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Abstract—In this paper, we consider the problem of automatic
synthesis of decentralized supervisor synthesis for uncertain
discrete event systems. In particular, we study the case when
the uncontrolled plant is unknown a priori. To deal with the
unknown plants, we first characterize the co-normality of prefix-
closed regular languages and propose formulas for computing the
supremal co-normal sublanguages; then sufficient conditions for
the existence of decentralized supervisors are given in terms of
language controllability and co-normality and a learning-based
algorithm to synthesize the supervisor automatically is proposed.
Moreover, the paper also studies the on-line decentralized su-
pervisory control of concurrent discrete event systems that are
composed of multiple interacting unknown modules. We use the
concept of modular controllability to characterize the necessary
and sufficient conditions for the existence of the local supervisors,
which consist of a set of local supervisor modules, one for each
plant module and which determines its control actions based
on the locally observed behaviors, and an on-line learning-based
local synthesis algorithm is also presented. The correctness and
convergence of the proposed algorithms are proved, and their
implementation are illustrated through examples.

Index Terms—Discrete-event systems, supervisor synthesis,
regular language learning, controllability, decentralized control.

I. INTRODUCTION

The discrete event system (DES) supervisory control theory
initiated by Ramadge and Wonham [14], [15] has been widely
used to model and control large-scale systems, including multi-
agent systems, traffic networks and manufacturing systems,
see e.g., [2,8] and references therein. In [14], the notion of
language controllability is introduced to propose the necessary
and sufficient condition for the existence of a supervisor that
achieves a desired controlled behavior for a given discrete
event system under the complete observation of events. When
the events are not completely observed by the supervisor, an
additional condition of observability introduced by Cieslak
et al. [3] is adopted for the existence of the supervisor.
Since more and more complex systems built up nowadays are
becoming physically distributed and networked, such as multi-
agent systems and computer networks, a monolithic (central-
ized) control design that requires the computation of the global
plant often suffers from the so called “state-explosion” prob-
lem since this computation grows exponentially as the number
of components in the plant grow [17]; motivated by this fact,
the decentralized control architecture of DESs, in which the
specification is achieved through the joint efforts of more than
one supervisors, has arisen in the study of supervisory control
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problems and has attracted many researchers’ interest, see e.g.
[18] [7] [13].

Lots of efforts have been devoted to the research of de-
centralized supervisory control problems. In [11] a sufficient
condition for the existence of decentralized supervisors that
the controlled behavior of the system lies in a given range ex-
pressed by local specifications was proposed. Cieslak et al. [3]
considered the decentralized control where the specification is
given as a prefix-closed regular language, and the property of
co-observability was introduced in place of observability and
the result was then generalized to the case of non-prefix-closed
specification by Rudie and Wonham [18]. In [20], Willner
and Heymann studied the decentralized supervisory control,
except that the system they considered were of concurrent
nature.They introduced the notion of language separability
and under the assumption that Σi,uc ∩ Σj = ∅ for all
i 6= j, they proved that the separability and controllability
of the specification is a necessary and sufficient condition
that guarantees that the decentralized control can achieve the
optimal behavior achievable by a centralized supervisor. In [6],
the authors studied a version of decentralized control problem
that is more general than those reported above, and provided
a necessary and sufficient condition for the existence of
decentralized supervisors for keeping the controlled behavior
of the system in a given range. Results of [11] and [20] can
be viewed as special cases of [6].

However, most of the existing synthesis algorithms for
either monolithic or decentralized supervisors require prior
and complete knowledge of the uncontrolled plant. This re-
quirement has been pointed out to be unreasonable [5] in
some cases due to the uncertain nature of the plant. The
first case is the environment uncertainty, when dealing with
online supervisory control problems, it is often impossible
to determine when and where the underlined processes are
terminated and/or initiated, which implies the time-varying
nature of the DES plant to be studied. Secondly, for large-
scale or concurrent systems that are composed of multiple
interacting modules, obtaining a precise plant model requires
the computation of the compositional behaviors of all the
components and hence suffers from the aforementioned state-
explosion problem. Thirdly, even though we can obtain a
precise DES model before the system is running, if some
unknown faults or failures occur during the evolution of the
controlled system, which may add unknown transitions and
change the controllability and/or observability of the events,
we can hardly determine the post-fault model in an online
manner, and then constructing a consistent DES model is
impossible.

There have been some studies of the uncertainty of the
plant in centralized supervisory control. Lin considered the
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plant as a set of possible plants and designed robust supervisor
applicable for the whole range of plants [10]. In recent years,
fault-tolerant control scheme has been proposed to deal with
the faults occurring during the evolution of the system. Wen
et al. [19] proposed a framework of fault-tolerant supervisory
control of DESs, in which the supervisor was designed to
ensure the recovery from fault. Liu and Lin [12] investigat-
ed the reliable decentralized supervisory control problem of
DES under the general architecture, which seek the minimal
number of supervisors required for correct functionality of the
supervised systems.

This paper differs from the aforementioned work in the
sense that we focus on automatic synthesis of decentralized
supervisors when the plant is unknown instead of partially
known or bounded cases. The contribution of this paper is
as follows: first, we propose a sufficient condition for the
existence of decentralized supervisor in terms of language
controllability and co-normality; secondly, to deal with the
uncertain or even unknown nature of the plant, we propose an
L∗ learning based synthesis algorithm where new dynamical
membership queries are used instead of static ones in the
original learning procedure, and the algorithm can synthesize a
sub-optimal decentralized supervisors that are consistent with
the supremal controllable and co-normal sublanguage of the
given prefix-closed specification language; thirdly, we go one
step further and study the decentralized control problem of
concurrent systems, and modular synthesis algorithm for the
local supervisors is proposed.

The remainder of this paper is organized as follows. Section
II briefly reviews the result of decentralized supervisory con-
trol theory. The background information about L∗ learning
procedure is presented in Section III. The discussion about
language co-normality and the sufficient conditions for the
existence of decentralized supervisor based on co-normality
are given in Section IV. The modified L∗ learning algorithm
for supervisor synthesis is provided in section V. Necessary
and sufficient conditions for the existence of local supervisors
for concurrent discrete event systems are discussed in Section
VI, along with the synthesis algorithm for local supervisors.
At last we provide concluding remarks and discuss the future
work.

II. NOTIONS AND PRELIMINARIES

This paper discusses the supervisory control framework
for discrete event systems that is developed by Ramadge
and Wonham [14] [15]. For the readers convenience, some
background results from the cited references are first provided
in this section. For a detailed introduction of the theory, readers
may refer to [2] [8].

An uncontrolled system, called a plant, is modeled by a
deterministic finite automaton (DFA) G = (Q,Σ, q0, δ, Qm),
where Σ is the set of events, Q is the set of states, q0 ∈ Q
is the initial state, Qm ⊆ Q is the set of marked states,
δ is the (partial) transition function. Let Σ∗ denote the set
of all finite strings over Σ plus the null string ε, then δ
can be extended to δ : Q × Σ∗ → Q in the natural
way. The languages generated by G is given by L(G) =

{s ∈ Σ∗|δ(q0, s) is defined} and the language marked by G is
given by Lm(G) = {s ∈ Σ∗|s ∈ L(G), δ(q0, s) ∈ Qm}. The
prefix closure K of a language K ⊆ Σ∗ is the set of all
prefixes of strings in K. K is called prefix-closed if K = K.

