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Abstract

Motivated by the growing application of wireless multi-access networks with stringent delay constraints, we

investigate the Gaussian multiple access channel (MAC) in the finite blocklength regime. Building upon information

spectrum concepts, we develop several non-asymptotic inner bounds on channel coding rates over the Gaussian MAC

with a given finite blocklength, positive average error probability, and maximal power constraints. Employing Central

Limit Theorem (CLT) approximations, we also obtain achievable second-order coding rates for the Gaussian MAC

based on an explicit expression for its dispersion matrix. We observe that, unlike the pentagon shape of the asymptotic

capacity region, the second-order region has a curved shape with no sharp corners.

A main emphasis of the paper is to provide a new perspective on the procedure of handling input cost constraints

for tight achievability proofs. Contrary to the complicated achievability techniques in the literature, we show that with

a proper choice of input distribution, tight bounds can be achieved via the standard random coding argument and a

modified typicality decoding. In particular, we prove that codebooks generated randomly according to independent

uniform distributions on the respective “power shells” perform far better than both independent and identically

distributed (i.i.d.) Gaussian inputs and TDMA with power control. Interestingly, analogous to an error exponent result

of Gallager, the resulting achievable region lies roughly halfway between that of the i.i.d. Gaussian inputs and that

of a hypothetical “sum-power shell” input. However, dealing with such a non-i.i.d. input requires additional analysis

such as a new change of measure technique and application of a Berry-Esseen CLT for functions of random variables.

Index Terms

Random coding and typicality decoding, modified mutual information random variable, joint-outage probability,

outage splitting, change of measure, power shell, non-asymptotic achievability bounds, low-latency communication.

I. INTRODUCTION

Wireless multi-access networks are increasingly emerging as an integral part of many communication and

control systems with a central data processing or decision making unit, such as the uplink of wireless cellular

communications, sensor networks, and machine-to-machine (M2M) communication systems. Such multi-access

communication networks usually have low latency constraints for their information, due to their nature or application.

These delay requirements, along with the desire for low-complexity system designs, call for schemes and protocols
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that employ finite blocklengths, even on the order of several hundred symbols, and achieve high levels of reliability

at the same time.

A mathematical analysis and design of multi-access networks with such stringent latency requirements, however,

cannot rely on conventional information theoretic results, which assume asymptotically large blocklengths and

vanishingly small error probability. It is therefore critical to develop rigorous non-asymptotic results that are tight

for finite blocklengths. Although this has been an strong trend in the early ages of information theory [1], [2],

there has been renewed interest in this direction since the landmark works of [3], [4]. The main theme of these

works is treating mutual information as a random variable (RV) [5], [6], which has a stochastic behavior based

on the transmitted input and the channel noise and interference. This idea is mainly developed in the information

spectrum approach of Verdú and Han [7], [8], which suggests that the cumulative distribution function (CDF) of

this RV characterizes performance in terms of the probability that the channel cannot support the communication

rate and causes an “outage” for the actual codeword to be correctly detected at the receiver. The highest coding

rates arise if the error probability is dominated by the outage probability, and the probability of “confusion”, i.e.,

the observation is wrongly decoded to any incorrect codeword, decays to zero.

Although tight non-asymptotic bounds obtained by the information spectrum approach can help with precise

analysis and design of communication systems, their numerical computation are usually cumbersome. It is therefore

of high practical interest to come up with accurate approximations of the coding rates that are still valid for

moderately short blocklengths. Capacity (region), as a first-order statistic of the channel, is already a first-order

approximation of the coding rates, but it is only useful for very long blocklengths. Error exponent [9], [10] is one

conventional tool for this purpose, which applies Large Deviation Theory (LDT) to the mutual information RV and

studies the exponential decay in error probability of a fixed-rate coding scheme as the blocklength grows larger.

Although error exponent analysis can provide a rough estimate for finite-blocklength analysis, a method for finding

sharper approximations employs the Central Limit Theorem (CLT) to the mutual information RV, specifically for

rates close to capacity. This way, one can investigate the increase in coding rate of a scheme with fixed error

probability as the blocklength grows larger and obtain second (and higher) order approximations. In particular,

it has been demonstrated [2]–[4] that second-order approximations involving the fundamental quantity of channel

dispersion, as a second order statistic of the channel, provide good estimates of the channel coding rates for moderate

to short blocklengths.

In this paper, we show how similar ideas can be extended to a multi-user setting in which multiple users are

communicating several independent messages to a single receiver over a Gaussian multiple access channel (MAC).

In particular, we present several non-asymptotic achievability bounds on the channel coding rates of a Gaussian

MAC as a function of the finite blocklength, the fixed average error probability, and the users’ power constraints.

Our bounds suggest that the joint outage event, in which either of the users’ mutual information is not strong enough

to support its target rate, is the fundamental quantity that governs the performance over the Gaussian MAC. Since

this joint outage event is in general complex, we also give a slightly looser, but simpler to analyze non-asymptotic

achievable region based on an outage-splitting idea [11], in which the joint outage event is split into individual
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outage events via the union bound. Applying the CLT to our finite-blocklength results, we also obtain corresponding

achievable second-order coding rate regions for the Gaussian MAC. In particular, we give explicit expressions for

the achievable dispersion matrices of the Gaussian MAC in terms of the users’ power constraints.

A critical ingredient of our analysis is the choice of input distribution for improving the second-order performance.

In particular, consider the 2-user Gaussian MAC with maximal power constraints P1 and P2. Inspired by Shannon [1],

rather than random coding using the common choice of independent and identically distributed (i.i.d) Gaussian input

distributions Xn
1

i.i.d.∼ N (0, P1), Xn
2

i.i.d.∼ N (0, P2) [12], [13], which achieve the capacity region and are therefore

optimal to first order, or their truncated versions lying in thin shells nP1−δ ≤||xn1 ||2≤ nP1, nP2−δ ≤||xn2 ||2 ≤ nP2

for an arbitrarily small δ > 0, which are used by Gallager for the error exponent analysis [9], [14], we focus

on inputs having independent uniform distributions on the respective power shells, namely, the n-dimensional

spheres ||xn1 ||2 = nP1 and ||xn2 ||2 = nP2.

Consider a symmetric Gaussian MAC with blocklength n = 500, average error probability ε = 10−3, and

powers P1 =P2 = 0 dB. Figure 1 compares1 the approximate achievable rate regions for all of the aforementioned

input distributions: independent power-shell inputs with both joint-outage and outage-splitting versions; independent

i.i.d. Gaussian inputs; independent truncated Gaussian inputs; and also the rate region achievable via time division

multiple access (TDMA) with power control; along with the asymptotic Cover-Wyner capacity region [16], [17]. We

also depict a hypothetical rate region which would be achievable if the sum of independent power shell inputs fell

on the sum-power shell.2 To show the tightness of the achievable rate regions, we also depict two straightforward

second-order single-user (SU) outer bounds and a conjectured second-order sum-rate outer bound. The details of

all of these regions are given in Section IV. We note that all of the approximation results are computed only up to

second-order.

Unlike the pentagon shape of the capacity region of the Gaussian MAC in the infinite blocklength regime, we

observe that its second-order approximation has a curved shape with no sharp corners. Moreover, the region resulting

from independent power shell inputs lies roughly halfway between that of the i.i.d. Gaussian inputs and that which

would be achievable by the hypothetical “sum-power shell” input. This phenomenon is similar to one observed

by Gallager in his analysis of error exponents for the Gaussian MAC [14]. It is also interesting that, Gaussian

(and truncated Gaussian) random codebooks, although optimal for achieving capacity, are not second-order optimal,

and their finite blocklength achievable rate region falls well inside that of power shell inputs. Another interesting

observation is that, contrary to the infinite blocklength case, the TDMA strategy with power control is not even

sum-rate optimal. Last but not least, the outage-splitting region of the power-shell input closely resembles that of

the joint-outage version, and therefore its simplicity does not sacrifice much with respect to accuracy.

Of course, the improved performance of the independent power shell inputs comes at the price of additional

complexity in the analysis. First, although the variance of the sum is the sum of variances for two independent

1This is a corrected and updated version of a similar plot which was presented in the conference version of this work [15].
2We conjecture this to be an outer bound for the Gaussian MAC.
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Fig. 1. Symmetric Gaussian MAC with blocklength n = 500, average error probability ε = 10−3, and powers P1=P2 = 0 dB.

Gaussians, the sum of two independent power shell inputs does not lie on the power shell corresponding to the

sum of the powers, i.e., ||xn1 ||2 + ||xn2 ||2 6= ||xn1 + xn2 ||2. Second, classical CLT and LDT analysis do not apply

directly for such non-i.i.d. inputs. To overcome these difficulties, we develop new techniques: since power shell

inputs can be constructed by normalizing i.i.d. Gaussian RVs, we rely on a CLT for functions to develop the outage

probability approximation; additionally, we introduce a change of measure technique for the confusion probability,

so that classical LDT can be applicable to prove its decay to zero.
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Another main emphasis of our work has been to utilize standard and transparent methods to highlight the

proof steps for finite blocklength analysis, especially when input cost constraints are involved. We are specifically

focused on the method of encoding and decoding. Although random coding and typicality decoding have proven

to be powerful tools in information theory and the standard method for proving most source and channel coding

theorems [18], all non-asymptotic achievability bounds for the Gaussian channel either use random coding but

with maximum likelihood (ML) decoding [1], [9], or employ typicality decoding but with non-random sequential

encoding [3], [19]. In addition, for the tightest bounds, handling the cost constraint is either done through relatively

sophisticated geometric arguments [1] or via a relatively complicated introduction and analysis of composite

hypothesis testing [3]. In this paper, we start by proving tight finite-blocklength achievability results for point-

to-point (P2P) Gaussian channels, which are at least second-order optimal, using the standard arguments of random

coding and typicality decoding, with some slight modifications. As we will see, this approach appears easier to

generalize than those in [1], [3] to multi-user settings, specifically the Gaussian MAC, for which we obtain rather

tight achievable second-order approximations using the random coding and modified typicality decoding method.

The rest of this paper is organized as follows. In Section II, we review the tightest achievability methods in the

finite blocklength regime. Then, in Section III, to highlight the key elements of our proof techniques, we revisit the

problem of the P2P Gaussian channel, develop new non-asymptotic achievability bounds, and re-derive the second-

order approximation of [3], [4]. In Section IV, we turn to to our problem of interest, prove finite-blocklength inner

bounds for the Gaussian MAC, and then apply them to establish achievable second-order coding rates. We conclude

the paper in Section V and relegate some of the technical proofs to the Appendices.

II. BACKGROUND ON TIGHT ACHIEVABILITY METHODS

To highlight the conciseness and simplicity of our approach in proving accurate non-asymptotic and approximate

achievability results for cost-constrained channel models, specifically the P2P Gaussian channel and the Gaussian

MAC, in this section we review the sharpest and most well-known achievability methods in the literature.

We first review the details of random coding and typicality decoding for proving the achievability side of

the coding theorems, because of their simplicity and also because we slightly modify these methods to prove

sharp achievability bounds for Gaussian (and other cost-constrained) channels. To emphasize the transparency and

conciseness of this approach, we will then review the details of two of the sharpest bounds for the Gaussian

channel, namely Polyanskiy et al.’s κβ method based on composite hypothesis testing [3] and Shannon’s geometric

method [1], and point out the complexities of these methods and the difficulties in generalizing them to multi-user

settings. We explain these methods to some level of details to highlight some of their key tools and concepts that

we leverage in our later analysis. Note that, in this section, we are concerned with non-asymptotic achievability

bounds that are valid for any finite blocklength without requiring convergence conditions.
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A. Random Coding and Typicality Decoding

The basic idea in an argument based upon random coding and typicality decoding can be reviewed most clearly for

a P2P channel PY n|Xn(yn|xn). The channel encoder randomly generates M codewords {xn(j)}Mj=1 of the codebook

independently according to some given n-letter distribution PXn(xn), where n is the designated blocklength.

Observing the output yn, the decoder then chooses the first codeword xn(m̂) of the codebook which looks “typical”

with yn in a one-sided sense3

i(xn(m̂); yn) > log γ(xn(m̂)), (1)

where γ(xn) is a (possibly) codeword-dependent threshold and i(xn; yn) is the corresponding realization of the

mutual information RV

i(Xn;Y n) := log
PY n|Xn(Y n|Xn)

PY n(Xn)
. (2)

Here, the reference distribution PY n is the marginal output distribution induced by the input distribution PXn , i.e.,

PY n(yn) =
∑

xn∈Xn

PXn(xn)PY n|Xn(yn|xn). (3)

Using one realization of such a code {xn(j)}Mj=1, the average error probability can be bounded as4

ε ≤ 1

M

M∑
k=1

PY n|Xn=xn(k)[i(x
n(k);Y n) ≤ log γ(xn(k))]

+
1

M

M∑
k=1

PY n|Xn=xn(k)

k−1⋃
j=1

i(xn(j);Y n) > log γ(xn(j))

 , (4)

that is, the sum of an outage probability, that the correct codeword does not look typical, and a confusion probability,

that a preceding codeword incorrectly looks typical.

The error probability averaged over all possible realizations of the codebook can then be bounded as

ε ≤
M∏
l=1

∑
xn(l)

PXn(xn(l))

 1

M

M∑
k=1

PY n|Xn=xn(k)[i(x
n(k);Y n) ≤ log γ(xn(k))]

+

M∏
l=1

∑
xn(l)

PXn(xn(l))

 1

M

M∑
k=1

PY n|Xn=xn(k)

k−1⋃
j=1

i(xn(j);Y n) > log γ(xn(j))

 (5)

3 The use of “typicality” nomenclature for this threshold decoding is inspired by the two-sided threshold decoding in conventional typicality

definition, e.g. by Cover and Thomas [13, Section 8.6]: (xn, yn) are jointly typical if∣∣∣∣ 1n logPXn (xn)− H(X)

∣∣∣∣ < ε,

∣∣∣∣ 1n logPY n (yn)− H(Y )

∣∣∣∣ < ε,

∣∣∣∣ 1n logPXnY n (xn, yn)− H(X,Y )

∣∣∣∣ < ε,

and Han [8, Section 3.1]: (xn, yn) are jointly typical if∣∣∣∣ 1n log
PY n|Xn (yn|xn)

PY n (yn)
− I(X;Y )

∣∣∣∣ < γ,

where H(X) and I(X,Y ) denote the average entropy and the average mutual information, respectively. Note that the latter condition of Han

is implied by the former set of conditions of Cover and Thomas.
4Throughout this paper, we use a non-standard notation of the form PXPY PZ|X [f(X,Y, Z) ∈ A] to explicitly indicate that (X,Y, Z)

follow the joint distribution PX × PY × PZ|X in determining the probability Pr[f(X,Y, Z) ∈ A].
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≤ 1

M

M∑
k=1

∑
xn(k)

PXn(xn(k))PY n|Xn=xn(k)[i(x
n(k);Y n) ≤ log γ(xn(k))]

∏
l 6=k

∑
xn(l)

PXn(xn(l))


+

1

M

M∑
k=1

k−1∑
j=1

∑
xn(j)

∑
xn(k)

PXn(xn(j))PXn(xn(k))PY n|Xn=xn(k) [i(xn(j);Y n) > log γ(xn(j))]
∏
l 6=j,k

∑
xn(l)

PXn(xn(l))


(6)

=
1

M

M∑
k=1

PXnPY n|Xn [i(Xn;Y n) ≤ log γ(Xn)] +
1

M

M∑
k=1

(k − 1)PXnPY n [i(Xn;Y n) > log γ(Xn)] (7)

≤ PXnPY n|Xn [i(Xn;Y n) ≤ log γ(Xn)] +
M − 1

2
PXnPY n [i(Xn;Y n) > log γ(Xn)], (8)

where (5) follows from averaging over the random codebook, and (6) follows from the union bound.

