) — 26,
and R2 = ]]:(XQ,Y‘Il = *) — fl(Pl,PQ,W) — 26, then the
average probability of error vanishes as k — co. Considering
uniform distribution on the messages and assuming that the



message pair (1,1) is transmitted, we have

pe’? <P((ra,mz) = e|(m1, mz2) = (1,1))
+ Py € {2,3, ..., "1} |(m1, mp) = (1,1))
+P(ng € {2,3, ..., "2} (m1,ma) = (1,1)), (9)

where (9) follows from the union bound in which the first
term is the probability that the decoder declares an error (does
not find any message pair) at the end of all (2,5) choices,
which implies that even if we pick the correct output symbols
corresponding to user 1 and user 2, the decoder either does
not pass the first stage or does not declare (1i21,72) = (1,1)
in the second stage. The probability of this event vanishes as
k — oo according to [7, Lemma 2.12].

The second term in (9) is the probability that for at least
one choice of the output symbols, the decoder passes the first
stage, and then in the second stage, it declares an incorrect
message for user 1. We characterize the (2kk) choices based
on the number of incorrectly chosen output symbols, which is
denoted by ki, i.e., the number of symbols in gjk that are in
fact output symbols corresponding to the second user, which is
equal to the number of symbols in ¥ that are in fact output
symbols corresponding to the first user. For any 0 < k; < k,
there are ( ,fl ) ( ,fl) possible choices. Using the union bound for
all the choices and all the messages 1 # 1, we have

P(rny € {2,3, ..., "} (my,mo) = (1,1))
k

<@ -3 () () B =2l ma) =1, 1),
(10)

where the index k; in (I0) denotes the condition that the
number of wrongly chosen output symbols is k;. Note that
message 1 = 2 is declared at the decoder only if the choice
of the output symbols passes the first stage, and then the
condition §* € Ty ), (¢}(2)) is satisfied. Therefore,

Py, (11 =2[(m1, m2)=(1,1))

= Pkl ({i/k S TP1W.*} n {Yk € TPgW*_}

AT € Ty, ((2))} ] (ma, ma) = (1, 1))

=P, (V¥ € Tpw.,) Pr,(Y* € Tp,w.)

P(Y" € Tiw.,1,,(c}(2))|(m1,m2) = (1,1))
< O0F) g=kdy k (PUW L[| P2 W) =k /1 (P2 W | [PAW. )

(11

. e—k(]l(Xl;Y|rg:*)—e)7 (12)
where (II) follows from the independence of the events
{Y* € Tpw.,} and {Y* € Tp,w, } conditioned on k;
wrongly chosen output symbols, and (I2) follows from the
results on the partial divergence in Section for the first
two terms in with mismatch ratios ki /k, and using the
packing lemma [12, Lemma 3.1] for the last term in @),
because conditioned on message m; = 1 being sent, CF(2)
and Y* are independent regardless of the number of wrongly

chosen output symbols. Substituting (I2) into the summation
in (T0), using Stirling’s approximation for the terms (kkl), and
finding the largest exponent of the terms in the summation,
we have

P(in1 € {2,3, ..., "} (m1,mg) = (1,1))
S ele eo(k)ekfl(Pl,Pg,W)e—k(]I(X1;Y|m2:*)—e)

_ eo(k:)e—ke’

13)

where is obtained by substituting R; = I(X1; Y|z =
*) — f1(Py1, Py, W) — 2¢. Therefore, the second term in (9)
vanishes as k — oo. Similarly, the third term in (@) also
vanishes as k — oo, which proves the Theorem. O

The function f;(Py, P>, W) can be interpreted as an over-
head term due to the system’s burstiness or intermittency. Note
that the result in Theorem [1| implies that there is a tradeoff
between the two terms in (6) and in by choosing the
input distributions P; and P». In order to maximize the first
terms we need to choose the capacity achieving input distri-
butions, but at the same time, it is desirable to choose input
distributions such that the two distributions P, W., and P,W,.
have the largest distance to maximize the partial divergences
dg(PAW.,||P,W,.) and dg(PoW,.||P1W.,) so that we have
a smaller overhead term fi(Py, Py, W). Also, note that both
rates Ry and Ry have the same overhead cost for fixed input
distributions P; and Ps. This is not the case if we consider
different codeword lengths for the two users.

V. RANDOM ACCESS WITH COLLISIONS

In this section, we focus on an intermittent process in
Figure [I] that models a random access channel with collisions.
In principle, we can consider a random access channel that
allows for both idle-times and collisions, where idle times
can be handled using a similar generalization of the partial
divergence stated in Lemma However, we assume that
there are no idle times in order to avoid further complexity
of the results. In this model, the output pair (z1,xz2) of the
intermittent process in each time slot takes one of the three
following forms: (c1,%), (,cz2), or a collision, where two
different models for collisions are considered: deletion and
interference. We assume the total number of collisions is
d < k. Let 6 := d/k < 1 denote the ratio of the collided
symbols of each user to the codeword length.