In supervisory control theory, the event set are partitioned
into the set of controllable events and the set of uncontrollable
events, i.e., Σ = Σuc∪̇Σc. A supervisor S is a pair (R,ψ)
where R is a DFA which recognizes a language over the same
event set as G, and ψ is a feedback map from the event set
and the states of R to the set {enable, disable}. If X denotes
the event set of R, then ψ : Σ × X → {enable, disable}
satisfies ψ(σ, x) = enable if σ ∈ Σuc, i.e., the supervisor
can only disable the occurrences of controllable events. R
is considered to be driven by the strings generated by G,
and in turn, at each state of R, the control policy ψ(σ, x)
makes the decision about the occurrence of event sigma at
the corresponding state of G. The behavior of the supervised
system (a.k.a., closed-loop systen) is represented by a DFA
S/G. The language generated by the closed-loop system is
denoted by L(S/G) and its marked language is given by
Lm(S/G) = L(S/G) ∩ Lm(G). It is worth noting that,
for regular language cases, the control exercised by such a
supervisor for a plant G is equivalent to the behavior of
another automaton S that runs in parallel with G and at each
state of G disables a subset of the controllable events, if S
is a sub-automaton of G. Therefore, L(S/G) = L(S||G)
and Lm(S/G) = Lm(S||G) = L(S||G) ∩ Lm(G), where
“||” stands for the parallel composition of two automata [8].
Given a non-empty prefix-closed specification K ⊆ L(G), a
supervisor S exists such that L(S||G) = K if and only if K
is controllable, i.e., KΣuc ∪ L(G) ⊆ K [14]. If not, then a
supervisor is synthesized to achieve the supremal controllable
(also prefix-closed) sublanguage of K, namely, supC(K).

Moreover, the supervisor may also be constrained to observe
only events in a specified set of observable events and the
event set is then divided into the subset of unobservable
and observable events, i.e., Σ = Σuo∪̇Σo. The presence of
partial observation can be captured by an the natural projection
mapping P : Σ → Σo ∪ {ε} that erases the occurrence of
all unobservable events. A prefix-closed language K ⊆ L(G)
is said to be observable if the conditions s, t ∈ K,σ ∈ Σ,
P (s) = P (t), sσ ∈ K, and tσ ∈ L(G) together imply tσ ∈ K
[9]. Given a non-empty prefix-closed specification K ⊆ L(G),
a supervisor S exists such that L(S||G) = K if and only if
K is controllable and observable [2].

CONFIDENTIAL. Limited circulation. For review only

Preprint submitted to Journal of Control Theory and Applications
Received July 11, 2014 21:03:10 PST



Fig. 1 Decentralized control architecture. [2]

In this paper, we start from the general decentralized super-
visory control problem as shown in Fig. 1, where the plant
is controlled jointly by n local supervisors, each of which
observes the locally observable events and controls the locally
controllable events. Let I = {1, 2, . . . , n} denote the indices
of the supervisors. For each i ∈ I , let Σi denote the i-th
local event set, hence Σ =

⋃
i∈I Σi. Σi is divided into the

set of controllable events Σi,c and the set of uncontrollable
events Σi,uc. Let Σi,o and Σi,uo denote the sets of locally ob-
servable and unobservable events, respectively. For notational
simplicity, the set of globally controllable events is denoted as
Σc =

⋃
i∈I Σi,c and the globally observable event set is denot-

ed as Σo =
⋃
i∈I Σi,o. The sets Σuc = Σ− Σc =

⋂
i∈I Σi,uc

and Σuo = Σ − Σo =
⋂
i∈I Σi,uo denote the uncontrollable

and unobservable event sets, respectively, with the natural
projection mapping PΣi

: Σ∗ → Σ∗i,o. We use Pi to replace
PΣi

and use P to denote the natural projection from Σ∗ to
Σ∗o in the rest of this paper. The closed-loop behavior of the
DES under decentralized supervisors {Si}i∈I is denoted as
L({S̃i}i∈I , G), where S̃i is formed as an extended version
of Si by letting S̃i not observe any events in Σ − Σi and
permanently enables events in Σ− Σi,c.

Let In(σ) = {i ∈ I|σ ∈ Σi,c} denote the index set. A
language K ⊆ L(G) is said to be
• normal [3] [9] if P−1P (K) ∩ L(G) = K.
• C&P co-observable with respect to A ⊆ Σc [7] if for

any s ∈ K and any σ ∈ A such that sσ ∈ L(G) − K,
then there exists i ∈ In(σ) such that: for any s′ ∈ K,
[Pi(s) = Pi(s

′)] ∧ [s′σ ∈ L(G)]⇒ [s′σ 6∈ K].
• D&A co-observable with respect to A ⊆ Σc [7] if for

any s ∈ K and any σ ∈ A such that sσ ∈ K, then there
exists i ∈ In(σ) such that: for any s′ ∈ K, [Pi(s) =
Pi(s

′)] ∧ [s′σ ∈ L(G)]⇒ [s′σ ∈ K].
Remark 1: The terms “C&P ” and “D&A” in the defini-

tion of co-observability stands for “conjunctive architecture
and permissive decision rule” and “disjunctive architecture
and anti-permissive decision rule”, which corresponds to an
“AND” and ”OR” fusion rule in Fig. 1, respectively. In general,
we may use “co-observability” when the considered language
is either C&P or D&A co-observable.

Let us first introduce a motivating example to illustrate the
problems to be solved in this paper.

Example 1: Consider a multi-robot system that consists of
two Pioneer3-DX robots, one with an automated robotic arm
and the other is equipped with a gripper, as shown in Fig. 2,
respectively.

Fig. 2 Robot 1 with a robotic arm and Robot 2 with a gripper
The working procedure of the two robots is depicted in

Fig. 3. Robot 1 starts from its “home” Home 1, and grabs

some parts ffrom Workstation 1, and then transports the parts
to Workstation 2 along the Rails 1 and 3. Once the parts are
processed by Workstation 2, Robot 2, which starts form Home
2, will pick them up and transport them between Home 2 and
Workstations 1 and 2 along the Rails 2 and 3. Rails 1, 2 and
3 are all bidirectional.

Fig. 3 Multi-robot coordination system
The control specifications for the two-robot system are:
• Robot 2 shall pick up a part delivered by Robot 1 after

it has been processed at Workstation 1.
• Since the rails are bidirectional and since Rail 3 is shared

by the two robots, the robots cannot be on Rail 3 at the
same time.

For i ∈ I = {1, 2}, define αi3 and α3i to be the events
representing that Robot i is transporting from Rail i to Rail
3 and back from Rail 3 to Rail i, respectively. Then the
local event sets are Σ1 = {α13, α31} and Σ2 = {α23, α32}.
Without loss of generality, we assume that all the local events
are locally controllable, i.e., Σuc = Σ1,uc = Σ2,uc = ∅.
From above, the specification for the two robots is given by
K = (α13α31α23α32)∗, and a DFA that recognizes K is given
as follows.

K :
α31

��//

α13

??

