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_Abstract— This paper addresses the symbolic motion plan- regions are usually of finite number, so the quotient traosit
ning and control of robots to meet high level specifications system can be analysized and designed through classical
through hybrid supervisory control. The basic idea is to pati-  nde| checking or discrete event supervisory control tech-

tion the motion space of robots into logically equivalent rgions, . . . . L
based on which a bisimulation quotient transition system is niques. The designed pathes in the quotient transitioesyst

derived and supervisor is synthesized. The bisimulation dation ~ Satisfying the requested logic specifications, in the fofm o
between the abstracted model and the original continuous sequences of partitioned regions in the motion space, are
dynamics is formally proved, which guarantees the existerecof  then mapped back to the continuous motion space and being
feasible continuous control signals and closed-loop tragtories used to synthesize continuous control signals driving tsbo

for robots to satisfy the high level specifications as well. fie . - o .
main contribution of the paper lies in the development of a physical motions or coordinations. The key challenge here i

unified hybrid hierarchical control framework whose top layer ~how to guarantee that there always exist physically feasibl
is a discrete supervisor that is responsible for decision nkeng  continuous trajectories and control signals for robotshwit

to satisfy the assigned specification. This discrete supésor is  respect to a discrete path in the quotient transition system
connected to the low level continuous dynamics of the system The feasibility here means twofold. No only can the robots

via an interface layer. The interface layer is responsible dr v foll th d fi traiectori ina th
translating discrete commands of the supervisor to a continous really follow the mapped continuous trajectories using the

control signals implementable by the continuous plant and ice ~ Synthesized control signals, but the continuous trajezsor

versa. that robots actually exhibit need to also satisfy the logic
Index Terms—Hybrid systems, Supervisory control, Robot specifications as the pathes in the quotient transitioresyst
motion planning To guarantee the feasibility, most efforts in the literatur
[31, [4], [5], [6], [7]. [8] have been devoted to partitiorgrthe
l. INTRODUCTION motion space and obtaining an equivalent abstracted model

Robots are inherently hybrid systems since they have {p the sense of bisimulation, approximate bisimulation or
make logic decisions in uncertain environments and adaj@guage equivalent quotient systems. For instance, in [9]
to changing circumstances so as to achieve non-triviastasR complicated search and rescue and in [10], the motion
individually or collectively, such as visiting particuleegions ~control of robot swarms are addressed using symbolic cbntro
in order under certain conditions while avoiding obstacleB'ethods and abstraction techniques. These schemes reduce
and collisions. Meanwhile, these logic decisions made bije system to a finite state transition system [2], [11],
robots, like hovering over a target, turn to neighboring12], for which one can design a proper discrete supervisor
regions, back to the base station etc., will unavoidablyinfl [13] to achieve certain properties expressed in high-level
ence their continuous dynamics and control laws respégtiveSPecifications such as linear or branching temporal logics.
To comprehensively analyze and design such a system, dfe[3], by triangulation and in [4] by the rectangulation of
has to turn to hybrid modeling and control theory [1] andhe motion space, continuous motion planning and control
consider the discrete and continuous dynamics of the systeRfoblems are mapped to a finite state transition systems. In
simultaneously and within a unified framework. [5] and [6], the robot motion is controlled to satisfy temglor

Actually, a current trend in the robotics literature is tologic specifications over convex cells.
study the robot motion planning problem in the framework !N this paper, we intend to unify some existing results and
of hybrid supervisory control, which is known as robotPropose a computationally effective hybrid approach fer th
symbolic planning and control [2]. The basic idea is tgobot motion control so that the closed-loop system satisfie
partition the motion space of robots into logically equérst the discrete logic of the decision making unit. In particula
regions, say a room itself can be considered as a region€ adopt the bisimulation-based abstraction of multi-affin
we are just interested in the fact whether there are robgiynamics on rectangular regions to obtain a equivalent quo-
visiting the room or not. Then, a quotient transition systerffent transition systems, by which the equivalent behavidr
can be derived accordingly with these partitioned regiori§i¢ abstract model and the original plant allows the designe
as its states and the existence of continuous trajectorit® Synthesis the discrete supervisor for the abstract model

from one region to another as its transitions. The partittbn @nd then apply it to the original plant. Therefore, the main
contribution of this paper lies in the developing a unifiegrhi
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over the partitioned motion space, for which we design & = v(1), = [zit1,¥5]", v2 = v(10), = [#,y;41]", and
discrete supervisor to achieve the desired specificatia. Wz = v(qy), = [zi+1,y;+1]7 as the vertices of the region
prove that the bisimulation relation between the abstrhcteR; ; as shown in Fig. 1.