The final result is that there exists a deterministic codebook consisting of M codewords whose average error

probability ε satisfies (8). It is worth mentioning that, in the standard asymptotic analysis of memoryless channels

PY n|Xn(yn|xn) =
∏n
t=1 PY |X(yt|xt), the input distribution is selected i.i.d. PXn(xn) =

∏n
t=1 PX(xt), and the

threshold is selected as a function of the average mutual information, log γ(xn) = log γn = nI(X;Y ) − o(n) =

nEPXPY |X [i(X;Y )]−o(n). This leads to the proof of achievability for rates logM
n < I(X;Y ). In this paper, however,

we preserve the general n-letter form of the input distribution, since we will use non-i.i.d. input distributions to

deal with input cost constraints.

The result (8) can be readily extended to input cost constrained settings [19] requiring Xn ∈ Fn, where Fn ⊂ Xn

is the set of feasible input sequences: upon selecting the decoding threshold

γ(xn) =

γn xn ∈ Fn ,

∞ xn /∈ Fn ,
(9)

where γn is a prescribed threshold, we obtain

ε ≤ PXnPY n|Xn

[
i(Xn;Y n) ≤ log γ(Xn)

⋂
Xn /∈ Fn

]
+ PXnPY n|Xn

[
i(Xn;Y n) ≤ log γ(Xn)

⋂
Xn ∈ Fn

]
+
M − 1

2
PXnPY n

[
i(Xn;Y n) > log γ(Xn)

⋂
Xn /∈ Fn

]
+
M − 1

2
PXnPY n

[
i(Xn;Y n) > log γ(Xn)

⋂
Xn ∈ Fn

]
(10)

≤ PXn [Xn /∈ Fn] + PXnPY n|Xn [i(Xn;Y n) ≤ log γn] +
M − 1

2
PXnPY n [i(Xn;Y n) > log γn]. (11)

Upon remapping all non-feasible codewords to an arbitrary sequence xn(0) ∈ Fn and without touching the decoding

regions, we conclude that there exists a deterministic codebook with M codewords all belonging to the feasible

set Fn and whose average error probability ε satisfies (11), cf. [3, p. 2314].

Considering an i.i.d. Gaussian input PXn ∼ N (0, (P−δ)In), with δ being any arbitrarily small positive constant5,

5The power margin δ can be vanishing with n provided that it decays strictly slower than O
(

1√
n

)
so that the cost-violation probability

does not dominate.
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and applying the conventional CLT to (11) results in the approximate achievability bound [12]:

logM

n
≤ C(P − δ)− log e√

n

√
P − δ

1 + P − δ
Q−1(ε) +O

(
1

n

)
, (12)

where, as usual, Q−1(·) is the functional inverse of the complementary cumulative distribution function (CDF) of

a standard Gaussian distribution Q(x) = 1√
2π

∫∞
x
e−t

2/2dt, and

C(P ) =
1

2
log(1 + P ). (13)

As will be seen shortly, this second-order performance is not optimal. Therefore, the i.i.d. Gaussian input distribution

achieves capacity but is not second-order optimal, since a considerable portion of Gaussian codewords do not utilize

the maximum available power budget P , which degrades the performance. In Shannon’s words [1], “it is evidently

necessary to avoid having too many of codepoints interior to the
√
nP sphere.” It will be shown that more refined

input distributions, that force all codewords to use the maximum power P , are required for this purpose.

B. Polyanskiy et al.’s κβ Bound

A tighter achievability result for the P2P Gaussian channel is provided in the recent κβ bound of Polyanskiy et

al. [3]. Using a slightly different language from that in [3], this bound fixes an arbitrary output distribution QY n ,

similar to [5], [20], and employs this as the reference distribution for the definition of a modified mutual information

random variable:

ĩ(Xn;Y n) := log
PY n|Xn(Y n|Xn)

QY n(Y n)
. (14)

Building upon the maximal coding idea [21], [22], deterministic sequences are arbitrarily chosen as codewords one

by one, and the sequential codeword generation process stops after selecting M codewords {xn(j)}Mj=1 if the error

probability for any choice of the (M + 1)-th sequence exceeds the target maximal error probability ε, i.e.,

ε < PY n|Xn=xn [ ĩ(xn;Y n) ≤ log γn] + PY n|Xn=xn

 M⋃
j=1

ĩ(xn(j);Y n) > log γn

 (15)

for all sequences xn ∈ Fn, where Fn is the feasible set of codewords according to the input cost constraint.

Rearranging (15) then yields

PY n|Xn=xn

 M⋃
j=1

ĩ(xn(j);Y n) > log γn

 > ε− PY n|Xn=xn [ ĩ(xn;Y n) ≤ log γn] ≥ τ∗ (16)

again for all sequences xn ∈ Fn, where

τ∗ = ε− sup
xn∈F

PY n|Xn=xn [ ĩ(xn;Y n) ≤ log γn]. (17)

Now, thinking of the union in the brackets in (16) as a binary test on Y n, one can cast the problem into the

framework of the following composite hypothesis test, which is used to treat the input cost constraint:

κτ
(
{PY n|Xn=xn}xn∈F , QY n

)
:= min

Z:PY n|Xn=xn [Z(Y n)=1]>τ,∀xn∈F
QY n [Z(Y n) = 1], (18)
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where Z(Y n) is a binary test choosing either the class of conditional channel laws {PY n|Xn=xn}xn∈F if Z = 1,

or the unconditional output distribution QY n if Z = 0. The κβ bound of [3] for maximal error probability can then

be stated as

κτ∗
(
{PY n|Xn=xn}xn∈F , QY n

)
≤ QY n

 M⋃
j=1

ĩ(xn(j);Y n) > log γn

 (19)

≤M sup
xn∈F

QY n [ ĩ(xn;Y n) > log γn]. (20)

Interpretation of the composite hypothesis test κτ and accordingly its evaluation for the P2P Gaussian channel

is quite involved. Polyanskiy et al. [3] invoke arguments from abstract algebra to analyze the performance of

this test for the feasible set Fn = {xn ∈ Rn : ||xn|| =
√
nP} being the “power shell” and the special choice

QY n ∼ N (0, (1 + P )In) with the selection τ∗ = 1/
√
n in (17), finally concluding that

log κτ∗ ≥
1

2
log n+O(1), (21)

which with application of the CLT results in the following second-order optimal achievable rate for the P2P Gaussian

channel

logM

n
≤ C(P )−

√
V (P )

n
Q−1(ε) +O

(
1

n

)
, (22)

where V (P ) is the dispersion of the Gaussian P2P channel

V (P ) =
log2 e

2

P (P + 2)

(1 + P )2
. (23)

Comparing the κβ bound of [3] with the random coding and typicality decoding method discussed earlier suggests

an important insight. Introducing the composite hypothesis bound κτ in [3] enables a change of measure from

PY n|Xn=xn in (15) to QY n in (20) in computing the confusion probability. A similar process occurs in the random

coding argument with typicality decoding, as the random generation of the codebook makes it possible to change

the measure for computation of the confusion probability from PY n|Xn=xn in (4) to its average PY n in (8). We

suspect the reason why the composite κτ test is introduced in [3] is to enable such a change of measure argument

which is required for the evaluation of the confusion probability, but is not directly available in the sequential

generation of maximal coding, which does not incorporate any random generation process. This insight is one of

the main ideas we will use in this paper for the analysis of the P2P Gaussian channel and the Gaussian MAC with

a random coding and typicality decoding method.

C. Shannon’s Geometric Bound

As mentioned before, the best known achievable rate for P2P Gaussian channel is due to Shannon [1] who

starts with a random codebook generation according to the uniform distribution on the n-dimensional sphere of

radius
√
nP , i.e. the power shell

||xn||2 = nP, (24)
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but considers the optimal ML decoding method. Since this rule is equivalent to minimum Euclidian distance in Rn,

Shannon employs geometric arguments to evaluate and bound the code-ensemble-average probability that the i.i.d.

Gaussian channel noise moves the output closer to some incorrect codeword than to the originally transmitted

codeword:

ε = −
∫ π

0

{
1−

[
1− Sn(1; θ)

Sn(1)

]M−1
}
dQ(θ) (25)

≤ Q(θ∗)− M

Sn(1)

∫ θ∗

0

Sn(1; θ)dQ(θ), (26)

where: Sn(1; θ) is the surface area of a unit-radius n-dimensional spherical cap with half-angle θ; Sn(1) = Sn(1;π)

is the surface area of a unit-radius n-dimensional sphere; Q(θ) is the probability with respect to N (0, In) that a

point xn ∈ Rn with ||xn|| =
√
nP is moved outside a circular cone of half-angle θ with vertex at the origin and axis

passing through xn; and θ∗ is a characteristic of the rate defined as the solid angle satisfying Sn(1; θ∗) = Sn(1)/M .

Shannon then expresses this geometric bound as an error exponent result in terms of the rate and SNR:

ε ≤ α(P, θ∗)√
n

e−nE(P,θ∗) (27)

where α(P, θ∗) and E(P, θ∗) are positive functions of the power P and the rate characteristic θ∗.

A key observation in Shannon’s work is his use of the uniform distribution on the power shell, which enables

him to develop sharp non-asymptotic bounds. In this paper, we will follow Shannon in this respect, but rely on the

more familiar and less complex method of typicality decoding which we show is still capable of achieving sharp

non-asymptotic bounds for the Gaussian channel, at least up to the second order.

Having reviewed the basic elements of the different procedures for handling cost constraints, especially in

Gaussian settings, we now move on to the formal statement of our problems and results.

III. P2P GAUSSIAN CHANNEL

In this section, we re-derive the fundamental communication limits over the P2P Gaussian channel, that are well-

known from classical and recent studies, e.g. [1], [3], [4], and were summarized in Section II. Building upon the

standard random coding and typicality decoding method with slight modifications, our aims are both to 1) clarify our

proof techniques in this simpler setting before exploring the more complex Gaussian MAC model, and 2) provide

a more transparent alternative achievability proof for the P2P Gaussian problem, which is at least second-order

optimal.

A. System Model and Known Result

A general P2P channel with input cost constraint and without feedback consists of an input alphabet X , an

output alphabet Y , and an n-letter channel transition probability PY n|Xn(yn|xn) : Fn → Yn, where Fn ⊆ Xn is

the feasible set of n-letter input sequences. For such a P2P channel, an (n,M, ε) code is composed of a message
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setM = {1, ...,M} and a corresponding set of codewords and mutually exclusive decoding regions {(xn(j), Dj)}

with j ∈M, such that the average error probability satisfies

P (n)
e :=

1

M

M∑
j=1

Pr[Y n /∈ Dj |Xn(j) sent] ≤ ε. (28)

Accordingly, a rate logM
n is achievable for the P2P channel with finite blocklength n and average error probability ε

if such an (n,M, ε) code exists.

In particular, a P2P memoryless Gaussian channel without feedback consists of an input and an output taking

values on the real line R and a channel transition probability density PY |X(y|x) : R → R whose n-th extension

follows N (yn;xn, In), i.e.,

PY n|Xn(yn|xn)=

n∏
t=1

PY |X(yt|xt)=(2π)−n/2e−||y
n−xn||2/2. (29)

For such a P2P Gaussian channel, an (n,M, ε, P ) code is an (n,M, ε) code as defined above, in which each

codeword also satisfies a maximal power constraint:

1

n

n∑
t=1

x2
t (j) =

1

n
||xn(j)||2 ≤ P, ∀j ∈M. (30)

Accordingly, a rate logM
n is achievable for the P2P Gaussian channel with finite blocklength n, average error

probability ε, and maximal power P if such an (n,M, ε, P ) code exists.

The set of all achievable second-order coding rates for the P2P Gaussian channel is characterized as [3], [4]

logM

n
≤ C(P )−

√
V (P )

n
Q−1(ε) +O

(
1

n

)
, (31)

where C(P ) and V (P ) are the capacity (13) and dispersion (23) of the P2P Gaussian channel, respectively. This

section presents a relatively straight-forward achievability proof for this result based upon random coding and

typicality decoding.

B. Key Elements of the Proof

In this section, we summarize the main ingredients of the proof of main result (31) for P2P Gaussian channels.

The formal proof will be given in the Sections III-C and III-D. The three main ingredients are modified random

coding and typicality decoding, CLT for functions of random vectors, and change of measure and uniform bounding.

1) Modified Random Coding and Typicality Decoding: The random coding and typicality decoding bounds (8)

and (11) are by now the most standard method for proving the achievability side of the channel coding theorems [18].

If the input distribution were chosen to be i.i.d., such as the i.i.d. Gaussian distribution, then an evaluation of these

achievability bounds would be straightforward, using a CLT for the outage probability, and an LDT bound for

the confusion probability, but the cost-violation probability would be non-zero PXn [Xn /∈ Fn] 6= 0. However,

as discussed in Section I, for the P2P Gaussian channel (and potentially other cost-constrained channels), no

single-letter i.i.d. input distribution exists which can achieve the second-order optimal performance (31), and more

complicated n-letter input distributions must be considered. A non-i.i.d. input distribution PXn that is second-order
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optimal and leads to a zero cost-violation probability PXn [Xn /∈ Fn] = 0, such as the uniform distribution on

the power shell (24), induces a non-i.i.d. output distribution PY n , and this in turn prevents the mutual information

RV i(Xn;Y n) from being a sum of independent random variables, i.e. i(Xn;Y n) 6=
∑n
t=1 i(Xt;Yt), a form which

is convenient for CLT and LDT analyses. It is therefore appealing for typicality decoding to change the reference

of the mutual information RV from the actual output distribution PY n to an arbitrary product distribution QY n and

work with a modified mutual information RV ĩ(Xn;Y n) which is defined as

ĩ(Xn;Y n) := log
PY n|Xn(Y n|Xn)

QY n(Y n)
, (32)

and can be written as a summation ĩ(Xn;Y n) =
∑n
t=1 ĩ(Xt;Yt), although the summands are not independent.

2) CLT for Functions of Random Vectors: The second-order approximations of channel coding rates mainly

result from approximating the mutual information RV in the outage probability with a Gaussian distribution via the

CLT. In the conventional setting, the CLT applies to a summation of independent RV’s. However, due to the use of

non-i.i.d. input distribution to handle the cost constraint, in this paper, we deal with mutual information densities

that are sums of non-independent random variables or vectors. Rather, they can be expressed as (vector-) functions

of sums of i.i.d. random vectors. To facilitate the CLT for these situations, we rely on a simplified version of a

technical result of Hoeffding and Robbins [23, Theorem 4], for which they also credit Anderson and Rubin [24].

Since these references do not specify the rate of convergence to Gaussianity, we slightly extend the analysis to

prove a Berry-Esseen version of their result. The basic idea of the proof, which is relegated to Appendix A, is the

application of Taylor’s Theorem around the mean to a (vector-) function whose arguments are normalized sums of

i.i.d. random vectors.

Proposition 1: Let {Ut := (U1t, ..., UKt)}∞t=1 be zero-mean i.i.d. random vectors in RK with E[||U1||32] < ∞,

and denoting u := (u1, ..., uK), let f(u) : RK → RL be an L-component vector-function f(u) = (f1(u), ..., fL(u))

which has continuous second-order partial derivatives in a K-hypercube neighborhood of u = 0 of side length

at least 1
4
√
n

, and whose corresponding Jacobian matrix J at u = 0 consists of the following first-order partial

derivatives

Jlk :=
∂fl(u)

∂uk

∣∣∣∣
u=0

l = 1, ..., L, k = 1, ...,K. (33)

Then, for any convex Borel-measurable set D in RL, there exists a finite positive constant B such that6∣∣∣∣∣Pr

[
f

(
1

n

n∑
t=1

Ut

)
∈ D

]
− Pr [N (f (0) ,V) ∈ D]

∣∣∣∣∣ ≤ B√
n
, (34)

where the covariance matrix V is given by V = 1
nJCov(U1)JT , that is, its entries are defined as

Vls :=
1

n

K∑
k=1

K∑
p=1

JlkJspE[Uk1Up1], l, s = 1, ..., L. (35)

6The gap to Gaussianity in this form of CLT, similar to other Berry-Esseen type bounds, is on the order of 1√
n

. Although this is enough

for second-order proofs, it makes the reader doubt whether this slowly decaying gap leads to accurate approximations for short blocklengths.