α23

��

α32

__

Note that the whole plant model of the motion of each robot
is only partially given (with respect to the movement along
the given rails), and one possible motion model pair (not
unique representation) is given as follows, we have to design
decentralized (local) supervision rules for each robot such that
K can be fulfilled by the joint work of Robots 1 and 2.

Robot1(G1) : //

α13 ''

α31

gg

Robot2(G2) : //

α23 ''

α32

gg

Based on this example, there arises two problems naturally:
first, whether or not we can synthesize the decentralized su-
pervisors for each robot such that the specification is achieved;
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secondly, if the answer to the first problem is positive, then
whether or not we can compute the local supervisors based
only the local events and avoid the computation of the behav-
iors G1||G2 so that the complexity can be reduced. After the
discussion in Sections V and VI we will revisit this illustrative
example.

Formally, in this paper, we aim at solving the problem that
given a non-empty prefix-closed specification K ⊆ L(G), find
the decentralized supervisors Si such that L({Si}i∈I , G) with
no prior knowledge of G, and we expect to apply a modified
L∗ learning method.

III. L∗ LEARNING

In this section, we briefly introduce the background informa-
tion of the L∗ algorithm for regular language learning, which
plays an important role in the derivation of our supervisor
synthesis algorithms. The L∗ learning algorithm introduced
by Angluin [1] and improved by Rivest and Schapire [16]
learns an unknown regular language U over alphabet Σ and
produces a minimal deterministic finite automaton (DFA) that
accepts it. The algorithm infers the structure of the DFA
by asking an oracle that answers two types of queries. The
first type is a membership query, in which L∗ asks whether
a string s ∈ Σ∗ is included in U . The second type is a
conjecture, in which L∗ constructs a conjectured DFA M and
asks whether M is such that L(M) = U . If L(M) 6= U the
oracle returns a counterexample, which is a string s in the
symmetric difference of L(M) and U . At any given time, L∗

has, in order to construct the conjectured DFA M , information
about a finite collection of strings over Σ, classified either as
members or non-members of U . L∗ creates an observation
table to incrementally record and maintain the information
whether strings in Σ∗ belong to U . The observation table is
a three-tuple (S,E, T ) consisting of: a non-empty finite set S
of prefix-closed languages, a non-empty finite set E of suffix-
closed languages and a function T : (S ∪ SΣ)E → {0, 1}
which is often referred to as the membership oracle, i.e., the
function T takes strings in s ∈ (S ∪ SΣ) onto 0 if they are
not in K, otherwise the function T returns 1.

The ith observation table constructed by L∗ will be denoted
as Ti. Each table can be depicted as a 2-dimensional array
whose rows are labeled by strings s ∈ S ∪ SΣ and whose
columns are labeled by symbols σ ∈ E. The entries in the
labeled rows and columns are given by the function value
T (sσ). The row function row : (S∪SΣ)→ {0, 1}|E| denotes
the table entries in the row labeled by string s ∈ S ∪ SΣ.

An observation table (S,E, T ) is said to be

• closed if for all t ∈ SΣ, there exists an s ∈ S such that
row(t) = row(s).

• consistent if there exist strings s1, s2 ∈ S such that
row(s1) = row(s2), and for all σ ∈ Σ, row(s1σ) =
row(s2σ).

• complete if it is closed and consistent.

Once the observation table is complete, a candidate DFA
M(S,E, T ) = (Q, q0, δ, Qm) over the alphabet Σ is construct-

ed isomorphically by the following rules:

Q = {row(s) : s ∈ S} ,
q0 = row(ε),
Qm = {row(s) : (s ∈ S) ∧ (T (s) = 1)} ,
δ(row(s), σ) = row(sσ).

The L∗ learning algorithm learns the target unknown regular
language in the following manner [1]:

Algorithm 1 L∗ learning algorithm [1].
Set S = ε and E = ε.
Use the membership oracle to form the initial observation
table Ti(S,E, T ) where i = 1
while Ti(S,E, T ) is not completed do

if Ti is not consistent then
find s1, s2 ∈ S, σ ∈ Σ and e ∈ E such that row(s1) =
row(s2) but T (s1σe) 6= T (s2σe);
Add σe to E;
extend Ti to (S ∪ SΣ)E using membership queries to
the oracle.

end if
if Ti is not closed then

find s1 ∈ S, σ ∈ Σ such that row(s1σ) is different
from row(s) for all s ∈ S;
Add s1σ to S;
extend Ti to (S ∪ SΣ)E using membership queries to
the oracle.

end if
end while
Once Ti is complete, let Mi = M(Ti) as the conjectured
acceptor of K
Ask the oracle the validity of Mi.
if the oracle declares that the conjecture to be false and a
counterexample t ∈ Σ∗ is generated then

Add t and all its prefixes into S;
extend Ti to (S∪SΣ)E using membership queries to the
oracle;

end if
Set i = i + 1 and return to while until the oracle declares
that the conjecture is true.
return Mi.

The DFA M is presented as a conjecture to the oracle. If the
conjecture is correct, i.e., L(M) = U , then the oracle returns
“True” with the current DFA M ; otherwise, a counterexample
c ∈ (U − L(M)) ∪ (L(M) − U) is generated by the oracle.
The L∗ algorithm analyzes the counterexample c and finds the
longest prefix cp of c that witnesses the difference between
L(M) and U . Adding cp to S reflects the difference in next
conjecture by splitting states in M . Once cp is added to S, L∗

iterates the entire process to update M with respect to cp.
The L∗ algorithm is guaranteed to construct a minimal

DFA accepting the unknown regular language U using only
O(|Σ|n2 + n ˙logm) membership queries and at most n − 1
equivalence queries, where n is the number of states in the
final DFA and m is the length of the longest counterexample
provided by the oracle when answering equivalence queries
[1].
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IV. DECENTRALIZED CONTROL BASED ON
CO-NORMALITY

In this section we study the decentralized supervisory con-
trol problem of discrete event systems with partial observation-
s, which is first introduced in [11]. Furthermore, we generalize
the setting of [11] by relaxing the assumption that the local
event set Σi is the union of local controllable events Σi,c and
local observable events Σi,o, which is clearly restrictive since
in many systems, there may exist events that are neither locally
controllable nor locally observable.

We start from the notion of language decomposability intro-
duced by Rudie and Wonham [18], which plays an important
role in decentralized supervisory control theory.

Definition 1: A language K ⊆ L(G) is said to be decom-
posable (with respect to G and {Pi}i∈I ) if K = L(G) ∩
(
⋂
i∈I P

−1
i Pi(K)).

In general, decomposability is stronger than co-
observability, i.e., a language K is decomposable implies that
K is also co-observable. However, under certain conditions
of decentralized local control [18], decomposability and
co-observability are equivalent.

The following lemma lays the foundation of the necessary
and sufficient conditions for the existence of decentralized
supervisors in terms of language decomposability.

Lemma 1: [6] Let G be a plant, Σ be the global event set
and Σi ⊆ Σ be the local event sets associated with natural
projection Pi, i ∈ I . A language K ⊆ L(G) is decomposable
(with respect to G and {Pi}i∈I ) if and only if there exists
a group of languages Ki ⊆ Pi(L(G)), i ∈ I such that K =
L(G) ∩ (

⋂
i∈I P

−1
i Ki).

