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Abstract—This paper focuses on obtaining upper bounds on
the capacity of a special case of intermittent communication,
introduced in [1], in which the channel is binary-input binary-
output noiseless with i.i.d. number of zeros inserted in between
the binary codeword symbols. Upper bounds are obtained by
providing the encoder and the decoder with various amounts of
side-information, and calculating or upper bounding the capacity
of this genie-aided system. The results suggest that the linear
scaling of the receive window with respect to the codeword length
considered in the system model is relevant since the upper bounds
imply a tradeoff between the capacity of the channel and the
intermittency rate.

I. INTRODUCTION

Intermittent communication is introduced in [1], which
models non-continuous transmission of encoded symbols
through the channel. For some practical applications trans-
mitting a codeword can be intermittent due to lack of syn-
chronization, shortage of transmission energy, or burstiness of
the system. The system model can also be interpreted as an
insertion channel in which some number of noise symbols are
inserted between the codeword symbols, where the ratio of
the receive window n to the codeword length k is assumed to
be fixed and is called the intermittency rate α. The challenge
is that the receiver does not explicitly know whether a given
output symbol of the channel is a result of sending a symbol
of the codeword or is simply a noise symbol containing no
information about the message.

The focus of [1] and [2] is on obtaining achievable rates
for intermittent communication by introducing the notion of
partial divergence. In this paper, we focus on obtaining upper
bounds for the capacity of intermittent communication. We
consider a special case of intermittent communication in which
the channel is binary-input binary-output noiseless, and the
uncertainty is only due to insertions. Specifically, we assume
that some number of 0’s are inserted in between the binary
codeword symbols. After introducing a useful function g(k, n)
through uniform insertion model in Section II, we obtain upper
bounds on the capacity of the intermittent communication
with i.i.d. insertions in Section III by giving some kind of
side-information to the encoder and decoder, and calculating
or upper bounding the capacity of this genie-aided channel,
which is similar to the method used in [3] and [4]. Also, by
obtaining an upper bound for the function g(k, n), we are

able to tighten the upper bounds for the i.i.d. insertion model
in certain regimes.

Although the gap between the achievable rates and upper
bounds is not particularly tight, especially for large values of
intermittency rate α, the upper bounds suggest that the linear
scaling of the receive window with respect to the codeword
length considered in the system model is relevant since there is
a tradeoff between the capacity of the channel and the intermit-
tency rate. By contrast, in asynchronous communication [5],
[6], where the transmission of the codeword is contiguous,
an exponential scaling n = eαk is most relevant in terms of
capacity.

II. UNIFORM INSERTION MODEL

A. Channel Model

Consider binary-input binary-output intermittent communi-
cation in which the intermittency is considered as uniform
insertions over the whole codeword sequence with the in-
sertions being a fixed input symbol, e.g., inserted symbols
are all 0’s. The input and output sequences of the channel
are Xk ∈ {0, 1}k and Y n ∈ {0, 1}n, respectively, where
k and n are two positive integers with k ≤ n. The output
sequence Y n is constructed as follows: n− k 0’s are inserted
randomly and uniformly in between the input symbols. The
positions at which the insertions occur takes on each of the
possible

(
n

n−k
)
=
(
n
k

)
realizations with equal probability, and

is unknown to the transmitter and the receiver.
The transmitter communicates a single message m ∈

{1, 2, ..., ekR = M} to the receiver over this channel by
encoding the message as a codeword Xk(m), which is called
the sequence of codeword symbols. The receiver observes the
channel output sequence Y n and forms an estimate of the
message denoted by m̂, which is a function of the random
sequence Y n. We denote the intermittency rate by α := n/k
and assume that it is fixed. This determines the rate that the
receive window n scales with the codeword length k, i.e.,
the larger the value of α, the larger the receive window, and
therefore, the more intermittent the system becomes; if α = 1,
the system is not intermittent and corresponds to contiguous
communication.