model and the original continuous model holds for a plant

with multi-affine dynamics over the rectangular partitidne y

space. This bisimulation relation implies the same behavio Yy
of the plant and its abstract model and therefore, the discre
supervisor designed for the abstracted model can be applied
to the original continuous plant so that the closed-loop ‘
system’s behavior does not change. To implement the idea, ¥, | S
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a hierarchical hybrid control structure is proposed whose WE

lowest layer is a plant with continuous dynamics and its [ A

top layer is a discrete supervisor which controls the system ‘ Y m ‘ 54

to satisfy the given specification. To connect the discrete h !
supervisor to the continuous plant, an interface layer is Fig. 1. Vertices and edges of the regidi) ;.

introduced by which the discrete commands of the supervisor

can be converted to a continuous form applicable to the )

plant. Furthermore, when the system trajectory crosses the! N SetV(x) stands for the vertices that belong+tpand

partitioning curves, the interface layer generates detect £(vm) IS the set of edges that touch the Xe“@‘ Further-

events which inform the supervisor about the current stafgore. the elementt; ; has four edgedE., EL, EJ, E '}

of the system based on which the supervisor can issue néfd correspondingly, four outer normal vectofs! =

commands. [170]T’n; = [_150]T7n;_ = [Oal]Tvn; = [0’_1]T}' For
The rest of this paper is organized as follows. Aftethis partitioned spacel(x) = x relates the labek to

explaining the preliminaries and notations in Section lIthe setx. This partitioned space can be captured by the

in Section 1ll, the symbolic motion planning and controlequivalence relatio) = {(x1,x2)[F* s.t. 21,22 € (%)},

problem is described. Then, in Section 1V, the partitioninthere* is one of the above-mentioned partitioning elements.

of the motion space will be described. Several controllefgorrespondinglymg(z) = * s.t.z € * and3(3) =

will be introduced to drive the system trajectory over théVheremq(z) is a projection map.

partitioning elements. In Section V, the partitioned syste I this partitioned space, let's defirlé is the set of all

will be bisimilarly abstracted to a finite state machine andertices of the rectangle$; as the perimeter of the motion

the bisimulation relation will be proven. For the resultingSPace in which the vertices are excluded, &ds the exte-

finite state machine one can design a discrete supervisor 4y of the motion space. Also consider tHetection element

explained in Section VI. Finally, the paper is concluded irf([é; 5], [i', 5']) = Ri; N Rir j» —V»., which is defined for two
Section VII. adjacent regiong; ; and R ; (the order is not important).

With this procedure, the whole space has been partitioned
Il. PRELIMINARIES into V,, UR; ; Ud([i,j],[,7 ) UPUW, wherel < 4,i <

In the literature, there are several methods that can be us®dd — 1, 1 < j,j° < N, — 1. Correspondingly, consider
for partitioning of the space such as using natural invasianV» Rij, d([i, ], [',5']), P, and W as the labels for these
of the plants [14], rectangulation [4] or triangulation [8] Partitioning elements.
the motion space, or polar and spherical partitioning [8] of
the space. Here we adopt the rectangulation of motion space
for convenience, while the basic ideas can be extended toConsider a robot with the dynamids(t) = f(X (t), u(t))
other abstraction schemes. Consider that the motion spashere X is the robot position and. is the control input.
is a[0,xzn] x [0,yn] rectangle which is partitioned by the For the motion control of this robot, the motion space

I1l. PROBLEM FORMULATION

curves{z = z;|0 < z; < zy, such that fori < j : can be partitioned into several disjoint regions which are
x; < x4, =1,...,Ng, 21 = 0,2y, = zn} and{y = separated by hypersurfaces. Our objective here is to ecomstr

¥ |0 < y; < yn such that fori < j : y; < y;,4,7 = a hybrid controller to drive the robot through the partigon
L,....Ny,y1 = 0,yn, = yn} into (N, — 1) x (N, — 1) space to satisfy a given specification. LRt, R,...,R,, as
rectangles. the elements of the partitioned space, and correspondingly