Remark 2: If we extend L(G) = Σ∗, then the condition
for language decomposability in view of Lemma 1 is reduced
to the existence of {Ki ⊆ Pi(Σ

∗) = Σ∗i } that satisfies K =⋂
i∈I P

−1
i Ki, which is exactly the property called language

separability in [20], and will be discussed in Section VII.
Based on Lemma 1, the following theorem provides a neces-

sary and sufficient condition for the existence of decentralized
supervisors based on language decomposability.

Theorem 1: [6] Let G be a plant, Σ be the global event set,
and Σi ⊆ Σ, i ∈ I be the local event sets. Let Pi be the natural
projection from Σ to Σi. Then for a given non-empty, prefix-
closed specification language K ⊆ L(G), decentralized (local)
supervisors {Si, i ∈ I} exist such that L({S̃i}i∈I , G) = K if
and only if

K = L(G) ∩ (
⋂
i∈I

P−1
i (inf PCOi(Pi(K))))

where S̃i is the extended version of Si for the global system,
and inf PCOi(Pi(K)) denotes the infimal prefix-closed, con-
trollable (with respect to Σi,uc and Pi(L(G))) and observable
(with respect to Pi and Pi(L(G))) superlanguage of Pi(K)

According to Lemma 3.2 in [20], when the global plant is
of concurrent nature, then if the control specification K ⊆
L(G) is prefix-closed and controllable (with respect to Σuc
and L(G)), Pi(K) ⊆ Pi(L(G)) and Pi(K) is also prefix-
closed, and controllable (with respect to Σi,uc and Pi(L(G))).
In general, we can have the following corollary from Theorem
1.

Corollary 1: Let G be a plant, Σ be the global event set,
and Σi ⊆ Σ, i ∈ I be the local event sets. Let Pi be the natural
projection from Σ to Σi. Then for a given non-empty, prefix-
closed specification language K ⊆ L(G), decentralized (local)
supervisors {Si, i ∈ I} exist such that L({S̃i}i∈I , G) = K if
and only if K is Σuc-controllable and {Pi}i∈I -decomposable.

When the given specification K is not controllable or
decomposable, a supervisor synthesis problem arises that we
need to find decentralized supervisors to achieve a controllable
and decomposable sublanguage of K. However, it has been
pointed out that decomposability is not closed under unions
[13], hence it is not guaranteed that the set of controllable and
decomposable sublanguages of a given prefix-close language
contains a unique supremal element, which implies that no
optimal solution (in the sense of maximal permissiveness)
exists for the decentralized supervisory control problem. An
alternative option to obtain a sub-optimal solution takes ad-
vantage of the following co-normality property.

Definition 2: A language K ⊆ L(G) is said to be
co-normal with respect to {Pi}i∈I if K = L(G) ∩
(
⋃
i∈I P

−1
i Pi(K))

The following theorem provides a sufficient condition for
the existence of decentralized supervisors in terms of co-
normality.

Theorem 2: Let G be a plant, Σ be the global event set,
and Σi ⊆ Σ, i ∈ I be the local event sets. Let Pi be the
natural projection from Σ to Σi. Then for a given non-empty,
prefix-closed specification language K ⊆ L(G), if K is Σuc-
controllable and {Pi}i∈I -co-normal, then there exist decentral-
ized supervisors {Si, i ∈ I} such that L({S̃i}i∈I , G) = K.
Proof Since co-normality always implies co-observability
[18], then the existence of decentralized supervisors can be
further guaranteed by controllability and prefix-closedness. �

It is proved that co-normality is preserved under arbitrary
unions and is a stronger property than co-observability [13]
[18]. Since controllability and prefix-closedness of regular
languages are also preserved under union, which implies
that the supremal prefix-closed, controllable and co-normal
sublanguage of a given prefix-closed language K, denoted as
supCCN(K), does exist.

Note that for a non-empty, prefix-closed language K ⊆
L(G), the supremal normal language of K with respect
to L(G) and projection P , denoted as supN(K), can be
computed using the following formula [2]

supN(K) = L(G)− [P−1P (L(G)−K)]Σ∗ (1)

Based on (1), we propose the following formula for the com-
putation of supremal co-normal language of a given language
K with respect to {Pi}i∈I , denoted as supCN(K).

Theorem 3: For a language K ⊆ L(G), the supremal co-
normal sublanguage of K is given by

supCN(K) = L(G)− [
⋃
i∈I

P−1
i Pi(L(G)−K)]Σ∗ (2)

Proof The proof of Theorem 3 follows immediately the proof
of the correctness of Eq. (1) in [2], with simply replacing P
by

⋃
i∈I P

−1
i Pi in the proof. �
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V. APPLY L∗ LEARNING FOR THE SYNTHESIS OF
DECENTRALIZED SUPERVISORS

In the previous work of Yang et al. [21] [22], they applied
L∗-based algorithm for supervisor synthesis, and in their
framework, the knowledge of the plant behaviors is confined
to a limited lookahead window, which was first introduced by
Chung and Lafortune [5]. However, this assumption is difficult
in realization. Due to this drawback of the limited lookahead
windows, in this section, we derive a modified L∗ learning
algorithm to synthesize the supervisor with an totally unknown
plant model.

Recall that a language K is controllable if KΣuc∪L(G) ⊆
K, therefore it is difficult to verify the controllability of the
given specification language due to lack of knowledge of the
plant, hence modification to the existing L∗ learning proce-
dure is required. We solve this difficulty by using dynamical
membership queries that is capable of learning the supremal
controllable sublanguage of the given specification (note that
since the specification language is prefix-closed, its supremal
controllable sublanguage is also prefix-closed), and hence a
supervisor is synthesized.

A. Learning for controllability

We start from solving the following basic centralized su-
pervisor synthesis problem (BSSP), and next we will take
advantage of the results and apply them for decentralized
supervisor synthesis.

Problem 1: Given non-empty, prefix-closed specification
language K ⊆ L(G), with the unknown plant G, find a su-
pervisor S such that L(S||G) = supC(K), where supC(K)
is the supremal controllable sublanugage of K.
We aim at solving BSSP by modifying the L∗ member-
ship queries and counterexample classes so that it can learn
supC(K) of a given prefix-closed specification K.

A string s generated by G is said to be legal with respect
to K if s ∈ K, and s is said to be illegal if s /∈ K.
In this paper, the dynamical membership queries presented
to the oracle in the modified L∗ is based on the observed
illegal behaviors generated by the system along with the given
specification language. A plant behavior st ∈ Σ∗ is said to
be uncontrollably illegal if s is legal, t ∈ Σ∗u and st /∈ K.
Let C denote the collection of observed uncontrollably illegal
behaviors. We define the operator

Du(C) = {s ∈ L(G) : ∃t ∈ Σ∗uc such that st ∈ C}

for C to represent the collection of the strings formed by
discarding the uncontrollable suffixes of strings in C, and let
Ci denote the set of uncontrollably illegal behaviors after the
i-th iteration, then if a new uncontrollably illegal behavior si
(a new counterexample) is generated by the oracle, we update
Ci to Ci+1 = {si} ∪ Ci. Finally, we propose the following
membership oracle Ti for i ∈ N. For t ∈ Σ∗, let T (t) denote
the membership Boolean function, initially,

T1(t) =

{
0, if t /∈ K
1. otherwise

(3)

For i > 1

Ti(t) =

{
0, if Ti−1(t) = 0 or t ∈ Du(Ci)Σ

∗

1. otherwise
(4)

Note that different from conventional L∗ discussed in Sec-
tion III, the dynamical membership queries used in (3) and (4)
are dynamical.

