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Abstract

We formulate a model for intermittent communications that can capture bursty transmissions or

a sporadically available channel, where in either case the receiver does not know a priori when the

transmissions will occur. Focusing on the point-to-point case, we develop two decoding structures

and their achievable rates for such communication scenarios. One structure determines the transmitted

codeword, and another scheme first detects the locations of codeword symbols and then uses them to

decode. We introduce the concept of partial divergence and study some of its properties in order to

obtain stronger achievability results. As the system becomes more intermittent, the achievable rates

decrease due to the additional uncertainty about the positions of the codeword symbols at the decoder.

Additionally, we provide upper bounds on the capacity of binary noiseless intermittent communication

with the help of a genie-aided encoder and decoder. The upper bounds imply a tradeoff between the

capacity and the intermittency rate of the communication system. Finally, we obtain lower and upper

bounds on the capacity per unit cost of intermittent communication.

Index Terms

I. INTRODUCTION

Communication systems are traditionally analyzed assuming continuous transmission of en-

coded symbols through the channel. However, in many practical applications such an assumption

is not appropriate, and transmitting a codeword can be intermittent due to lack of synchronization,

shortage of transmission energy, or burstiness of the system. The challenge is that the receiver
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does not explicitly know whether a given output symbol of the channel is the result of sending

a symbol of the codeword or is simply a noise symbol containing no information about the

message. Intermittent communication introduced in this paper provides one model for non-

contiguous transmission of codewords in such settings.

If the intermittent process is considered to be part of the channel behavior, then intermittent

communication models a sporadically available channel in which at some time slots a symbol

from the codeword is sent, and at others the receiver observes only noise. The model can be

interpreted as an insertion channel in which some number of noise symbols are inserted between

the codeword symbols. As another application, if the intermittent process is considered to be

part of the transmitter, then we say that the transmitter is intermittent. Practical examples include

energy harvesting systems in which the transmitter harvests energy usually from a natural source

and uses it for transmission. Assuming that there is a special input that can be transmitted with

zero energy, the transmitter sends the symbols of the codeword if there is enough energy for

transmission, and sends the zero-cost symbol otherwise.

A. Related Work

Conceptually, two sets of related work are asynchronous communication and insertion /

deletion channels. The former corresponds to contiguous transmission of codeword symbols

in which the receiver observes noise before and after transmission, and the latter corresponds to

a channel model in which some number of symbols are inserted at the output of the channel, or

some of the input symbols of the channel are deleted. A key assumption of these communication

models is that the receiver does not know a priori the positions of codeword / noise / deleted

symbols, capturing certain kinds of asynchronism. Generally, this asynchronism makes the task

of the decoder more difficult since, in addition to the uncertainty about the message of interest,

there is also uncertainty about the positions of the symbols.

An information theoretic model for asynchronous communication is developed in [1]–[4] with

a single block transmission of length k that starts at a random time v unknown to the receiver,

within an exponentially large window n = eαk known to the receiver, where α is called the

asynchronism exponent. In this model, the transmission is contiguous; once it begins, the whole

codeword is transmitted, and the receiver observes noise only both before and after transmission.

Originally, the model appears in [5] with the goal being to locate a sync pattern at the output



3

of a memoryless channel using a sequential detector without communicating a message to the

receiver. The same author extend the framework for modeling asynchronous communication

in [1], [2], where communication rate is defined with respect to the decoding delay, and give

bounds on the capacity of the system.

Capacity per unit cost for asynchronous communication is studied in [3]. The capacity of

asynchronous communication with a simpler notion of communication rate, i.e., with respect to

the codeword length, is a special case of the result in [3]. In [4], it is shown that if the decoder

is required to both decode the message and locate the codeword exactly, the capacity remains

unchanged, and can be universally achieved. Also, it is shown that the channel dispersion is not

affected because of asynchronism. In a recent work [6], the authors study the capacity per unit

cost for asynchronous communication if the receiver is constrained to sample only a fraction of

the channel outputs, and they show that the capacity remains unchanged under this constraint.

In [7], a slotted asynchronous channel model is investigated and fundamental limits of asyn-

chronous communication in terms of miss detection and false alarm error exponents are studied.

A more general result in the context of single-message unequal error protection (UEP) is given

in [8].

Although we formally introduce the system model of intermittent communication in Section II,

we would like to briefly compare asynchronous communication with intermittent communication.

First, as contrasted in Figure 1, the transmission of codeword symbols is contiguous in asyn-

chronous communication, whereas it is bursty in intermittent communication. Second, the receive

window n is exponential with respect to the codeword length k in asynchronous communication,

but as we will see it is linear in intermittent communication. Finally, in both models, we assume

that the receiver does not know a priori the positions of codeword symbols.

Non-contiguous transmission of codeword symbols can be described by the following insertion

channel: after the ith symbol of the codeword, Ni fixed noise symbols ? are inserted, where Ni,

i = 1, 2, ..., k are random variables, possibly independent and identically distributed (iid). The

resulting sequence passes through a discrete memoryless channel, and the receiver should decode

the message based on the output of the channel without knowing the positions of the codeword

symbols. As will see later, if N ≥ k is the random variable denoting the total number of received

symbols, the intermittency rate N/k
p−→ α as k → ∞ will be an important parameter of the

system. To the best of our knowledge, this insertion channel model has not been studied before.
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(a) Asynchronous communication: n = eαk.

(b) Intermittent communication: n = αk.

Fig. 1: Comparison of the channel input sequence of asynchronous communication with

intermittent communication.

A more general class of channels with synchronization errors is studied in [9] in which every

transmitted symbol is independently replaced with a random number of the same symbol, possibly

empty string to model a deletion event. Dobrushin [9] proved the following characterization of

the capacity for such iid synchronization error channels.

Theorem 1. ( [9]): For iid synchronization error channels, let Xk := (X1, X2, ..., Xk) denote

the channel input sequence of length k, and Y N := (Y1, Y2, ..., YN) denote the corresponding

output sequence at the decoder, where length N is a random variable determined by the channel

realization. The channel capacity is

C = lim
k→∞

max
P
Xk

1

k
I(Xk;Y N), (1)

where I(X;Y ) denotes the average mutual information [27]. Theorem 1 demonstrates that iid

synchronization error channels are information stable. However, there are two difficulties related

to computing the capacity through this characterization. First, it is challenging to compute the

mutual information because of the memory inherent in the joint distribution of the input and

output sequences. Second, the optimization over all the input distributions is computationally

involved. A single-letter characterization for the capacity of the general class of synchronization

error channels is still an open problem, even though there are many papers deriving bounds on

the capacity of the insertion / deletion channels [10]–[19].
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Focusing on the lower bounds, Gallager [10] considers a channel model with substitution and

insertion / deletion errors and derives a lower bound on the channel capacity. In [11], codebooks

from first-order Markov chains are used to improve the achievability results for deletion channels.

The intuition is that it is helpful to put some memory in the codewords if the channel has

some inherent memory. Improved achievability results are obtained in [12], [13], with the latter

directly lower bounds the information capacity given by (1) for channels with iid deletions and

duplications with an input distribution following a symmetric, first-order Markov chain.

Upper bounds on the capacity of iid insertion / deletion channels are obtained in [17]–[19],

in which the capacity of an axillary channel obtained by a genie-aided decoder (and encoder)

with access to side-information about the insertion / deletion process is numerically evaluated.

Although our insertion channel model is different, we can apply some of these ideas and

techniques to upper bound the capacity of intermittent communication.

Finally, bounds on the capacity per unit cost for a noisy channel with synchronization errors are

given in a recent work [20], in which an encoding / decoding scheme with only loose transmitter-

receiver synchronization is proposed. We use the same approach for obtaining a lower bound on

the capacity per unit cost of intermittent communication.

B. Summary of Contributions

After introducing a model for intermittent communication in Section II, we develop two coding

theorems for achievable rates to lower bound the capacity in Section III. Toward this end, we

introduce the notion of partial divergence and its properties. We show that, as long as the ratio of

the receive window to the codeword length is finite and the capacity of the DMC is not zero, rate

R = 0 is achievable for intermittent communication; i.e., if there are only two messages, then

the probability of decoding error vanishes as the codeword length becomes sufficiently large.

By using decoding from exhaustive search and decoding from pattern detection, we obtain two

achievable rates that are also valid for arbitrary intermittent processes.

Focusing on the binary-input binary-output noiseless case, we obtain upper bounds on the

capacity of intermittent communication in Section IV by providing the encoder and the decoder

with various amounts of side-information, and calculating or upper bounding the capacity of this

genie-aided system. Although the gap between the achievable rates and upper bounds is fairly

large, especially for large values of intermittency rate, the results suggest that linear scaling
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Fig. 2: System model for intermittent communication.

of the receive window with respect to the codeword length considered in the system model is

relevant since the upper bounds imply a tradeoff between the capacity and the intermittency rate.

Finally, in Section V we obtain lower and upper bounds on the capacity per unit cost of

intermittent communication. To obtain the lower bound, we use a similar approach to the one

in [20], in which pulse-position modulation codewords are used at the encoder, and the decoder

searches for the position of the pulse in the output sequence. The upper bound is the capacity

per unit cost of the DMC.