We say that the pair (R,α) is achievable if there exists a
sequence of length k codes of size ekR with 1

M

∑M
m=1 P(m̂ 6=

m) → 0 as k → ∞ for the uniform insertion model with



Xk Y n 000 001 010 100 011 101 110 111

00 1 0 0 0 0 0 0 0
01 0 2/3 1/3 0 0 0 0 0
10 0 0 1/3 2/3 0 0 0 0
11 0 0 0 0 1/3 1/3 1/3 0

TABLE I
TRANSITION PROBABILITIES P (Y n|Xk) FOR k = 2 AND n = 3.

intermittency rate α. Note that the communication rate is
defined as logM/k. The capacity C(α) is the supremum of all
R such that (R,α) is achievable. As we will see, increasing α
generally reduces the lower and upper bounds on the capacity.
This is because increasing α makes the receive window larger,
and therefore, increases the uncertainty about the positions of
the information symbols at the receiver making the decoder’s
task more challenging.

Let g(k, n) be the maximum value of the mutual informa-
tion between the input and output sequence of the channel
over the input distribution, i.e.,

g(k, n) := max
P (xk)

I(Xk;Y n), 0 ≤ k ≤ n (1)

Although we have not been able to analytically prove
that this channel is information stable, we know by Fano’s
inequality that limk→∞ g(k, αk)/k is an upper bound on the
capacity of the channel with intermittency rate α. Note that
if the channel is information stable, then this value is equal
to the capacity of the channel. Using the achievability result
in [1] for this channel model, (R,α) is achievable if

R< max
0≤p0≤1

{2h(p0)−max
0≤β≤1

{(α− 1)h(β) + h((α− 1)β)

+(1−(α−1)β)h(p0−(α−1)β
1−(α−1)β

)}}.

(2)

B. Lower and Upper Bounds on g(k, n)

The exact value of the function g(k, n) for finite k and
n can be numerically computed by evaluating the transition
probabilities P (Y n|Xk) and using the Blahut algorithm [7]
to maximize the mutual information between Xk and Y n. As
an example, the transition probability matrix between the input
and output sequences for the case of k = 2 and n = 3 is given
in Table I.

The computational complexity of the Blahut algorithm
increases exponentially for large values of k and n since the
transition probability matrix is of size 2k × 2n. In order to
partially overcome this issue, we recall the following lemma.

Lemma 1. ( [8, Problem 7.28]): Consider a
channel that is the union of i memoryless channels
(X1, P1(y1|x1),Y1), ..., (Xi, Pi(yi|xi),Yi) with capacities
C1, ..., Ci, where at each time one can send a symbol over
exactly one of the channels. If the output alphabets are
distinct and do not intersect, then the capacity C of this
channel can be characterized in terms of C1, ..., Ci in bits/s

as

2C = 2C1 + ...+ 2Ci .

Now, notice that the function g(k, n) can be evaluated by
considering the union of k + 1 memoryless channels with
distinct input and output alphabets, where the input of the ith

channel is binary sequences with length k and weight i − 1,
i = 1, ..., k+1, and the output is binary sequences with length
n obtained from the input sequence by inserting n− k zeroes
uniformly. Note that the weight of the sequences remain fixed
after zero insertions, and therefore, the output alphabets are
also distinct and do not intersect. Assuming that the capacity
of the ith channel is gi(k, n) and applying Lemma 1, we have

2g(k,n) = 2g1(k,n) + ...+ 2gk+1(k,n). (3)

It is easy to see that g1(k, n) = 0 and gk+1(k, n) = 0. For
other values of i, the capacity gi(k, n), i = 2, ..., k can be
evaluated numerically using the Blahut algorithm, where input
and output alphabets have sizes

(
k
i−1
)

and
(
n
i−1
)
, respectively,

which is considerably less than those of the original alphabet
sizes. This allows us to obtain the function g(k, n) for larger
values of k and n. The largest value of n for which we are
able to evaluate the function g(k, n) for all values of k ≤ n is
n = 17. In Section III, we make frequent use of the function
g(k, n), and introduce some of its properties.