The L∗-based synthesis algorithm for BSSP is given as
Algorithm 2.

Algorithm 2 L∗ synthesis algorithm for BSSP.
1: Set S = ε and E = ε.
2: Use the membership oracle to form the initial observation

table Ti(S,E, T ) where i = 1
3: while Ti(S,E, T ) is not completed do
4: if Ti is not consistent then
5: find s1, s2 ∈ S, σ ∈ Σ and e ∈ E such that

row(s1) = row(s2) but T (s1σe) 6= T (s2σe);
6: Add σe to E;
7: extend Ti to (S ∪ SΣ)E using membership queries

(3) and (4).
8: end if
9: if Ti is not closed then

10: find s1 ∈ S, σ ∈ Σ such that row(s1σ) is different
from row(s) for all s ∈ S;

11: Add s1σe to S;
12: extend Ti to (S ∪ SΣ)E using membership queries

(3) and (4).
13: end if
14: end while
15: Once Ti is completed,let Mi = M(Ti) as the acceptor;

make the conjecture that Mi is the correct supervisor
16: if the counterexample oracle declares that the conjecture

to be false and a counterexample(illegal behavior) t ∈ Σ∗

is generated then
17: Add t and all its prefixes into S;
18: update Ti to Ti+1 by using the counterexample t;
19: extend Ti to (S ∪ SΣ)E using membership queries to

the oracle;
20: end if
21: Set i = i+ 1, reset the conjectured supervisor and return

to while until the oracle declares that the conjecture is
true.

22: return Mi.

Next we establish the convergence and correctness proper-
ties of the Algorithm 2 by construction.

First, the following lemma is presented to give an iterative
method to compute supC(K).

Lemma 2: If K and L(G) are regular languages, then
supC(K) can be computed iteratively as the following [8]:

K1 := K, (5)

Ki+1 := Ki − [(L(G)−Ki)/Σuc]Σ
∗ (6)

If there exists m ∈ N such that Km+1 = Km, then
supC(K) = Km.
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Compare (5), (6) with the dynamical membership oracle
Ti(t) in (3) and (4). Initially, T1(t) is consistent with K1 = K;
and when the iteration step i ≥ 2, the counterexamples occur
and form the set C. We use the operator Du(C) to compute
the languages formed by discarding the suffixes made up with
uncontrollable events of strings in C, then at the ith step of the
iteration, we obtain the result in the form of K −Du(Ci)Σ

∗.
On the other hand, if K is prefix-closed, then Lemma 1
suggests that supC(K) is also prefix-closed, and the iterations
(5) and (6) can be reduced to

supC(K) = K − [(L(G)−K)/Σ∗uc]Σ
∗ (7)

When the iteration step i goes up until no more counterexam-
ples are generated from the counterexample oracle (provided
that the algorithm is convergent), the collection {Ci} will
eventually equal to L(G) −K, which is the collection of all
the illegal strings and hence the collection of all the potential
illegal strings. At the ith step, the result we

K −Du(Ci)Σ
∗ = K − [Du(L(G)−K)]Σ∗

which coincides with the results obtained in (6) and is indeed
supC(K).

Next we will show that by using the L∗ with the dynamical
membership queries given in (3) and (4), the learning proce-
dure will converge within a finite number of iteration steps. To
illustrate the finite convergence and correctness of Algorithm
2, we first introduce the following two lemmas.

Lemma 3: Assume that the observation table (S,E, T ) is
closed and consistent and suppose that the corresponding ac-
ceptor, M(S,E, T ), has n states. Then for any other acceptor
M ′ that is consistent with T that has n or fewer states, M ′ is
isomorphic to M . [1]

Lemma 4: Assume that the observation table (S,E, T ) is
complete and that the corresponding acceptor M(S,E, T ) has
n states. If a string s ∈ Σ∗ is a counterexample and is added
to update M(S,E, T ) using Algorithm 1. Assume that the
updated and completed observation table is (S′, E′, T ′) with
the corresponding acceptor M ′, then M ′ must have at least
(n+ 1) states. [22]

There are two kinds of “counterexamples” that are used the
modified L∗: counterexamples used to complete observation
table Ti and counterexamples generated by the counterexample
oracle to update the new observation table Ti+1. We denote D
as the set of those “counterexamples” that are used to complete
Ti after a new illegal string s is detected and added to update
S of the current observation table (S,E, T ).

Consider the complete observation table T = (Sj , Ej , Ti)
associated with the acceptor M(Sj , Ej , Ti) = M , where Sj
and Ej are the pre-defined S and E after the jth counterex-
ample from D has been added to make T complete, and
Ti denote the current membership oracle after i times of
iterating Algorithm 2. Let nij denote the number of states
of M , ni denotes the number of states of the acceptor of
Ti, and n↑ denotes the number of states of the acceptor
M(supC(K)). Then by Lemma 2 and 3, we know that{ni}
and {nij} are both monotonically increasing sequences (with
respect to i and j, respectively.) and nij ≤ ni for any fixed
i and all j ∈ N. Hence we can conclude that by using L∗

learning procedure, the iteration using membership oracle (3)
and (4) are convergent. The following theorem summarizes the
correctness and convergence properties.

Theorem 4: Assume that K ⊆ L(G) is prefix-closed,
then the modified L∗ learning procedure using membership
queries (3) and (4) converges to a supervisor S, such that
L(S||G) = supC(K). Furthermore, this iteration procedure
of synthesizing S will be done in a finite number of coun-
terexample tests.

B. Learning for Co-normality

1) Learning for Co-normality: We now consider using L∗

to learn supCCN(K). To compute supCCN(K) using L∗

learning procedure, we first consider how to deal with the co-
normality and local observation projections. For j ≥ 1, define
recursively

K1 = K, (8)

Ccn(Kj) =

{
s ∈ Kj : ∃s′ ∈ L(G),

⋃
i∈I

P−1
i Pi(s) =

⋃
i∈I

P−1
i Pi(s

′), s′ 6∈ Kj

}
,

(9)

K̃j = Kj − Ccn(Kj) (10)

to denote the collection of indistinguishable (with respect
to

⋃
i∈I P

−1
i Pi and K) behaviors. It follows immediately

from Theorem 3 that by using the Ccn(·) operator, the above
iteration will converge to the supremal co-normal sublanguage
of the given prefix-closed specification K ⊆ L(G) within a
finite number of steps.

2) Modified membership queries: To capture the illegal
behavior generated by the unknown plant under partial ob-
servations in the decentralized control structure, we modify C
in previous section to be

C̃ =

{
st ∈

⋃
i∈I

P−1
i Pi(L(G)) : s ∈

⋃
i∈I

P−1
i Pi(K̃), t ∈ Σ∗uc,

st /∈
⋃
i∈I

P−1
i Pi(K̃)

}
(11)

Then, we define the following membership queries T̃j , j ∈
N as follows:

K̃1 = K − Ccn(K)

T̃1(t) =

{
0, if t /∈

⋃
i∈I P

−1
i Pi(K̃1))

1, otherwise
(12)

Kj = L(M(Tj−1)), j > 1.