II. SYSTEM MODEL AND FOUNDATIONS

We consider a communication scenario in which a transmitter communicates a single mes-

sage m ∈ {1, 2, ..., ekR = M} to a receiver over a discrete memoryless channel (DMC) with

probability transition matrix W and input and output alphabets X and Y , respectively. Let CW

denote the capacity of the DMC. Also, let ? ∈ X denote the “noise” symbol, which corresponds

to the input of the channel when the transmitter is “silent”. The transmitter encodes the message

as a codeword ck(m) of length k, which is the input sequence of intermittent process as shown

in Figure 2.

The intermittent process captures the burstiness of the channel or the transmitter and can be

described as follows: After the ith symbol from the codeword, Ni noise symbols ? are inserted,

where Ni’s are iid geometric random variables with mean α−1, where α ≥ 1 is the intermittency

rate. As will see later, if N ≥ k is the random variable denoting the total number of received

symbols, the intermittency rate N/k
p−→ α as k → ∞ will be an important parameter of the

system. In fact, the larger the value of α, the larger the receive window, and therefore, the more

intermittent the system becomes with more uncertainty about the positions of the codeword

symbols; if α = 1, the system is not intermittent and corresponds to contiguous communication.

We call this scenario intermittent communication and denote it by the tuple (X ,Y ,W, ?, α).
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This model corresponds to an iid insertion channel model in which at each time slot a codeword

symbol is sent with probability pt := 1/α and the noise symbol ? is sent with probability 1− pt
until the whole codeword is transmitted.

The output of intermittent process then goes through a DMC. At the decoder, there are N

symbols, where N is a random variable having a negative binomial distribution with parameters

k and pt:

P (N = n) =

(
n− 1

k − 1

)
pkt (1− pt)n−k, n ≥ k, (2)

with E [N ] = αk, and we have

N

k
=
k +N0 +N1 +N2 + ...+Nk

k

p−→ 1 + E(N0) = α, as k →∞, (3)

Therefore, the receive window N scales linearly with the codeword length k, as opposed to

the exponential scaling in asynchronous communication. Intermittent communication model

represents bursty communication in which either the transmitter or the channel is bursty. In a

bursty communication scenario, the receiver usually does not know the realization of the bursts.

Therefore, we assume that the receiver does not know the positions of the codeword symbols,

making the decoder’s task more involved.

Assuming that the decoded message is denoted by m̂, which is a function of the random

sequence Y N , and defining a code as in [27], we say that rate R is achievable if there exists a

sequence of length k codes of size ekR with 1
M

∑M
m=1 P(m̂ 6= m)→ 0 as k →∞. Note that the

communication rate is defined as logM/k. The capacity is the supremum of all the achievable

rates. Rate region (R,α) is said to be achievable if the rate R is achievable for the corresponding

scenario with the intermittency rate α.

It can be seen that the result of Theorem 1 for iid synchronization error channels applies to in-

termittent communication model, and therefore, the capacity equals limk→∞maxP
Ck

1
k
I(Ck;Y N).

Denting the binary entropy function by h(p) := −p log p−(1−p) log(1−p), we have the following

theorem.

Theorem 2. For intermittent communication (X ,Y ,W, ?, α), rates not exceeding

R1 := (CW − αh(1/α))+ are achievable.

Proof: We show that R1 is a lower bound for the capacity of intermittent communication by

lower bounding the mutual information. Let vector T k+1 := (N0, N1, ..., Nk) denote the number
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of noise insertions in between the codeword symbols, where the Ni’s are iid geometric random

variables with mean α− 1. We have

I(Ck;Y N) = I(Ck;Y N , T k+1)− I(Ck;T k+1|Y N)

= I(Xk;Y k)− I(Ck;T k+1|Y N) (4)

≥ kI(X;Y )−H(T k+1) (5)

= kI(X;Y )− (k + 1)H(N0) (6)

= kI(X;Y )− (k + 1)αh(
1

α
), (7)

where (4) follows from the fact that Ck is independent of the insertion process T k+1, and

conditioned on the positions of noise symbols T k+1, the mutual information between Ck and

Y N equals the mutual information between input and output sequences of the DMC without

considering the noise insertions; where (5) follows by considering iid codewords and by the fact

that conditioning cannot increase the entropy; and (6) and (7) follow from the fact that Ni’s are

iid geometric random variables. Finally, the result follows after dividing both sides by k and

considering the capacity achieving input distribution of the DMC.

Although the lower bound on the capacity of intermittent communication in Theorem 2 is

valid for the specific intermittent process described above, our achievability results in Section III

apply to an arbitrary insertion process as long as N/k
p−→ α as k →∞.

At this point, we summarize several notations that are used throughout the sequel. We use o(·)

and poly(·) to denote quantities that grow strictly slower than their arguments and are polynomial

in their arguments, respectively. By X ∼ P (x), we mean X is distributed according to P . For

convenience, we define W?(·) := W (·|X = ?), and more generally, Wx(·) := W (·|X = x). In

this paper, we use the convention that
(
n
k

)
= 0 if k < 0 or n < k, and the entropy H(P ) = −∞

if P is not a probability mass function, i.e., one of its elements is negative or the sum of its

elements is larger than one. We also use the conventional definitions x+ := max{x, 0}, and if

0 ≤ ρ ≤ 1, then ρ̄ := 1−ρ. Additionally, .= denotes an equality in exponential sense as k →∞,

i.e., limk→∞
1
k

log(·) of both sides are equal.

We will make frequent use of the notations and results from the method of types, a powerful

technique in large deviation theory developed by Csiszár and Körner [21]. Let PX denote the

set of distributions over the finite alphabet X . The empirical distribution (or type) of a sequence
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xn ∈ X n is denoted by P̂xn . A sequence xn is said to have a type P if P̂xn = P . The set of all

sequences that have type P is denoted T nP , or more simply TP . Joint empirical distributions are

denoted similarly. The set of sequences yn that have a conditional type W given xn is denoted

TW (xn). A sequence xn ∈ X n is called P -typical with constant µ, denoted xn ∈ T[P ]µ , if

|P̂xn(x)− P (x)| ≤ µ for every x ∈ X .

Similarly, a sequence yn ∈ Yn is called W -typical conditioned on xn ∈ X n with constant µ,

denoted yn ∈ T[W ]µ , if

|P̂xn,yn(x, y)− P̂xn(x)W (y|x)| ≤ µ for every (x, y) ∈ X × Y .

For P, P ′ ∈ PX and W,W ′ ∈ PY|X , the Kullback-Leibler divergence between P and P ′ is

defined as

D(P‖P ′) :=
∑
x∈X

P (x) log
P (x)

P ′(x)
,

and the conditional information divergence between W and W ′ conditioned on P is defined as

D(W‖W ′|P ) :=
∑
x∈X

P (x)
∑
y∈Y

W (y|x) log
W (y|x)

W ′(y|x)
.

The average mutual information between X ∼ P and Y ∼ PW and coupled via PY |X = W is

denoted by I(P,W ). With these definitions, we now state the following lemmas, which are used

throughout the paper.

Lemma 1. ( [21, Lemma 1.2.6]): If Xn is an iid sequence according to P ′, then the probability

that it has a type P is bounded by

1

(n+ 1)|X |
e−nD(P‖P ′) ≤ P(Xn ∈ TP ) ≤ e−nD(P‖P ′).

Also, if the input xn ∈ X n to a memoryless channel W ′ ∈ PY|X has type P , then the probability

that the observed channel output sequence Y n has a conditional type W given xn is bounded

by
1

(n+ 1)|X‖Y|
e−nD(W‖W ′|P ) ≤ P(Y n ∈ TW (xn)) ≤ e−nD(W‖W ′|P ).

Lemma 2. ( [21, Lemma 1.2.12]): If Xn is an iid sequence according to P , then

P(Xn ∈ T[P ]µ) ≥ 1− |X |
4nµ2

.
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Also, if the input xn ∈ X n to a memoryless channel W ∈ PY|X , and Y n is the output, then

P(Y n ∈ T[W ]µ(xn)) ≥ 1− |X‖Y|
4nµ2

,

and here the terms subtracted from 1 could be replaced by exponentially small terms 2|X |e−2nµ2

and 2|X‖Y|e−2nµ2 , respectively.

Finally, we state a stronger version of the packing lemma [22, Lemma 3.1] that will be useful

in typicality decoding, and is proved in [2, Equations (24) and (25)] based on the method of

types.

Lemma 3. Assume that Cn(m) and Ỹ n are independent, Cn(m) is generated iid according to

P , then

P(Ỹ n ∈ T[W ]µ(Cn(m))) ≤ poly(n)e−n(I(P,W )−ε)

for all n sufficiently large, where ε > 0 can be made arbitrarily small by choosing a small

enough typicality parameter µ.

III. ACHIEVABILITY

In this section, we obtain achievability results for intermittent communication based upon two

decoding structures: decoding from exhaustive search, which attempts to decode the transmitted

codeword from a selected set of output symbols without any attempt to first locate or detect

the codeword symbols; and decoding from pattern detection, which attempts to decode the

transmitted codeword only if the selected outputs appear to be a pattern of codeword symbols.

In order to analyze the probability of error for the second decoding structure, which gives a

larger achievable rate, we use a generalization of the method of types that leads to the notion of

partial divergence and its properties described in Section III-A. We also show that rate R = 0

is achievable for intermittent communication with finite intermittency rate, using the properties

of partial divergence. Although the system model in Section II assumes iid geometric insertions,

the results of this section apply to a general intermittent process, as we point out in Remark 1.