Although we cannot obtain a closed-form expression for
the function g(k, n), we can find closed-form lower and
upper bounds by expanding the mutual information in (1) and
bounding some of its terms. As a result, we can find lower
and upper bounds on the function g(k, n) for larger values of
k and n. Before stating the results on lower and upper bounds,
we introduce some notations.

For a binary sequence xk ∈ {0, 1}k, let w(xk) denote the
weight of the sequence, i.e., number of 1’s. Also, let the
vector r0(xk) := (r01, ..., r

0
l0
) of length l0 denote the length

of consecutive 0’s in the sequence xk such that r01 = 0 if
x1 = 1, i.e., the binary sequence starts with 1, and r0l0 = 0 if
xk = 1, i.e., the binary sequence ends with 1, and all the other
elements of the vector r0(xk) are positive integers. In addition,
let the vector r1(xk) := (r11, ..., r

1
l1
) of length l1 denote the

length of consecutive 1’s in the sequence xk with length larger
than one, i.e., runs of 1’s with length one are not counted.
Finally, let l(xk) := l0+ l1. When it is clear from the context,
we drop the argument xk from these functions. For example,
if xk = 0010111000011, then w = 6, r0 = (2, 1, 4, 0),
r1 = (3, 2), and l = 4 + 2 = 6. As another example, if
xk = 10011101, then w = 5, r0 = (0, 2, 1, 0), r1 = (3), and
l = 4 + 1 = 5. Now, we define the following function, which
will be used for expressing the lower and upper bounds.

F (xk) :=
∑

i1,...,il∈Z≥0:
∑l

j=1 ij=n−k

pi1,...,il(r
0, r1)hi1,...,il(r

0),

(4)
where l, r0, and r1 are a function of xk as defined before, and



we have

pi1,...,il(r
0, r1) :=

1(
n
k

) l0∏
j=1

(
r0j + ij
ij

) l1∏
j=1

(
r1j − 2 + ij+l0

ij+l0

)
,

(5)

hi1,...,il(r
0) :=

l0∑
j=1

log

(
r0j + ij
ij

)
. (6)

Proposition 1. We have the following lower and upper bounds
on the function g(k, n):

log
∑

xk∈{0,1}k

2F (xk)(n−w(xk)
k−w(xk)

) ≤ g(k, n) (7)

g(k, n) ≤ log

k∑
j=0

(
n

j

)
2max

xk:w(xk)=j
F (xk) − log

(
n

k

)
(8)

where F (·) is defined in (4).

Proof: Let Pn denote the random vector describing the
positions of the insertions in the output sequence Y n, such
that Pi = 1 if and only if Yi is one of the n− k inserted 0’s.
We first prove the lower bound. We have

I(Xk;Y n) = H(Xk)−H(Xk|Y n)
= H(Xk)−H(Pn|Y n) +H(Pn|Xk, Y n), (9)

where (9) follows by the general identity H(Xk|Y n) +
H(Pn|Xk, Y n) = H(Pn|Y n)+H(Xk|Pn, Y n) and noticing
that for this choice of Pn, we have H(Xk|Pn, Y n) = 0. For
the term H(Pn|Y n) in (9), we have

H(Pn|Y n) =
∑
yn

P (yn)H(Pn|Y n = yn)

≤
∑
yn

P (yn) log

(
n− w(yn)
k − w(yn)

)
(10)

=
∑
yn

∑
xk

P (xk)P (yn|xk) log
(
n− w(yn)
k − w(yn)

)
=
∑
xk

P (xk) log

(
n− w(xk)
k − w(xk)

)
, (11)

where (10) is because if yi = 1, then it is not an inserted
symbol and pi = 0, and therefore, given the output sequence
yn, there are

(
n−w(yn)
k−w(yn)