In this partitioned space, the regiddy ; = {(z,y)| z; < Ri, R,,...R, as the finite set of symbols that label these
x < zi41,y; <y < y;41} iS a rectangular partitioning elements, wher@(Ri) = R;. The motion planning objective
element, which is surrounded by the curves= z;, + = may require the robot to visit particular regions with a
ziy1, ¥ = y;, andy = y;41. The interior of the region specific order while avoiding some other regions which can
R; ; is denoted byR; ;. Each region has four verticaes,, be specified by a LTL formula [15]. A LTL formula over the
m = (mg, my)2 Wherem, andm, are the binary indices, set of proposition® = {Rl, Ro, ..., Rn} can be constructed
which refer to the partitioning curves that have generateagsing the combination of traditional logical operatordumk
the vertexv,,. Hence, we havey = v, = [z:,y;]7, ing negation ¢), disjunction §/), conjunction (\), and the



temporal operators including nex®j), until(U), eventually partition just based on the values of the vector field at its
(¢), always (), and releaseK). For example the formula vertices. This property has been formally described in the
oR, A ©R> means that the robot will eventually reach regiorfollowing proposition.

R; and will eventually reach regiork,. Now, the robot Lemma 1:[18] Given a multi-affine functiong(X) de-
motion planning and control problem can be described ded over a rectangl&; ;, the functiong can be uniquely

follows: ' described based on the values pfat vertices ofR; ; as
Problem 1: Given the system dynamics aX(t) = VX = (z,y) € Ri;: 9(X) =30 _o Amg(vm), wherev,,,

f(X(t),u(t)) and the desired specification in terms of ann = 0,...,3 are the vertices of the elemeft; ; and \,,,

LTL formula ¢, construct the hybrid controller to generatecan be obtained uniquely as follows:

the control signal(t) such that starting form any point m L 1—m

inside the set of initial stateX, visited regions by the robot Am = A (L= Ag) M AT (L= Ay) ™, (1)

trajectory X (¢) satisfy the formulap. wherem,, m,, are the corresponding binary digits of the
To address this problem, we propose a hierarchical hybriddex m, and

controller (Fig. 2) in which a discrete supervisor commands

the system such that closed-loop system satisfies the farmul Ax =

¢ over the partitioned space. This discrete supervisor danno |, this theor

be directly connected to the plant with continuous dynamic

Hence, an interface layer is introduced which converts t

discrete commands of the supervisoy, to the continuous

fprm, “(t)j to be applied to the plant, gnd transates the con- Now, using these properties, for a system with multi-affine
tinuous signals of the planf((¢), to discrete symbolsg,, dynamics it is possible to construct multi-affine contrdleo

understandable by the supervisor. To construct this Cbntr@ither keep the system’s trajectory inside the region (iave

hierarchy, we first need to rigorously describe the partiig  e4ion) or to push it out from the desired edge (exit edge)
of the motion space, and then, bisimilarly abstract theesgst as it is described in the following two propositions.

to a finite state machine to be able to design the d'screteLemma 2:[4] (Constructing an invariant region) For a

T = (2)
Tit+1 — T4 CYi+1 — Y5

em, it can be verified that,, > 0, and

m Am = 1. Also, since the above theorem holds true for

| points inR; ;, it can be also applied for the points on the

Supervisor. continuous multi-affine vector field = h(X,u(X)) =
g(X), the region R, ; is an invariant region if there

exists a controlleru, such that for each vertex,,,

m = 0,1,2,3, with incident edgest; € E(vn,), and

u, €U, U, corresponding outer normals; we have U, (Inv) =

{u|nZT.g(Um) <0, forall Ej € E(Um)} £ (.

Lemma 3:[4] (Constructing an exit edge) For a con-
U =r(y) X tinuous multi-affine vector fieldX = h(X,u(X)) =
L Plant | g9(X), the edgeE; with the outer normaly, is an exit
edge if there exists a controlles, such that for each
vertex v,, m = 0,1,2,3, we have U, (Ex(F;)) =
{u € R?| nZT.g(Um) > 0, forall v, and an:T.g(vm) <
0, for all ES # ES, vy, € V(ES)} # 0.

