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Abstract— This paper presents and implements a smooth
hybrid supervisory control mechanism for the formation of
unmanned helicopters. A polar partitioning scheme is utilized
to bisimilarly abstract the motion space to find a finite state
model for the motion dynamics of UAVs. To implement this
algorithm, a hierarchical control structure is introduced which
uses a discrete supervisor on the top layer that is connected
to the regulation layer via an interface layer. The implanta-
tion issues of the proposed algorithm are investigated and a
control mechanism is introduced to smoothly transit over the
partitioned space without any jump on the control signals while
preserving the bisimulation relation between the abstractmodel
and the original continuous system. Actual flight test results
are presented to verify the algorithm and the control structure
performance.

I. I NTRODUCTION

Unmanned Aerial Vehicles (UAVs) can achieve a forma-
tion when they jointly move with a relatively fixed distance
[1], [2]. This capability enhances the manoeuvrability of the
team of UAVs to cooperatively accomplish different missions
such as search and rescue in hazardous environments, aerial
mapping and SLAM, area coverage and mutual defense.
The formation problem usually consists of several subtasks.
Starting from an initial state, the UAVs should achieve the
desired formation within a finite time (reaching the forma-
tion). Then, they should be able to maintain the achieved
formation, while the whole structure needs to track a certain
trajectory (keeping the formation). Meanwhile, in all of the
previous steps, the collision between the agents should be
prevented (inter-collision avoidance).

In the literature there are some methods that can partly
address the formation problem. For example, in [3], [4],
[5], the problem ofreaching the formationis investigated
using optimal control techniques, navigation function, and
potential field approaches.Keeping the formationcan be seen
as a standard control problem in which the system’s actual
position has slightly deviated from the desired position for
which many control approaches have been developed such
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as feedback control, rigid graph, and virtual structure [6],
[7]. Finally, in [8], [9], and [10], different mechanisms for
collision avoidancehave been introduced using probabilis-
tic methods, MILP programming, and behavioral control.
Nevertheless, there is still a lack of a unified solution to
address the whole process starting from reaching formation,
maintaining formation while avoiding collision. Furthermore,
it is required to consider a decision making unit to apply
discrete supervisory rules and switching logic to manage this
multi-task structure. This suggests us to bring the formation
problem to the context of hybrid modelling and control
theory [11], [12] by which we can capture both the discrete
and continuous dynamics of the system. In our recent study
[13], a unified hybrid supervisory control framework was
introduced to address all aspects of a formation control
mission. The approach is based on the polar abstraction
of the motion space and utilizing the properties of multi-
affine functions over the partitioned space. This abstraction
technique converts the original continuous system with infi-
nite states into a finite state machine for which one can use
the well developed theory of supervisory control of discrete
event systems (DES) [14]. Due to the proven bisimulation
relation, the abstracted system can behave as the same as
the original system so that the discrete supervisor, designed
for the discrete finite model, can be applied to the original
system.

In this paper, we focus on the implementation issues of
the proposed hybrid control algorithm. The main contribution
of this paper lies in presenting a smooth hybrid supervisory
control algorithm for the formation of unmanned helicopters.
Using this control mechanism, the UAVs smoothly transit
through the partitioning elements so that there is no jump in
the generated control signal when the system transits from
one region to its adjacent regions. The basic idea is to tune
the value of the vector field at the vertices of the partitioning
elements at the common edges to provide a smooth control
signal. It is shown that this control mechanism preserves
the bisimulation relation between the abstract model and
the original continuous system so that there is no need to
redesign the discrete supervisor. Secondly, an interface layer
is introduced to connect the discrete supervisor layer to the
continuous plant. This interface layer is responsible for con-
verting the continuous signals of the plant into some symbols
understandable by the discrete supervisor, and vice versa.
Finally, a cooperative testbed is developed, and the proposed
formation control algorithm has been verified through actual
flight tests.

The rest of this paper is organized as follows. The pre-



liminaries of the hybrid formation control algorithm are
described in Section II. The control hierarchy including
the discrete supervision layer, the interface layer, and the
continuous low layer is discussed in Section III. Section IV
describes implementation issues for the algorithm. Actual
flight test results are presented in Section V, and the paper
is concluded in Section VI.