)
possible choices for the position

vector Pn, and we can upper bound it by assuming a uniform
distribution; and where (11) is because the weights of the
input xk and output yn are always the same. For the term
H(Pn|Xk, Y n) in (9), we have

H(Pn|Xk,Y n)=
∑
xk

P (xk)
∑
yn

P (yn|xk)H(Pn|Xk=xk,Y n=yn)

(12)

=
∑
xk

P (xk)F (xk), (13)

where F (·) is defined in (4); and where (13) is because instead
of the summation over yn, we can sum over the possible 0

insertions in between the runs of a fixed input sequence xk

such that there are total of n − k insertions. If we denote
the number of insertions in between the runs of zeros by
i1, ..., il0 , and the number of insertions in between the runs
of ones by i1+l0 , ..., il1+l0 , then we have i1, ..., il ∈ Z≥0 :∑l
j=1 ij = n−k. Given these number of insertions, it is easy

to see that P (yn|xk) in (12) is equal to pi1,...,il(r
0, r1) in (5).

Also, H(Pn|Xk = xk, Y n = yn) is equal to hi1,...,il(r
0)

in (6), because given the input and output sequences, the only
uncertainty about the position sequence is where there is a
run of zeros in the input sequence, i.e., for a run of ones, we
know that all the zeros in between them are insertions. Also,
the uncertainty is uniformly distributed over all the possible
choices. Now, we have

g(k, n)=max
P (xk)

I(Xk;Y n)

≥max
P (xk)

∑
xk

P (xk)

[
−logP (xk)−log

(
n−w(xk)
k−w(xk)

)
+F (xk)

]
(14)

= log
∑

xk∈{0,1}k

2F (xk)(n−w(xk)
k−w(xk)

) , (15)

where (14) follows by combining (9), (11), and (13);
and where (15) is the solution to the optimization prob-
lem (14). Note that this is a convex optimization problem
where the optimal solution can be found to be P ∗(xk) =

D2F (xk)/
(n−w(xk)
k−w(xk)

)
by Karush-Kuhn-Tucker (KKT) condi-

tions [9], where the constant D is obtained such that∑
xk P ∗(xk) = 1, and (15) is obtained by substituting P ∗(xk).

Therefore, the lower bound (7) is proved.
Now, we focus on the upper bound. Note that from (3), we

have

g(k, n) = log

k∑
j=0

2max
P (xk)

Ij(Xk;Y n), (16)

where Ij(Xk;Y n) denotes the mutual information if the input
sequence, and therefore, the output sequence have weight j,
and the maximization is over the distribution of all such input
sequences. Using the chain rule, we have

H(Pn|Y n) = H(Y n|Pn) +H(Pn)−H(Y n)

= H(Xk) + log

(
n

k

)
−H(Y n), (17)

where (17) is because the entropy of the output sequence
given the insertion positions equals the entropy of the in-
put sequence, and because the entropy of the position se-
quence equals log

(
n
k

)
due to the uniform insertions. Com-

bining (9), (13), and (17), we have

Ij(Xk;Y n) = Hj(Y
n)− log

(
n

k

)
+

∑
xk:w(xk)=j

P (xk)F (xk)

≤ log

(
n

j

)
− log

(
n

k

)
+ max
xk:w(xk)=j

F (xk),

(18)
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Fig. 1. Comparison between the exact value, the lower bound, and the upper
bound on g(k, αk)/k for α = 1.5 versus k.

where Hj(Y
n) denotes the entropy of the output sequence if

it has weight j; and where (18) follows from the fact that the
uniform distribution maximizes the entropy and by maximiz-
ing F (xk) over all input sequences with weight j. Finally, by
combining (16) and (18), we get the upper bound (8).