If t ∈ Ccn(Kj), remove t from Kj to obtain K̃j , and,

T̃j(t) =

{
0, if T̃j−1(t) = 0 or t ∈ Du(C̃j)Σ

∗
o

1, otherwise
(13)

The algorithm of supervisor synthesis is summarized as
Algorithm 3.
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Algorithm 3 L∗ for learning supCCN(K).
1: Set S = ε and E = ε.
2: Use the membership oracle to form the initial observation

table T̃j(S,E, T̃ ) where j = 1
3: while T̃j(S,E, T̃ ) is not completed do
4: if T̃j is not consistent then
5: find s1, s2 ∈ S, σ ∈ Σo and e ∈ E such that

row(s1) = row(s2) but T̃ (s1σe) 6= T̃ (s2σe);
6: Add σe to E;
7: extend T̃j to (S ∪ SΣ)E using membership queries

(12) and (13).
8: end if
9: if T̃j is not closed then

10: find s1 ∈ S, σ ∈ Σo such that row(s1σ) is different
from row(s) for all s ∈ S;

11: Add s1σe to S;
12: extend T̃j to (S ∪ SΣ)E using membership queries

(12) and (13).
13: end if
14: end while
15: Once T̃j is completed,let M̃j = M(T̃j) as the acceptor;

make the conjecture that M̃j is the DFA that recognizes
supCCN(K)

16: if the counterexample oracle declares that the conjecture
to be false and a counterexample (indistinguishable be-
havior) t ∈ Ccn(K̃j) is generated then

17: remove t from K̃j .
18: end if
19: Obtain K̃j+1.
20: if the counterexample oracle declares that the conjecture

to be false and a counterexample(illegal behavior) t ∈ Σ∗

is generated then
21: Add P (t) and all its prefixes into S;
22: update T̃j to T̃j+1 by using the counterexample t;
23: end if
24: Set i = i+ 1, reset the conjectured supervisor and return

to while until the oracle declares that the conjecture is
true.

25: return Mi.
26: Let Si be a DFA over Σi such that L(Si) = Pi(Mn), then

the obtained Si, i ∈ I are the decentralized supervisors.

3) Correctness and convergence: The following theorem
states the convergence and correctness of the modified L∗ by
using membership queries (12) and (13).

Theorem 5: Let K ⊆ L(G) be a non-empty and prefix-
closed specification, then L∗ with dynamical membership
queries (12) and (13) converges to decentralized supervisors
Si, i ∈ I , such that L({Si}i∈I , G) = supCCN(K). Further-
more, this iteration procedure of synthesizing S will be done
in a finite number of counterexample tests.

Proof The convergence property of Algorithm 3 can be
shown using the similar approach of Theorem 4 and is omitted
here. We show that the obtained language from Algorithm 3 is
supCCN(K). First, we claim that the obtained language K̃
is co-normal, which can be proved by contradiction. For the

i−th step of iteration, assume that K̃i is not co-normal, then
there exists a string s ∈ K̃i and another string t ∈ L(G)

such that
⋃
i∈I P

−1
i Pi(s) =

⋃
i∈I P

−1
i Pi(t) but t /∈ K̃i;

then by the definition of Ccn(K), it is clear to find that
s ∈ Ccn(Ki) and should be eliminated from K̃i. Thus we
get the contradiction and K̃i is a co-normal and so is K̃.
Next we show that K̃ = supCCN(K). In fact, by comparing
dynamical membership queries (12) and (13) with (3) and (4),
respectively, we alternatively compute the supremal co-normal
sublanguage and the supremal controllable sublanguage in
each iteration, hence it is clear to show that the obtained
language K̃ = supCCN(K). �

4) Illustrative Example: The effectiveness of Algorithm 3
is illustrated through the following simple example.

Example 2: Consider the global event set Σ = {α, β, γ}.
The local controllable events and observable events are giv-
en by Σ1,c = {αγ}, Σ2,c = {β γ}, Σ1,o = {α} and
Σ2,o = {β}, respectively. The specification is given as
K = αα+ (αβ + βα)γ and the language generated by the
plant is L(G) = (α+ β)(α+ β)γ. Note that L(G) is not
known to the supervisors. Both L(G) and K are depicted as
the following.

G : //

β

66
α
((

α
66

β
(( γ //

K :

β

��

α

OO

//

α

??

β

��

γ //

α

??

We start from the first observation table, and set S = E =
{ε} for Algorithm 1. The first complete observation table with
its corresponding acceptor is given as the following table (note
that we only care about the rows whose first entries are 1’s).

TABLE I
T1 IN EXAMPLE

T1 ε

S ε 1

SΣ − S α 1
β 1

M(T1) : // α,βee

We detect that the string αββ ∈ M(T1) − P (K1), hence
it is a counterexample and we use Algorithm 1 to update and
complete the observation table.
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TABLE II
T2 IN EXAMPLE

T2 ε α

S ε 1 1
α 1 0
αβ 1 0

SΣ − S αδ 1 0
β 1 0
αβγ 1 0

M(T2) : β 99
α // β,γee

We use M(T2) as the supervisor to control the plant behav-
iors, the string βαγγ ∈M(T2)−P (K2) is a counterexample,
then we add the prefixes of αδδδ into S and update the
observation table to T3.

TABLE III
T3 IN EXAMPLE

T2 ε α β γ

S ε 1 1 1 0
α 1 0 1 0
αβ 1 0 0 1
β 1 1 0 0
βα 1 0 0 1
βαγ 1 0 0 0

SΣ − S αβγ 1 0 0 0

M(T3) :
β

��//

α

??

β
��

γ //

α

??

In this case no more counterexamples are detected, and
we can conclude that supCCN(K) = (αβ + βα)γ, the
local(decentralized) supervisors can then be obtained such
that Si = Pi(supCCN(K)), i = 1, 2, which are depicted
respectively as follows.

S1 : // α //

S2 : // β //

VI. LOCAL SYNTHESIS OF THE DECENTRALIZED
SUPERVISORS

A. Discussion and alternation of Algorithm 3

In the previous section, we discuss the synthesis problem
for decentralized supervisors, and Algorithm 3 is proposed
to illustrate the learning-based synthesis approach in detail.
However, the approach adopted by Algorithm 3 still has some
drawbacks, and can be illustrated by revisiting the motivating
example mentioned in Section II.

Example 3: (Motivating example revisited) For the spec-
ification K = (α13α31α23α32)∗, since Σc = Σ =

{α13, α31, α23, α32}, i.e., all the events are globally control-
lable, therefore, a monolithic supervisor that drives the global
system to achieve K always exists; however, if the local plant
model of Robots 1 and 2 are given by the following, then we
can find that, by applying Algorithm 3 one shall fail to get a
non-trivial (non-empty) solution.

Robot1(G1) : //

α13 ''

α31

gg

Robot2(G2) : //

α23 ''

α32

gg

The drawbacks of Algorithm 3 are twofold:
• Centralized synthesis for decentralized supervisors al-

though the synthesis algorithm returns the DFAs that
jointly achieve the supremal controllable and co-normal
sublanguage of the given non-empty, prefix-closed spec-
ification K ⊆ L(G), the algorithm itself is of centralized
nature and uses the information of controllability and
observability of all the global events as if it learns a
monolithic supervisor.