This is indeed a valid concern, but one should note that empirical evidences, such as the results of [3] for discrete and Gaussian P2P channels,

suggest that CLT is actually a highly accurate estimate and that the Berry-Esseen bound may be (much) looser than reality; c.f. [25, P. 135].
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We would like to mention that, references [3], [4] take an indirect approach based on symmetry to handle this

problem for the P2P Gaussian channel, thus reducing the problem to the evaluation of the conditional outage

probability for a fixed input sequence, for which the conventional CLT is applicable. However, this approach does

not generalize to multi-user settings. Our approach here to use a CLT for functions of random variables, although

more complicated, provides a direct analysis of outage probability without exploiting the symmetry property, and

will be seen to generalize to the Gaussian MAC.

3) Change of Measure and Uniform Bounding: For non-i.i.d. input distributions PXn , such as the uniform

distribution on the power shell (24), an LDT analysis of the confusion probability is also challenging due to the

non-product nature of the output distribution PY n induced by the input distribution PXn . We are therefore interested

in changing the measure with respect to which the confusion probability is analyzed, as follows:

PXnPY n [ ĩ(Xn;Y n) > log γn] (36)

=

∫ ∫
1
{
ĩ(xn; yn) > log γn

}
dPY n(yn)dPXn(xn) (37)

=

∫ ∫
1
{
ĩ(xn; yn) > log γn

} dPY n(yn)

dQY n(yn)
dQY n(yn)dPXn(xn) (38)

≤ sup
yn∈Yn

dPY n(yn)

dQY n(yn)
PXnQY n

[
ĩ(Xn;Y n) > log γn

]
. (39)

The final expression (39) enables us to compute the confusion probability with respect to the more convenient

measure QY n , but at the expense of the additional Radon-Nikodym (R-N) derivative dPY n (yn)
dQY n (yn) .7 This bound would

be particularly useful, if this extra coefficient is uniformly bounded by a positive constant K or a slowly growing

function Kn, such that its rate loss does not affect the second-order behavior.

A close examination of [3] shows that the κτ performance characteristic in the κβ bound is also mainly concerned

with the R-N derivative dPY n (Y n)
dQY n (Y n) introduced above, and the bound (21) is analogous to the uniform bounding

by Kn in the analysis above (39). We believe the difference is that our analysis using random coding, typicality

decoding, and change of measure is a more transparent procedure and more closely follows conventional lines of

argument.

We are now ready to provide the formal proof in the next two subsections.

C. Non-Asymptotic Achievability for Cost-Constrained Channels

In the following, we state a result based upon modified random coding and typicality decoding for achievability

on general P2P channels with input cost constraints valid for any blocklength. The result basically describes the error

probability in terms of the outage, confusion, and constraint-violation probabilities, and is based on the dependence

testing (DT) bound of [3].

7To be precise, the definition of this R-N derivative requires an absolute continuity condition PY n � QY n [27], which is considered to be

true for our general arguments in Theorem 1, and can be easily seen to hold in our concrete example of the P2P Gaussian channel.
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Theorem 1: For a general P2P channel (X , PY n|Xn(yn|xn),Y), any input distribution PXn , and any output

distribution QY n , there exists an (n,M, ε) code that satisfys the input cost constraint Fn and

ε ≤ PXnPY n|Xn [ ĩ(Xn;Y n) ≤ log γn] +Kn
M − 1

2
PXnQY n [ ĩ(Xn;Y n) > log γn] + PXn [Xn/∈ Fn], (40)

where the coefficient Kn is defined as

Kn := sup
yn∈Yn

dPY n(yn)

dQY n(yn)
, (41)

and γn is an arbitrary positive threshold whose optimal choice to give the highest rates is γn ≡ Kn
M−1

2 .

Remark. The bound (40) reduces to a standard one with random coding, typicality decoding, and Kn = 1 if the

auxiliary distribution QY n(yn) is identical to the actual output distribution PY n(yn) induced by the input PXn(xn).

Proof: The channel encoder randomly generates M codewords of the codebook independently according to

some given n-letter distribution PXn , where n is the designated blocklength. Observing the output yn, the decoder

chooses the first codeword xn(m̂) of the codebook which looks “typical” with yn in a modified one-sided sense

ĩ(xn(m̂); yn) > log γ(xn(m̂)), (42)

where γ(xn) is a codeword-dependent threshold and ĩ(xn; yn) is the corresponding realization of the modified

mutual information random variable ĩ(Xn;Y n). The error probability averaged over the set of M codewords of all

possible realizations of the codebook can then be bounded, similar to (4)-(8), as the sum of an outage probability

and a confusion probability as follows:

ε ≤ PXnPY n|Xn [ ĩ(Xn;Y n) ≤ log γ(Xn)] +
M − 1

2
PXnPY n [ ĩ(Xn;Y n) > log γ(Xn)]. (43)

Applying the change of measure technique of (39) with the definition (41) yields

ε ≤ PXnPY n|Xn [ ĩ(Xn;Y n) ≤ log γ(Xn)] +Kn
M − 1

2
PXnQY n [ ĩ(Xn;Y n) > log γ(Xn)]. (44)

Upon selecting the threshold log γ(xn) as in (9) and following the reasonings proceeding (10)-(11) to handle the

cost constraint, we infer that there exists a deterministic codebook, consisting of M codewords all belonging to the

feasible set Fn, whose average error probability ε satisfies

ε ≤ PXn [Xn /∈ Fn] + PXnPY n|Xn [ ĩ(Xn;Y n) ≤ log γn] +Kn
M − 1

2
PXnQY n [ ĩ(Xn;Y n) > log γn]. (45)

To conclude the final assertion of Theorem 1, it is sufficient to observe that the last two summands on the RHS

of (45) are a weighted sum of two types of error in a Bayesian binary hypothesis test, and therefore corresponds

to average error probability of the test. Then, it is known from Neyman-Pearson Theorem that the optimal test is

a likelihood-ratio test (LRT), as we have used in (42), with the optimal threshold equal to the ratio of priors or

simply the ratio of the coefficients of the two error probabilities of the test, namely γn ≡ Kn
M−1

2 .

D. Second-Order Characterization for P2P Gaussian Channels

So far, we have stated and proved Theorem 1 which holds for any arbitrary cost-constrained P2P channel. In the

following, we specialize this achievability bound to the P2P Gaussian channel.
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1) Coding on the Power Shell: First, we choose the input distribution as the uniform distribution on the power

shell:

PXn(xn) =
δ(||xn|| −

√
nP )

Sn(
√
nP )

, (46)

where δ(·) is the Dirac delta function and Sn(r) = 2πn/2

Γ(n/2)r
n−1 is the surface area of an n-dimensional sphere of

radius r. Notice that this distribution satisfies the input power constraint with probability one, so that

PXn [Xn /∈ Fn] = PXn [||Xn||2 > nP ] = 0. (47)

Moreover, the output distribution induced by this input is

PY n(yn) =

∫
Rn

PXn(xn)PY n|Xn(yn|xn)dxn (48)

=

∫
Rn

δ(||xn|| −
√
nP )

Sn(
√
nP )

(2π)−n/2e−||y
n−xn||2/2dxn (49)

=

∫ π

0

∫ ∞
0

δ(r −
√
nP )

Sn(
√
nP )

(2π)−n/2e−r
2/2e−||y

n||2/2e||y
n||r cos θSn−1(r sin θ)rdrdθ (50)

=
(2π)−n/2Γ (n/2)

π1/2Γ
(
n−1

2

) e−nP/2e−||y
n||2/2

∫ π

0

e||y
n||
√
nP cos θ sinn−2 θdθ (51)

=
(2π)−n/2Γ (n/2)

π1/2Γ
(
n−1

2

) e−nP/2e−||y
n||2/2π

1/22n/2−1Γ
(
n−1

2

)
(||yn||

√
nP )n/2−1

In/2−1(||yn||
√
nP ) (52)

=
1

2
π−n/2Γ

(n
2

)
e−nP/2e−||y

n||2/2 In/2−1(||yn||
√
nP )

(||yn||
√
nP )n/2−1

, (53)

where (50) follows form decomposing the space Rn into a continuum of (n − 1)-dimensional ring elements of

radius r sin θ with 0 ≤ r ≤ ∞ being the distance of ring points from the origin and 0 ≤ θ ≤ π being the angle

of ring points with the line connecting the origin and the point yn, and where (52) follows from the definition of

modified Bessel function Iv(·) of the first kind and v-th order. It is worth mentioning that the general form of the

above marginal distribution is obtained in [26].

Next, we select the reference output distribution for the P2P Gaussian channel as

QY n(yn) = N (yn; 0, (1 + P )In), (54)

that is, the capacity-achieving output distribution. The following proposition will then bound the R-N derivative

term introduced in (41). The proof, which is a slight generalization of that in [3, p. 2347], is given in Appendix B.

Proposition 2: Let PY n be the distribution (53) induced on the output of the P2P Gaussian channel by the

uniform input distribution (46) on the power shell, and let QY n be the capacity-achieving output distribution (54)

for the P2P Gaussian channel. There exists a positive constant K such that, for sufficiently large n,

dPY n(yn)

dQY n(yn)
≤ K, ∀ yn ∈ Rn; (55)

In fact, K ≤ 1 is a constant independent of the power constraint P .

Remark. Using some more complicated manipulations, this proposition can be shown to be valid for any finite n,

but the above statement is enough for our second-order analysis.
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Proposition 2 facilitates the use of Theorem 1 with the aforementioned choices for the input distribution PXn and

the reference output distribution QY n . Substituting (47) into the achievability bound (40) of Theorem 1 with the

optimal threshold γn ≡ KM−1
2 only leaves the outage and confusion probabilities. In the following, we evaluate

the outage and confusion probabilities for sufficiently large blocklength to obtain second-order achievable rates.

2) Evaluation of the Outage Probability: In this subsection, we bound the outage probability

PXnPY n|Xn

[
ĩ(Xn;Y n) ≤ log γn

]
(56)

where the input distribution PXn is the uniform distribution on the power shell (46). Note that, since the input

distribution is non-i.i.d., the summands in ĩ(Xn;Y n) =
∑n
t=1 ĩ(Xt;Yt) are not independent so that direct application

of the conventional CLT is not possible. Unlike the indirect symmetry-based approach of [3], [4], we here give a

direct, although more complicated, analysis of the outage probability which does not rely on the conditional mutual

information RV and instead makes use of the structure of the uniform distribution on the power shell.

Under the PY n|Xn law, the output Y n can be written in the form

Y n = Xn + Zn, (57)

where Zn ∼ N (0, In) is the i.i.d. unit-variance channel noise. With the choice (54) for QY n(yn), the modified

mutual information random variable simplifies as

ĩ(Xn;Y n) ≡ log
(2π)−n/2e−||Y

n−Xn||2/2

(2π(1 + P ))−n/2e−||Y n||2/2(1+P )
(58)

=
n

2
log(1 + P ) +

log e

2

[
||Y n||2

1 + P
− ||Y n −Xn||2

]
(59)

= nC(P ) +
log e

2(1 + P )

[
||Xn + Zn||2 − (1 + P )||Zn||2

]
(60)

= nC(P ) +
log e

2(1 + P )

[
P (n− ||Zn||2) + 2〈Xn, Zn〉

]
. (61)

where (61) uses the inner-product notation 〈an, bn〉 :=
∑n
t=1 atbt and the fact that ||Xn||2 = nP with probability

one.

Although this random variable is written in the form of a summation, the summands are not independent, since

the input Xn is not independent across time. However, recall that independent uniform RVs on the power shell are

functions of independent Gaussian RVs. More precisely, let Wn ∼ N (0, In) be an i.i.d. Gaussian RV independent

of the noise RV Zn. The input elements Xt, t = 1, ..., n, of the independent uniformly distributed RV Xn on the

power shell can then be expressed as follows:

Xt =
√
nP

Wt

||Wn||
. (62)

To apply the CLT for functions of Proposition 1, consider the sequence {Ut := (U1t, U2t, U3t)}∞t=1 whose

elements are defined as

U1t = 1− Z2
t , (63)

U2t =
√
PWtZt, (64)
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U3t = W 2
t − 1. (65)

Note that this random vector has an i.i.d. distribution across time t = 1, ..., n, and its moments can be easily verified

to satisfy E[U1] = 0 and E[||Ut||32] <∞. Moreover, the covariance matrix of this vector is given by

Cov(U) =


2 0 0

0 P 0

0 0 2

 . (66)

Next, define the function f as

f(u) = Pu1 +
2u2√
1 + u3

. (67)

Notice that, f(0) = 0 and all the first- and second-order partial derivatives of f are continuous in a neighborhood

of u = 0. Moreover, the Jacobian matrix {∂f(u)
∂uj
}1×3 at u = 0 can be readily verified to be

J |u=0 =
[
P 2 0

]
. (68)

We are therefore left with

f

(
1

n

n∑
t=1

Ut

)
=
P

n

n∑
t=1

(1− Z2
t ) +

2 1
n

∑n
t=1

√
PWtZt√

1 + 1
n

∑n
t=1(W 2

t − 1)
(69)

=
1

n

n∑
t=1

P (1− Z2
t ) +

2

n

n∑
t=1

√
nPWt

||Wn||
Zt (70)

=
1

n

[
P (n− ||Zn||2) + 2〈Xn, Zn〉

]
. (71)

We now conclude from Proposition 1 that the modified mutual information RV (61) converges in distribution to

a Gaussian distribution with mean nC(P ) and variance given by

(
n log e

2(1 + P )

)2
1

n

[
P 2 0

]
2 0 0

0 P 0

0 0 2



P

2

0

 = n
log2 e

2

P (P + 2)

(1 + P )2
= nV (P ). (72)

In particular, the outage probability is bounded as

PXnPY n|Xn

[
ĩ(Xn;Y n) ≤ log

(
K
M − 1

2

)]
≤ Pr

[
N (nC(P ), nV (P )) ≤ log

(
K
M − 1

2

)]
+
B1√
n

(73)

= Q

(
nC(P )− log

(
KM−1

2

)√
nV (P )

)
+
B1√
n
, (74)

where B1 is the constant introduced in Proposition 1.