A. Partial Divergence

We will see in Section III-C that a relevant function is dρ(P‖Q), which we call partial

divergence and view as a generalization of the Kullback-Leibler divergence. In this section, we
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examine some of the interesting properties of partial divergence that provide insights about the

achievable rates in Section III-C. Loosely speaking, partial divergence is the normalized exponent

of the probability that a sequence with independent elements generated partially according to

one distribution and partially according to another distribution has a specific type. This exponent

is useful in characterizing a decoder’s ability to distinguish a sequence obtained partially from

the codewords and partially from the noise from a codeword sequence or a noise sequence. The

following lemma is a generalization of the method of types [21]. A different characterization

and proof of Lemma 4 can be found in [23].

Lemma 4. Consider the distributions P,Q,Q′ ∈ PX on a finite alphabet X . A random sequence

Xk is generated as follows: ρk symbols iid according to Q and ρ̄k symbols iid according to Q′,

where 0 ≤ ρ ≤ 1. The normalized exponent of the probability that Xk has type P is

d(P,Q,Q′, ρ) := lim
k→∞
−1

k
logP(Xk ∈ TP )

= min
P1,P2∈PX :
ρP1+ρ̄P2=P

ρD(P1‖Q) + ρ̄D(P2‖Q′). (8)

Proof: With a little abuse of notation, let Xρk
1 and X ρ̄k

2 be the sequence of symbols in

Xk that are iid according to Q, Q′, respectively. If these sequences have types P1 and P2,

respectively, then the whole sequence Xk has type ρP1 + ρ̄P2. Therefore, we have

P(Xk ∈ TP ) = P
(
∪ P1,P2∈PX :
ρP1+ρ̄P2=P

{Xρk
1 ∈ TP1 , X

ρ̄k
2 ∈ TP2}

)
(9)

=
∑

P1,P2∈PX :
ρP1+ρ̄P2=P

P(Xρk
1 ∈ TP1 , X

ρ̄k
2 ∈ TP2) (10)

.
=

∑
P1,P2∈PX :
ρP1+ρ̄P2=P

exp{−k(ρD(P1‖Q) + ρ̄D(P2‖Q′))}, (11)

.
= exp{−k min

P1,P2∈PX :
ρP1+ρ̄P2=P

ρD(P1‖Q) + ρ̄D(P2‖Q′)} (12)

where: (10) follows from the disjointness of the events in (9) since a sequence has a unique

type; (11) follows from the independence of the events in (10) and obtaining the probability of

each of them according to Lemma 1 to first order in the exponent; and (12) follows from the fact

that the number of different types is polynomial in the length of the sequence [21], which makes
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the total number of terms in the summation (11) polynomial in k, and therefore, the exponent

equals the largest exponent of the terms in the summation (11).

Specializing Lemma 4 for Q′ = Q results in Lemma 1, and we have d(P,Q,Q, ρ) = D(P‖Q).

However, we will be interested in the special case of Lemma 4 for which Q′ = P . In other words,

we need to upper bound the probability that a sequence has a type P if its elements are generated

independently with a fraction ρ according to Q and the remaining fraction ρ̄ according to P .

For this case, we call dρ(P‖Q) := d(P,Q, P, ρ) the partial divergence between P and Q with

mismatch ratio 0 ≤ ρ ≤ 1. Proposition 1 gives an explicit expression for the partial divergence

by solving the optimization problem in (8) for the special case of Q′ = P .

Proposition 1. If X = {1, 2, ..., |X |} and P,Q ∈ PX , where P := (p1, p2, ..., p|X |) and Q :=

(q1, q2, ..., q|X |) and we assume that all values of the PMF Q are nonzero, then partial divergence

can be written as

dρ(P‖Q) = D(P‖Q)−
|X |∑
j=1

pj log(c∗ +
pj
qj

) + ρ log c∗ + h(ρ), (13)

where c∗ is a function of ρ, P , and Q, and can be uniquely determined from

c∗
|X |∑
j=1

pjqj
c∗qj + pj

= ρ. (14)

A proof of the proposition uses Karush-Kuhn-Tucker (KKT) conditions since the optimization

problem in (8) is convex, but is omitted due to space considerations. The next proposition states

some of the properties of the partial divergence, which will be applied in the sequel.

Proposition 2. The partial divergence dρ(P‖Q), 0 ≤ ρ ≤ 1, where all of the elements of the

PMF Q are nonzero, has the following properties:

(a) d0(P‖Q) = 0.

(b) d1(P‖Q) = D(P‖Q).

(c) Partial divergence is zero if P = Q, i.e., dρ(P‖P ) = 0.

(d) Let d′ρ(P‖Q) := ∂dρ(P‖Q)

∂ρ
denote the derivative of the partial divergence with respect to ρ,

then d′0(P‖Q) = 0.

(e) If P 6= Q, then d′ρ(P‖Q) > 0, for all 0 < ρ ≤ 1, i.e., partial divergence is increasing in ρ.

(f) If P 6= Q, then d′′ρ(P‖Q) > 0, for all 0 ≤ ρ ≤ 1, i.e., partial divergence is convex in ρ.
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Fig. 3: Partial divergence dρ(P‖Q) versus ρ for P = (0.25, 0.25, 0.25, 0.25), Q1 =

(0.1, 0.1, 0.1, 0.7), and Q2 = (0.1, 0.4, 0.1, 0.4).

(g) 0 ≤ dρ(P‖Q) ≤ ρD(P‖Q).

Proof: See Appendix A.

Figure 3 shows examples of the partial divergence for PMF’s with alphabets of size 4.

Specifically, dρ(P‖Q) versus ρ is sketched for P = (0.25, 0.25, 0.25, 0.25), and two different

Q’s, Q1 = (0.1, 0.1, 0.1, 0.7) and Q2 = (0.1, 0.4, 0.1, 0.4). The properties of Proposition 2 are

apparent in the figure for these examples.

Proposition 3. The partial divergence dρ(P‖Q), 0 ≤ ρ ≤ 1, satisfies

dρ(P‖Q) ≥ D(P‖ρQ+ ρ̄P ).
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Proof: From the definition of the partial divergence and (8), we have

dρ(P‖Q) = min
P1,P2∈PX :
ρP1+ρ̄P2=P

ρD(P1‖Q) + ρ̄D(P2‖P )

≥ min
P1,P2∈PX :
ρP1+ρ̄P2=P

D(ρP1 + ρ̄P2‖ρQ+ ρ̄P ) (15)

= D(P‖ρQ+ ρ̄P ), (16)

where (15) follows from the convexity of the Kullback-Leibler divergence; and (16) follows

from the constraint ρP1 + ρ̄P2 = P in the minimization.

The interpretation of Proposition 3 is that if all the elements of a sequence are generated

independently according to a mixture probability ρQ + ρ̄P , then it is more probable that this

sequence has type P than in the case that a fraction ρ of its elements are generated independently

according to Q and the remaining fraction ρ̄ are generated independently according to P . Since

the partial divergence dρ(P‖Q) is used to obtain achievability results in Theorem 5, it can

be substituted with the less complicated function D(P‖ρQ + ρ̄P ) in (20) with the expense of

loosening the bound according to Proposition 3.

Using the results on partial divergence, we now state a result about the achievability at rate

R = 0 in the following theorem. The idea is that no matter how large the intermittency threshold

becomes, as long as it is finite, the receiver can distinguish between two messages with vanishing

probability of error.

Theorem 3. If the intermittency rate is finite and the capacity of the DMC, CW , is non-zero,

then rate R = 0 is achievable.

Proof: We need to show that the transmission of a message m ∈ {1, 2} is reliable for

intermittent communication (X ,Y ,W, ?, α) as k →∞.

Encoding: If m = 1, then transmit symbol ? at all the times, i.e., ck(1) = ?k. If m = 2,

then transmit symbol x 6= ? at all the times, i.e., ck(2) = xk, where we consider the symbol

x∗ = argmaxxD(W?‖Wx). If the capacity of the DMC is nonzero, then W? 6= Wx∗ .

Decoding: For arbitrarily small ε, if |N/k − α| > ε, then the decoder declares an error;

otherwise, if the sequence yN has type W? with a fixed typicality parameter µ > 0, i.e., yN ∈

T[W?]µ , then m̂ = 1; otherwise m̂ = 2.
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Analysis of the probability of error: The average probability of error can be bounded as

pe ≤ P(|N/k − α| > ε)

+

k(α+ε)+1∑
n=k(α−ε)−1

P(N=n)
(
P(Y N /∈T[W?]µ|m=1, N=n)+P(Y N ∈T[W?]µ|m=2, N=n)

)
(17)

≤ o(1) + max
n:|n/k−α|<ε

(o(1) + e−ndk/n(W?‖Wx∗ )) (18)

≤ o(1) + e−k(α−ε)d1/(α+ε)(W?‖Wx∗ ) → 0 as k →∞, (19)

where: (17) follows from the union bound; (18) follows from the fact that P(|N/k−α| > ε)→ 0

as k →∞, Lemma 2 and Lemma 4; and (19) follows from the fact that d1/(α+ε)(W?‖Wx∗) > 0

according to Proposition 2 since W? 6= Wx∗ and 1/(α + ε) > 0.