IV. ROBOT MOTION CONTROL OVER APARTITIONED Next proposition shows that if we construct an controller

SPACE based on Lemma 3, all of the points on an exit edge are

To address the above mentioned problem over the paeachable.
titioned space, we will develop a control mechanism that Proposition 1: For a continuous multi-affine vector field
starting from any point inside a region, the robot moves = h(X,u(X)) = ¢(X), in a regionR; ; with the exit
to a unique destination region on its neighborhood. ledge E; constructed by Lemma 3, aj € E; \ E are
this case, the system can be bisimilarly abstracted to raachable from a point inside the regidt ;.
finite state machine and the reachability problem for sucRroof: Respecting the second condition of Lemma 3 for the
a system becomes decidable [16]. The decidability progoints on the exit edgé’;, we will haveng(y)T.g(y) >0,
erty desponds on both the system dynamics and the pafy € Ej. This strictly positive inequality guarantees that
titioning style. For a rectangularly partitioned space, #he trajectories that leave the region do not return back any
system with multi-affine dynamics is decidable [17]. Amore. In addition, it shows that the points on the exit edge ar
multi-affine function f : R®™ — R™, has the property not reachable from other points on the edge. Therefore, any
that for any1l < ¢ < n and anya;,az > 0 with y € Ej is not reachable form an adjacent region or from
a1 + ay = 1, f(x1,..., (@12, + a22i,),2iy1,...x,) = another point onEs. Then, considering:}(y)”.g(y) > 0,
a1 f(T1, ooy iy, Tip 1y o) Fao f (21, oy iy, Tig1, .--Zn). I by continuity ofg, it can be concluded that there is a point
a rectangular partitioned space, this property allows tdisitb inside the regiom?; ; on the neighborhood af from which
the value of a multi-affine vector field at any point inside a is reachablel

Fig. 2. The hierarchical hybrid control structure.



With these controllers defined over the partitioned space, a)v e {d*([z‘lj], [i,3'])} € Ua; mo(X1) #
-/ Z'/ 2

it is possible to drive the system’s trajectory to one of the 7q(X2); 3Ri ;. Ri v, d([i, 4], [, 5']),
adjacent regions or to keep it inside the current region. i, and 7 > j such thatmg(X:)
This system can be captured by a transition system= d([i, 4], [",5]) andmg(xe) = Ry jr; 30 <
(X, Xq,,Ug,—q, Yo, Hg), where e < 7and3w € {C] ¢} such that
. Xg = WUR@jUd([i,j], [i', ]) UPUW is the set of w(t) : [0,7] — R? is the solution of
system states, where< i,/ < N, — 1, 1 < j,j' < X = h(X,r(w)), P(e) = Xi;9(r) =
Ny—l. XQ,WQ(w(t))~: Ri_’j fOTt S (O,E), and
« X0, C R, is the set of initial states. Here we assume TQ(¥(t)) = Rij for t € (e,7].
that the system initially starts from some of the regions b) v e {d=([i, 4], [}, 5]} C Ua; mq(X1) #
Ri;. TQ(X2); AR, Ry, d([i, j], [, 5']) @ <
e Ug = U, UU,, where i, and j* < j such thatmo(X:) =

- U, = {Ct C;,CH C-,Cy} is the set of d([i, j1, 17, 5']) andmq(2) = Ry 5 30 <
a T x Y Y — —
labels corresponding to the controllers that can c ; T Bnd] Ei GRQ{% ’trc]gé}siruct:l)r:hglt‘
make the regionR;; an invariant region or wX( 7'h()’(7( ), B(e) = X:(r) =
can make one of its edges an exit edge. For X - ( (t)’)riu é ¢ ? (’O )Tan_d
these control labels, the sets of control ac- 2,mQ(V(t) = Rij fort € (0,¢),

tions that can be activated in this region are : mQ(¥(t)) = Rirjr for t € (e,7].

r(C8) = {uX)u(X) = 3, Ant(vm), m = — Crossing the motion space’s boundany:- P;
0,1,2,3, vy € V(Ri), u(vm) € Un(Ex(F}))}, mQ(X1) = P andmq(Xp) = Wi 3R;; and
and r(Cy) = {u(X)|u(X) = 3 Amt(vm), vm € 0 < e < 7and3w € {02;,_01 ,CJ,Oy_}
V(Ri;), uw(vm) € Un(Inv)}, where,, can be such thaty(t) : [0,7] — R® is the solution
obtained by (1). of X = h(X,r(w)), ¥(e) = Xi;9(r) =
= Uy = {d* (i), 17, 4D} U {d ([i. 4], [7, 5D} U X, mo(¥(t)) = Fij fort € (0,¢), and
{P} is the set of the detection events, where TQ(¥(t)) =W fort e (e,7].
1 <i44id <Ny,—1,andl < 5,5/ < N, — L o Yo = Xg is the output space.