II. PRELIMINARIES ON HYBRID FORMATION CONTROL

For the implementation of the proposed hybrid formation
algorithm we have used a set of two UAV helicopters,
HeLion and SheLion which are developed by our research
group at the National University of Singapore. The modelling
and low level control structure of the NUS UAV helicopters
are explained in [15], [16], [17]. For the regulation layer
of these helicopters we have proposed a two-layer control
structure in which the inner-loop controller stabilizes the
system usingH∞ control design techniques, and their outer-
loop is used to derive the system towards the desired location.
As it has been discussed in [16], in this control structure, the
inner-loop is fast enough to track the given references, so that
the outer-loop dynamics can be approximately described as
follows:

ẋ = u, x ∈ R
2, u ∈ U ⊆ R

2, (1)

wherex is the position of the UAV;u is the UAV velocity
reference generated by the formation algorithm, andU is the
velocity constraint set, which is a convex set.

Now, in a leader follower formation scenario, consider the
follower velocity in the following form:

Vfollower = Vleader + Vrel. (2)

For these helicopters, our aim is to design the formation
controller to generate the relative velocity of the follower,
Vrel, such that starting from any initial point inside the
control horizon, it eventually reaches the desired relative dis-
tance with respect to the leader, while avoiding the collision
between the leader and the follower. Moreover, after reaching
the formation, the follower UAV should remain at the desired
position.

To solve this problem, in [13], a method is introduced
for the polar abstraction of the state space which uses the
properties of multi-affine vector fields over the polar parti-
tioned space. Within this framework, a DES model can be
achieved for which we can design a decentralized supervisor
to achieve three major goals:reaching the formation, keeping
the formation, andcollision avoidance. This method is briefly
explained in the following section.

A. Polar partitioning of the state space

Consider a relatively fixed frame, in which the follower
moves with the velocity ofVrel and the leader has a relatively
fixed position. In this framework, imagine a circle with the
radius of Rm that is centered at the desired position of
the follower. With the aid of the partitioning curves{ri =
Rm

nr−1 (i − 1), i = 1, ..., nr} and {θj = 2π
nθ−1 (j − 1), j =

(a) (b) (c)

Fig. 1. (a) Vertices of the elementRi,j . (b) Edges of the elementRi,j .
(c) Outer normals of the elementRi,j .

1, ..., nθ}, this circle can be partitioned into(nr−1)(nθ−1)
partitioning elements. An elementRi,j = {p = (r, θ)| ri ≤
r ≤ ri+1, θj ≤ θ ≤ θj+1} has four vertices,v0, v1, v2, v3
(Fig. 1(a)), four edges,E+

r , E−
r , E+

θ , E−
θ (Fig. 1(b)), and

correspondingly, four outer normal vectorsn+
r , n−

r , n+
θ , n−

θ

(Fig. 1(c)). In regionRi,j , the notationEp,q is used for
the edge which is incident with the verticesvp and vq,
and correspondingly,np,q is used to denote its outer normal
vector.

To implement the formation algorithm, we will de-
ploy multi-affine functions over the partitioned space. A
multi-affine function f : R

n → R
m, has the property

that for any 1 ≤ i ≤ n and any a1, a2 ≥ 0 with
a1 + a2 = 1, f(x1, ..., (a1xi1 + a2xi2 ), xi+1, ...xn) =
a1f(x1, ..., xi1 , xi+1, ...xn) + a2f(x1, ..., xi2 , xi+1, ...xn).
The following proposition shows that the value of a multi-
affine function over the partitioning elementRi,j , can be
uniquely expressed in terms of the values of the function at
the vertices ofRi,j .

Proposition 1: [13] Consider a multi-affine function
g(x) : R

2 → R
2 over the regionRi,j . The following

property always holds true:

∀x = (r, θ) ∈ Ri,j : g(x) =

3
∑

m=0

λmg(vm) (3)

whereλm, m = 0, ..., 3, are obtained as follows:

λm = λΨr(vm)
r (1− λr)

1−Ψr(vm)λ
Ψθ(vm)
θ (1− λθ)

1−Ψθ(vm)

(4)
where λr = r−ri

ri+1−ri
, λθ =

θ−θj
θj+1−θj

, Ψr(vm) =
{

0 m = 0, 2
1 m = 1, 3

andΨθ(vm) =

{

0 m = 0, 1
1 m = 2, 3

.