In order to prove achievability results for the case of an exponential number of messages, i.e.,

R > 0, we introduce two decoding algorithms in the following section.

B. Decoding Algorithms

In this section, two decoding structures are introduced. The encoding structure is identical

for both: Given an input distribution P , the codebook is randomly and independently generated,

i.e., all Ci(m), i ∈ {1, 2, ..., k},m ∈ {1, 2, ...,M} are iid according to P . Although we focus

on typicality for detection and decoding for ease of analyzing the probability of error, other

algorithms such as maximum likelihood decoding could in principle be used in the context of

these decoding structures. However, detailed specification and analysis of such structures and

algorithms are beyond the scope of this paper. Note that the number of received symbols at

the decoder, N , is a random variable. However, using the same procedure as in the proof of

Theorem 3, we can focus on the case that |N/k − α| < ε, and essentially assume that the

receive window is of length n = αk, which makes the analysis of the probability of error for

the decoding algorithms more concise.

Decoding from exhaustive search: In this structure, the decoder observes the n symbols of the

output sequence yn, chooses k of them, resulting in a subsequence denoted by ỹk, and performs

joint typicality decoding with a fixed typicality parameter µ > 0, i.e., checks if ỹk ∈ T[W ]µ(ck(m))

for a unique index m. In words, this condition corresponds to the joint type for codeword ck(m)

and selected outputs ỹk being close to the joint distribution induced by ck(m) and the channel
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W (y|x). If the decoder finds a unique m satisfying this condition, it declares m as the transmitted

message. Otherwise, it makes another choice for the k symbols from symbols of the sequence

yn and again attempts typicality decoding. If at the end of all
(
n
k

)
choices the typicality decoding

procedure does not declare any message as being transmitted, then the decoder declares an error.

Decoding from pattern detection: This structure involves two stages for each choice of the

output symbols. As in decoding from exhaustive search, the decoder chooses k of the n symbols

from the output sequence yn. Let ỹk denote the subsequence of the chosen symbols, and ŷn−k

denote the subsequence of the other symbols. For each choice, the first stage checks if this

choice of the output symbols is a good one, which consists of checking if ỹk is induced by a

codeword, i.e., if ỹk ∈ TPW , and if ŷn−k is induced by noise, i.e., if ŷn−k ∈ TW? . If both of

these conditions are satisfied, then we perform typicality decoding with ỹk over the codebook

as in the decoding from exhaustive search, which is called the second stage here. Otherwise, we

make another choice for the k symbols and repeat the two-stage decoding procedure. At any

step that we run the second stage, if the typicality decoding declares a message as being sent,

then decoding ends. If the decoder does not declare any message as being sent by the end of

all
(
n
k

)
choices, then the decoder declares an error. In this structure, we constrain the search

domain for the typicality decoding (the second stage) only to typical patterns by checking that

our choice of codeword symbols satisfies the conditions in the first stage.

In decoding from pattern detection, the first stage essentially distinguishes a sequence obtained

partially from the codewords and partially from the noise from a codeword sequence or a noise

sequence. As a result, in the analysis of the probability of error, partial divergence and its

properties described in Section III-A play a role. This structure always outperforms the decoding

from exhaustive search structure, and their difference in performance indicates how much the

results on the partial divergence improve the achievable rates.

C. Achievable Rates

In this section, we obtain two achievable rates for intermittent communication using the

decoding algorithms introduced in Section III-B.

Theorem 4. Using decoding from exhaustive search for intermittent communication with (X ,Y ,W, ?, α),

rates not exceeding R1 = (CW − αh(1/α))+ are achievable.
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The proof of the theorem is removed since the analysis of the probability of error is similar

to that of Theorem 5, except that instead of breaking down the first term in (46) as in (49), we

use the union bound over all the
(
n
k

)
choices without trying to distinguish the output symbols

based on their empirical distributions.

Note that R1 is the same as the lower bound in Theorem 2, but here we introduced an

explicit decoding structure which is also valid for a general intermittent process. The form of

the achievable rate is reminiscent of communications overhead as the cost of constraints [25],

where the constraint is the system’s burstiness or intermittency, and the overhead cost is αh(1/α).

Note that the overhead cost is increasing in the intermittency rate α, is equal to zero at α = 1, and

approaches infinity as α → ∞. These observations suggest that increasing the receive window

makes the decoder’s task more difficult.

Theorem 5. Using decoding from pattern detection for intermittent communication with (X ,Y ,W, ?, α),

rates not exceeding maxP{(I(P,W )− f(P,W, α))+} are achievable, where

f(P,W, α) := max
0≤β≤1

{(α−1)h(β)+h((α−1)β)−d(α−1)β(PW‖W?)−(α−1)dβ(W?‖PW )}. (20)

Proof: See Appendix B.

Remark 1. The results of Theorems 3, 4, and 5 are valid for an arbitrary intermittent process

in Figure 2 as long as N/k
p−→ α as k →∞.

Remark 2. The achievable rate in Theorem 5 can be expressed as follows: Rate R is achievable

if for any mismatch 0 ≤ β ≤ 1, we have

R + (α− 1)h(β) + h((α− 1)β) < I(P,W ) + d(α−1)β(PW‖W?) + (α− 1)dβ(W?‖PW ).

The interpretation is that the total amount of uncertainty should be smaller than the total amount

of information. Specifically, R and (α− 1)h(β) + h((α− 1)β) are the amount of uncertainty in

codewords and patterns, respectively, and I(P,W ) and d(α−1)β(PW‖W?)+(α−1)dβ(W?‖PW )

are the amount of information about the codewords and patterns, respectively.

The achievable rate in Theorem 5 is larger than the one in Theorem 4, because decoding from

pattern detection utilizes the fact that the choice of the codeword symbols at the receiver might

not be a good one, and therefore, restricts the typicality decoding only to the typical patterns and
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decreases the search domain. In Theorem 5, the overhead cost for a fixed input distribution is

f(P,W, α). Using the properties of partial divergence, we state some properties of this overhead

cost in the next proposition.

Proposition 4. The overhead cost f(P,W, α) in (20) has the following properties:

(a) The maximum of the term in (20) occurs in the interval [0, 1/α], i.e., instead of the maxi-

mization over 0 ≤ β ≤ 1, f(P,W, α) can be found by the same maximization problem over

0 ≤ β ≤ 1/α.

(b) f(P,W, α) is increasing in α.

(c) f(P,W, 1) = 0.

(d) If D(PW‖W?) is finite, then f(P,W, α)→∞ as α→∞.

Proof: See Appendix C.

Note that part (b) in Proposition 4 indicates that increasing the intermittency rate or the receive

window increases the overhead cost, resulting in a smaller achievable rate. Parts (c) and (d) show

that the achievable rate is equal to the capacity of the channel for α = 1 and approaches zero

as α→∞.

Remark 3. The results in this section can be extended to packet-level intermittent communication

in which the intermittency is modeled at the packet level, and regimes that lie between the non-

contiguous transmission of codeword symbols in intermittent communication, and the contiguous

transmission of codeword symbols in asynchronous communication are explored. Specifically, the

system model in this paper can be generalized to small packet, medium packet, and large packet

intermittent communication. See, for example, [24].

Now consider a binary symmetric channel (BSC) for the DMC in Figure 2 with the crossover

probability 0 ≤ p ≤ 0.5, and the noise symbol ? = 0. Figure 4 shows the value of the achievable

rates for different p, versus α. RInsertion denotes the achievable rate obtained from Theorem 5

if the channel is noiseless (p = 0), and can be proven to be equal to max0≤p0≤1{2h(p0) −

max0≤β≤1{(α− 1)h(β) + h((α− 1)β) + (1− (α− 1)β)h(p0−(α−1)β
1−(α−1)β

)}}.

As we can see from the plot, the achievable rate in Theorem 5 (indicated by “R2”) is always

larger than the one in Theorem 4 (indicated by “R1”) since decoding from pattern detection

takes advantage of the fact that the choice of the k output symbols might not be a good one.
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Fig. 4: Achievable rate region (R,α) for the BSC for different cross over probability p’s.

Specifically, the exponent obtained in Lemma 4 in terms of the partial divergence helps the

decoder detect the right symbols, and therefore, achieve a larger rate. The arrows in Figure 4

show this difference and suggest that the benefit of using decoding from pattern detection is

larger for increasing α. Note that the larger α is, the smaller the achievable rate would be for

a fixed p. Not surprisingly, as α → 1, the capacity of the BSC is approached for both of the

achievable rates. In this example, we cannot achieve a positive rate if α ≥ 2, even for the

case of a noiseless channel (p = 0). However, this is not true in general, because even the first

achievable rate can be positive for a large α, if the capacity of the channel CW is sufficiently

large. The results suggest that, as communication becomes more intermittent and α becomes

larger, the achievable rate is decreased due to the additional uncertainty about the positions of

the codeword symbols at the decoder.