3) Evaluation of the Confusion Probability: In this subsection, we bound the confusion probability

K
M − 1

2
PXnQY n

[
ĩ(Xn;Y n) ≤ log γn

]
(75)

where the input distribution PXn is the uniform distribution on the power shell (46), and QY n is the capacity-

achieving output distribution (54). We first need a change of measure technique as in [3]

Q

[
dP

dQ
> γ

]
=

∫
1

{
dP

dQ
> γ

}
dQ (76)
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=

∫ (
dP

dQ

)−1

1

{
dP

dQ
> γ

}
dP (77)

= EP

[(
dP

dQ

)−1

1

{
dP

dQ
> γ

}]
. (78)

Using (78) with PY n|Xn=xn in the role of P and QY n in the role of Q, we can bound the conditional confusion

probability, conditioned on the input sequence xn on the power shell, as follows:

QY n

[
ĩ(xn;Y n)> log

(
K
M − 1

2

)]
= EPY n|Xn=xn

[
exp{−ĩ(xn;Y n)}1

{
ĩ(xn;Y n)> log

(
K
M − 1

2

)}]
(79)

= EPY n|Xn=xn

[
exp

{
−

n∑
t=1

ĩ(xt;Yt)

}
1

{
n∑
l=1

ĩ(xt;Yt) > log

(
K
M − 1

2

)}]
(80)

≤ B2√
n

(
K
M − 1

2

)−1

, (81)

where (81) is a refined large deviation bound according to [3, Lemma 47]. The specific expression for the finite

constant B2 can be computed readily in terms of the power constraint P , but is not necessary here. Since the

bound (81) is uniform with respect to the actual input sequence xn, the unconditional confusion probability can be

bounded as

K
M − 1

2
PXnQY n

[
ĩ(Xn;Y n)> log

(
K
M − 1

2

)]
≤ B2√

n
. (82)

4) Completion: Substituting (47), (74), and (82) into the achievability bound (40) of Theorem 1 and recalling (28)

that, with a little abuse of notation cf. [3, Eq. (186)], ε is the target error probability, yields

ε ≥ Q

(
nC(P )− log

(
KM−1

2

)√
nV (P )

)
+

B√
n
, (83)

where B = B1 +B2. Upon rearranging we obtain

logM ≤ nC(P )−
√
nV (P )Q−1

(
ε− B√

n

)
− logK︸ ︷︷ ︸

=O(1)

(84)

= nC(P )−
√
nV (P )Q−1(ε) +

√
nV (P )O

(
1√
n

)
+O(1) (85)

= nC(P )−
√
nV (P )Q−1(ε) +O(1), (86)

where (85) follows from the Taylor expansion for the Q−1 function

Q−1

(
ε− B√

n

)
= Q−1(ε) +

dQ−1(x)

dx

∣∣∣∣
x=ε︸ ︷︷ ︸

=O(1)

B√
n

+ o(
1√
n

) = Q−1(ε) +O

(
1√
n

)
. (87)

Thus, we have proved that an (n,M, ε, P ) code exists if the rate satisfies

logM

n
≤ C(P )−

√
V (P )

n
Q−1(ε) +O

(
1

n

)
, (88)

where C(P ) and V (P ) are the capacity and dispersion of the P2P Gaussian channel, respectively. As discussed in

Section I, we have observed that such high rates arise from coding schemes in which outages dominate confusions.

September 11, 2013 DRAFT



19

IV. GAUSSIAN MAC

In this section, we study our main problem of interest, namely the fundamental communication limits over the

Gaussian MAC in the finite blocklength regime. We first state our main result on achievable second-order coding

rate regions for the Gaussian MAC, overview the key elements of the proof, and then develop the results in detail.

A. System Model and Main Results

A general 2-user multiple access channel (MAC) with input cost constraints and without feedback consists of

two input alphabets X1 and X2, an output alphabet Y , and an n-letter channel transition probability given by

PY n|Xn
1 X

n
2

(yn|xn1 , xn2 ) : F1n ×F2n → Yn, where F1n ⊆ Xn1 and F2n ⊆ Xn2 are the feasible sets of n-letter input

sequences for the two users, respectively. For such a MAC, an (n,M1,M2, ε) code is composed of two message

sets M1 = {1, ...,M1} and M2 = {1, ...,M2}, and a corresponding set of codeword pairs and mutually exclusive

decoding regions {(xn1 (j), xn2 (k), Dj,k)}, with j ∈M1 and k ∈M2, such that the average error probability satisfies

P (n)
e :=

1

M1M2

M1∑
j=1

M2∑
k=1

Pr[Y n /∈ Dj,k|Xn
1 (j), Xn

2 (k) sent] ≤ ε. (89)

Accordingly, a
(

logM1

n , logM2

n

)
rate pair is achievable for this MAC with finite blocklength n and average error

probability ε if such an (n,M1,M2, ε) code exists.

In particular, a memoryless 2-user Gaussian MAC without feedback consists of two inputs and an output all

taking values on the real line R and a channel transition probability density PY |X1X2
(y|x1, x2) : R×R→ R whose

n-th extension follows N (yn;xn1 + xn2 , In), i.e.,

PY n|Xn
1 X

n
2

(yn|xn1 , xn2 ) =

n∏
t=1

PY |X1X2
(yt|x1t, x2t) = (2π)−n/2e−||y

n−xn
1−x

n
2 ||

2/2. (90)

For such a Gaussian MAC, an (n,M1,M2, ε, P1, P2) code is an (n,M1,M2, ε) code as defined above, in which

each codeword also satisfies a maximal power constraint:

1

n

n∑
t=1

x2
1t(j) =

1

n
||xn1 (j)||2 ≤ P1, ∀j ∈M1, (91)

1

n

n∑
t=1

x2
2t(k) =

1

n
||xn2 (k)||2 ≤ P2, ∀k ∈M2. (92)

Accordingly, a rate pair
(

logM1

n , logM2

n

)
is achievable for the Gaussian MAC with finite blocklength n, average

error probability ε, and maximal power constraints P1 and P2 if such an (n,M1,M2, ε, P1, P2) code exists.

From classical results by Cover [16] and Wyner [17], we know that the capacity region of the Gaussian MAC

in the infinite blocklength regime, that is when n→∞, is given by the pentagonal region

logM1

n
≤ C(P1) + o(1), (93)

logM2

n
≤ C(P2) + o(1), (94)

logM1

n
+

logM2

n
≤ C(P1 + P2) + o(1). (95)
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Some old and new bounds on the error exponent of the Gaussian MAC are also known, e.g. [14], [28], [29]. In the

following, we state finite-blocklength achievability results that lead to the following achievable second-order rate

regions for the Gaussian MAC. As mentioned in Section I, the following regions are achieved using codebooks that

are randomly generated according to independent uniform distributions on the respective power shells.

Theorem 2: (Joint Outage) An achievable region for the 2-user Gaussian MAC with maximal power constraints P1

and P2 is given by the union of all rate pairs ( logM1

n , logM2

n ) satisfying
logM1

n

logM2

n

logM1

n + logM2

n

 ∈ C(P1, P2)− 1√
n
Q−1(ε; V(P1, P2)) +O

(
1

n

)
1, (96)

where: 1 =
[
1 1 1

]T
denotes the all-one vector; Q−1(ε; Σ) is the inverse complementary CDF of a 3-dimensional

Gaussian random variable defined as the set

Q−1(ε; Σ) :=
{
z ∈ R3 : Pr (N (0,Σ) ≤ z) ≥ 1− ε

}
, (97)

with vector-inequality understood element-wise; the capacity vector C(P1, P2) and dispersion matrix V(P1, P2)

are defined as

C(P1, P2) :=


C(P1)

C(P2)

C(P1 + P2)

 , (98)

and

V(P1, P2) :=


V (P1) V1,2(P1, P2) V1,3(P1, P2)

V1,2(P1, P2) V (P2) V2,3(P1, P2)

V1,3(P1, P2) V2,3(P1, P2) V (P1 + P2) + V3(P1, P2)

, (99)

in which C(P ) and V (P ) are the capacity and dispersion of the P2P Gaussian channel, respectively,

C(P ) =
1

2
log(1 + P ), (100)

V (P ) =
log2 e

2

P (P + 2)

(1 + P )2
, (101)

and we have employed the shorthands

V1,2(P1, P2) =
log2 e

2

P1P2

(1 + P1)(1 + P2)
, (102)

Vu,3(P1, P2) =
log2 e

2

Pu(2 + P1 + P2)

(1 + Pu)(1 + P1 + P2)
, u ∈ {1, 2} (103)

V3(P1, P2) = log2 e
P1P2

(1 + P1 + P2)2
. (104)

The evaluation of the above region, especially when extended to a large number of users, may be cumbersome.

In the following, we present another second-order achievable rate region, which is easier to compute even for large
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number of users, but as we have already seen in Figure 1 provides a very good estimate of the joint-outage region

for the Gaussian MAC.

Theorem 3: (Outage Splitting) An achievable region for the 2-user Gaussian MAC with maximal power con-

straints P1 and P2 is given by the union of all ( logM1

n , logM2

n ) pairs satisfying

logM1

n
≤ C(P1)−

√
V (P1)

n
Q−1(λ1ε)+O

(
1

n

)
,

logM2

n
≤ C(P2)−

√
V (P2)

n
Q−1(λ2ε)+O

(
1

n

)
,

logM1

n
+

logM2

n
≤ C(P1 + P2)−

√
V (P1 + P2) + V3(P1, P2)

n
Q−1(λ3ε) +O

(
1

n

)
, (105)

for some choice of positive constants λ1, λ2, λ3 satisfying λ1 + λ2 + λ3 = 1.

Both of the achievable second-order rate regions in Theorems 2 and 3 suggest that taking finite blocklength into

account introduces a rate penalty (for the interesting case of ε < 1
2 ) that depends on blocklength, error probability,

and Gaussian MAC dispersions. However, the main difference between the two theorems is that, in Theorem 3, the

average error probability ε is basically split among the three outage events of a 2-user Gaussian MAC according to

some (λ1, λ2, λ3) partitioning and a one-dimensional CLT is applied. A similar approach was taken in [11], [30]

for the MAC in the discrete setting. On the other hand, in Theorem 2, essentially all the average error probability ε

is assigned to the joint outage event and a multi-dimensional CLT is applied. This latter approach, which leads to

a relatively larger region, is similar to that in [31]–[33] for the discrete MAC. Finally, we would like to point out

that the statements of Theorems 2 and 3 correct a slight error in the corresponding result in our conference version

of this work [15], in which the term V3(P1, P2) defined in (104) was missing in (99) and (105).

To observe the tightness of the region achieved by random codebooks with independent power shell input

distribution, we compare it with several other second-order inner and outer rate regions relying on simple and

common structures. First, consider the second-order rate region achieved by a pair of random codebooks which are,

as usual [13], generated according to independent i.i.d. Gaussian distributions. One can easily show an extension

of (12) to a Gaussian MAC so that
logM1

n

logM2

n

logM1

n + logM2

n

 ∈ C(P̄1, P̄2)− 1√
n
Q−1

(
ε; VG(P̄1, P̄2)

)
+O

(
1

n

)
1, (106)

are achievable, where P̄1 =P1−δ and P̄2 =P2−δ for an arbitrarily small positive constant8 δ, and

VG(P1, P2) = log2 e


P1

1+P1

P1P2

2(1+P1)(1+P2)
P1(2+2P1+P2)

2(1+P1)(1+P1+P2)

P1P2

2(1+P1)(1+P2)
P2

1+P2

P2(2+P1+2P2)
2(1+P2)(1+P1+P2)

P1(2+2P1+P2)
2(1+P1)(1+P1+P2)

P2(2+P1+2P2)
2(1+P2)(1+P1+P2)

P1+P2

1+P1+P2

 . (107)

8Again, the margin δ can be vanishing with blocklength provided that it decays strictly slower than O
(

1√
n

)
.
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Another important comparison is with the rate region achieved by a pair of independent truncated Gaussian

random codebooks, as employed by Gallager for the error exponent analysis of the Gaussian MAC [14]. This rate

region is given by the set of all rate pairs (R1 := logM1

n , R2 := logM1

n ) satisfying

ε ≤ an2−nE1(R1) + an2−nE2(R2) + an22−nE3(R1+R2), (108)

where a is a constant, and the error exponent term for the individual rates is defined as

El(Rl) :=


(Pl − αl) log e

22Rl+1
+

1

2
log
(
22Rl − αl

)
if

1

2
log

(
2 + Pl +

√
4 + P 2

l

4

)
≤ Rl ≤ C(Pl)

(
1− βl +

Pl
2

)
log e+

1

2
log

(
βl

[
βl −

Pl
2

])
−Rl if 0 ≤ Rl <

1

2
log

(
2 + Pl +

√
4 + P 2

l

4

)
(109)

with l = 1, 2 and the shorthands

αl :=
Pl(2

2Rl − 1)

2

[√
1 +

22Rl+2

Pl(22Rl − 1)
− 1

]
, (110)

βl :=
1

2

[
1 +

Pl
2

+

√
1 +

P 2
l

2

]
; (111)

and the error exponent term for the sum-rate is defined as

E3(Rs) :=



(1 + ρ− θ1) log e+ log

(
θ1

1 + ρ

)
if

1

2
log

(
1

2

[
1− Ps

4
+

√
1− Ps

2
+
P 2
s

4

])
≤ Rs ≤ C(Ps)

2

[
log

(
θ2

2

)
− (θ2 + 1) log e

]
+

1

2
log

(
1 +

Ps
θ2

)
−Rs

if 0 ≤ Rs <
1

2
log

(
1

2

[
1− Ps

4
+

√
1− Ps

2
+
P 2
s

4

])
(112)

with the shorthands Rs := R1 +R2, Ps := P1 + P2 and

ρ :=

[
1

2
+

22Rs+1

Ps
− 1

2

√
1 +

22Rs+3

Ps
+

22Rs+4

P 2
s

]−1/2

− 1, (113)

θ1 :=
1 + ρ− Ps

2
+

1

2

√
P 2
s + 2Ps + (1 + ρ)2, (114)

θ2 := 1− Ps
2

+
1

2
log
(
P 2
s + 2Ps + 4

)
. (115)

It is also interesting to compare with the second-order achievable region via time-division multiple access (TDMA).

For TDMA with power control, the two users can share the n channel uses, use single-user coding strategies, and

average the error probability ε. Specifically, user 1 transmits in the first αn channel uses with power P1/α and

rate such that an average error probability βε is achieved, and user 2 transmits in the remaining ᾱn := (1 − α)n

channel uses with power P2/ᾱ and rate such that an average error probability β̃ε is achieved. Since the average error

probability of this scheme is ε = βε+ β̃ε−ββ̃ε2, we choose β̃ = (1−β)/(1−βε). Using the power shell uniform
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input distribution for each user and relying on the Gaussian P2P results [3], [4], the TDMA strategy achieves the

following set of rate pairs:

logM1

n
≤ αC

(
P1

α

)
−

√
α

n
V

(
P1

α

)
Q−1(βε) +O

(
1

n

)
,

logM2

n
≤ ᾱC

(
P2

ᾱ

)
−

√
ᾱ

n
V

(
P2

ᾱ

)
Q−1

(
(1− β)ε

1− βε

)
+O

(
1

n

)
, (116)

for some 0 ≤ α ≤ 1 and 0 ≤ β ≤ 1.

Further comparison can be made using single-user outer bounds. Since the achievable rate for each user cannot

exceed that when the other user is silent, similar to [32], two simple outer bounds can be developed using single-user

results [3], [4] by assigning the total error probability ε to only one of the outage events. Hence

logM1

n
≤ C(P1)−

√
V (P1)

n
Q−1(ε)+O

(
log n

n

)
, (117)

logM2

n
≤ C(P2)−

√
V (P2)

n
Q−1(ε)+O

(
log n

n

)
, (118)

presents a simple outer bound for the Gaussian MAC. Note that, since the two power constraints ||xn1 ||2 ≤ nP1

and ||xn2 ||2 ≤ nP2 do not imply the sum-power constraint ||xn1 + xn2 ||2 ≤ n(P1 + P2), a similar conclusion cannot

be readily made for the sum-rate, that is, the inequality

logM1

n
+

logM2

n
≤ C(P1 + P2)−

√
V (P1 + P2)

n
Q−1(ε) +O

(
log n

n

)
(119)

is not a trivial outer bound, as was mistakenly claimed in [15]; however, it is conjectured to be a valid outer bound.