Remark 1: It can be verified that the resulting coefficients
λm, m = 0, 1, 2, 3, have the property thatλm ≥ 0 and
∑

m λm = 1.
The above proposition holds true for the edges as de-

scribed in the following corollary.
Corollary 1: For a multi-affine functiong(x) defined over

the elementRi,j and for all edgesEs
q of Ri,j , q ∈ {r, θ}

ands ∈ {+,−}, the following property holds true:

∀x = (r, θ) ∈ Es
q : g(x) =

∑

vm∈V (Es
q)

λmg(vm), (5)

whereλm can be obtained as follows:

• For edgesE+
r andE−

r : λm = λ
Ψθ(t)
θ (1− λθ)

1−Ψθ(t)



• For edgesE+
θ andE−

θ : λm = λ
Ψr(u)
r (1−λr)

1−Ψr(u)

Next, the properties of multi-affine functions are utilized
to form a hierarchical hybrid structure for the control of
unmanned helicopters to achieve a desired formation.

III. H IERARCHICAL CONTROL STRUCTURE FOR THE

FORMATION OF UNMANNED HELICOPTERS

For the above discussed model of the plant defined over
the partitioned space, we will design a discrete supervisor
which pushes the system trajectories to pass through the
desired regions to achieve the desired behaviour. The de-
signed discrete supervisor cannot be directly connected to
the continuous plant. Hence, it is required to construct an
interface layer which can translate continuous signals of the
plant to a sequence of discrete symbols understandable for
the supervisor. Also, the interface layer is responsible for
converting discrete commands received from the supervisor,
to continuous control inputs to be given to the plant. These
two jobs are respectively realized by the blocks Detector and
Actuator embedded in the interface layer as it is shown in
Fig. 2. The elements of this control hierarchy are discussed
in the following parts.

Fig. 2. Linking the discrete supervisor to the plant via an interface layer.

A. The interface layer

1) The detector block:When the system’s trajectory
crosses the boundaries of the region, a detection event will
be generated which informs the supervisor that the system
has entered a new region.

More specifically, a detection eventdi,j will happen at
t(di,j) when the system’s trajectoryx(t) satisfies the fol-
lowing conditions:

• ∃τ > 0 such thatx(t) /∈ Ri,j for t ∈ (t(di,j)−τ, t(di,j))
• ∃τd > 0 such thatx(t) ∈ Ri,j for t ∈ [t(di,j), t(di,j) +

τd)

Also, if the leader position is on the way of the follower
towards the desired position, the eventOb will be generated
to inform the supervisor about the risk of collision.

2) The actuator block:Having the information about the
newly entered region, the supervisor can issue a discrete
command to push the system trajectory to move towards the
desired region. However, the discrete symbols generated by
the supervisor need to be translated to a continuous form.
For such a purpose, we utilize the properties of multi-affine
functions by which we can design continuous controllers
that drive the system’s trajectory to either stay in the current

region for ever or exit from one of its edges.

An invariant region can be defined as follows:

Definition 1: (Invariant region ) In the circleCRm
and

the vector fieldẋ = g(x) , g : R2 → R
2, the regionRi,j is

said to be invariant region, if∀x(0) ∈ int(Ri,j), andx(t) ∈
Ri,j for t ≥ 0.

The following theorem and corollary show how we can
construct an invariant region:

Theorem 1:Given a continuous multi-affine vector field
ẋ = g(x), g : R2 → R

2, defined over the regionRi,j , the
systems trajectory cannot leave the region through the edge
Ep,q with the outer normalnp,q if np,q(y)

T .g(vm) < 0, for
all vm ∈ {vp, vq} and ally ∈ Ep,q.

Proof: According to Corollary 1, ∀x ∈ Ep,q :
g(x) =

∑

vm
λmg(vm) , vm ∈ {vp, vq}. Substitut-

ing this value of g(x) we will have np,q(y)
T .g(x) =

np,q(y)
T .

∑

vm
λmg(vm) =

∑

vm
λm np,q(y)

T .g(vm).
Since,np,q(y)

T .g(vm) < 0 for both vm = vp andvm = vq
and ally ∈ Ep,q, and sinceλm ≥ 0 and

∑

m λm∈{p,q} = 1,
it can be concluded thatnp,q(y)

T .g(x) < 0 for all x, y ∈
Ep,q, which means that the trajectories of the system cannot
leaveRi,j through the edgeEp,q.�

Corollary 2: (Sufficient condition for Ri,j to be an
invariant region ) For a continuous multi-affine vector field
ẋ = h(x, u(x)) = g(x), h : R2 → R

2, Ri,j is an invariant
region if there exists a controlleru : R

2 → U ⊆ R
2,

such that for each vertexvm, m = 0, 1, 2, 3, with incident
edgesEs

q ∈ E(vm), and corresponding outer normalsns
q,

q ∈ {r, θ} ands ∈ {+,−}:

Um = U ∩ {u ∈ R
2|ns

q(y)
T . g(vm) < 0, for all Es

q ∈
E(vm), and for all y ∈ Es

q} 6= ∅,
(6)

where the convex setU represents the velocity bounds.