IV. UPPER BOUNDS

In this section, we focus on obtaining upper bounds on the capacity of a special case of

intermittent communication in which the DMC in Figure 2 is binary-input binary-output noiseless
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A
B 000 001 010 100 011 101 110 111

00 1 0 0 0 0 0 0 0

01 0 2/3 1/3 0 0 0 0 0

10 0 0 1/3 2/3 0 0 0 0

11 0 0 0 0 1/3 1/3 1/3 0

TABLE I: Transition probabilities P (B|A) for the auxiliary channel with a = 2 and b = 3.

with the noise symbol ? = 0. The achievable rate for this case is denoted by RInsertion in

Section III-C, and is shown by the blue curve in Figure 4. Similar to [17], upper bounds are

obtained by providing the encoder and the decoder with various amounts of side-information,

and calculating or upper bounding the capacity of this genie-aided system. After introducing a

useful function g(a, b) in Section IV-A, we obtain upper bounds in Section IV-B. The techniques

of in this section can in principle be applied to non-binary and noisy channels as well; however,

the computational complexity for numerical evaluation of the genie-aided system grows very

rapidly in the size of the alphabets.

A. Auxiliary Channel: Uniform Insertion

Let a and b be two integer numbers such that 0 ≤ a ≤ b, and consider a discrete memoryless

channel for which at each channel use the input consists of a sequence of a bits and the output

consists of a sequence of b bits, i.e., the input and output of this channel are A ∈ {0, 1}a and

B ∈ {0, 1}b, respectively. At each channel use, b−a zeroes are inserted randomly and uniformly

among the input symbols. The positions at which the insertions occur randomly takes on each

of the possible
(
b

b−a

)
=
(
b
a

)
realizations with equal probability, and is unknown to the transmitter

and the receiver. As an example, the transition probability matrix of this channel for the case of

a = 2 and b = 3 is reported in Table I.

The capacity of the auxiliary channel is defined as

g(a, b) := max
P (A)

I(A;B), 0 ≤ a ≤ b, (21)

where P (A) is the input distribution. The exact value of the function g(a, b) for finite a and b

can be numerically computed by evaluating the transition probabilities P (B|A) and using the

Blahut algorithm [26] to maximize the mutual information. The computational complexity of
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the Blahut algorithm increases exponentially for large values of a and b since the transition

probability matrix is of size 2a × 2b. In order to partially overcome this issue, we recall the

following lemma.

Lemma 5. ( [27, Problem 7.28]): Consider a channel that is the union of i memoryless channels

(X1, P1(y1|x1),Y1), ..., (Xi, Pi(yi|xi),Yi) with capacities C1, ..., Ci, where at each time one can

send a symbol over exactly one of the channels. If the output alphabets are distinct and do not

intersect, then the capacity C of this channel can be characterized in terms of C1, ..., Ci in bits

per channel use as

2C = 2C1 + ...+ 2Ci .

Now, notice that the function g(a, b) can be evaluated by considering the union of a + 1

memoryless channels with distinct input and output alphabets, where the input of the ith channel

is binary sequences with length a and weight i − 1, i = 1, ..., a + 1, and the output is binary

sequences with length b obtained from the input sequence by inserting b−a zeroes uniformly. The

weight of the sequences remains fixed after zero insertions, and therefore, the output alphabets

are also distinct and do not intersect. Assuming that the capacity of the ith channel is gi(a, b)

and applying Lemma 5, we have

2g(a,b) = 2g1(a,b) + ...+ 2ga+1(a,b). (22)

It is easy to see that g1(a, b) = 0 and ga+1(a, b) = 0. For other values of i, the capacity

gi(a, b), i = 2, ..., a can be evaluated numerically using the Blahut algorithm, where input and

output alphabets have sizes
(
a
i−1

)
and

(
b
i−1

)
, respectively, which are considerably less than those

of the original alphabet sizes. This reduction allows us to obtain the function g(a, b) for larger

values of a and b, which will be useful in Section IV-B. The largest value of b for which we

are able to evaluate the function g(a, b) for all values of a ≤ b is b = 17. Although we cannot

obtain a closed-form expression for the function g(a, b), we can find a closed-form upper bound

by expanding the mutual information in (21) and bounding some of its terms. As a result, we

can find upper bounds on the function g(a, b) for larger values of a and b. First, we introduce

some notation.

For a binary sequence xa ∈ {0, 1}a, let w(xa) denote the weight of the sequence, i.e., number

of 1’s. Also, let the vector r0(xa) := (r0
1, ..., r

0
l0

) of length l0 denote the length of consecutive
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0’s in the sequence xa such that r0
1 = 0 if x1 = 1, i.e., the binary sequence starts with 1, and

r0
l0

= 0 if xk = 1, i.e., the binary sequence ends with 1, and all the other elements of the vector

r0(xa) are positive integers. In addition, let the vector r1(xa) := (r1
1, ..., r

1
l1

) of length l1 denote

the length of consecutive 1’s in the sequence xa with length larger than one, i.e., runs of 1’s

with length one not counted. Finally, let l(xa) := l0 + l1. If it is clear from the context, we

drop the argument xa from these functions. For example, if xa = 0010111000011, then w = 6,

r0 = (2, 1, 4, 0), r1 = (3, 2), and l = 4 + 2 = 6. As another example, if xa = 10011101, then

w = 5, r0 = (0, 2, 1, 0), r1 = (3), and l = 4 + 1 = 5. Now, we define the following function,

which will be used for expressing the upper bound,

F (xa) :=
∑

i1,...,il∈N∪{0}:
∑l
j=1 ij=b−a

pi1,...,il(r
0, r1)hi1,...,il(r

0), (23)

where l, r0, and r1 are a function of xa as defined before, and we have

pi1,...,il(r
0, r1) :=

1(
b
a

) l0∏
j=1

(
r0
j + ij
ij

) l1∏
j=1

(
r1
j − 2 + ij+l0

ij+l0

)
, (24)

hi1,...,il(r
0) :=

l0∑
j=1

log

(
r0
j + ij
ij

)
. (25)

Proposition 5. The function g(a, b) in (21) satisfies

g(a, b) ≤ log
a∑
j=0

(
b

j

)
2maxxa:w(xa)=j F (xa) − log

(
b

a

)
(26)

where F (·) is defined in (23).

Proof: See Appendix D.

Similarly, it is possible to obtain a lower bound on the function g(a, b). The lower bound and

a numerical comparison between the lower bound, the exact value, and the upper bound on the

function g(a, b) can be found in [28]. The following definition will be useful in expressing the

upper bounds in Section IV-B.

φ(a, b) := a− g(a, b), (27)

Note that the function φ(a, b) quantifies the loss in capacity due to the uncertainty about the

positions of the insertions, and cannot be negative. The following proposition characterizes some

of the properties of the functions g(a, b) and φ(a, b), which will be used later.
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Proposition 6. The functions g(a, b) and φ(a, b) have the following properties:

(a) g(a, b) ≤ a, φ(a, b) ≥ 0.

(b) g(a, a) = a, φ(a, a) = 0.

(c) g(1, b) = 1, φ(1, b) = 0.

(d) g(a, b+ 1) ≤ g(a, b), φ(a, b+ 1) ≥ φ(a, b).

(e) g(a+ 1, b+ 1) ≤ 1 + g(a, b), φ(a+ 1, b+ 1) ≥ φ(a, b).

Proof: See Appendix E.

B. Genie-Aided System and Numerical Upper Bounds

In this section, we focus on upper bounds on the capacity of binary-input binary-output

noiseless intermittent communication. The procedure is similar to [17]. Specifically, we obtain

upper bounds by giving some kind of side-information to the encoder and decoder, and calculating

or upper bounding the capacity of this genie-aided channel.

Now we introduce one form of side-information. Assume that the position of the [(s+ 1)i]th

codeword symbol in the output sequence is given to the encoder and decoder for all i = 1, 2, ...

and a fixed integer number s ≥ 1. We assume that the codeword length is a multiple of s+1, so

that t = k/(s+ 1) is an integer, and is equal to the total number of positions that are provided

as side-information. This assumption does not impact the asymptotic behavior of the channel

as k → ∞. We define the random sequence {Zi}ti=1 as follows: Z1 is equal to the position of

the [s + 1]th codeword symbol in the output sequence, and for i ∈ {2, 3, ..., t}, Zi is equal to

the difference between the positions of the [(s+ 1)i]th codeword symbol and [(s+ 1)(i− 1)]th

codeword symbol in the output sequence.

Since we assumed iid insertions, the random sequence {Zi}ti=1 is iid as well with negative

binomial distribution:

P (Zi = b+ 1) =

(
b

s

)
(1− pt)b−sps+1

t , b ≥ s, (28)

with mean E [Zi] = (s+1)/pt. Also, note that as k →∞, by the law of large numbers, we have

N

t

p−→ E [Zi] =
s+ 1

pt
. (29)

Let C1 denote the capacity of the channel if we provide the encoder and decoder with side-

information on the random sequence {Zi}ti=1, which is clearly an upper bound on the capacity
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of the original channel. With this side-information, we essentially partition the transmitted and

received sequences into t contiguous blocks that are independent from each other. In the ith block

the place of the [s + 1]th codeword symbol is given, which can convey one bit of information.

Other than that, the ith block has s input bits and Zi − 1 output bits with uniform 0 insertions.

Therefore, the information that can be conveyed through the ith block equals g(s, Zi − 1) + 1.