The eventsit ([i, j], i, §']), d~([i, 4], [/, 5']), and e Hp: X — Yy isthe output map. Here, we have chosen
P respectively show that the detection element Hg(X) = mq(X).

d([i, 5], [, j']) is crossed in positive direction of Analogous with [14], to model this partitioned system, we
or y axis, the detection element[i, j], [i’,']) is  can define an interface layer which connects this partitione
crossed in negative direction of or y axis, and system to a higher discrete supervision layer. The interfac
the perimeter of the partitioned motion space isayer has two main blocks: Detector and Actuator. The

crossed. detector converts continuous time signals to a sequence of
o (X1,X9,v) €0, denoted byX; ¢ X, if and only Symbols. Upon crossing partitioning hypersurfaces, plant
if one of the following conditions holds true: symbols,d* ([i, j]. [, j']).d™ (¢, j]. [i", 5']), and P, will be

— generated, which inform the current situation of the plant
1) Actuation: .
] _ © o ot o X to the supervisor. Based on the observed plant symbols, the
— Exitedgew € {?m .,/Cz Gy Oy Y mo(X1) # - gypervisor decides which control signal should be injetted
mQ(X2); 34, 5, 7, j §UC? tbaer(Xl) = Rij  the plant to satisfy the desired specification. This command
and mo(X3) = d([la3]3 [1.7] ]), or m(X2) =  has a discrete nature and the control commands to the plant
P; Furthermore,37(finite) 2ang > 0 such  are continuous. The actuator, will translate these discret
that ¥(t) : [0,7 + ¢] — R* is the solution commands to continuous signals. The block diagram of this

of X = h(X,r(v)), ¥(0) = X1;9(T) =  control structure is shown in Fig. 2.
Xo, mo¥(t)) = mg(X,) for t € [0,7), and
mo(¥(t)) # mo(Xq) for ¢t € [r,7 + ¢]. Here, V. ABSTRACTION OVER THE PARTITIONED SPACE

r(v) is the continuous controller corresponding | the partitioned systerfi, although we captured all of
to the control labeb, which can be constructed jmportant transitions, this transition system still haginite

as discussed above. _ number of states which makes the control synthesis problem

— Invariant region:v = Co; 3R;; such that \ery difficult or even impossible. Abstraction [19] is a
mQ(X1) = m(X2) = Rij; ¥(t) : RY = R?  tachnique that reduces the number of states by aggregating
is the solution of X = h(X,r(v)), ¥(0) =  gjmilar states. Hence, using this strategy, and consigerin
X1, 9(1) = Xo, and7q(¥(t)) = 7(X1) = each partitioning element as one of states in the abstracted
7Q(X2) for all t > 0. model, the resulting model will be :

2) Detection: Te = (Xe, Xe,, Ue, —¢, Ye, He), Where

— Crossing a detection element to enter to a new « X, = {Rl-_,j|1 <i<Ny,—-1,1<j <Ny —

region: UL, 1, [0 DI < i) S Np =1, 1< 4,5 <



N, — 1}U{P,W}. Note that since the system startsg;, whereq, € 3(gg) or equivalently(qg, q;) € R. For
from a point inside the region&; ; and due to strictly  the converse case, assume that™¢ g;. According to the
negative inequalities in Lemmas 2 and 3, the systemefinition of R, all = € 3(qg¢) are related tag. Hence, to
trajectory never crosses the vertices, and hence, the ggbve the second condition of the bisimulation relation, we
V.. does not need to be considered in the abstractefhould investigate it for alk € 3(¢¢). Based on the control
system. construction procedure, the labels ¢:, and qg can be the

o Xeg C{Ri | 1<i i’ <N, —1, 1<j,7<N,—1}.  one of the following cases:

« Ug =U, UUj is like what we h%\’e "TQj 1) u = Co andge = g¢. In this case, since the controller

o (r1,m2,v) €, denoted byr, —¢ 7o, if o € U, C, makes the region an invariant region (Proposition