Finally, we would like to mention a hypothetical second-order rate region which would be achievable if the sum

of power shell inputs fell on the sum-power shell, i.e., if the two users’ codebooks were independent and distributed

uniformly on the respective power shells and the equality ||xn1 (j)+xn2 (k)||2 = ||xn1 (j)||2 + ||xn2 (k)||2 hypothetically

hold for (almost) all codeword pairs. Following the lines of proof of Theorem 2, such a hypothetical codebook pair

would then achieve the following second-order rate region:
logM1

n

logM2

n

logM1

n + logM2

n

 ∈ C(P1, P2)− 1√
n
Q−1(ε; Vsum(P1, P2)) +O

(
1

n

)
1, (120)

where Vsum(P1, P2) is defined as the rank-2 matrix

Vsum(P1, P2) =


V (P1) V1,2(P1, P2) V1,3(P1, P2)

V1,2(P1, P2) V (P2) V2,3(P1, P2)

V1,3(P1, P2) V2,3(P1, P2) V (P1 + P2)

, (121)

and all other notations are defined as in Theorem 2. Note that the only difference between the above region and that

stated in Theorem 2 is the term V3(P1, P2) in the last diagonal element of the dispersion matrix V(P1, P2) in (99)

which is dropped in Vsum(P1, P2). The term V3(P1, P2) captures the variance of the inner product 〈Xn
1 , X

n
2 〉, which

is the remainder term in ||xn1 +xn2 ||2−||xn1 ||2−||xn2 ||2 = 2〈xn1 , xn2 〉. Since V3(P1, P2) is a positive term, its removal
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leads to a “smaller” dispersion matrix and hence a lower rate penalty. In fact, as was illustrated in Figure 1, one can

show that the power-shell rate region of Theorem 2 is roughly halfway between the i.i.d. Gaussian rate region and

this hypothetical sum-power shell region. A similar observation has been made by Gallager in the study of error

exponents for the Gaussian MAC [14]. We conjecture that the hypothetical sum-power shell rate region provides a

second-order outer region for the Gaussian MAC, with the third-order term in (120) replaced by O
(

logn
n

)
1.

A numerical comparison of these different rate regions was already presented in Figure 1 of Section I. The

reminder of this section presents a relatively straightforward proof of Theorems 2 and 3 based upon random coding

and typicality decoding as well as the application of the CLT for functions.

B. Key Elements of the Proof

In this section, we comment on the main ingredients of the proof of Theorems 2 and 3 for the Gaussian MAC.

The details of the proofs will be given in Sections IV-C and IV-D.

1) Modified Random Coding and Typicality Decoding: Analogously to the P2P Gaussian channel, we show

that i.i.d. input distributions are not sufficient to achieve the second-order optimal performance over the Gaussian

MAC. However, the analysis of the conventional achievability result based upon random coding and typicality

decoding for the MAC is difficult for non-i.i.d. inputs, particularly because 1) the induced (conditional) output

distributions PY n|Xn
2
, PY n|Xn

1
, PY n are not i.i.d. and 2) the corresponding mutual information RVs cannot be

written as a sums. Hence, we use modified mutual information RVs defined in terms of arbitrary reference output

distributions Q(1)
Y n|Xn

2
, Q

(2)
Y n|Xn

1
, Q

(3)
Y n , instead of the actual output distributions:

ĩ(Xn
1 ;Y n|Xn

2 ) := log
PY n|Xn

1 X
n
2

(Y n|Xn
1 , X

n
2 )

Q
(1)
Y n|Xn

2
(Y n|Xn

2 )
, (122a)

ĩ(Xn
2 ;Y n|Xn

1 ) := log
PY n|Xn

1 X
n
2

(Y n|Xn
1 , X

n
2 )

Q
(2)
Y n|Xn

1
(Y n|Xn

1 )
, (122b)

ĩ(Xn
1 X

n
2 ;Y n) := log

PY n|Xn
1 X

n
2

(Y n|Xn
1 , X

n
2 )

Q
(3)
Y n(Y n)

; (122c)

Selecting the reference distributions to be in product from, e.g. Q(1)
Y n|Xn

2
(yn|xn2 ) =

∏n
t=1Q

(1)
Yt|X2t

(yt|x2t), enables

us to write these RVs as sums of random variables, e.g. ĩ(Xn
1 ;Y n|Xn

2 ) =
∑n
t=1 ĩ(X1t;Yt|X2t), a form which is

convenient for the later application of CLT and LDT. However we note that these summands are not independent.

2) CLT for Functions of Random Vectors: As mentioned earlier, the summands of the modified mutual information

random variables of a Gaussian MAC are not independent. Moreover, the interaction of the two users’ codebooks

through the inner product 〈Xn
1 , X

n
2 〉 prevents the application of symmetry arguments as used in [3], [4] for the

P2P Gaussian channel. However, these mutual information RVs can be expressed as (vector-) functions of i.i.d.

random vectors, to which the CLT for functions in Propositon 1 can be applied. Specifically, this proposition with

L = 3 will be used in the the proof of the joint-outage region in Theorem 2 and with L = 1 in the proof of the

outage-splitting region in Theorem 3.
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3) Change of Measure and Uniform Bounding: Similar to the P2P case, an LDT analysis of the three confusion

probabilities in the modified random coding and typicality decoding bounds is challenging due to the non-product

nature of the (conditional) output distributions induced by a pair of non-i.i.d. input distributions. Thus, we again

apply a change of measure argument for computing these confusion probabilities. Analogously to (36)-(39), we can

show that the following inequalities hold:

PXn
1
PXn

2
PY n|Xn

2

[
ĩ(Xn

1 ;Y n|Xn
2 ) > log γ1(Xn

1 , X
n
2 )
]

≤ sup
xn

2∈Xn
2 , y

n∈Yn

dPY n|Xn
2

(yn|xn2 )

dQ
(1)
Y n|Xn

2
(yn|xn2 )

PXn
1
PXn

2
Q

(1)
Y n|Xn

2

[
ĩ(Xn

1 ;Y n|Xn
2 ) > log γ1(Xn

1 , X
n
2 )
]

(123a)

PXn
1
PXn

2
PY n|Xn

1

[
ĩ(Xn

2 ;Y n|Xn
1 ) > log γ2(Xn

1 , X
n
2 )
]

≤ sup
xn

1∈Xn
2 , y

n∈Yn

dPY n|Xn
1

(yn|xn1 )

dQ
(2)
Y n|Xn

1
(yn|xn1 )

PXn
1
PXn

2
Q

(2)
Y n|Xn

1

[
ĩ(Xn

2 ;Y n|Xn
1 ) > log γ2(Xn

1 , X
n
2 )
]

(123b)

PXn
1
PXn

2
PY n

[
ĩ(Xn

1 X
n
2 ;Y n) > log γ3(Xn

1 , X
n
2 )
]

≤ sup
yn∈Yn

dPY n(yn)

dQ
(3)
Y n(yn)

PXn
1
PXn

2
Q

(3)
Y n

[
ĩ(Xn

1 X
n
2 ;Y n) > log γ3(Xn

1 , X
n
2 )
]
. (123c)

Therefore, we may compute the confusion probabilities with respect to the more convenient measures Q(1)
Y n|Xn

2
,

Q
(2)
Y n|Xn

1
, Q(3)

Y n , but at the expense of the additional R-N derivatives.9 The bounds in (123) are particularly useful if

these extra coefficients can bounded by positive constant K1,K2,K3 or slowly growing functions K1n,K2n,K3n,

such that their rate loss does not affect the second-order behavior.

We are now ready to provide the formal proof in the next two subsections.

C. Non-Asymptotic Achievability for Cost-Constrained MAC

In the following, we state a result based upon random coding and modified typicality decoding for achievability

on a general MAC with input cost constraints valid for any blocklength. The result basically describes the error

probability in terms of the outage, confusion, and constraint-violation probabilities.

Theorem 4: For a MAC (X1,X2, PY n|Xn
1 X

n
2

(yn|xn1 , xn2 ),Y), for any pair of independent input distributions PXn
1

and PXn
2

, and any triple of (conditional) output distributions Q(1)
Y n|Xn

2
, Q

(2)
Y n|Xn

1
, Q

(3)
Y n , there exists an (n,M1,M2, ε)

code satisfying input cost constraints F1n and F2n with

ε ≤ PXn
1
PXn

2
PY n|Xn

1 X
n
2

[
ĩ(Xn

1 ;Y n|Xn
2 ) ≤ log γ1n

∪ ĩ(Xn
2 ;Y n|Xn

1 ) ≤ log γ2n

∪ ĩ(Xn
1 X

n
2 ;Y n) ≤ log γ3n

]
+K1n

M1 − 1

2
PXn

1
PXn

2
Q

(1)
Y n|Xn

2

[
ĩ(Xn

1 ;Y n|Xn
2 ) > log γ1n

]
9Again, the absolute continuity conditions for the above R-N derivatives are implicitly assumed to hold in the general bounds of Theorem 4

and can be easily verified for the Gaussian MAC.
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+K2n
M2 − 1

2
PXn

1
PXn

2
Q

(2)
Y n|Xn

1

[
ĩ(Xn

2 ;Y n|Xn
1 ) > log γ2n

]
+K3n

(M1 − 1)(M2 − 1)

2
PXn

1
PXn

2
Q

(3)
Y n

[
ĩ(Xn

1 X
n
2 ;Y n) > log γ3n

]
+ PXn

1
PXn

2
[Xn

1 /∈ F1n ∪Xn
2 /∈ F2n], (124)

or

ε ≤ PXn
1
PXn

2
PY n|Xn

1 X
n
2

[
ĩ(Xn

1 ;Y n|Xn
2 ) ≤ log γ1n

]
+K1n

M1 − 1

2
PXn

1
PXn

2
Q

(1)
Y n|Xn

2

[
ĩ(Xn

1 ;Y n|Xn
2 ) > log γ1n

]
+ PXn

1
PXn

2
PY n|Xn

1 X
n
2

[
ĩ(Xn

2 ;Y n|Xn
1 ) ≤ log γ2n

]
+K2n

M2 − 1

2
PXn

1
PXn

2
Q

(2)
Y n|Xn

1

[
ĩ(Xn

2 ;Y n|Xn
1 ) > log γ2n

]
+ PXn

1
PXn

2
PY n|Xn

1 X
n
2

[
ĩ(Xn

1 X
n
2 ;Y n) ≤ log γ3n

]
+K3n

(M1 − 1)(M2 − 1)

2
PXn

1
PXn

2
Q

(3)
Y n

[
ĩ(Xn

1 X
n
2 ;Y n) > log γ3n

]
+ PXn

1
PXn

2
[Xn

1 /∈ F1n ∪Xn
2 /∈ F2n], (125)

where: the modified mutual information random variables for the MAC are defined in (122); the coefficients K1n,

K2n, K3n are defined as10

K1n := sup
xn

2∈Xn
2 , y

n∈Yn

dPY n|Xn
2

(yn|xn2 )

dQ
(1)
Y n|Xn

2
(yn|xn2 )

, (126a)

K2n := sup
xn

1∈Xn
2 , y

n∈Yn

dPY n|Xn
1

(yn|xn1 )

dQ
(2)
Y n|Xn

1
(yn|xn1 )

, (126b)

K3n := sup
yn∈Yn

dPY n(yn)

dQ
(3)
Y n(yn)

; (126c)

and γ1n, γ2n, γ3n are arbitrary positive thresholds whose optimal choices to give the highest rates in (125) are

γ1n ≡ K1n
M1 − 1

2
, γ2n ≡ K2n

M2 − 1

2
, γ3n ≡ K3n

(M1 − 1)(M2 − 1)

2
. (127)

The achievable bounds (124) and (125) in Theorem 4 are inspired by the joint dependence-testing and splitting

dependence-testing (DT) bounds for the discrete MAC, respectively [11]. The latter is a loosening of the former

that results from splitting the joint outage event via a union bound. The joint-outage result (124) provides a tighter

bound on the ultimate performance, and the splitting-outage result (125) enables simpler evaluation. These two

forms will be used in proving the second-order regions presented in Theorems 2 and 3, respectively.

Proof: The two channel encoders randomly generate M1 and M2 codewords independently according to some

given n-letter distributions PXn
1

and PXn
2

, respectively, where n is the designated blocklength. Observing the

10The bounds (124) and (125) can be further improved by replacing the supxn
2 ∈X

n
2 , yn∈Yn in (126a) with supxn

2 ∈supp(PXn
2
), yn∈Yn , where

supp(PXn
2
) denotes the support of the distribution PXn

2
, and analogously in (126b), but is not necessary in this work.
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output yn, the decoder chooses the first codeword pair xn1 (m̂1) and xn2 (m̂2) that look “jointly typical” with yn in

a modified one-sided sense, specifically satisfying all three of the following conditions:

ĩ(xn1 (m̂1); yn|xn2 (m̂2)) > log γ1(xn1 (m̂1), xn2 (m̂2)), (128a)

ĩ(xn2 (m̂2); yn|xn1 (m̂1)) > log γ2(xn1 (m̂1), xn2 (m̂2)), (128b)

ĩ(xn1 (m̂1), xn2 (m̂2); yn) > log γ3(xn1 (m̂1), xn2 (m̂2)), (128c)

where γ1(xn1 , x
n
2 ), γ2(xn1 , x

n
2 ), γ3(xn1 , x

n
2 ) are codeword-dependent thresholds and ĩ(xn1 ; yn|xn2 ), ĩ(xn2 ; yn|xn1 ),

ĩ(xn1 , x
n
2 ; yn) are the corresponding realizations of the modified mutual information random variables ĩ(Xn

1 ;Y n|Xn
2 ),

ĩ(Xn
2 ;Y n|Xn

1 ), ĩ(Xn
1 X

n
2 ;Y n), respectively. The error probability averaged over the set of M1 codewords of all

possible realizations of the first codebook and the set of M2 codewords of all possible realizations of the second

codebook can then be bounded, similar to (4)-(8), as the sum of a joint-outage probability and three confusion

probabilities as follows:

ε≤PXn
1
PXn

2
PY n|Xn

1 X
n
2

[
ĩ(Xn

1 ;Y n|Xn
2 ) ≤ log γ1(Xn

1 , X
n
2 )

∪ ĩ(Xn
2 ;Y n|Xn

1 ) ≤ log γ2(Xn
1 , X

n
2 )

∪ ĩ(Xn
1 X

n
2 ;Y n) ≤ log γ3(Xn

1 , X
n
2 )
]

+
M1 − 1

2
PXn

1
PXn

2
PY n|Xn

2

[
ĩ(Xn

1 ;Y n|Xn
2 ) > log γ1(Xn

1 , X
n
2 )
]

+
M2 − 1

2
PXn

1
PXn

2
PY n|Xn

1

[
ĩ(Xn

2 ;Y n|Xn
1 ) > log γ2(Xn

1 , X
n
2 )
]

+
(M1 − 1)(M2 − 1)

2
PXn

1
PXn

2
PY n

[
ĩ(Xn

1 X
n
2 ;Y n) > log γ3(Xn

1 , X
n
2 )
]
. (129)

Applying the change of measure technique of (123) with the definitions (126) yields

ε ≤ PXn
1
PXn

2
PY n|Xn

1 X
n
2

[
ĩ(Xn

1 ;Y n|Xn
2 ) ≤ log γ1(Xn

1 , X
n
2 )

∪ ĩ(Xn
2 ;Y n|Xn

1 ) ≤ log γ2(Xn
1 , X

n
2 )

∪ ĩ(Xn
1 X

n
2 ;Y n) ≤ log γ3(Xn

1 , X
n
2 )
]

+K1n
M1 − 1

2
PXn

1
PXn

2
Q

(1)
Y n|Xn

2

[
ĩ(Xn

1 ;Y n|Xn
2 ) > log γ1(Xn

1 , X
n
2 )
]

+K2n
M2 − 1

2
PXn

1
PXn

2
Q

(2)
Y n|Xn

1

[
ĩ(Xn

2 ;Y n|Xn
1 ) > log γ2(Xn

1 , X
n
2 )
]

+K3n
(M1 − 1)(M2 − 1)

2
PXn

1
PXn

2
Q

(3)
Y n

[
ĩ(Xn

1 X
n
2 ;Y n) > log γ3(Xn

1 , X
n
2 )
]
. (130)

The input cost constraints can be handled, analogously to the P2P case, by selecting all the decoding thresholds to

be infinite γ1(xn1 , x
n
2 ) =∞, γ2(xn1 , x

n
2 ) =∞ and γ3(xn1 , x

n
2 ) =∞ if either xn1 /∈ F1n or xn2 /∈ F2n, and selecting

γ1(xn1 , x
n
2 ) = γ1n, γ2(xn1 , x

n
2 ) = γ2n and γ3(xn1 , x

n
2 ) = γ3n, otherwise. To handle the input cost constraints,

analogously to (10)-(11), we obtain

ε ≤ PXn
1
PXn

2
[Xn

1 /∈ F1n ∪Xn
2 /∈ F2n]
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+ PXn
1
PXn

2
PY n|Xn

1 X
n
2

[
ĩ(Xn

1 ;Y n|Xn
2 ) ≤ log γ1n

∪ ĩ(Xn
2 ;Y n|Xn

1 ) ≤ log γ2n

∪ ĩ(Xn
1 X

n
2 ;Y n) ≤ log γ3n

]
+K1n

M1 − 1

2
PXn

1
PXn

2
Q

(1)
Y n|Xn

2

[
ĩ(Xn

1 ;Y n|Xn
2 ) > log γ1n

]
+K2n

M2 − 1

2
PXn

1
PXn

2
Q

(2)
Y n|Xn

1

[
ĩ(Xn

2 ;Y n|Xn
1 ) > log γ2n

]
+K3n

(M1 − 1)(M2 − 1)

2
PXn

1
PXn

2
Q

(3)
Y n

[
ĩ(Xn

1 X
n
2 ;Y n) > log γ3n

]
. (131)

To simplify the analysis, one could apply a union bound to the second term on the RHS of (131), the joint outage

event, to obtain the following potentially looser, but simpler, outage-splitting bound.