Thus, we have

C1 = lim
k→∞

1

k

t∑
i=1

g(s, Zi − 1) + 1

= lim
k→∞

N

k

t

N

1

t

t∑
i=1

g(s, Zi − 1) + 1

=
1

s+ 1
lim
t→∞

1

t

t∑
i=1

g(s, Zi − 1) + 1 (30)

=
1

s+ 1
E [g(s, Zi − 1) + 1] (31)

=
1

s+ 1

[
1 +

∞∑
b=s

(
b

s

)
(1− pt)b−sps+1

t g(s, b)

]
(32)

=1− 1

s+ 1

∞∑
b=s

(
b

s

)
(1− pt)b−sps+1

t φ(s, b), (33)

where: (30) follows from (29); (31) follows from the law of large numbers; (32) follows from

the distribution of Zi’s given in (28); and (33) follows from the definition (27). Note that the

capacity C1 cannot be larger than 1, since the coefficients φ(·, ·) cannot be negative. The negative

term in (33) can be interpreted as a lower bound on the communication overhead as the cost of

intermittency in the context of [25].

The expression in (33) gives an upper bound on the capacity of the original channel with

pt = 1/α. However, it is infeasible to numerically evaluate the coefficients φ(s, b) for large

values of b. As we discussed before, the largest value of b for which we are able to evaluate

the function φ(s, b) is bmax = 17. The following upper bound on C1 results by truncating the

summation in (33) and using part (d) of Proposition 6.

C1≤ 1− φ(s, bmax)

s+ 1
+

1

s+1

bmax∑
b=s

(
b

s

)
ps+1
t (1−pt)b−s(φ(s, bmax)−φ(s, b)), (34)

The expression (34), which we denote by C ′1, gives a nontrivial and computable upper bound

for each value of s = 2, 3, ..., bmax − 1 on C1, and therefore, an upper bound on the capacity
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Fig. 5: Comparison between the best achievability result with different upper bounds obtained

from (34) for bmax = 17 and s = 2, 3, ..., 16, versus the intermittency rate α.

of the original channel with pt = 1/α. Figure 5 shows the upper bounds for bmax = 17 and

s = 2, 3, ..., 16 versus the intermittency rate α, along with the the achievability result.

Next, we introduce a second form of side-information. Assume that for consecutive blocks

of length s of the output sequence, the number of codeword symbols within that block is given

to the encoder and decoder as side-information, i.e., the number of codeword symbols in the

sequence (y(i−1)s+1, y(i−1)s+2, ..., yis), i = 1, 2, ... for a fixed integer number s ≥ 2. Let C2 denote

the capacity of the channel if we provide the encoder and decoder with this side-information.

Using a similar procedure, we obtain

C2 = 1− 1

spt

s∑
a=0

(
s

a

)
pat (1− pt)s−aφ(a, s). (35)

Note that the summation in (35) is finite, and we do not need to upper bound C2 as we did
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Fig. 6: Comparison between the best achievability result with different upper bounds obtained

from (35) for s = 3, 4, ..., 17, versus the intermittency rate α.

for C1. The value of C2 gives nontrivial and computable upper bounds on the capacity of the

original channel. Figure 6 shows the upper bounds for s = 3, 4, ..., 17 versus the intermittency

rate α, along with the the achievability result. The upper bound corresponding to s = 17 is

tighter than others for all ranges of α, i.e., (35) is decreasing in s. Intuitively, this is because

by decreasing s, we provide the side-information more frequently, and therefore, the capacity of

the resulting genie-aided system becomes larger.

It seems that (35) gives better upper bounds for the range of α shown in the figures (1 < α ≤

2). However, the other upper bound C ′1 can give better results for the limiting values of α→∞
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or pt → 0. We have

lim
α→∞

C ′1 = 1− φ(s, bmax)

s+ 1
, (36)

lim
α→∞

C2 = 1.

This is because of the fact that by increasing α, and thus decreasing pt, we have more zero

insertions and the first kind of genie-aided system provides side-information less frequently

leading to tighter upper bounds. The best upper bound for the limiting case of α → ∞ found

by (36) is 0.6739 bits/s. In principle, we can use the upper bound on g(a, b) in Proposition 5 to

upper bound C1 and C2. By doing so, we can find the bounds for larger values of s and bmax,

because we can calculate the upper bound (26) for larger arguments. It seems that this does not

improve the upper bounds significantly for the range of α shown in the figures. However, by

upper bounding (36) via (26), we can tighten the upper bound for the limiting case of α→∞

to 0.6307 bits/s.

Although the gap between the achievable rates and upper bounds is not particularly tight,

especially for large values of intermittency rate α, the upper bounds suggest that the linear scaling

of the receive window with respect to the codeword length considered in the system model is

natural since there is a tradeoff between the capacity of the channel and the intermittency rate.

By contrast, in asynchronous communication [1], [2], where the transmission of the codeword

is contiguous, only exponential scaling n = eαk induces a tradeoff between capacity and

asynchronism.

V. BOUNDS ON CAPACITY PER UNIT COST

In this section, we obtain bounds on the capacity per unit cost of intermittent communication.

Let γ : X → [0,∞] be a cost function that assigns a non-negative value to each channel input.

We assume that the noise symbol has zero cost, i.e., γ(?) = 0. The cost of a codeword is defined

as

Γ(ck(m)) =
k∑
i=1

γ(ci(m)).

A (k,M, P, ε) code consists of M codewords of length k, ck(m),m ∈ {1, 2, ...,M}, each

having cost at most P with average probability of decoding error at most ε, where the intermittent

process is the same as in Section II. Note that the cost of the input and output sequences of the
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intermittent process shown in Figure 2 is the same since the cost of the noise symbols is zero.

We say rate R̂ bits per unit cost is achievable if for every ε > 0 and large enough M there exists

a (k,M, P, ε) code with log(M)/P ≥ R̂. For intermittent communication (X ,Y ,W, ?, α), the

capacity per unit cost Ĉα is the supremum of achievable rates per unit cost.

It is shown in [29] that the capacity per unit cost of a general DMC is

max
x∈X\{?}

D(Wx‖W?)

γ(x)
,

where we assumed that γ(?) = 0, and the optimization is over the input alphabet instead of

over the set of all input distributions. The asynchronous capacity per unit cost for asynchronous

communication with timing uncertainty per information bit β has been shown to be [3]

1

1 + β
max

x∈X\{?}

D(Wx‖W?)

γ(x)
.

Therefore, comparing to the capacity per unit cost of a DMC, the rate is penalized by a factor

of 1/(1 + β) due to asynchronism. For a channel with iid synchronization errors with average

number of duplications equal to µ concatenated with a DMC, bounds on the capacity per unit

cost, Ĉµ, have been obtained in [20] as

µ

2
max

x∈X\{?}

D(Wx‖W?)

γ(x)
≤ Ĉµ ≤ µ max

x∈X\{?}

D(Wx‖W?)

γ(x)
,

where the lower bound is obtained by using a type of pulse position modulation at the encoder

and searching for the position of the pulse at the decoder. Using similar encoding and decoding

schemes, we obtain a lower bound for the capacity per unit cost of intermittent communication.

Theorem 6. The capacity per unit cost Ĉα for intermittent communication (X ,Y ,W, ?, α)

satisfies
α

2
max

x∈X\{?}

D( 1
α
Wx + (1− 1

α
)W?‖W?)

γ(x)
≤ Ĉα ≤ max

x∈X\{?}

D(Wx‖W?)

γ(x)
(37)

Sketch of the Proof: The upper bound in (37) is the capacity per unit cost of the DMC W ,

and follows by providing the decoder with side-information about the positions of inserted noise

symbols ?. The derivation of the lower bound is similar to the one in [20, Theorem 3]. Essentially,

the encoder uses pulse position modulation, i.e., to transmit message m, it transmits a burst of

symbols x of length

B :=
2 log(M)

αD( 1
α
Wx + (1− 1

α
)W?‖W?)

,
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at a position corresponding to this message and transmits the zero-cost noise symbol ? at the

other k − B positions before and after this burst, so that each codeword has cost P = Bγ(x).

In order to decode the message, we search for the location of the pulse using a sliding window

with an appropriate length looking for a subsequence that has a type equal to 1
α
Wx+(1− 1

α
)W?,

because at the receiver, we expect to have approximately B(α− 1) inserted noise symbols ? in

between the B burst symbols x. Similar to the analysis of [20, Theorem 3], it can be shown that

the probability of decoding error vanishes as M →∞, and the rate per unit cost is

R̂ =
log(M)

P
=
α

2

D( 1
α
Wx + (1− 1

α
)W?‖W?)

γ(x)
.

Finally, by choosing the optimum input symbol x, rate per unit cost equal to the left-hand side

of (37) can be achieved. �

From the convexity of the Kullback-Leibler divergence, it can be seen that the lower bound

is always smaller than half of the upper bound. Consider the BSC example with crossover

probability p = 0.1 and input costs γ(? = 0) = 0 and γ(1) = 1. The upper bound in (37) equals

2.536 bits per unit cost, and the lower bound in (37) is plotted in Figure 7 versus the intermittency

rate α. As we would expect, the lower bound decreases as the intermittency increases.

VI. CONCLUSION

We formulated a model for intermittent communications that can capture bursty transmissions

or a sporadically available channel by inserting a random number of silent symbols between each

codeword symbol so that the receiver does not know a priori when the transmissions will occur.