Figure 1 compares the exact value, the lower bound, and
the upper bound on g(k, αk)/k for α = 1.5 versus k. The
computational complexity of the exact value is more than the
one for the lower and upper bounds, and therefore, cannot
be computed numerically for large values of k. Note that the
upper bound can be computed for relatively large values of k,
although it seems to be loose. The limit of the exact value (and
therefore, the upper bound) as k → ∞ is an upper bound on
the capacity of the channel with the intermittency rate α = 1.5,
as discussed before.

III. IID INSERTION MODEL

A. Channel Model

Consider the same binary-input binary-output intermittent
communication model introduced in Section II-A, but instead
of uniform insertions, after the ith symbol from the code-
word, Ni 0’s are inserted, where Ni’s are i.i.d. geometric
random variables with mean α − 1. This is equivalent to an
i.i.d. insertion channel model in which at each time slot a
codeword symbol is sent with probability pt := 1/α and the
insertion symbol 0 is sent with probability 1 − pt until the
whole codeword is transmitted. At the decoder, there are N
symbols, where N is a random variable with negative binomial
distribution with parameters k and pt:

P (N = n) =

(
n− 1

k − 1

)
pkt (1− pt)n−k, n ≥ k, (19)

with E [N ] = αk and N/k
p−→ α as k → ∞. As before, α

denotes the intermittency rate, and the achievability result (2)
is also valid for this channel model.

In contrast to the channel model in Section II, the channel
model with the i.i.d. insertions is information stable and
falls into the category of the channels with synchronization

errors [10] for which the information and transmission capac-
ities are equal and can be obtained by limk→∞ g(k,N)/k.
However, the single-letter characterization of the capacity is
an open problem.

B. Upper Bounds on the Capacity

In this section, we focus on upper bounds on the capacity of
the channel model introduced in Section III-A. The procedure
is similar to [3]. Specifically, we obtain upper bounds by
giving some kind of side-information to the encoder and
decoder, and calculating or upper bounding the capacity of this
genie-aided channel. The following definition will be useful in
expressing the upper bounds:

φ(k, n) := k − g(k, n), (20)

where the function g(k, n) is defined in (1). Note that the
function φ(a, b) quantifies the loss in capacity due to the
uncertainty about the positions of the insertions, and cannot
be negative. The following proposition characterizes some of
the properties of the functions g(a, b) and φ(a, b), which will
be used later.

Proposition 2. The functions g(k, n) and φ(k, n) have the
following properties:
(a) g(k, n) ≤ k, φ(k, n) ≥ 0.
(b) g(k, k) = a, φ(k, k) = 0.
(c) g(1, n) = 1, φ(1, n) = 0.
(d) g(k, n+ 1) ≤ g(k, n), φ(k, n+ 1) ≥ φ(k, n).
(e) g(k+1, n+1) ≤ 1+ g(k, n), φ(k+1, n+1) ≥ φ(k, n).

Proof: We prove the properties for the function g(k, n).
The corresponding properties for the function φ(a, b) easily
follows from (20).
(a) Since the cardinality of the input sequence is 2k, the

mutual information is at most k bits/s.
(b) There are no insertions. Therefore, it is a noiseless channel

with input and output alphabets of sizes 2k and capacity
k bits/s.

(c) The input alphabet is {0, 1}, and the output consists of
binary sequences with length n and weight 0 or 1, because
only 0’s can be inserted in the sequence. Considering all
the output sequences with weight 1 as a super-symbol, the
channel becomes binary noiseless with capacity 1 bits/s.

(d) The capacity g(k, n+1) cannot decrease if, at each channel
use, the decoder knows exactly one of the positions at
which an insertion occurs, and the capacity of the chan-
nel with this genie-aided encoder and decoder becomes
g(k, n). Therefore, g(k, n+ 1) ≤ g(k, n).

(e) The capacity g(k + 1, n + 1) cannot decrease if, at each
channel use, the encoder and decoder know exactly one
of the positions at which an input bit remains unchanged,
so that it can be transmitted uncoded and the capacity
of the channel with this genie-aided encoder and decoder
becomes 1 + g(k, n). Therefore, g(k + 1, n + 1) ≤ 1 +
g(k, n).