• Conservativeness of the result Algorithm 3 provides an
approach to actively learn supCCN(K) when prior
knowledge of the plant is unaccessible; however, as the
following proposition implies, supCCN(K) is conser-
vative in some cases.

Proposition 1: If K ⊆ L(G) is co-normal with respect
to Σi, i ∈ I , then K is normal with respect to each Σi,
respectively.

Proof The inclusion K ⊆ P−1
i Pi(K) ∩ L(G) is always

satisfied for any language K ⊆ L(G). Therefore it is sufficient
to prove that K ⊇ P−1

i Pi(K) ∩ L(G). In fact, K is co-
normal with respect to Σi, i ∈ I implies that K = L(G) ∩
(
⋃
i∈I P

−1
i Pi(K)), thus

K = L(G) ∩ (
⋃
i∈I

P−1
i Pi(K))

=
⋃
i∈I

[P−1
i Pi(K)) ∩ L(G)]

⊇ P−1
i Pi(K)) ∩ L(G),∀i ∈ I

Hence, K = P−1
i Pi(K) ∩ L(G), which implies that K is

normal with Pi, i ∈ I . �
Intuitively, Proposition 1 states that, if a language K ⊆

L(G) is co-normal, then it is normal with all the local
observation mappings, i.e., if there exists i ∈ I such that
K is not normal with respect to Pi, then we can conclude
that K is not co-normal. This proposition implies that all
the decentralized supervisors can pass the authority to any
single one of them. The following proposition is an immediate
corollary of Proposition 1.

Proposition 2: For a non-empty and prefix-closed specifi-
cation language K ⊆ L(G), supCCN(K) ⊆ supCNi(K)
for all i ∈ I , where supCNi(K) denotes the supremal
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controllable (with respect to Σuc and L(G)) and normal (with
respect to Pi and L(G)) sublanguage of K).

Propositions 1 and 2 provide some insights on the derivation
of an alternative approach to obtain a “better” synthesis
solution than supCCN(K), and can be implemented by using
the following manner.
• Step 1 Compute supCNi(K) for each i ∈ I by using

the global uncontrollable event set Σuc and the local
observable events in Σi,o.

• Step 2 Find supi(supCNi(K)) and return it as the
solution for the synthesis problem.

For simplicity, we consider the problem of learning
supCNi(K) for a fixed i ∈ I; and one needs to modify
the membership queries (12) and (13) in Algorithm 3 to take
normality into account.

The following lemma provides an iterative method of com-
puting the supremal normal sublanguage of a given language.

Lemma 5: If K ⊆ L(G), then the supremal normal sublan-
guage of K with respect to Σi,o, denoted as supNi(K), can
be obtained using the following iteration. [8]

K0 := K, (14)

Kj+1 := Ki − [P−1
i Pi(L(G)−Kj)]Σ

∗ (15)

If there exists m ∈ N such that Km+1 = Km, then Km =
supNi(K).

Now that if K is prefix-closed, so is supNi(K). Therefore,
the iteration in (14) and (15) can be reduced to

supNi(K) = K − [P−1
i Pi(L(G)−K)]Σ∗ (16)

To compute supNi(K) using L∗ learning procedure, simi-
lar to Ccn(·), we define

K1 = K, (17)

Co(Kj) = {s ∈ Kj : ∃s′ ∈ L(G), Pi(s) = Pi(s
′), s′ 6∈ Kj} ,

(18)
K̃j = Kj − Co(Kj) (19)

to denote the collection of “locally indistinguishable” (with
respect to Pi and K) behaviors generated by the controlled
plant. Moreover, we define the modified C to be

C̃ =
{
st ∈ Pi(L(G)) : s ∈ Pi(K̃), t ∈ Σ∗uc, st /∈ Pi(K̃)

}
Then, for the partial observed plant, we define the following

membership queries T̃j , j ∈ N as follows:

K̃1 = K − Co(K)

T̃1(t) =

{
0, if t /∈ Pi(K̃1))

1, otherwise
(20)

Kj = L(M(Tj−1)), j > 1.

If t ∈ Co(Kj), remove t from Kj to obtain K̃j , then,

T̃j(t) =

{
0, if T̃j−1(t) = 0 or t ∈ Du(C̃j)Σi,o∗
1, otherwise

(21)

When we use Algorithm 3 as the supervisor synthesis
algorithm except that we use membership queries (20) and

(21) to replace (12) and (13), respectively, the following
theorem guarantees that the resulting learning procedure can
still converge to supCNi(K) for a fixed i ∈ I within a finite
number of iterations.

Theorem 6: Assume K ⊆ L(G) is non-empty and prefix-
closed, then the modified L∗ learning procedure in Algorithm
3 by using membership queries (20) and (21) for each i ∈ I
converges to a local supervisor Si, such that L(Si||G) =
supCNi(K). Furthermore, this iteration procedure of synthe-
sizing Si will be done in a finite number of counterexample
tests.

Proof The proof of Theorem 6 can be performed in exactly
the same way as the proof of Theorem 5, and is omitted here.�

B. Local synthesis for decentralized supervisors: language
separability and online control

Although by using Algorithm 3 with membership queries
(20) and (21), one can synthesize decentralized supervisors
that can achieve less conservative solutions than supCCN(K)
when given specification K. However, Algorithm 3 is still of
centralized nature when using membership queries (20) and
(21) since it requires the global controllability of all the events;
furthermore, Algorithm 3 involves partial observation of local
supervisors, which increases the computational complexity (as
suggested in [4], in the worst case synthesizing a supervisor
under partial observation is an NP-complete problem) and
therefore it is difficult to implement the algorithm in an on-line
manner. In this section, we go beyond Algorithm 3 and aim
at proposing a fully decentralized learning-based algorithm to
synthesize local supervisors. In particular, in this section, we
assume the global plant is a concurrent discrete-event system,
i.e., G = ||i∈IGi, where Gi is the subplant over the local
alphabet Σi, and L(G) = ||i∈IL(Gi) =

⋂
i∈I P

−1
i L(Gi)

according to Proposition 3.1 in [20]. Furthermore, we assume
that the local supervisor Si can observe all the local events,
i.e., Σi = Σi,o and that any events shared by more than one
local plants agree on the status of controllability, i.e.,

∀i, j ∈ I, i 6= j,Σi,cu ∩ Σj,c = ∅

which is equivalent to the condition that the local supervisor
Si controls all the controllable events that are local, i.e., Σi,c =
Σc ∩ Σi [6]. Thus, we can conclude that Si = S̃i.

As mentioned in Remark 2, language separability introduced
by Willner and Heymann [20] plays a key role in decentralized
supervisory control of concurrent systems, and is formally
defined as follows.

Definition 3: Given local event sets {Σi}i∈I and the global
event set Σ = ∪i∈IΣi, a language K ⊆ Σ∗ is separable (with
respect to {Σi}) if for each i ∈ I there exists Ki ⊆ Σ∗i such
that K = ||i∈IKi =

⋂
i∈I P

−1
i (Ki).