Proof: If (6) holds true, sinceUm 6= ∅, there existsum ∈ Um,
m = 0, 1, 2, 3, such that based on Theorem 2, the value of
the vector field at the vertices does not let the trajectory of
the system leave the region from any of the edges.�

Definition 2: (Exit edge)
In the circleCRm

and the vector fielḋx = g(x) , g : R2 →
R

2, the edgeEs
q , q ∈ {r, θ} ands ∈ {+,−}, is said to be

an exit edge, if∀x(0) ∈ int(Ri,j), there existτ (finite) > 0
andτd > 0 satisfying:

1) x(t) ∈ int(Ri,j) for t ∈ [0, τ)
2) x(t) ∈ Es

q for t = τ
3) x(t) /∈ Ri,j for t ∈ (τ, τ + τd)

The following theorem shows the way that we can con-
struct an exit edge:

Theorem 2:(Sufficient condition for an exit edge) For
a continuous multi-affine vector fielḋx = h(x, u(x)) =
g(x), g : R2 → R

2, Es
q with the outer normalns

q, q ∈ {r, θ}
and s ∈ {+,−}, is an exit edge if there exists a controller
u : R

2 → U ⊆ R
2, such that for each vertexvm, m =



0, 1, 2, 3, the following property holds true:

Um = U
⋂

{u ∈ R
2| ns

q(y)
T . g(vm) > 0, for all vm and

for all y ∈ Es
q} ∩ {u ∈ R

2| ns′

q′(y)
T . g(vm) < 0, for all

Es′

q′ 6= Es
q and for all y ∈ Es′

q′ , vm ∈ V (Es′

q′ )} 6= ∅,
(7)

where the convex setU represents the velocity bounds.
Proof: SinceUm 6= ∅, there existsum ∈ Um, such that

we havens′

q′(y)
T . g(vm) < 0, for all Es′

q′ 6= Es
q and all

y ∈ Es′

q′ . Therefore, based on Theorem 1, the trajectories
of the system do not leaveRi,j through the non-exit edges.
On the other hand, we havens

q(y)
T .g(vm) > 0 for all vm

and all y ∈ Es
q . According to Proposition 1, for the multi-

affine function g, there existλm such that∀x ∈ Ri,j :
g(x) =

∑

m λmg(vm), m = 0, 1, 2, 3. Sinceλm ≥ 0 and
∑

m λm = 1, then ns
q(y)

T .λmg(vm) > 0 for all vm and
all y ∈ Es

q . This will lead to havens
q(y)

T .g(x) > 0 for
all x ∈ R̄i,j , which means that the trajectories of the system
have a strictly positive velocity in the direction ofns

q steering
them to exit fromRi,j through the edgeEs

q . �
Solving the inequalities given in Theorem 2 and Corollary

2, for the system dynamics given in (1), the following control
values at the vertices of the regionRi,j can make it an
invariant region or can make one of its edges an exit edge.
For the invariant controller, the control label isC0 and the
control values at the vertices are:


















u(v0) = 1∠(θj + 0.5 | θj − θj+1 +
π
2 |)

u(v1) = 1∠(θj + π − 0.5 | θj − θj+1 +
π
2 |)

u(v2) = 1∠(θj+1 − 0.5 | θj − θj+1 +
π
2 |)

u(v3) = 1∠(θj+1 + π + 0.5 | θj − θj+1 +
π
2 |)

To have the edgeE+
r as the exit edge, the control label is

C+
r and the control values at the vertices are:

{

u(v0) = u(v1) = 1∠(θj + 0.5 | θj − θj+1 +
π
2 |)

u(v2) = u(v3) = 1∠(θj+1 − 0.5 | θj − θj+1 +
π
2 |)

To have the edgeE−
r as the exit edge, the control label is

C−
r and the control values at the vertices are:

{

u(v0) = u(v1) = 1∠(θj + π − 0.5 | θj − θj+1 +
π
2 |)

u(v2) = u(v3) = 1∠(θj+1 + π + 0.5 | θj − θj+1 +
π
2 |)

To have the edgeE+
θ as the exit edge, the control label is

C+
θ and the control values at the vertices are:



















u(v0) = 1∠(θj + 0.5 | θj − θj+1 +
π
2 |)

u(v1) = 1∠(θj + π − 0.5 | θj − θj+1 +
π
2 |)

u(v2) = 1∠(θj+1 + 0.5 | θj − θj+1 +
π
2 |)

u(v3) = 1∠(θj+1 + π − 0.5 | θj − θj+1 +
π
2 |)

To have the edgeE−
θ as the exit edge, the control label is

C−
θ and the control values at the vertices are:



















u(v0) = 1∠(θj − 0.5 | θj − θj+1 +
π
2 |)

u(v1) = 1∠(θj + π + 0.5 | θj − θj+1 +
π
2 |)

u(v2) = 1∠(θj+1 − 0.5 | θj − θj+1 +
π
2 |)

u(v3) = 1∠(θj+1 + π + 0.5 | θj − θj+1 +
π
2 |)

Now, the responsibility of the actuator is to relate the dis-
crete symbolud ∈ {C0, C

−
r , C+

r , C+
θ , C−

θ } to the continuous
control signaluc(x). Using the properties of multi-affine
functions as described in Proposition 1, the control signalcan

be constructed asuc(x) = f(x, ud) =
∑3

m=0 λm(x)u(vm),
where u(vm),m = 0, ..., 3, are the control values at the
vertices corresponding to the control labelud.

B. The supervisor layer

Using these control labels, a discrete supervisor is de-
signed for a follower UAV involved in a formation mission.
In this supervisor, shown in Fig. 3, when a detection event
di,j appears, the supervisor will be informed that the system
has entered the new regionRi,j . If the detection event is
d1,j , it means that the system has entered the first circle of
the partitioned space and the formation is achieved. Hence,
to keep the formation, the system should remain in this
region for the rest of the mission. In this case, keeping the
formation can be done by activating the controllerC0. If the
trajectory has not reached one of the partitions in the first
circle (i > 1), then the eventC−

r should be activated to
move towards the origin. Meanwhile if the leader is on the
way of the follower towards the origin, the eventOb will be
generated which alarms the supervisor about the collision.To
avoid the collision, it is sufficient to drive the follower’spath
to turn anticlockwise, and then resume the mission. Hence,
after observing the eventOb, the supervisor activates the
eventC+

θ .

Fig. 3. The formation supervisor.

IV. I MPLEMENTATION ISSUES

A. Smooth Control

When the system trajectory enters a new region, a new
discrete command will be generated. This may cause the
discontinuity in the generated control signal to be appliedto
the lower levels of the control structure.

For example, Fig. 4 shows a case that the control command
C−

r has pushed the system’s trajectory to transit from the
regionR1 to the regionR2. After reaching the regionR2,
the control command has changed fromC−

r to C+
θ . Since

the generated continuous control signal is a multi-affine
function, based on Corollary 1, the control value at any
point on the edges is determined by the control values at
its vertices. In this example,u(v0(R1)) = u(v1(R2)) but
u(v2(R1)) 6= u(v3(R2)). Since, the control values at the
vertices of the common edge betweenR1 andR2 changes,
there is a jump on the generated continuous control signal.
Next theorem shows how we can resolve this problem.



Fig. 4. The control values at the vertices when the system trajectory transits
from regionR1 to regionR2 and the discrete command changes fromC−

r

to C
+

θ
.

Theorem 3:Let the commandCs
q steers the system’s

trajectory from the regionRi,j to the region Ri′,j′

and then, the supervisor issues the new commandCs′

q′ .
For this transition, the multi-affine controlleru(x) =
∑

vm∈Vc
λm~(u(vm)new, u(vm)old) +

∑

vm∈Vn
λm(u(vm))

provides a smooth control signal, and drives all the system’s
trajectories to exit from the exit edgeEs′

q′ .
Here λm, m = 0, 1, 2, 3, are given in Proposition 1,

Vn is the set of vertices whose control values do not
change due to the transition, andVc is the set of vertices
whose control values change after the system’s trajectory
enters the regionRi′,j′ . For these vertices,u(vm)old and
u(vm)new are the control values at the vertexvm before
and after transiting toRi′,j′ , respectively. The function~
provides a smooth rotation fromu(vm)old to u(vm)new
and it can be presented as~(u(vm)new , u(vm)old) =
{