ε ≤ PXn
1
PXn

2
[Xn

1 /∈ F1n ∪Xn
2 /∈ F2n]

+ PXn
1
PXn

2
PY n|Xn

1 X
n
2

[
ĩ(Xn

1 ;Y n|Xn
2 ) ≤ log γ1n

]
+K1n

M1 − 1

2
PXn

1
PXn

2
Q

(1)
Y n|Xn

2

[
ĩ(Xn

1 ;Y n|Xn
2 ) > log γ1n

]
+ PXn

1
PXn

2
PY n|Xn

1 X
n
2

[
ĩ(Xn

2 ;Y n|Xn
1 ) ≤ log γ2n

]
+K2n

M2 − 1

2
PXn

1
PXn

2
Q

(2)
Y n|Xn

1

[
ĩ(Xn

2 ;Y n|Xn
1 ) > log γ2n

]
+ PXn

1
PXn

2
PY n|Xn

1 X
n
2

[
ĩ(Xn

1 X
n
2 ;Y n) ≤ log γ3n

]
+K3n

(M1 − 1)(M2 − 1)

2
PXn

1
PXn

2
Q

(3)
Y n

[
ĩ(Xn

1 X
n
2 ;Y n) > log γ3n

]
. (132)

Upon remapping all of the non-feasible codewords of each codebook to arbitrary sequences xn1 (0) ∈ F1n or

xn2 (0) ∈ F2n, respectively, without modifying the decoding regions, we infer that there exists a pair of deterministic

codebooks with M1 codewords belonging to the feasible set F1n and M2 codewords belonging to the feasible

set F2n, respectively, whose average error probability ε satisfies (131) or (132).

To conclude the final assertion (127) of Theorem 4, it is sufficient to observe that the last six summands on the

RHS of (132) are three weighted sums of two types of error in three Bayesian binary hypothesis tests, respectively,

and therefore correspond to the average error probabilities of these tests. The optimal test for each case is an LRT,

as we have seen in (128), with the optimal threshold equal to the ratio of priors or simply the ratio of the coefficients

of the two error probabilities of the test, as given in (127).

D. Second-Order Characterization for the Gaussian MAC

In this section, we specialize the achievability bound of Theorem 4 to the Gaussian MAC and prove Theorems 2

and 3. Our approach is analogous to that taken for the P2P Gaussian channel.

1) Coding on Independent Power Shells: First, we choose the pair of input distributions to be independent

uniform distributions on the respective power shells

PXn
1 X

n
2

(xn1 , x
n
2 ) =

δ(||xn1 || −
√
nP1)

Sn(
√
nP1)

· δ(||x
n
2 || −

√
nP2)

Sn(
√
nP2)

, (133)
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with the same notations as in (46). Note that this pair of distributions satisfies the input power constraint with

probability one, that is,

PXn
1
PXn

2
[Xn

1 /∈ F1n ∪Xn
2 /∈ F2n] = PXn

1
PXn

2

[
||Xn

1 ||2 > nP1 ∪ ||Xn
2 ||2 > nP2

]
= 0. (134)

Moreover, analogous to (53) for the P2P Gaussian channel, the conditional output distributions induced by this

input pair are

PY n|Xn
2

(yn|xn2 ) =
1

2
π−n/2Γ

(n
2

)
e−nP1/2e−||y

n−xn
2 ||

2/2 In/2−1(||yn − xn2 ||
√
nP1)

(||yn − xn2 ||
√
nP1)n/2−1

, (135)

PY n|Xn
1

(yn|xn1 ) =
1

2
π−n/2Γ

(n
2

)
e−nP2/2e−||y

n−xn
1 ||

2/2 In/2−1(||yn − xn1 ||
√
nP2)

(||yn − xn1 ||
√
nP2)n/2−1

, (136)

where Iv(·) is again the modified Bessel function of the first kind and v-th order.

The analysis of the unconditional output distribution PY n for such an input pair is more complicated, and appears

unlikely to be expressed in closed form.11 However, we can fully characterize the distribution Un := Xn
1 + Xn

2

of the superimposed input to the channel, and use this distribution for our later analysis. In particular, under the

independent uniform distribution (133) for Xn
1 and Xn

2 on the respective power shells, we have PUn(un) = 0 for

any un ∈ Rn that satisfies ||un|| < |
√
nP1 −

√
nP2| or ||un|| >

√
nP1 +

√
nP2. Moreover, we have PUn(un) = 0

for those un ∈ Rn satisfying ||un|| = |
√
nP1 −

√
nP2|, since

Pr
[
||Un|| <

∣∣∣√nP1 −
√
nP2

∣∣∣] = Pr
[
||Xn

1 +Xn
2 || <

∣∣∣√nP1 −
√
nP2

∣∣∣] = 0, (137)

and

Pr
[
||Un|| ≤

∣∣∣√nP1 −
√
nP2

∣∣∣] = Pr
[
||Un|| =

∣∣∣√nP1 −
√
nP2

∣∣∣] (138)

= Pr
[
||Xn

1 +Xn
2 || =

∣∣∣√nP1 −
√
nP2

∣∣∣] (139)

= EXn
2

[
Pr
[
||Xn

1 + xn2 || =
∣∣∣√nP1 −

√
nP2

∣∣∣]] (140)

= EXn
2

[
Pr

[
Xn

1 = −
√
nP1

xn2
||xn2 ||

]]
(141)

= EXn
2

[0] = 0. (142)

Analogously, we have PUn(un) = 0 for those un ∈ Rn satisfying ||un|| =
√
nP1 +

√
nP2, since

Pr
[
||Un|| ≤

√
nP1 +

√
nP2

]
= 1 and Pr

[
||Un|| <

√
nP1 +

√
nP2

]
= 1. (143)

However, for any un ∈ Rn belonging to the hollow sphere |
√
nP1 −

√
nP2| < ||un|| <

√
nP1 +

√
nP2, we have

PUn(un) =

∫
Rn

PXn
1

(xn1 )PXn
2

(un − xn1 )dxn1 (144)

=

∫
Rn

δ(||xn1 || −
√
nP1)

Sn(
√
nP1)

· δ(||u
n − xn1 || −

√
nP2)

Sn(
√
nP2)

dxn1 (145)

11In fact, our former expression [15, Eq. (39)] for this induced output distribution appears to be incorrect, and we have not been able to

obtain a closed form expression for this distribution, even using Bessel functions and the like.
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=

∫ π

0

∫ ∞
0

δ(r −
√
nP1)

Sn(
√
nP1)

·
δ(
√
||un||2 − 2||un||r cos θ + r2 −

√
nP2)

Sn(
√
nP2)

Sn−1(r sin θ)rdrdθ (146)

=

√
nP1Sn−1(

√
nP1)

Sn(
√
nP1)

∫ π

0

δ
(√
||un||2 − 2||un||

√
nP1 cos θ + nP1 −

√
nP2

)
Sn(
√
nP2)

(sin θ)
n−2

dθdr (147)

=
1√
π

Γ
(
n
2

)
Γ
(
n−1

2

) ∫ π

0

1

Sn(
√
nP2)

√
P2

P1

δ(θ − θ0)

||un|| sin θ0
(sin θ)

n−2
dr (148)

=

√
P2

πP1

Γ
(
n
2

)
Γ
(
n−1

2

) Γ
(
n
2

)
2πn/2(nP2)(n−1)/2

1

||un||

(
1−

(
||un||2 + n(P1 − P2)

2
√
nP1||un||

)2
)(n−3)/2

, (149)

where (146) follows from a decomposition of the space Rn into a continuum of ring elements as in (50), and (147)

follows from the identity δ(g(x)) = δ(x−x0)
|g′(x0)| with x0 being the real root of g(x), so that

δ

(√
||un||2 − 2||un||

√
nP1 cos θ + nP1 −

√
nP2

)
=

δ(θ − θ0)∣∣∣ 2||un||
√
nP1 sin θ0

2
√
nP2

∣∣∣ =

√
P2

P1

δ(θ − θ0)

||un|| sin θ0
, (150)

in which θ0 ∈ (0, π) is defined as the solution to

cos θ0 =
||un||2 + n(P1 − P2)

2
√
nP1||un||

. (151)

The unconditional output distribution PY n is now given by

PY n(yn) =

∫
Rn

PUn(un)PY n|Un(yn|un)dun, (152)

where PY n|Un(yn|un) is the i.i.d. Gaussian distribution N (yn;un, In) of the channel noise.

Next, we choose the triple of (conditional) output distributions to be the capacity-achieving output distributions

with respect to each case, that is,

Q
(1)
Y n|Xn

2
(yn|xn2 ) ∼ N (yn;xn2 , (1 + P1)In), (153)

Q
(2)
Y n|Xn

1
(yn|xn1 ) ∼ N (yn;xn1 , (1 + P2)In), (154)

Q
(3)
Y n(yn) ∼ N (yn; 0, (1 + P1 + P2)In). (155)

The following proposition will then bound the R-N derivatives introduced in (126). The proof, which is a slight

generalization of the one for the P2P case, is given in Appendix C.

Proposition 3: Let PY n|Xn
2
, PY n|Xn

1
, PY n be the (conditional) distributions (135), (136), (152) induced on the

output of the Gaussian MAC by a pair of independent uniform input distributions on the respective power shells (133),

and let Q(1)
Y n|Xn

2
, Q

(2)
Y n|Xn

1
, Q

(3)
Y n be the (conditional) capacity-achieving output distributions (153), (154), (155). There

exist positive constants K1,K2,K3 such that, for any xn1 , x
n
2 , y

n ∈ Rn, and for sufficiently large n,

dPY n|Xn
2

(yn|xn2 )

dQ
(1)
Y n|Xn

2
(yn|xn2 )

≤ K1, (156a)

dPY n|Xn
1

(yn|xn1 )

dQ
(2)
Y n|Xn

1
(yn|xn1 )

≤ K2, (156b)

dPY n(yn)

dQ
(3)
Y n(yn)

≤ K3. (156c)
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Remark. Using some more complicated manipulations, the proposition can be shown to be valid for any finite n,

but the above statement is enough for our second-order analysis.

Proposition 3 facilitates the use of Theorem 4 with the aforementioned choices for the input distributions and

the reference output distributions. Substituting (134) into the achievability bounds (124) and (125) of Theorem 4

leaves only the confusion and joint/individual outage probabilities. Note that, for simplicity of analysis, we will

use the choice of thresholds as indicated in (127) for both of the joint-outage and outage-splitting bounds above,

although it need not be the optimal choice for the joint case. In the following, we evaluate the outage and confusion

probabilities for sufficiently large blocklength to obtain the second-order achievable bounds.

2) Evaluation of the Outage Probability: The joint outage probability for the Gaussian MAC can be written in

the following generic form

PXn
1
PXn

2
PY n|Xn

1 X
n
2

[
ĩ(Xn

1 ;Y n|Xn
2 ) ≤ log γ1

∪ ĩ(Xn
2 ;Y n|Xn

1 ) ≤ log γ2

∪ ĩ(Xn
1 X

n
2 ;Y n) ≤ log γ3

]
(157)

= 1− PXn
1
PXn

2
PY n|Xn

1 X
n
2

 ĩ(Xn
1 X

n
2 ;Y n) >


log γ1

log γ2

log γ3


 , (158)

in which the modified mutual information random vector is defined as

ĩ(Xn
1 X

n
2 ;Y n) :=


ĩ(Xn

1 ;Y n|Xn
2 )

ĩ(Xn
2 ;Y n|Xn

1 )

ĩ(Xn
1 X

n
2 ;Y n)

 , (159)

and the input distribution PXn
1
PXn

2
used in the outage formulation above is the independent uniform distribution

on the respective power shells (133), and the vector inequality in (158) is understood as being element wise.

Under the PY n|Xn
1 X

n
2

channel law, the output Y n can be written in the form

Y n = Xn
1 +Xn

2 + Zn, (160)

where Zn ∼ N (0, In) is the i.i.d. unit-variance channel noise. With the choices (153) and (154) for Q(1)
Y n|Xn

2
and

Q
(2)
Y n|Xn

1
, respectively, the first two elements of this random vector simplify analogous to (61) as follows:

ĩ(Xn
1 ;Y n|Xn

2 ) ≡ nC(P1) +
log e

2(1 + P1)

[
P1(n− ||Zn||2) + 2〈Xn

1 , Z
n〉
]
, (161)

ĩ(Xn
2 ;Y n|Xn

1 ) ≡ nC(P2) +
log e

2(1 + P2)

[
P2(n− ||Zn||2) + 2〈Xn

2 , Z
n〉
]
. (162)

Moreover, with the choice (155) for Q(3)
Y n , the third element of the modified mutual information random vector also

simplifies to

ĩ(Xn
1 , X

n
2 ;Y n) ≡ log

(2π)−n/2e−||Y
n−Xn

1 −X
n
2 ||

2/2

(2π(1 + P1 + P2))−n/2e−||Y n||2/2(1+P1+P2)
(163)
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=
n

2
log(1 + P1 + P2) +

log e

2

[
||Y n||2

1 + P1 + P2
− ||Y n −Xn

1 −Xn
2 ||2

]
(164)

= nC(P1 + P2) +
log e

2(1 + P1 + P2)

[
||Xn

1 +Xn
2 + Zn||2 − (1 + P1 + P2)||Zn||2

]
(165)

= nC(P1 + P2) +
log e

2(1 + P1 + P2)

[
(P1 + P2)(n− ||Zn||2) + 2〈Xn

1 , X
n
2 〉+ 2〈Xn

1 , Z
n〉+ 2〈Xn

2 , Z
n〉
]
,

(166)

since ||Xn
1 ||2 = nP1 and ||Xn

2 ||2 = nP2 with probability one.

Note that, although these random variables are written in the form of summations, the summands are not

independent, since neither of the inputs Xn
1 and Xn

2 are independent across time. Therefore, a direct application of

the conventional CLT is not possible. Moreover, the symmetry arguments used in the Gaussian P2P case [3], [4] do

not apply, since the realization of the inner product RV 〈Xn
1 , X

n
2 〉 varies with different pairs of codewords (xn1 , x

n
2 )

on the power shells.