A. Collisions as Deletions

In this section, we treat collisions as deletions. We assume
that the output of the intermittent process with length n =
2(k — d) consists of k — d of the pair (¢1,%), kK — d of the
pair (%, c2), and d collided symbols that are deleted from the
output sequence. The encoders and the decoder do not know
the positions.

Theorem 2. For intermittent multi-access communication with
the intermittent process described above, rates (Ry, Rz) sat-



isfying
Ry <I(X1;Y|wg = %) — fo(Pr, P2, W, 0)
Ry < (Xo;Y|z1 = %) — fa( P, P2, W, 0)

are achievable for any (X1, Xs) ~ Py(x1)Pa(x2), where

fo (P, Po, W, 0):=(1-0) f1( Py, Po, W)+h(0)+0 log(|Y|—1),
(14)
where f1(Py, Py, W) is given in (8.

The decoding scheme and the techniques for the analysis of
the probability of error are a combination of those in the proof
of Lemma [3] and Theorem [I] The complete proof is omitted
due to space considerations.

B. Collisions as Interference

In this section, we treat collisions as interference. We
assume that the output of the intermittent process with length
n = 2k — d consists of k — d of the pair (¢1,*), k — d of the
pair (%, c2), and d of the pair (cq,c2). The encoders and the
decoder do not know the positions. User 1 and user 2 transmit
k — d information symbols over a point to point channel, W. ,
and W, ., respectively, and transmit d information symbols
over the MAC channel W, through which there is interference
between the users.

Theorem 3. For intermittent multi-access communication with
the intermittent process described above, rates (Ry, R) sat-

isfying
Ry <OL(X1;Y [w2=%)+01(X1; Y| Xo) — f3(Pr, P2, W, 0)
Ry <01(Xo;Y|z1 =+) +01(Xo; Y| X1) — f4(Pr, Py, W, 0)
Ri+ Ry <OL(X1; Y |xe =) +01(Xo; Y]z =%)
+OL(X1, Xo;Y) — f3(P1, P2, W, 0)
are achievable for any (X1, Xs) ~ Pi(x1)Pa(x2), where
f3(P1, Pa, W, 0) :=

a n / !
OSBIFszSl{eh(/Bh B2)+0h(B1, Bz)+0h(
0<B]+85<1

—0dg, g, (PYW.x || PLPW, PaW,.) 70_d51’ (P | | PLPW, PAW )
—0d(5,18,-31)80.(8+84-62)gjp (PLPW || PIW ., PIW. )}, (15)

and d..(+||-,-) is the function defined in Section

0(B1+B2-85) 0(31+85—52) )
0

' 0

Sketch of the Proof: Encoding is the same as in the proof of
Theorem [T} We briefly explain the decoding procedure. The
analysis of the probability of error is lengthy and is omitted
due to space considerations.

Decoding: The decoder splits the output sequence y
into three subsequences of length k — d, &k — d, and d, and
denotes them by g’f*d, gjéﬂ*d, and Qd, respectively. For each
choice, there are two stages. In the first stage, we check
three conditions: gj’f‘d € Tpw,, g’;_d € Tp,w, , and
;Qd € Tp,p,w . If all three conditions are satisfied, then
we proceed to the second stage; otherwise, we make another
choice for the three output subsequences and restart the two-
stage decoding procedure.

2k—d

In the second stage, we perform simultaneous joint typi-
cality decoding. We first split all of the codewords as fol-

lows. Let ¢¥~%(m;) and &f(m;) be the subsequences of

c¥(my) corresponding to the positions of the symbols of the
chosen subsequences gj’f‘d and 99, respectively. Similarly,

let &=%(my) and é4(msy) be the subsequences of ck(my)

corresponding to the positions of the symbols of the chosen
subsequences g’g*d and ¢, respectively. We declare the mes-
sage pair (/q,72) as being transmitted if it is the unique
message pair such that the following three conditions are
satisfied simultaneously: (¢¥~%(rny), 7¥~7) is jointly typical;
(&5~ (rg), 75~ is jointly typical; and (&§(1h1), ¢4 (1h2), §%)
is jointly typical; otherwise, we make another choice for the
three output subsequences and repeat the two-stage decoding

procedure. If at the end of all (, %%, ) choices the typical-

ity decoding procedure has not declared any message pair as
being sent, then the decoder declares an error. O
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