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Hierarchical Hybrid Symbolic Robot Motion Planning and Controlt

Ali Karimoddini and Hai Lin

ABSTRACT

This paper addresses the motion planning problem using hybrid symbolic
techniques. The proposed approach develops a unified hierarchical hybrid
control framework using a bismulation-based abstraction technique over the
partitioned motion space that can be applied to autonomous aerial robots
(3-D symbolic motion planning) or ground vehicles (2-D symbolic motion
planning). The bisimulation relation between the abstracted model and the
original continuous system guarantees that their behaviors are the same. This
allows to design a discrete supervisor for the abstracted model, and then, the
designed supervisor can be applied to the original system while the closed-
loop behavior does not change. To apply the discrete supervisor to the original
continuous system, an interface layer is developed, which on the one hand
translates discrete commands of the supervisor to a continuous form applicable
to the continuous plant and on the other hand, abstracts the continuous
signals of the continuous low layer to discrete symbols understandable by
the supervisor. The proposed algorithm is verified through implementation
of a hybrid symbolic algorithm for the formation control of unmanned aerial

vehicles.

Key Words: Symbolic Control, Hybrid Control, Abstraction, Robot Motion

Planning

I. INTRODUCTION

With advances in technologies it is becoming
possible to develop fully autonomous vehicles that
can accomplish complicated tasks. Such sophisti-
cated capabilities require the control structure of an
autonomous vehicle to have various types of sensors
to recognize itself and the environment, analyze high
amount of sensor readings, process the collected data
and accordingly, make decision to compute the control
signals. Here, for motion planning of the robots, the
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question is that how to process and manage excessive
amount of data, and then, how to integrate the decision
making unit with continuous low level control structure
of the system. In fact, a typical robot has an inherent
hybrid nature whose event-triggered discrete logic of
the decision making unit and the corresponding discrete
commands influence the continuous dynamics of the
robot. This logic may require the system to satisfy
several goals with a particular order, which is beyond
the traditional methods for robot motion control based
on optimal control techniques. To comprehensively
analyze and design a control system for motion
planning and control, a proper solution is to utilize
the hybrid modeling and control theory and consider
the discrete and continuous dynamics of the system,
simultaneously and within a unified framework [1].

To develop a hybrid symbolic motion planning
and control mechanism, the challenge is to design and
develop a computationally effective hybrid approach for
the robot motion control so that the closed-loop system
satisfies the discrete logic of the decision making unit.
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In [2], a complicated search and rescue and in [3], the
motion control of a team of robots are addressed using
symbolic control methods and abstraction techniques.
These schemes reduce the system to a finite state
transition system [4], [5], [6] for which one can
design a proper discrete supervisor [7] to achieve
certain properties expressed in high-level human-like
languages such as linear or branching temporal logics
[81, [2], [9], [10]. Most efforts in the literature have been
devoted to partitioning the motion space to obtain an
abstracted model [11, 12, 13, 14, 15, 16]. Here, the key
is to realize the relationship between the abstract model
and the original continuous system. Understanding the
relationship between the abstract model and the original
system allows to design a supervisor for the abstract
model that is essentially a simpler model, and then,
convert it back to the original continuous model. The
immediate question is that whether it can be guaranteed
that the control objectives, achieved in the abstract
domain, can be achieved by the original system as well.
To address this problem, this paper aims at developing
a bisimulation-based abstraction technique by which,
the equivalent behaviors of the abstract model and
the original plant allows the designer to synthesis the
discrete supervisor for the abstract model and then,
apply it to the original plant. The preliminary result
of this work was presented in [17]. Compared with
[17], here, the bismulation relation between the abstract
model and the original system is rigorously proved,
and the results are extended to the polar partitioned
spaces. Furthermore, actual implementation results are
provided to verify the algorithm.