rm∠( t
△t

θmnew
+ (1− t

△t
)θmold

) for t < ∆t

rm∠θmnew
for t ≥ ∆t

whereu(vm)new = rm∠θmnew
, u(vm)old = rm∠θmold

.
Also, ∆t is the transition time.and then, resume
Proof: LetCs

q = C−
r andCs′

q′ = C+
θ . As shown in Fig. 4,

for this sequence of control commands, after transiting from
Ri,j to Ri′,j′ , the control value at the vertexv3 changes
from u(v3)old to u(v3)new , and for the other verticesvm,
m = 0, 1, 2, there is no jump on the control value.

From the definition of the transition rule,~, since for
the whole transition time, the control values at the vertices
satisfy the conditions of Corollary 2, the system’s trajectory
cannot leave the region through the non-exit edgesE0,2,
E0,1, E1,3. Also, at the beginning of the transition mode, the
control values at the vertexv3 does not satisfy the conditions
of Theorem 2, and hence, it cannot be concluded that the
system’s trajectory leaves the region throughE2,3. But, at
some time,u(v3) will eventually reachu(v3)new , and the
configuration of the vector field at the vertices will satisfy
the conditions of Theorem 2 so that it can be guaranteed
that the system’s trajectory surely leaves the regionRi′,j′

through the edgeE2,3, while there is no jump at the value of
the control signal due to the smooth transition of the control
values at the vertices. The same reasoning can be done for
the other sequences of the control commands.�

Remark 2: In [13], it was shown that the polar abstracted

model is bisimialr to the original system meaning that for
any transition in the abstracted model, there is a transition
in the original system and vice versa. From Theorem 3, it
can be immediately concluded that the result is also valid
for the case of smooth transition mechanism. This is due
to the fact that based on Theorem 3, all of the trajectories
finally will leave the region through the desired exit edge and
the smooth transition mechanism does not let the system’s
trajectories exit from non-exit edges, leading to the following
corollary:

Corollary 3: The smooth transition mechanism intro-
duced in Theorem 3 preserves the bisimilarity relation be-
tween the abstracted model and the original hybrid system.

V. I MPLEMENTATION RESULTS

To verify the algorithm, we have conducted a flight test in
which the leader tracks a line path, and the follower should
reach and keep the formation. In this test, the control horizon
Rm is 50 meter,nr = 10, andnθ = 20. The follower is
initially located at a point which has a relative distance of
(dx, dy) = (−17.8, 11.4) with respect to the desired position
and the distance between the desired position and the leader
is (dx, dy) = (−5,−15) as shown in Fig. 5.

Fig. 5. The schematic of the scenario with for a leader-follower case
tracking a line.

The position of the UAVs in x-y plane is shown in Fig. 6.
The follower state variables and control signals are shown in
Fig. 7 and Fig. 8, respectively. The relative distance of the
follower UAV from the desired position is shown in Fig. 9.
As it can be seen the follower UAV has finally reached the
first circle after 17 sec and then, it has been able to maintain
the formation. A video of this experiment is available at
http://uav.ece.nus.edu.sg/video/hybridformation.mpg.

VI. CONCLUSION

In this paper a smooth hybrid supervisory control mech-
anism was proposed for the formation of unmanned heli-
copters. Using the polar partitioning of the motion space
and utilizing the properties of multi-affine functions over
the partitioned space, a finite state model was achieved
which bisimulates the UAV motion dynamics and was used
to design a discrete supervisor to satisfy the formation
specification. To implement the algorithm, an interface layer
was introduced which connects the discrete supervisor to the
regulation layer of the UAV. This interface layer is composed
of two main blocks: the detection block to generate the
detection events based on the plant continuous signals; and
the actuator block to convert discrete commands of the



Fig. 6. The position of the UAVs in the x-y plane.

Fig. 7. The state variables of the follower.

Fig. 8. Control signals of the follower UAV.

Fig. 9. The distance of the follower from the desired position.

supervisor to a continuous form, applicable to the plant.
For the actuator block, a smooth control mechanism was
introduced to avoid the jumps when the system transits over
the partitioned space. The effectiveness of the algorithm was
verified through the actual flight test results.
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