The authors of [20] also pointed out that the verification of
language separability can be performed by testing the local
projection of the language, which states as follows.

Proposition 3: A language K ⊆ Σ∗ is separable with
respect to {Σi} if and only if K = ||i∈IPi(K) =⋂
i∈I P

−1
i Pi(K).
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According to Theorem 1 and Corollary 1, decentralized
superviors exist if and only if the specification is prefix-
closed, controllable and decomposable; note that for con-
current systems, L(G) = ||

⋂
i∈I P

−1
i L(Gi)The following

theorem provides a necessary and sufficient condition for the
existence of the local supervisors Si such that the collective
behaviors of all the local plants satisfy the global specification.

Theorem 7: [20] [6]Consider the concurrent system G =
||i∈IGi. Let Σ be the global event set, and Σi ⊆ Σ, i ∈ I be
the local event sets. Let Pi be the natural projection from Σ
to Σi, Σi,c ⊆ Σi be the local controllable event set for the
i-th agent, Σc =

⋃
i∈I Σi,c be the global controllable event

set and Σuc = Σ−Σc be the global uncontrollable event set.
If Σi,c = Σc ∩ Σi, then for a given non-empty, prefix-closed
specification language K ⊆ L(G), local supervisors {Si, i ∈
I} exist such that

⋂
i∈I P

−1
i (L(Si||Gi)) = K if and only if K

is Σuc-controllable and ({Σi})-separable. Moreover, if K is
separable but not Σuc-controllable, then the local supervisors
Si can be synthesized such that

||i∈IL(Si||Gi)
= ||i∈I supCΣi,uc

(Pi(K))

= supCΣuc
(K)

(22)

We introduce the concept of modular controllability to
characterize the properties of the specification required by
Theorem 7:

Definition 4: Consider the local plant language {Li ⊆
Σ∗i }i∈I and the local uncontrollable events Σi,uc ⊆ Σi, a
language K ⊆ Σ∗ is said to be modularly controllable if there
exists {Ki ⊆ Σ∗i } such that K = ||i∈IKi and Ki is locally
controllable with respect to Li and Σi,uc.

Based on Definition 4 and Theorem 7, it is clear that
for a concurrent system G = ||i∈IGi and a prefix-closed
specification K ⊆ L(G), the local supervisors that can achieve
K exist if and only if K is modularly controllable.

From Lemma 3.2 in [20] along with Proposition 3, the
following proposition claims the relationship between modular
controllability and global controllability.

Proposition 4: If K ⊆ L = ||i∈ILi is modularly control-
lable, then K is globally controllable with respect to L and
Σuc and K is separable with respect to {Σi}i∈I .

Remark 3: Proposition 4 states that, modular controllability
is a sufficient condition for the combination of separability and
global controllability, i.e., if a specification can be achieved
by the joint work of the local supervisors, it can always be
achieved by a centralized monolithic supervisor, as we expect.

Under the assumption that shared events have the same
controllability status, modular controllability coincides with
controllability and separability combined. This is stated as the
following corollary:

Corollary 2: Consider K ⊆ L = ||i∈ILi, where Li ⊆ Σ∗i
and ∀i, j ∈ I, i 6= j,Σi,cu ∩ Σj,c = ∅, then K is modularly
controllable if and only if K is globally controllable with
respect to L and Σuc and K is {Σi} separable.

Theorem 7 and Corollary 2 provide shed light on our
development of the algorithm for local synthesis of the su-
pervisors. The following steps can help us to implement the
local synthesis procedure.

• Local specification generation Given the non-
empty,prefix-closed global specification language
K ⊆ L(G), let Ki = Pi(K), as suggested by Lemma
3.2 in [20], Ki ⊆ Pi(L(G)) ⊆ L(Gi).

• Check the separability of K Check whether or not
K = ||i∈IKi, if so, then K is separable from Proposition
3, otherwise, find K ′i ⊆ Σ∗i such that K = ||i∈IK ′i; if
no such K ′i exists, then find K ′ ⊆ K such that K ′ is
separable. Set Ki = K ′i, K

′ = K.
• Local synthesis With the local specification Ki and

the local controllability information Σi,uc, one can use
Algorithm 2 to learn a centralized supervisor Si such
that L(Si||Gi) = supC(Ki).

• Return the solution Return Si as the decentralized super-
visors

Since the complexity synthesizing a centralized monolithic
supervisor Si under complete observation by using Algorithm
2 is only polynomial with respect to the number of the states of
Si and the length of the counterexample queries as mentioned
in Section III, we can conclude that the aforementioned
synthesis procedure can be implemented in an on-line manner.

C. Illustrative example

We now apply the aforementioned local synthesis procedure
for the motivating example proposed in Section II.

Example 4: (Motivating example revisited (cont’d)) For i ∈
I = {1, 2}, define αi3 and α3i to be the events representing
that Robot i is transporting from Rail i to Rail 3 and back
from Rail 3 to Rail i, respectively. Then the local event
sets are Σ1 = {α13, α31} and Σ2 = {α23, α32}. Without
loss of generality, we assume that all the local events are
locally controllable, i.e., Σuc = Σ1,uc = Σ2,uc = ∅.
From above, the specification for the two robots is given by
K = (α13α31α23α32)∗, and a DFA that recognizes K is given
as follows.

K :
α31

��//

α13

??

α23

��

α32

__

We start from Step 2, and obtain (initial) local specifications
as follows: K1 = P1(K) = (α13α31)∗ and K2 = P2(K) =
(α23α32)∗, which are depicted, respectively.

K1 : //

α13 ''

α31

gg

K2 : //

α23 ''

α32

gg

However, we find that K 6= K1||K2, which requires us to
reconfigure K1 and K2.
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Consider the two-robot scenario, we assume that each
robot has adequate sensors to help detect the which rail
the other robot is currently located, however, the two robots
cannot control the behaviors of the other’s. Accordingly, Σ1

and Σ2 are augmented to be Σ1 = {α13, α31, α32} and
Sigma1 = {α23, α32, α31}, respectively. Moreover, we set
that Σ1,uc = {α32} and Σ2,uc = {α31}. In this case, we obtain
the local specifications to be K1 = (α∗32α13α∗32α31α32)∗

and K2 = (α31α23α∗31α32α∗31)∗, in this case we find that
K = K1||K2, which permits us to go one step further.

Now we apply Algorithm 2 in Section IV for local super-
visor synthesis. It can be learnt by using membership queries
(3) and (4) that both K1 and K2 are locally controllable with
the corresponding local controllable events. Therefore, we can
find the local supervisors S1 and S2 to help achieve the global
specification K.

VII. CONCLUSIONS

In this paper, the decentralized supervisory control and
synthesis problem with no prior knowledge of the plant
is investigated. By using the modified membership queries,
the L∗ can learn the supremal controllabel and co-normal
sublanguage of a given prefix-closed specification language,
and an illustrative example is also provided to show the
effectiveness of the proposed algorithm. Moreover, the local
synthesis of decentralized supervisors is also investigated, and
based on the property of modular controllability, one can learn
the local supervisors by using only local information and the
specification can also be achieved by the joint work of the
decentralized supervisors. Future work will be focused on
synthesis problems when the given specification is not prefix-
closed or not modularly controllable.
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