First, we specified two decoding schemes in order to develop achievable rates. Interestingly,

decoding from pattern detection, which achieves a larger rate, is based on a generalization of the

method of types and properties of partial divergence. As the system becomes more intermittent,

the achievable rates decrease due to the additional uncertainty about the positions of the codeword

symbols at the decoder. We also showed that as long as the intermittency rate α is finite and the

capacity of the DMC is not zero, rate R = 0 is achievable for intermittent communication. For the

case of binary-input binary-output noiseless channel, we obtained upper bounds on the capacity

of intermittent communication by providing the encoder and the decoder with various amounts of

side-information, and calculating or upper bounding the capacity of this genie-aided system. The

results suggest that the linear scaling of the receive window with respect to the codeword length
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Fig. 7: The lower bound on the capacity per unit cost of intermittent communication versus the

intermittency rate α.

considered in the system model is relevant since the upper bounds imply a tradeoff between the

capacity and the intermittency rate. Finally, we derived bounds on the capacity per unit cost of

intermittent communication. To obtain the lower bound, we used pulse-position modulation at

the encoder, and searched for the position of the pulse at the decoder.

APPENDIX A

PROOF OF PROPOSITION 2

(a) From (14), we observe that c∗ → 0 as ρ→ 0. Therefore, from (13), we have

d0(P‖Q) = D(P‖Q)−
|X |∑
j=1

pj log
pj
qj

+ c∗ log c∗ + h(0) = 0,

for c∗ → 0.

(b) From (14), we observe that c∗ →∞ as ρ→ 1. Therefore, from (13), we have

d1(P‖Q)=D(P‖Q)−
|X |∑
j=1

pj log(1 +
pj
c∗qj

) + h(1)=D(P‖Q),
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for c∗ →∞.

(c) If P = Q, then (14) simplifies to c∗

c∗+1
= ρ, and therefore c∗ = ρ/ρ̄. By substituting c∗

into (13) and because D(P‖P ) = 0, we obtain

dρ(P‖P ) = − log(
ρ

ρ̄
+ 1) + ρ log

ρ

ρ̄
+ h(ρ) = 0.

(d) By taking the derivative of (13) with respect to ρ, we obtain

d′ρ(P‖Q)=−∂c
∗

∂ρ

|X |∑
j=1

pjqj
c∗qj + pj

+ log c∗ +
∂c∗

∂ρ

ρ

c∗
+ log

ρ̄

ρ

=
∂c∗

∂ρ
(
ρ

c∗
−
|X |∑
j=1

pjqj
c∗qj + pj

) + log(c∗
ρ̄

ρ
)

= log(c∗
ρ̄

ρ
), (38)

where (38) is obtained by using (14). Therefore,

d′0(P‖Q) = lim
ρ→0

d′ρ(P‖Q) = lim
ρ→0

log(c∗
ρ̄

ρ
) = 0,

because from (14), we have limρ→0
ρ
c∗

=
∑|X |

j=1
pjqj
pj

= 1.

(e) According to (38), in order to prove d′ρ(P‖Q) > 0, 0 < ρ ≤ 1, it is enough to show that
ρ
ρ̄
< c∗, 0 < ρ ≤ 1:

1 = (

|X |∑
j=1

pj)
2

<

|X |∑
j=1

(
√
c∗qj + pj)

2 ·
|X |∑
j=1

(
pj√

c∗qj + pj
)2 (39)

= (c∗ + 1)

|X |∑
j=1

p2
j

c∗qj + pj

= (c∗ + 1)ρ̄, (40)
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where (39) holds according to the Cauchy-Schwarz inequality, and (40) is true because

ρ̄ = 1− ρ =

|X |∑
j=1

pj − ρ

=

|X |∑
j=1

pj −
|X |∑
j=1

c∗pjqj
c∗qj + pj

(41)

=

|X |∑
j=1

p2
j

c∗qj + pj
,

where (41) comes from (14). Note that the Cauchy-Schwarz inequality in (39) cannot hold

with equality for 0 < ρ (and therefore, for 0 < c∗), because otherwise, pj = qj, j =

1, 2, ..., |X |, and P = Q. From (40), 1 < (c∗+ 1)ρ̄, which results in the desirable inequality
ρ
ρ̄
< c∗.

(f) By taking the derivative of (38) with respect to ρ, it can easily be seen that

d′′ρ(P‖Q) =
1

c∗
∂c∗

∂ρ
− 1

ρρ̄
. (42)

Also, by taking the derivative of (14) with respect to ρ and after some calculation, we have
|X |∑
j=1

(c∗qj)
2pj

(c∗qj + pj)2
= ρ− c∗

∂c∗

∂ρ

. (43)

Therefore,

ρ2 =

 |X |∑
j=1

c∗pjqj
c∗qj + pj

2

<

|X |∑
j=1

(c∗qj)
2pj

(c∗qj + pj)2
·
|X |∑
j=1

pj (44)

= ρ− c∗

∂c∗

∂ρ

, (45)

where (44) holds according to the Cauchy-Schwarz inequality, which cannot hold with

equality since otherwise P = Q, and where (45) follows from (43). From (45), ρ2 < ρ− c∗
∂c∗
∂ρ

,

which implies that d′′ρ(P‖Q) > 0 according to (42).

(g) From part (f), dρ(P‖Q) is convex in ρ, and therefore, dρ(P‖Q)

ρ
is increasing in ρ. In addition,

from part (d), limρ→0
dρ(P‖Q)

ρ
= d′0(P‖Q) = 0, and from part (b), limρ→1

dρ(P‖Q)

ρ
= D(P‖Q).

Consequently, 0 ≤ dρ(P‖Q) ≤ ρD(P‖Q).
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APPENDIX B

PROOF OF THEOREM 5

Fix the input distribution P , and consider decoding from pattern detection described in

Sections III-B. For any ε > 0, we prove that if R = I(P,W ) − f(P,W, α) − 2ε, then the

average probability of error vanishes as k →∞. We have

pavge ≤ P(m̂ ∈ {2, 3, ...,M}|m = 1) + P(m̂ = e|m = 1), (46)

where (46) follows from the union bound in which the second term is the probability that the

decoder declares an error (does not find any message) at the end of all
(
n
k

)
choices, which implies

that even if we pick the correct output symbols, the decoder either does not pass the first stage

or does not declare m = 1 in the second stage. Therefore,

P(m̂ = e|m = 1) ≤P(Y k /∈ T[PW ]µ) + P(Y n−k
? /∈ T[W?]µ) + P(Y k /∈ T[W ]µ(Ck(1))) (47)

→ 0, as k →∞, (48)

where Y k is the output of the channel if the input is Ck(1), and Y? is the output of the channel if

the input is the noise symbol, and where we use the union bound to establish (47). The limit (48)

follows because all the three terms in (47) vanish as k →∞ according to Lemma 2.

The first term in (46) is more challenging. It is the probability that for at least one choice of

the output symbols, the decoder passes the first stage and then the typicality decoder declares an

incorrect message. We characterize the
(
n
k

)
choices based on the number of incorrectly chosen

output symbols, i.e., the number of symbols in ỹk that are in fact output symbols corresponding

to a noise symbol, which is equal to the number of symbols in ŷn−k that are in fact output

symbols corresponding to a codeword symbol. For any 0 ≤ k1 ≤ n − k, there are
(
k
k1

)(
n−k
k1

)
choices. 1 Using the union bound for all the choices and all the messages m̂ 6= 1, we have

P(m̂ ∈ {2, 3, ...,M}|m = 1) ≤ (ekR − 1)
n−k∑
k1=0

(
k

k1

)(
n− k
k1

)
Pk1(m̂ = 2|m = 1), (49)

where the index k1 in (49) denotes the condition that the number of wrongly chosen output

symbols is equal to k1. Note that message m̂ = 2 is declared at the decoder only if it passes the

1According to Vandermonde’s identity, we have ∑n−k
k1=0 (

k
k1
)(n−k

k1
)=(nk).
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first and the second stage. Therefore,

Pk1(m̂ = 2|m = 1)

= Pk1
(
{Ỹ k ∈ T[PW ]µ} ∩ {Ŷ n−k ∈ T[W?]µ} ∩ {Ỹ k ∈ T[W ]µ(Ck(2))}|m = 1

)
= Pk1(Ỹ k ∈ T[PW ]µ) · Pk1(Ŷ n−k ∈ T[W?]µ)·P(Ỹ k ∈ T[W ]µ(Ck(2))|m=1,Ỹ k∈T[PW ]µ ,Ŷ

n−k∈T[W?]µ)

(50)

≤ eo(k)e−kdk1/k(PW‖W?)e−(n−k)dk1/(n−k)(W?‖PW )e−k(I(P,W )−ε), (51)

where (50) follows from the independence of the events {Ỹ k ∈ T[PW ]µ} and {Ŷ n−k ∈ T[W?]µ}

conditioned on k1 wrongly chosen output symbols, and (51) follows from using Lemma 4 for

the first two terms in (50) with mismatch ratios k1/k and k1/(n − k), respectively, and using

Lemma 3 for the last term in (50), because conditioned on message m = 1 being sent, Ck(2)

and Ỹ k are independent regardless of the other conditions in the last term. Substituting (51) into

the summation in (49), we have

P(m̂ ∈ {2, 3, ...,M}|m = 1)

≤ eo(k)(ekR − 1)e−k(I(P,W )−ε)
n−k∑
k1=0

(
k

k1

)(
n− k
k1

)
e−kdk1/k(PW‖W?)−(n−k)dk1/(n−k)(W?‖PW ) (52)