The main contribution of this paper is to develop
a unified hierarchical hybrid framework for symbolic
motion planning and control of robots based on
a bisimulation-based abstraction technique over a
rectangular or polar partitioned space. Starting from
the low level continuous dynamics of the system,
and using rectangular or polar partitioning techniques,
the motion dynamics of the robots can be abstracted
to a finite state machine over the partitioned motion
space, for which we can design a discrete supervisor
to achieve the desired specification. We prove that the
bisimulation relation between the abstracted model and
the original continuous model holds for a plant with
multi-affine dynamics over the rectangular or polar
partitioned space. This bisimulation relation guarantees
the same behavior of the plant and its abstract model
and therefore, the discrete supervisor designed for
the abstracted model can be applied to the original
continuous plant so that the closed-loop system’s
behavior does not change. To implement the idea, a

hierarchical hybrid control structure is proposed whose
lowest layer is a plant with continuous dynamics, and
its top layer is a discrete supervisor which controls the
system to satisfy the given specification. To connect
the discrete supervisor to the continuous plant, an
interface layer is introduced by which the discrete
commands of the supervisor can be converted to a
continuous form applicable to the plant. Furthermore,
when the system trajectory crosses the partitioning
curves, the interface layer generates detection events
which inform the supervisor about the current state of
the system. then, based on observing these detection
events, the supervisor can issue new commands. The
proposed algorithm is implemented on unmanned aerial
helicopters and the flight test results are provided to
evaluate the algorithm.

The rest of this paper is organized as follows. After
explaining the preliminaries and notations in Section
II, the symbolic motion planning and control problem
is described in Section III. Then, in Section IV, the
partitioning of the motion space will be described.
Several controllers will be introduced to drive the
system trajectory over the partitioning elements. In
Section V, the partitioned system will be bisimilarly
abstracted to a finite state machine and the bisimulation
relation will be proven. For the resulting finite state
machine one can design a discrete supervisor as
explained in Section VI. Section VII describes how
to implement the whole control structure through an
illustrative example. Finally, the paper is concluded in
Section VIII.

II. Preliminaries

To address the motion planning problem, we
partition the motion space. In the literature, there are
several methods that can be used for partitioning the
space such as using natural invariants of the plants
[18], rectangulation [12] or triangulation [11] of the
motion space, or polar and spherical partitioning [16],
[15], of the space. To elaborate the idea, without
loss of generality, here we will use rectangular and
polar partitioning of the motion space which are more
convenient to work with.

Consider that the motion space is a
[0,2n] X [0,yn] rectangle, which is partitioned
by the curves {x =u;|0 <z; <xn such that for
i<jriz;<zj,4,j=1,..,Ng, 21 =0, zn, =N},
and {y = v; |0 < y; < yn suchthat fori < j : y; <y,
,j=1,....Np, y1 =0, yn, = yN} into (Na - 1) X
(Np — 1) rectangles. In this partitioned space, the region
Rij={(z,y)|zi <z <2it1,y; Cy<yjr1} is a
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rectangular partitioning element which is surrounded
by the curves x = x;, T = Ti41, ¥y = Y, and y = yj41.
The interior of the region R;; is denoted by R; ;.
Each region has four vertices v,,, with m = (a,b),
where m, and m; are the binary indices which refer
to the partitioning curves that have generated the
vertex v,,. Hence, we have vy = v(g), = [z, 9517,
U1 = V(01), = [3371+1,yj]T’ V2 = V(10), = [$i7yj+1]T,
and vs = v(11), = [Ti+1,yj41]7 as the vertices of the
region R;; as shown in Fig. 1. The set V(x) stands
for the vertices that belong to *, and E(v,,) is the set
of edges that touch the vertex v,,. Furthermore, the
element R;; has four edges {E} Ej ,Ef,E, } and
correspondingly, four outer normal vectors {nj =
1,0/ n; = [—1,O]T,n; = |0, l]T,n; =1[0,-1]T}.

-}!
Yn

X

Fig. 1. Vertices and edges of the region R; ; in a rectangular partitioned
space.

Similarly, for polar portioning of the motion
space, consider the motion space as a circle with
the radius of R,,. With the aid of the partitioning
curves {r: = Nlj’jl(i —-1),i=1,..,N,} and
{0 = (G —1), j=1,.., N}, this circle can
be partitioned into (N, —1)(N, — 1) partitioning
elements. An element R;; ={p=(r,0)|r; <r <
Tit1, 05 <0 <611} has four vertices, vg,v1,v2,3,
four edges, E,Jr , B, E; , E5, and correspondingly,
four outer normal vectors nt, n_, ng', ng (Fig. 2).