Now we introduce one form of side-information. Assume
that the position of the [(s + 1)i]th codeword symbol in the
output sequence is given to the encoder and decoder for all
i = 1, 2, ... and a fixed integer number s ≥ 1. We assume that
the codeword length is a multiple of s+1, so that t = k/(s+1)
is an integer, and is equal to the total number of positions that
are provided as side-information. This assumption does not
impact the asymptotic behavior of the channel as k →∞. We
define the random sequence {Zi}ti=1 as follows: Z1 is equal
to the position of the [s+1]th codeword symbol in the output
sequence, and for i ∈ {2, 3, ..., t}, Zi is equal to the difference
between the positions of the [(s+1)i]th codeword symbol and
[(s+ 1)(i− 1)]th codeword symbol in the output sequence.

Since we assumed i.i.d. insertions, the random sequence
{Zi}ti=1 is i.i.d. too with negative binomial distribution:

P (Zi = b+ 1) =

(
b

s

)
(1− pt)b−sps+1

t , b ≥ s, (21)

with mean E [Zi] = (s+1)/pt. Also, note that as k →∞, by
the law of large numbers, we have

N

t

p−→ E [Zi] =
s+ 1

pt
. (22)

Let C1 denote the capacity of the channel if we provide
the encoder and decoder with side-information on the random
sequence {Zi}ti=1, which is clearly an upper bound on the
capacity of the original channel. With this side-information,
we essentially partition the transmitted and received sequences
into t contiguous blocks that are independent from each other.
In the ith block the place of the [s + 1]th codeword symbol
is given, which can convey one bit of information. Other than
that, the ith block has s input bits and Zi−1 output bits with
uniform 0 insertions. Therefore, the information that can be
conveyed through the ith block equals g(s, Zi− 1)+1. Thus,
we have

C1 = lim
k→∞

1

k

t∑
i=1

g(s, Zi − 1) + 1

= lim
k→∞

N

k

t

N

1

t

t∑
i=1

g(s, Zi − 1) + 1

=
1

s+ 1
lim
t→∞

1

t

t∑
i=1

g(s, Zi − 1) + 1 (23)

=
1

s+ 1
E [g(s, Zi − 1) + 1] (24)

=
1

s+ 1

[
1 +

∞∑
b=s

(
b

s

)
(1− pt)b−sps+1

t g(s, b)

]
(25)

=1− 1

s+ 1

∞∑
b=s

(
b

s

)
(1− pt)b−sps+1

t φ(s, b), (26)

where (23) follows from (22); where (24) follows from the law
of large numbers; where (25) follows from the distribution
of Zi’s given in (21); and where (26) follows from the
definition (20). Note that the capacity C1 cannot be larger
than 1, since the coefficients φ(·, ·) cannot be negative. The
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Fig. 2. Comparison between the best achievability result with different upper
bounds obtained from (27) for bmax = 17 and s = 2, 3, ..., 16, versus the
intermittency rate α.

negative term in (26) can be interpreted as the communication
overhead as the cost of intermittency in the context of [11].
The expression in (26) gives an upper bound on the capacity of
the original channel with pt = 1/α. However, it is infeasible
to numerically evaluate the coefficients φ(s, b) for large values
of b. As we discussed before, the largest value of b for which
we are able to evaluate the function φ(s, b) is bmax = 17.
The following upper bound on C1 results by truncating the
summation in (26) and using part (d) of Proposition 2.

C1≤1−
φ(s, bmax)

s+ 1

+
1

s+1

bmax∑
b=s

(
b

s

)
ps+1
t (1−pt)b−s(φ(s, bmax)−φ(s, b)),

(27)

The expression (27), which we denote by C ′1, gives a non-
trivial and computable upper bound for each value of s =
2, 3, ..., bmax − 1 on C1, and therefore, an upper bound on
the capacity of the original channel with pt = 1/α. Figure 2
shows the upper bounds for bmax = 17 and s = 2, 3, ..., 16
versus the intermittency rate α, along with the the achievability
result.