≤ eo(k)ekRe−k(I(P,W )−ε)ekf(P,W,α) (53)

= eo(k)e−kε → 0 as k →∞, (54)

where (54) is obtained by substituting R = I(P,W )−f(P,W, α)−2ε, and where (53) is obtained

by finding the exponent of the sum in (52) as follows

lim
k→∞

1

k
log

n−k∑
k1=0

(
k
k1

)(
n−k
k1

)
e−kdk1/k(PW‖W?)−(n−k)dk1/(n−k)

(W?‖PW )

= lim
k→∞

1

k
log

n−k∑
k1=0

exp{kh(k1
k

)+(n− k)h( k1
n−k )−kd k1

k

(PW‖W?)−(n− k)d k1
n−k

(W?‖PW )} (55)

= lim
k→∞

1

k
max

k1=0,...,n−k
{kh(k1

k
)+(n− k)h( k1

n−k )−kd k1
k

(PW‖W?)−(n− k)d k1
n−k

(W?‖PW )} (56)

≤ max
0≤β≤1

{(α− 1)h(β) + h((α− 1)β)−d(α−1)β(PW‖W?)− (α−1)dβ(W?‖PW )} (57)

= f(P,W, α), (58)
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where (55) follows by using Stirling’s approximation for the binomial terms; where (56) follows

by noticing that the exponent of the summation is equal to the largest exponent of each term

in the summation, since the number of terms is polynomial in k; where (57) is obtained by

letting β := k1/(n− k) (0 ≤ β ≤ 1) and substituting n = αk; and where (58) follows from the

definition (20).

Now, combining (46), (48), and (54), we have pavge → 0 as k →∞, which proves the Theorem.

APPENDIX C

PROOF OF PROPOSITION 4

(a) The term (α−1)h(β)+h((α−1)β) in (20) is maximized at β = 1/α, because it is concave

in β and its derivative with respect to β is zero at 1/α. Thus, this term is decreasing in β in

the interval [1/α, 1]. Also, note that the partial divergence terms in (20) are increasing with

respect to β according to Proposition 2 (e). Therefore, the term in the max operator in (20)

is decreasing in β in the interval [1/α, 1], and the maximum occurs in the interval [0, 1/α].

(b) The term in the max operator in (20) is concave in β, because h(β) is concave in β and

dβ(·‖·) is convex in β according to Proposition 2 (f). Therefore, the term is maximized at

point β∗ where the derivative with respect to β is equal to zero. Thus, we have

log
1− β∗

β∗
+ log

1− (α− 1)β∗

(α− 1)β∗
− log c1

1− (α− 1)β∗

(α− 1)β∗
− log c2

1− β∗

β∗
= 0, (59)

where (38) is used to derive (59), and where c1 and c2 are the corresponding c∗’s in (14)

for the two partial divergence terms in (20). Taking derivative of (20) with respect to α

assuming that the maximum occurs at β∗, we obtain

∂f(P,W, α)

∂α

=
∂β∗

∂α
(α−1)(·)+h(β∗)−dβ∗(W?‖PW ) + β∗(log

1− (α− 1)β∗

(α− 1)β∗
− log c1

1− (α− 1)β∗

(α− 1)β∗
)

=h(β∗)−dβ∗(W?‖PW )+β∗(logc2
1− β∗

β∗
−log

1− β∗

β∗
) (60)

=− log(1− β∗)+

(
∂dβ∗(W?‖PW )

∂β∗
−dβ∗(W?‖PW )

)
(61)

≥ 0, (62)

where (·) in the first line is the left-side of (59), which is equal to zero, and where (60)

follows from (59), and (61) follows from (38). Finally, (62) follows from the fact that
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− log(1−β∗) is always positive for 0 ≤ β∗ ≤ 1 and ∂dβ∗(W?‖PW )/∂β∗−dβ∗(W?‖PW ) is

also always positive, because the partial divergence dβ∗(W?‖PW ) is convex in β∗ according

to Proposition 2 (f).

(c) Substituting α = 1 in (20), all the terms would be zero, because h(0) = 0 and d0(P‖Q) = 0

according to Proposition 2 (a).

(d) Consider that the maximum in (20) occurs at β∗. According to part (a), 0 ≤ β∗ ≤ 1/α,

and therefore, β∗ → 0 as α → ∞. Using Proposition 2 (d) and (59), we have αβ∗ → 1 as

α→∞. Substitiuting α = 1/β∗ in (20), we obtain

lim
α→∞

f(P,W, α)

= lim
β∗→0

h(β∗)

β∗
+h(1)−d1(PW‖W?)−

dβ∗(W?‖PW )

β∗

= lim
β∗→0

h(β∗)

β∗
−D(PW‖W?)− d′0(P‖Q) (63)

= lim
β∗→0

h(β∗)

β∗
−D(PW‖W?) (64)

→∞, (65)

where (63) follows from Proposition 2 (b), and where (64) follows from Proposition 2 (d),

and where (65) follows from the definition of the binary entropy function and the assumption

that D(PW‖W?) is finite.

(e) This part follows directly from the definition (20).

APPENDIX D

PROOF OF PROPOSITION 5

Let P b denote the random vector describing the positions of the insertions in the output

sequence Y b, such that Pi = 1 if and only if Yi is one of the b− a inserted 0’s. We have

I(Xa;Y b) = H(Xa)−H(Xa|Y b)

= H(Xa)−H(P b|Y b) +H(P b|Xa, Y b), (66)

where (66) follows by the general identity H(Xa|Y b)+H(P b|Xa, Y b) = H(P b|Y b)+H(Xa|P b, Y b)

and noticing that for this choice of P b, we have H(Xa|P b, Y b) = 0. For the term H(P b|Xa, Y b)
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in (66), we have

H(P b|Xa,Y b)=
∑
xa

P (xa)
∑
yb

P (yb|xa)H(P b|Xa=xa,Y b=yb) (67)

=
∑
xa

P (xa)F (xa), (68)

where F (·) is defined in (23); and where (68) is because instead of the summation over yb, we

can sum over the possible 0 insertions in between the runs of a fixed input sequence xa such that

there are total of b− a insertions. If we denote the number of insertions in between the runs of

zeros by i1, ..., il0 , and the number of insertions in between the runs of ones by i1+l0 , ..., il1+l0 ,

then we have i1, ..., il ∈ Z≥0 :
∑l

j=1 ij = b− a. Given these number of insertions, it is easy to

see that P (yb|xa) in (67) is equal to pi1,...,il(r
0, r1) in (24). Also, H(P b|Xa = xa, Y b = yb) is

equal to hi1,...,il(r
0) in (25), because given the input and output sequences, the only uncertainty

about the position sequence is where there is a run of zeros in the input sequence, i.e., for a

run of ones, we know that all the zeros in between them are insertions. Also, the uncertainty is

uniformly distributed over all the possible choices. Note that from (22), we have

g(a, b) = log
a∑
j=0

2maxP (xa) Ij(Xa;Y b), (69)

where Ij(Xa;Y b) denotes the mutual information if the input sequence, and therefore, the output

sequence have weight j, and the maximization is over the distribution of all such input sequences.

Using the chain rule, we have

H(P b|Y b) = H(Y b|P b) +H(P b)−H(Y b)

= H(Xa) + log

(
b

a

)
−H(Y b), (70)

where (70) is because the entropy of the output sequence given the insertion positions equals the

entropy of the input sequence, and because the entropy of the position sequence equals log
(
b
a

)
due to the uniform insertions. Combining (66), (68), and (70), we have

Ij(Xa;Y b) = Hj(Y
b)− log

(
b

a

)
+

∑
xa:w(xa)=j

P (xa)F (xa)

≤ log

(
b

j

)
− log

(
b

a

)
+ max

xa:w(xa)=j
F (xa), (71)
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where Hj(Y
b) denotes the entropy of the output sequence if it has weight j; and where (71)

follows from the fact that the uniform distribution maximizes the entropy and by maximizing

F (xa) over all input sequences with weight j. Finally, by combining (69) and (71), we get the

upper bound (26).

APPENDIX E

PROOF OF PROPOSITION 6

We prove the properties for the capacity function g(a, b). The corresponding properties for

the function φ(a, b) easily follows from (27).

(a) Since the cardinality of the input alphabet of this channel is 2a, the capacity of this channel

is at most a bits/s.

(b) There are no insertions. Therefore, it is a noiseless channel with input and output alphabets

of sizes 2a and capacity a bits/s.

(c) The input alphabet is {0, 1}, and the output consists of binary sequences with length b

and weight 0 or 1, because only 0’s can be inserted in the sequence. Considering all the

output sequences with weight 1 as a super-symbol, the channel becomes binary noiseless

with capacity 1 bits/s.

(d) The capacity g(a, b+ 1) cannot decrease if, at each channel use, the decoder knows exactly

one of the positions at which an insertion occurs, and the capacity of the channel with this

genie-aided encoder and decoder becomes g(a, b). Therefore, g(a, b+ 1) ≤ g(a, b).

(e) The capacity g(a+1, b+1) cannot decrease if, at each channel use, the encoder and decoder

know exactly one of the positions at which an input bit remains unchanged, so that it can

be transmitted uncoded and the capacity of the channel with this genie-aided encoder and

decoder becomes 1 + g(a, b). Therefore, g(a+ 1, b+ 1) ≤ 1 + g(a, b).
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