X1 € (r1), X € S(rp) such thatX; ¢ Xo. 2), all of the trajectories starting from agy, € S(g¢)
o Ye=Xeo will remain inside the regiof§(¢¢ ). Therefore, for any
o He(r) = ris the output map. 4o € S(ge), there exists ag, € S(ge) such that
With this method, the partitioned systeff, which previ- a0 LQ qb and qb — 3((12)-

ously was modelled by the regulation layer and the interface 2) u e {CF,C;,CH C Y, qe € {Rij| 1<i<N, —
layer, now is abstracted to a finite state transition sysfem L1 <mj <N l}y andg. e {J&[z’ j]_[i’ ;'])| 1 <
for which we can design a discrete supervisor [13] to achieve ", — 7 = A - -

. SR : . . i,i' < Ny;—1, 1<j,j <N,—1}org = P. In this
the desired specification. Then, with the aid of the integfac - :

X . case, based on Proposition 3 starting from gpye
layer, the designed supervisor for the abstract model can be . 3
. - ; J(ge), the controllerw drives the system trajectory

applied to the original continuous model. To guarantee that towards the detection elemefi(q.). Therefore, for
the discrete supervisor for the abstract model can also work an € (ge), there exists & qﬁe .g( ) such ’that
for the original continuous model, it is necessary that the ny , 1 Y, s Ao e
abstract model and the original continuous model represent 9@ ~7Q 9@ ""‘nd.?Q.IE "(qé?' ., -
the same behavior which requires them to be bisimilar. A 3) v € {dt([i, 5], 7", <i,8" < Np—1, 1< 4,5 <

bisimulation relation between two transition systems can b Ny =1} CUs g € {Rij[1 <i <N, —1, 1<
formally defined as follows: j < N, —1}, andge € {d([i, 4], [¢, ]|l < 4,¢ <
Definition 1: [19] Given T;=(Q:, Q%,U;, —,Y;, H;), N, -1, 1 <4, < N, — 1} such thati" > i and
(i = 1,2), R is a bisimulation relation betweef, andT5, j' > j. In this case, based on Lemma 1, for any
denoted byl ~r T», iff: qq € S(qe) = d([i, 4], [, 5']), there exists a controller
1) Vg € QY thenJgo € QU that (q1,¢2) € R. Also, v E {C;,C;_} that has led the_ trajectory of the system
Vge € QY then3q, € QI that (g1, ¢o) € R. from the regionR; ; to the pointggp on the detection

elementd([s, j],[¢, 5']). Since R; ;» is the unique
adjacent region of the elemeif; ;, common in the
detection elemend([, j], [¢’, j']), based on the defini-
tion of the controller for the exit edge and Proposition
3, the controllerv leads the trajectory of the system
to a point inside the regio®;s ;» so that the detection
eventu = d([i, j],[i’,j']) is generated. Therefore, for
any qq € 3(ge), there exists ay, € 3(g;) such that

2) Vg1 —1 ¢4, and (g1, ¢2) € R then3g) € Q2 such that
g2 —2 ¢4 and (q},4¢5) € R. Also, Vg2 —2 ¢}, and
(g1,92) € R then3g; € Q; such thatq; —; ¢} and
(¢, %) € R.

For multi-affine functions defined over a rectangular par-
titioned model, and with the controllers which we defined to
construct exit edges or to make a region invariant, the atitstr
model and the original partitioned system are bisimialr as

described in the following theorem: 4Q —q dg andqg € I(qt). Similar explanation can
Theorem 1:The original partitioned systeniy,, and the be provided for the case € {d~([i,j], [i/",j'])|1 <
abstract model], are bisimilar. i, <Ny —1, 1<j,j’ <N, -1} oru=P.

Proof: Consider the relatio®® = {(qq,q¢)|qq € X¢, g € In all of the above mentioned cases, the second condition
Xe¢, and gg € I(ge)}. We will show that this relation is of the bisimulation relation for the converse case holds.tru

a bisimulation relation betweefiy and T;. To prove this Since both conditions of the bismulation relation hold,
bismulation relation we should verify both conditions ofandT are bisimilar.ll

Definition 1.
To verify the first condition of the bisimulation relation in  V!- ADOPTING THEDES SUPERVISORY CONTROL TO
Definition 1, we know that for anyg € X, there exists THE ABSTRACTED MODEL

a regionR; ; such thatqy € R; ;. For this region, there  For the abstracted model with finite number of states
exists a labelR; ; such that?; ; = (R; ;) andR; ; € X¢,.  we can design a discrete supervisor using Discrete Event
Hence,(qq, Ri ;) € R. Conversely, it can be similarly shown Systems (DES) supervisory control theory [13]. Formally,
that for anyqs € X¢,, there exists ag € Xq, such that the finite state machine model of the abstracted system can
(ge,qQ) € R. be represented by an automatéh= (Q,%, o, Qo, Qm),