Next, we introduce a second form of side-information.
Assume that for consecutive blocks of length s of the
output sequence, the number of codeword symbols within
that block is given to the encoder and decoder as side-
information, i.e., the number of codeword symbols in the
sequence (y(i−1)s+1, y(i−1)s+2, ..., yis), i = 1, 2, ... for a fixed
integer number s ≥ 2. Let C2 denote the capacity of the
channel if we provide the encoder and decoder with this side-
information. Using a similar procedure, we obtain

C2 = 1− 1

spt

s∑
a=0

(
s

a

)
pat (1− pt)s−aφ(a, s). (28)
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Fig. 3. Comparison between the best achievability result with different upper
bounds obtained from (28) for s = 3, 4, ..., 17, versus the intermittency rate
α.

Note that the summation in (28) is finite, and we do not need
to upper bound C2 as we did for C1. The value of C2 gives
nontrivial and computable upper bounds on the capacity of the
original channel. Figure 3 shows the upper bounds for s =
3, 4, ..., 17 versus the intermittency rate α, along with the the
achievability result. The upper bound corresponding to s = 17
is tighter than others for all ranges of α, i.e., (28) is decreasing
in s. Intuitively, this is because by decreasing s, we provide the
side-information more frequently, and therefore, the capacity
of the resulting genie-aided system becomes larger.

It seems that (28) gives better upper bounds for the range
of α shown in the figures (1 < α ≤ 2). However, the other
upper bound C ′1 can give better results for the limiting values
of α→∞ or pt → 0. We have

lim
α→∞

C ′1 = 1− φ(s, bmax)

s+ 1
, (29)

lim
α→∞

C2 = 1.

The upper bound C2 give the trivial upper bound 1. Therefore,
the upper bound C ′1 is tighter for large values of α. This is
because of the fact that by increasing α, and thus decreasing
pt, we have more zero insertions and the first kind of genie-
aided system provides side-information less frequently leading
to tighter upper bounds. The best upper bound for the limiting
case of α → ∞ found by (29) is 0.6739 bits/s. In principle,
we can use the upper bound on g(k, n) in Proposition 1 to
upper bound C1 and C2. By doing so, we can find the bounds
for larger values of s and bmax, because we can calculate
the upper bound (8) for larger arguments. It seems that this
does not improve the upper bounds significantly for the range
of α shown in the figures. However, by upper bounding (29)
via (8), we can tighten the upper bound for the limiting case
of α→∞ to 0.6307 bits/s.

Although the gap between the achievable rates and upper
bounds is not particularly tight, especially for large values of

intermittency rate α, the upper bounds suggest that the linear
scaling of the receive window with respect to the codeword
length considered in the system model is natural since there is
a tradeoff between the capacity of the channel and the intermit-
tency rate. By contrast, in asynchronous communication [5],
[6], where the transmission of the codeword is contiguous,
an exponential scaling n = eαk is most relevant in terms of
capacity.

We would like to mention that the techniques used in this
section can in principle be utilized for non-binary and noisy
i.i.d. insertion channels as well. However, the computational
complexity for numerical evaluation of the genie-aided system
becomes cumbersome.

IV. CONCLUSION

We obtained upper bounds on the capacity of a special case
of intermittent communication in which the channel is binary-
input binary-output noiseless with i.i.d. number of 0 insertions
in between the binary codeword symbols. Upper bounds are
obtained by providing the encoder and the decoder with two
forms of side-information, and calculating or upper bounding
the capacity of this genie-aided system. Also, by obtaining an
upper bound for the function g(k, n), we tightened the upper
bounds for certain regimes of the intermittency rate α. The
results suggest that the linear scaling of the receive window
with respect to the codeword length considered in the system
model is natural since there is a tradeoff between the capacity
of the channel and the intermittency rate.
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