However, recall that independent uniform RVs on the power shells can be viewed as functions of i.i.d. Gaussian

RVs. More precisely, let Wn
1 ∼ N (0, In) and Wn

2 ∼ N (0, In) be i.i.d. Gaussian RVs independent of each other

and the channel noise Zn ∼ N (0, In). The elements X1t and X2t, t = 1, ..., n, of the independent uniformly

distributed RVs Xn
1 , X

n
2 on the power shells (133) can be expressed as

X1t =
√
nP1

W1t

||Wn
1 ||

, X2t =
√
nP2

W2t

||Wn
2 ||

. (167)

Hence, we can apply the CLT for functions of Proposition 1 as follows. Consider the vector {Ut = (U1t, ..., U6t)}∞t=1

whose elements are

U1t = 1− Z2
t , (168)

U2t =
√
P1W1tZt, (169)

U3t =
√
P2W2tZt, (170)

U4t =
√
P1P2W1tW2t, (171)

U5t = W 2
1t − 1, (172)

U6t = W 2
2t − 1. (173)

Note that this random vector has an i.i.d. distribution across time t = 1, ..., n, and its moments can be easily verified

to satisfy E[U1] = 0 and E[||U1||32] <∞. Moreover, the covariance matrix of this vector is given by

Cov(U1) =



2 0 0 0 0 0

0 P1 0 0 0 0

0 0 P2 0 0 0

0 0 0 P1P2 0 0

0 0 0 0 2 0

0 0 0 0 0 2


. (174)
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Next, define the vector function f(u) = (f1(u), f2(u), f3(u)) whose three components are

f1(u) = P1u1 +
2u2√
1 + u5

, (175)

f2(u) = P2u1 +
2u3√
1 + u6

, (176)

f3(u) = (P1 + P2)u1 +
2u2√
1 + u5

+
2u3√
1 + u6

+
2u4√

1 + u5

√
1 + u6

. (177)

Again, f(0) = 0 and all the first- and second-order partial derivatives of all three components of f are continuous

in a neighborhood of u = 0. Moreover, the Jacobian matrix {∂fl(u)
∂uj
}3×6 at u = 0 can be readily verified to be

J |u=0 =


P1 2 0 0 0 0

P2 0 2 0 0 0

P1 + P2 2 2 2 0 0

 . (178)

Moreover, the first two components, similar to the P2P case (69)-(71), give

f1

(
1

n

n∑
t=1

Ut

)
=

1

n

[
P1(n− ||Zn||2) + 2〈Xn

1 , Z
n〉
]
, (179)

f2

(
1

n

n∑
t=1

Ut

)
=

1

n

[
P2(n− ||Zn||2) + 2〈Xn

2 , Z
n〉
]
, (180)

and the third component yields

f3

(
1

n

n∑
t=1

Ut

)
=
P1 + P2

n

n∑
t=1

(1− Z2
t ) +

2 1
n

∑n
t=1

√
P1W1tZt√

1 + 1
n

∑n
t=1(W 2

1t − 1)
+

2 1
n

∑n
t=1

√
P2W2tZt√

1 + 1
n

∑n
t=1(W 2

2t − 1)

+
2 1
n

∑n
t=1

√
P1P2W1tW2t√

1 + 1
n

∑n
t=1(W 2

1t − 1)
√

1 + 1
n

∑n
t=1(W 2

2t − 1)
(181)

=
1

n

n∑
t=1

(P1 + P2)(1− Z2
t ) +

2

n

n∑
t=1

√
nP1W1t

||Wn
1 ||

Zt +
2

n

n∑
t=1

√
nP2W2t

||Wn
2 ||

Zt

+
2

n

n∑
t=1

√
nP1W1t

||Wn
1 ||2

√
nP2W2t

||Wn
2 ||2

(182)

=
1

n

[
(P1 + P2)(n− ||Zn||2) + 2〈Xn

1 , X
n
2 〉+ 2〈Xn

1 , Z
n〉+ 2〈Xn

2 , Z
n〉
]
. (183)

Recalling (161), (162), (166), we now conclude from Proposition 1 that the modified mutual information random

vector (159) converges in distribution to a 3-dimensional Gaussian random vector with mean vector nC(P1, P2)

and covariance matrix given by

1

n

(
n log e

2

)2


1

1+P1
0 0

0 1
1+P2

0

0 0 1
1+P1+P2

× (184)
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P1 2 0 0 0 0

P2 0 2 0 0 0

P1 + P2 2 2 2 0 0





2 0 0 0 0 0

0 P1 0 0 0 0

0 0 P2 0 0 0

0 0 0 P1P2 0 0

0 0 0 0 2 0

0 0 0 0 0 2





P1 P2 P1 + P2

2 0 2

0 2 2

0 0 2

0 0 0

0 0 0




1

1+P1
0 0

0 1
1+P2

0

0 0 1
1+P1+P2



(185)

=
n log2 e

2


P1(P1+2)
(P1+1)2

P1P2

(P1+1)(P2+1)
P1(P1+P2+2)

(P1+1)(P1+P2+1)

P1P2

(P1+1)(P2+1)
P2(P2+2)
(P2+1)2

P2(P1+P2+2)
(P2+1)(P1+P2+1)

P1(P1+P2+2)
(P1+1)(P1+P2+1)

P2(P1+P2+2)
(P2+1)(P1+P2+1)

(P1+P2)(P1+P2+2)+2P1P2

(P1+P2+1)2

 = nV(P1, P2). (186)

In particular, the joint outage probability is bounded as

PXn
1
PXn

2
PY n|Xn

1 X
n
2

[
ĩ(Xn

1 ;Y n|Xn
2 ) ≤ log

(
K1

M1 − 1

2

)
∪ ĩ(Xn

2 ;Y n|Xn
1 ) ≤ log

(
K2

M2 − 1

2

)
∪ ĩ(Xn

1 X
n
2 ;Y n) ≤ log

(
K3

(M1 − 1)(M2 − 1)

2

)]
(187)

≤ 1− Pr

N (nC(P1, P2), nV(P1, P2)) >


log
(
K1

M1−1
2

)
log
(
K2

M2−1
2

)
log
(
K3

(M1−1)(M2−1)
2

)

+

B1√
n
. (188)

where B1 is the constant introduced in Proposition 1. Moreover, the individual outage probabilities are bounded as

PXn
1
PXn

2
PY n|Xn

1 X
n
2

[
ĩ(Xn

1 ;Y n|Xn
2 ) ≤ log

(
K1

M1 − 1

2

)]
≤ Q

(
nC(P1)− log

(
K1

M1−1
2

)√
nV (P1)

)
+
B11√
n
, (189a)

PXn
1
PXn

2
PY n|Xn

1 X
n
2

[
ĩ(Xn

2 ;Y n|Xn
1 ) ≤ log

(
K2

M2 − 1

2

)]
≤ Q

(
nC(P2)− log

(
K2

M2−1
2

)√
nV (P2)

)
+
B12√
n
, (189b)

PXn
1
PXn

2
PY n|Xn

1 X
n
2

[
ĩ(Xn

1 ;Y n|Xn
2 ) ≤ log

(
K3

(M1 − 1)(M2 − 1)

2

)]

≤ Q

nC(P1 + P2)− log
(
K3

(M1−1)(M2−1)
2

)
√
n[V (P1 + P2) + V3(P1, P2)]

+
B13√
n
, (189c)

where B11, B12, B13 are also the constants introduced in Proposition 1.

3) Evaluation of the Confusion Probability: The confusion probabilities for the Gaussian MAC can be written

in the following generic form

K1
M1 − 1

2
PXn

1
PXn

2
Q

(1)
Y n|Xn

2

[
ĩ(Xn

1 ;Y n|Xn
2 ) > log

(
K1

M1 − 1

2

)]
, (190a)

K2
M2 − 1

2
PXn

1
PXn

2
Q

(2)
Y n|Xn

1

[
ĩ(Xn

2 ;Y n|Xn
1 ) > log

(
K2

M2 − 1

2

)]
, (190b)
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K3
(M1 − 1)(M2 − 1)

2
PXn

1
PXn

2
Q

(3)
Y n

[
ĩ(Xn

1 X
n
2 ;Y n)> log

(
K3

(M1 − 1)(M2 − 1)

2

)]
, (190c)

where PXn
1
PXn

2
is the independent uniform input distribution on the respective power shells (133), and Q(1)

Y n|Xn
2 =xn

2

Q
(2)
Y n|Xn

1 =xn
1

and Q
(3)
Y n are the (conditional) capacity achieving output distributions (153), (154), (155) for the

Gaussian MAC.

Focusing on the conditional confusion probabilities for fixed input sequences xn1 and xn2 on the respective power

shells, we employ the change of measure technique of (78) with PY n|Xn
1 =xn

1 ,X
n
2 =xn

2
in the role of P , and Q(1)

Y n|Xn
2 =xn

2

Q
(2)
Y n|Xn

1 =xn
1

and Q(3)
Y n respectively in the role of Q to obtain the following refined large deviation bounds

Q
(1)
Y n|Xn

2 =xn
2

[
ĩ(xn1 ;Y n|xn2 ) > log γ1

]
≤ B21√

n
γ−1

1 , (191)

Q
(2)
Y n|Xn

1 =xn
1

[
ĩ(xn2 ;Y n|xn1 ) > log γ2

]
≤ B22√

n
γ−1

2 , (192)

Q
(3)
Y n

[
ĩ(xn1 , x

n
2 ;Y n)> log γ3

]
≤ B23√

n
γ−1

3 , (193)

which follow from [3, Lemma 47]. Specific expressions for the finite constants B21, B22, B23 can be readily

obtained in terms of the power constraints P1 and P2, but are not our main interest. Since these bounds are uniform

with respect to the location of the input sequences xn1 and xn2 on the respective power shells, we can bound the

unconditional confusion probabilities as

K1
M1 − 1

2
PXn

1
PXn

2
Q

(1)
Y n|Xn

2

[
ĩ(Xn

1 ;Y n|Xn
2 ) > log

(
K1

M1 − 1

2

)]
≤ B12√

n
, (194a)

K2
M2 − 1

2
PXn

1
PXn

2
Q

(2)
Y n|Xn

1

[
ĩ(Xn

2 ;Y n|Xn
1 ) > log

(
K2

M2 − 1

2

)]
≤ B22√

n
, (194b)

K3
(M1 − 1)(M2 − 1)

2
PXn

1
PXn

2
Q

(3)
Y n

[
ĩ(Xn

1 X
n
2 ;Y n)> log

(
K3

(M1 − 1)(M2 − 1)

2

)]
≤ B32√

n
. (194c)

4) Completion: Substituting (134), (188), and (194) into the achievability bound (124) of Theorem 4 and

recalling (89) that, with a little abuse of notation cf. [3, Eq. (186)], ε is the target error probability yields

ε ≥ 1− Pr

N (nC(P1, P2), nV(P1, P2)) >


log
(
K1

M1−1
2

)
log
(
K2

M2−1
2

)
log
(
K3

(M1−1)(M2−1)
2

)

+

B√
n
, (195)

where B = B1 + B21 + B22 + B23. Rearranging and using the symmetry property of the Gaussian distribution

Pr[N > z] = Pr[N < −z], we obtain

Pr

N (0, nV(P1, P2)) < nC(P1, P2)−


log
(
K1

M1−1
2

)
log
(
K2

M2−1
2

)
log
(
K3

(M1−1)(M2−1)
2

)

 ≥ 1−

(
ε− B√

n

)
. (196)
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Recalling the definition (97) of the inverse complementary CDF of the multi-dimensional Gaussian RV, we find
log
(
M1−1

2

)
log
(
M2−1

2

)
log
(

(M1−1)(M2−1)
2

)
 ∈ nC(P1, P2)−

√
nQ−1

(
ε− B√

n
; V(P1, P2)

)
−


logK1

logK2

logK3

 (197)

⊆ nC(P1, P2)−
√
nQ−1 (ε; V(P1, P2)) +O(1)1, (198)

where (198) follows from the Taylor expansion for the multi-dimensional Q−1 function. Thus, we have proved that

an (n,M1,M2, ε, P1, P2) code exists if the rate pair satisfies

1

n


logM1

logM2

log (M1M2)

 ∈ C(P1, P2)− 1√
n
Q−1 (ε; V(P1, P2)) +O

(
1

n

)
1. (199)

This concludes the proof of achievability for the joint-outage rate region of Theorem 2.

Next, we turn to the proof of Theorem 3. Substituting (134), (189), and (194) into the achievability bound (125)

of Theorem 4 and again recalling (89) that ε is the target error probability leads to

ε ≥ Q

(
nC(P1)− log

(
K1

M1−1
2

)√
nV (P1)

)
+
B̃1√
n

+Q

(
nC(P2)− log

(
K2

M2−1
2

)√
nV (P2)

)
+
B̃2√
n

+Q

nC(P1 + P2)− log
(
K3

(M1−1)(M2−1)
2

)
√
n[V (P1 + P2) + V3(P1, P2)]

+
B̃3√
n
, (200)

where B̃1 := B11 +B21, B̃2 := B12 +B22, and B̃3 := B13 +B23. Now, splitting ε among the three first terms of

each line gives

logM1 ≤ nC(P1)−
√
nV (P1)Q−1

(
λ1ε−

B̃1√
n

)
− logK1

logM2 ≤ nC(P2)−
√
nV (P2)Q−1

(
λ2ε−

B̃2√
n

)
− logK2

logM1 + logM2 ≤ nC(P1 + P2)−
√
n[V (P1 + P2) + V3(P1, P2)]Q−1

(
λ3ε−

B̃3√
n

)
− logK3 (201)

where the positive constants λ1, λ2, λ3 such that λ1 +λ2 +λ3 = 1 can be arbitrarily chosen to represent the weight

of each of the three types of outage. We can further simplify the bounds in (201) using the Taylor expansion

Q−1(λε− B̃√
n

) = Q−1(λε) +O(1/
√
n) to obtain

logM1 ≤ nC(P1)−
√
nV (P1)Q−1 (λ1ε) +O(1),

logM2 ≤ nC(P2)−
√
nV (P2)Q−1 (λ2ε) +O(1),

logM1 + logM2 ≤ nC(P1 + P2)−
√
n[V (P1 + P2) + V3(P1, P2)]Q−1 (λ3ε) +O(1). (202)

This concludes the proof of achievability for the outage-splitting rate region of Theorem 3.
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V. CONCLUSION

We have proved several inner bounds for the Gaussian MAC in the finite blocklength regime, and used them to

establish second-order achievable rate regions. As a consequence of our study, we observe that codebooks that are

randomly generated according to independent uniform distributions on the users’ power shells result in rather tight

second-order rate regions for the Gaussian MAC, and they outperform coding schemes induced by the (first-order-

optimal) Gaussian input distribution and those via TDMA.

To obtain these main results, we have developed simple and transparent methods for proving non-asymptotic

achievability results for Gaussian settings. Our achievability methods rely on the conventional random coding and

typicality decoding, but employs modified mutual information random variables, a new change of measure technique,

and the application of a CLT for functions. We believe that our methods provide valuable insights for handling

other channel models involving input cost constraints, and they may also be generalized to other multi-user settings.

APPENDIX A

PROOF OF PROPOSITION 1: CLT FOR FUNCTIONS

Since the vector-valued function f(u) has continuous second-order partial derivatives at 0, we have from Taylor’s

Theorem that

f (u) = f(0) + JuT + R(u), (203)

where R(u) is the vanishing remainder term in the Taylor expansion. In particular, for those u belonging to the

K-hypercube neighborhood N(r0) of 0 with side length r0 >
1

4
√
n

, the Lagrange (mean-value) form of the Taylor

Theorem provides the following uniform bound on the remainder term

|R(u)| ≤ 1

2



max1≤k,p≤K maxu0∈N(r0)

∣∣∣∂2f1(u0)
∂uk∂up

∣∣∣
·

·

·

max1≤k,p≤K maxu0∈N(r0)

∣∣∣∂2fL(u0)
∂uk∂up

∣∣∣


(u1 + ...+ uK)2, (204)

where |u| := (|u1|, ..., |uK |) denotes the element-wise absolute value, and the vector inequality in (204) is also

element wise.