To verify the second condition of the bisimulation relationwhere @ = Q¢ is the set of statesf)y = Q¢, C Q is
following from the definition ofT;, we know that for any the set of initial statesy = U, U U, is the (finite) set of
(40, ¢¢) € Randgq —q qp, there exists a transitiop —¢  events;Q,, C Q is the set of final (marked) states, and



a @ x X — @ is the transition function which is a satisfiesL,,(S) = L(S) = K.
partial function and determines the possible transitions i VIl. CONCLUSION
the system caused by an event. Based on the transitions in '

Te, the functiono can be defined as follows: In this paper, a hybrid framework was proposed for
the symbolic motion planning and control of robots. The

- approach was based on rectangular partitioning of the motio

O‘(Ri,jaf’) = space and then, abstracting the original continuous system
R ; if o =0Co with infinite number of states to a finite state machine.
d(fi,jl,[i +1,4]) ifo=CF andi# Ny —1 To implement the idea, a multi-layer control structure was
d([i, 4], [t — 1,4]) ifo=C, and i #1 proposed in which the discrete supervisor was connected to
d([i,j],[i,j+1]) ifo = Crandj# N, —1 the plant via an interface layer. The continuous plant and
d([i, 4], [i,7 — 1)) ifo=Cy and j#1 the interface layer together were shown to be bisimilar with
P ifo=CF i=ng_1; 0=Cr, i=1; the abstract model. This bismilarity let us apply the digere

o=Ck, j=ny1,0r 0 =Cf, j=n,_ supervisor which was designed for the abstract model to the

continuous plant while the closed-loop behavior does not

O‘(d([za]L [il,j/,]),U) :ARZ"J'
if o = d+(isg), [, ),
oo =d(d) 1)),
a(P,P)=W

i 21, 5 = ],
i<i g <y

(1]

In this automaton, the sequence of events composes a
string. ¢ is an empty string, an&l* is the set of all possible [2]
strings over the sek including . The functiona can be
extended from acting on events to acting on the strings3]
as eyt 1 Q X X* — Q in which ae,t(q,¢e) q and
Qext(q,50) = a(ezt(q,8),0) Vs € ¥* ando € X. The
language of the automaton is a sequence of strings that can
be generated by? and can be defined a5(G) = {s €
* 390 € Qo s.t. aext(qo,s) is defined.}. The marked
language, denoted h¥,,,(G) consists of the strings that can
be generated by the automatGhand end with the marked
states which formally can be defined as,(G) = {s €
¥*|3q0 € Qo s-t. aext(qo, 8) is defined and cert(qo, s) €
Qm}. The event sek consists of two types of events: the
controllable event set,. = U, and the uncontrollable event (8]
setY,. = U,. The controllable events are those that can be
disabled or enabled by an external supervisor; however, the
uncontrollable events cannot be affected by the superviso
Playing with the controllable events, the supervisor can
modify the plant's generable language so that L(S/G) [10]
and[(s € L(S/GQ)) A (so € L(G)) A (0 € L(S))] & [so €
L(S/G)]. Correspondingly, the closed-loop marked language1]
will be L,,(S/G) = L(S/G)(Lm(G). This supervisor
can be used to achieve a controllable language specificatiéjr?]
A language specificatiori is said to be controllable with
respect to the language of the pla@tand set of uncon- [13]
trollable eventsE,. if Vs € K, e € Ey.,se € L(G) = [14]
se € K. To realize this control strategy and to combine
the plant discrete model and the supervisor, we can use
parallel composition which is a binary operation betwee
two automata. Next theorem from DES literature shows hoyye]
the parallel composition can be used to modify the plant
language to achieve a desirable specification given in terrﬁg]
of a controllable language.

Theorem 2:Let G be the plant ands C ©* be a desired [18]
language. If) # K = K C L(G) and K is controllable,
there exist a nonblocking supervis6rsuch thatL(S/G) =
L(S||G) = K. In this case,S could be any automaton that

(5]

(6]

(7]

[19]

change.
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