Now, we apply the normalized sum 1
n

∑n
t=1 Ut as the argument of function f to obtain

f

(
1

n

n∑
t=1

Ut

)
= f(0) + J

1

n

n∑
t=1

UT
t + R

(
1

n

n∑
t=1

Ut

)
(205)

almost surely. Since the random vector 1
n

∑n
t=1 Ut is concentrating around 0, we conclude that the corresponding

remainder term also concentrates around 0:

Pr

[∣∣∣∣∣R
(

1

n

n∑
t=1

Ut

)∣∣∣∣∣ > 1√
n

1

]
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≤ Pr

[∣∣∣∣∣R
(

1

n

n∑
t=1

Ut

)∣∣∣∣∣ > 1√
n

1
⋂ 1

n

n∑
t=1

Ut ∈ N(r0)

]
+ Pr

[
1

n

n∑
t=1

Ut /∈ N(r0)

]
(206)

≤ Pr


1

2



max1≤k,p≤K maxu0∈B(r0)

∣∣∣∂2f1(u0)
∂uk∂up

∣∣∣
·

·

·

max1≤k,p≤K maxu0∈B(r0)

∣∣∣∂2fL(u0)
∂uk∂up

∣∣∣


(

1

n

n∑
t=1

(U1t + ...+ UKt)

)2

>
1√
n

1


+

K∑
k=1

Pr

[∣∣∣∣∣ 1n
n∑
t=1

Ukt

∣∣∣∣∣ > r0

]

(207)

= Pr

( 1

n

n∑
t=1

(U1t + ...+ UKt)

)2

>
2√
n

(
min

1≤l≤L
max

1≤k,p≤K
max

u0∈B(r0)

∣∣∣∣∂2fl(u0)

∂uk∂up

∣∣∣∣)−1
+

K∑
k=1

Pr

[∣∣∣∣∣ 1n
n∑
t=1

Ukt

∣∣∣∣∣ > r0

]
(208)

≤
Var
[

1
n

∑n
t=1(U1t + ...+ UKt)

]
2√
n

(
min1≤l≤L max1≤k,p≤K maxu0∈B(r0)

∣∣∣∂2fl(u0)
∂uk∂up

∣∣∣)−1 +

K∑
k=1

Var
[

1
n

∑n
t=1 Ukt

]
r2
0

(209)

≤
K
n (Var[U11] + ...+ Var[UK1])

2√
n

(
min1≤l≤L max1≤k,p≤K maxu0∈B(r0)

∣∣∣∂2fl(u0)
∂uk∂up

∣∣∣)−1 +
Var[U11] + ...+ Var[UK1]

nr2
0

(210)

=
c1√
n
, (211)

where (206) follows from the simple bound Pr[A] ≤ Pr[A ∩ B] + Pr[Bc], (207) from the Lagrange bound (204)

and the union bound, (209) follows from the Chebyshev inequality, (210) from the simple bound on the sum of

variances of generic dependent random variables Var[X1 + ... + XK ] ≤ K(Var[X1] + ... + Var[XK ]), and (211)

from the constraint r0 >
1

4
√
n

on the side length of the neighborhood and the definition of the constant c1 as

c1 := (Var[U11] + ...+ Var[UK1])

[
1 +

K

2
min

1≤l≤L
max

1≤k,p≤K
max

u0∈B(r0)

∣∣∣∣∂2fl(u0)

∂uk∂up

∣∣∣∣] . (212)

In the derivation above, we have assumed that min1≤l≤L max1≤k,p≤K maxu0∈B(r0)

∣∣∣∂2fl(u0)
∂uk∂up

∣∣∣ > 0; in case this

does not hold, that is, if min1≤l≤L max1≤k,p≤L maxu0∈B(r0)

∣∣∣∂2fl(u0)
∂uk∂up

∣∣∣ = 0, the above sequence of steps do not

hold, but the final result (211) trivially holds with c1 = Var[U11] + ...+ Var[UK1] which is consistent with (212).

Now, we obtain

Pr

[
f

(
1

n

n∑
t=1

Ut

)
∈ D

]

≤ Pr

[
f

(
1

n

n∑
t=1

Ut

)
∈ D

⋂ ∣∣∣∣∣R
(

1

n

n∑
t=1

Ut

)∣∣∣∣∣ ≤ 1√
n

1

]
+ Pr

[∣∣∣∣∣R
(

1

n

n∑
t=1

Ut

)∣∣∣∣∣ > 1√
n

1

]
(213)

≤ Pr

[
f(0) +

1

n

n∑
t=1

JUT
t ∈ D ⊕

1√
n

1

]
+

c1√
n

(214)

≤ Pr

[
N
(

f(0) + E[JUT
1 ],

1

n
Cov[JUT

1 ]

)
∈ D ⊕ 1√

n
1

]
+

c2√
n

+
c1√
n

(215)

≤ Pr

[
N
(

f(0),
1

n
JCov[U1]JT

)
∈ D

]
+

c3√
n

+
c2√
n

+
c1√
n

(216)

September 11, 2013 DRAFT



39

where inequality (213) follows from the simple bound Pr[A] ≤ Pr[A∩B] + Pr[Bc], (214) from (205) and (211) as

well as the definition of a “linear outward set-expansion” D⊕ 1√
n
1, which is closely related to the formal definition

of set expansion in [34] and basically means an enlargement of the set D with an “addition in all directions”

with 1√
n

, (215) from the multi-dimensional CLT [32], [35] with the constant c2 defined as

c̃2 :=
400L1/4E[||JUT

1 ||32]

λmin
(
Cov[JUT

1 ]
)3/2 ≤ 400L1/4λmax

(
JJT

)3/2 E[||UT
1 ||32]

λmin
(
Cov[JUT

1 ]
)3/2 := c2, (217)

where λmin(Σ) and λmax(Σ) denotes the smallest and largest eigenvalues of the matrix Σ, respectively, and finally

(216) from the Taylor expansion for the probability at hand with the proper positive finite constant c3 depending

upon the set D.

Analogously, we have

Pr

[
f

(
1

n

n∑
t=1

Ut

)
∈ D

]
≥ Pr

[
f

(
1

n

n∑
t=1

Ut

)
∈ D

⋂ ∣∣∣∣∣R
(

1

n

n∑
t=1

Ut

)∣∣∣∣∣ ≤ 1√
n

1

]
(218)

≥ Pr

[
f(0) + J

1

n

n∑
t=1

UT
t ∈ D 	

1√
n

1
⋂ ∣∣∣∣∣R

(
1

n

n∑
t=1

Ut

)∣∣∣∣∣ ≤ 1√
n

1

]
(219)

≥ Pr

[
f(0) +

1

n

n∑
t=1

JUT
t ∈ D 	

1√
n

1

]
− Pr

[∣∣∣∣∣R
(

1

n

n∑
t=1

Ut

)∣∣∣∣∣ > 1√
n

1

]
(220)

≥ Pr

[
f(0) +

1

n

n∑
t=1

JUT
t ∈ D 	

1√
n

1

]
− c1√

n
(221)

≥ Pr

[
N
(

f(0) + E[JUT
1 ],

1

n
Cov[JUT

1 ]

)
∈ D 	 1√

n
1

]
− c2√

n
− c1√

n
(222)

≥ Pr

[
N
(

f(0),
1

n
JCov[U1]JT

)
∈ D

]
− c3√

n
− c2√

n
− c1√

n
(223)

where inequality (219) follows from the definition of a “linear inward set-contraction” D	 1√
n
1, which is closely

related to the formal definition of set contraction in [34] and basically means a shrinkage of the set D with a

“deduction in all directions” of 1√
n

, (220) follows from the bound Pr[A ∩B] ≥ Pr[A]− Pr[Bc], and all the other

steps are as in the previous case.

Combining inequalities (216) and (223) establishes Proposition 1 with the constant B := c1 + c2 + c3.

APPENDIX B

PROOF OF PROPOSITION 2 FOR P2P GAUSSIAN CHANNELS

Define DP,Q(yn) := PY n (yn)
QY n (yn) . Recalling the output distribution (53) induced by the uniform input distribution

on the power shell (46), we can simplify DP,Q(yn) as

DP,Q(yn) =
1

2

(
2e−P (1 + P )

)n/2
Γ
(n

2

)
e−P ||y

n||2/2(1+P ) In/2−1(||yn||
√
nP )

(||yn||
√
nP )n/2−1

. (224)

To bound this divergence, we first notice that

ln Γ
(n

2

)
≤ n− 1

2
ln
(n

2

)
− n

2
+ cΓ. (225)
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where cΓ ≤ 2; in fact, for asymptotically large n, the above inequality tends to equality with cΓ = ln(
√

2π) due

to Sterling’s approximation. Moreover, Ik(z) ≤ Ik+1(z) for any order k, and so it is sufficient to bound the above

divergence only for even values of the order, such that k = n/2− 1 is an integer. For such an integer, we have [3]

z−kIk(z) ≤
√
π

8

(
k2 + z2

)−1/4
(
k +

√
k2 + z2

)−k
e
√
k2+z2

(226)

Using the above inequality along with shorthands a = n/2−1
n/2 , we obtain

lnDP,Q(yn) ≤ c+
n

2
fa,P

(
||yn||2

n

)
, (227)

where c = ln(1/2) + cΓ + ln(
√
π/8) = O(1), and for t ∈ R+

fa,P (t) := ln
(

2e−(1+P )(1 + P )
)
− Pt

1 + P
+
√
a2 + 4Pt− a ln

(
a+

√
a2 + 4Pt

)
− 1− a

2
ln
(√

a2 + 4Pt
)
.

(228)

To prove the proposition for any finite n, one needs to show that the above function fa,P (t) is non-positive for

all t ∈ R+, for any fixed P . For simplicity, however, we only focus on sufficiently large values of n, such that

a→ 1. In such a case, the above function simplifies to

fP (t) := ln
(

2e−(1+P )(1 + P )
)
− Pt

1 + P
+
√

1 + 4Pt− ln
(

1 +
√

1 + 4Pt
)
. (229)

It is easy to show that the function fP (t) has only one local (and also global) maximum which occurs at t = 1 +P

leading to fP (1 + P ) = 0. Therefore, fP (t) ≤ 0 for all t ∈ R+, concluding that for all yn ∈ Rn

DP,Q(yn) ≤ exp
(
c+

n

2
fP

(
||yn||2

n

))
≤ K, (230)

where K := ec ≤ 1. Notice that, interestingly, the constant K on the RHS of this inequality is independent of the

power constraint P .

APPENDIX C

PROOF OF PROPOSITION 3 FOR THE GAUSSIAN MAC

Proof is similar to that of Proposition 2. The first two inequalities (156a) and (156b) indeed directly follow

from Proposition 1, since the conditional outputs PY n|Xn
2

(yn|xn2 ), PY n|Xn
1

(yn|xn1 ) induced by the power shell

distribution and the per-user capacity achieving distributions Q(1)
Y n|Xn

2
(yn|xn2 ), Q

(2
Y n|Xn

1
(yn|xn1 ) both have the same

expressions as the output distribution (53) induced by the P2P shell distribution and the capacity-achieving output

distribution of a P2P channel, respectively, with the only modification that yn ∈ Rn is replace by (yn − xn2 ) ∈ Rn

and (yn − xn1 ) ∈ Rn, and P by P1 and P2, respectively.

Therefore, it only remain to prove the third inequality (156c) on the unconditional R-N derivative PY n (yn)

Q
(3)
Y n (yn)

. Since

the output distribution PY n is not explicitly available, we take an indirect approach. We show that the corresponding

input distributions satisfy the desired property and thus conclude that their resulting output distribution do as well. In

particular, let QUn(un) ∼ N (un; 0, (P1+P2)In) be the distribution of the superimposed input Un = Xn
1 +Xn

2 when
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the two inputs Xn
1 and Xn

2 are independent i.i.d. Gaussian distributions. Note that feeding this distribution to the

channel Y n = Un+Zn recovers the capacity-achieving output distribution Q(3)
Y n(yn) ∼ N (yn; 0, (1+P1 +P2)In):

Q
(3)
Y n(yn) =

∫
Rn

QUn(un)PY n|Un(yn|un)dun. (231)

Therefore, if we can show that

DP,Q(un) :=
PUn(un)

QUn(un)
≤ K3, ∀un ∈ Rn (232)

then it immediately follows for any yn ∈ Rn that

PY n(yn) =

∫
Rn

PUn(un)PY n|Un(yn|un)dun (233)

≤
∫
Rn

K3QUn(un)PY n|Un(yn|un)dun = K3Q
(3)
Y n(yn). (234)

Hence, we are only left with the proof of (232). Note that, the claim is trivial for those un ∈ Rn not belonging to

the hollow sphere |
√
nP1 −

√
nP2| < ||un|| <

√
nP1 +

√
nP2, since they satisfy PUn(un) = 0. Thus, focusing on

those un belonging to this hollow sphere, we have

DP,Q(un) =

√
P2

πP1

Γ
(
n
2

)
||un||Γ

(
n−1

2

) Γ
(
n
2

)
(2π)n/2(P1 + P2)n/2e||u

n||2/2(P1+P2)

2πn/2(nP2)(n−1)/2

(
1−

(
||un||2 + n(P1 − P2)

2
√
nP1||un||

)2
)(n−3)/2

(235)

Using (225) and the crude bound Γ
(
n
2

)
/Γ
(
n−1

2

)
≤
√
n, we obtain

lnDP,Q(un) ≤ ln

(
P2√
πP1

)
+ ln

(n
2

)
− ln(||un||) +

n− 1

2
ln
(n

2

)
− n

2
+ cΓ +

n

2
ln

(
2(P1 + P2)

P2

)
− n

2
ln(n)

+
||un||2

2(P1 + P2)
+
n− 3

2
ln

(
1−

(
||un||2 + n(P1 − P2)

2
√
nP1||un||

)2
)

(236)

= c+
n

2
fn,P1,P2

(
||un||2

n

)
(237)

where c := cΓ + ln
(

P2√
2πP1

)
and

fn,P1,P2
(t) =− ln(t)

n
+ ln

(
P1 + P2

e P2

)
+

t

P1 + P2
+
n− 3

n
ln

(
1− (t+ P1 − P2)2

4P1t

)
, (238)

with (
√
P1 −

√
P2)2 < t < (

√
P1 +

√
P2)2. To prove the proposition for any finite n, one needs to show that the

above function fn,P1,P2
(t) is non-positive for all t in the aforementioned range, for any fixed P1, P2. For simplicity,

however, we only focus on sufficiently large values of n. In such a case, the above function simplifies to

fP1,P2
(t) = ln

(
P1 + P2

e P2

)
+

t

P1 + P2
+ ln

(
1− (t+ P1 − P2)2

4P1t

)
. (239)

It is then easy to show that, in this range of values for t, the function fP1,P2(t) has only one local (and also global)

maximum which occurs at t = P1 + P2 leading to fP1,P2
(P1 + P2) = 0. Therefore, fP1,P2

(t) ≤ 0 for all t ∈

((
√
P1−

√
P2)2, (

√
P1 +

√
P2)2), concluding that, for any un satisfying |

√
nP1−

√
nP2| < ||un|| <

√
nP1 +

√
nP2,

DP,Q(un) ≤ exp
(
c+

n

2
fP1,P2

(
||un||2

n

))
≤ K3, (240)
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where K3 := ec = ecΓ P2√
2πP1

= O(1). This concludes the proof of Proposition 3. Note that, in the case of Gaussian

MAC, the constant K3 depends upon the power constraints P1 and P2, at least as indicated by our bounding

techniques.
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