For these partitioned spaces, (%) = * relates
the label % to the set x. This partitioned space
can be captured by the equivalence relation ) =
{(z1,x2)|3% s.t. x1, 22 € (%)}, where * is one of

o vy
B B
o v, R:.;
ol s g
VU Es
\

Fig. 2. Vertices and edges of the region R; ; in a polar partitioned space.

the above-mentioned partitioning elements. Corre-
spondingly, g () = * s.t. © € % and J(*) = *, where
7o (x) is a projection map.

In these partitioned spaces, let’s define V. as
the set of all vertices of the partitioning elements,
P as the perimeter of the motion space in which
the vertices are excluded, and W as the exterior of
the motion space. Also consider the detection element
d([l,j], [i/,j/]) = Ri,j n Ri/,j/ -V, which is defined
for two adjacent regions R; ; and Ry ;. (the order is not
important). With this procedure, the whole space will
be partitioned into V, UR,; ; Ud([i,j],[i,j'])UPUW.
Correspondingly, consider V., Ri)j, &([i,j], [i, 3], P,
and W as the labels for these partitioning elements.

III. Problem description

Consider a robot with the dynamics X(t) =
f(X(t),u(t)) where X is the robot position and «
is the control input. For the motion control of this
robot, the motion space can be partitioned into several
disjoint regions which are separated by hypersurfaces.
Our objective here is to construct a hybrid controller to
drive the robot through the partitioned space to satisfy
a given specification. Let R;, Rs,..., and R, be the
elements of the partitioned space, and correspondingly
]:21, Rg,...,Rn as the finite set of symbols that label these
elements, where S(R;) = R;. The motion planning
objective may require the robot to visit particular
regions with a specific order while avoiding some other
regions which can be specified either by a sequence
of events in the form of an automaton or by a LTL
formula [8]. A LTL formula over the set of propositions
P=1{Ry,Rs,..,R,} can be constructed using the
combination of traditional logical operators including
negation (—), disjunction (\/), conjunction (/\), and
the temporal operators including next (O), until(U),
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eventually (¢), always (0), and release (R). For example
the formula <>}:{1 A <>R2 means that the robot will
eventually reach region R; and will eventually reach
region R5. Now, the robot motion planning and control
problem can be described as follows:

Problem 1 Given the system dynamics as X (t) =
f(X(t),u(t)) and the desired specification, construct
the hybrid controller to generate the control signal u(t)
such that starting from any point inside the set of initial
states X, tehn visited regions by the robot trajectory
X (t) satisfy the given specification.

To address this problem, we propose a hierarchical
hybrid controller (Fig. 3) in which a discrete supervisor
commands the system such that closed-loop system
satisfies the formula ¢ over the partitioned space.
This discrete supervisor cannot be directly connected
to the plant with continuous dynamics. Hence, an
interface layer is introduced which converts the discrete
commands of the supervisor, ug4, to the continuous
form, u(t), to be applied to the plant. It also translates
the continuous signals of the plant, X (¢), to discrete
symbols, x4, understandable by the supervisor. To
construct this control hierarchy, we first need to
rigorously describe the partitioning of the motion space,
and then, bisimilarly abstract the system to a finite state
machine to be able to design the discrete supervisor.

IV. Robot Motion Control over a Partitioned
Space

To address the above mentioned problem over
the partitioned space, we will develop a control
mechanism, by which starting from any point inside a
region, the robot moves to a unique destination region
on its neighbourhood. In this case, the system can be
bisimilarly abstracted to a finite state machine, and
the reachability problem for such a system becomes
decidable [19]. The decidability property desponds
on both the system dynamics and the partitioning
style. For a rectangularly or polarly partitioned space,
a system with multi-affine dynamics is decidable
[20, 17]. A multi-affine function f:R™ — R™,
has the property that for any 1 <i¢<n and any
a1, a2 >0 with a3 4+ax=1, f(z1,...,(a12i +
agl‘i?), Tit1, .Z‘n) = alf(arl, ey Ty Tt .Tn) +
as f(x1, ...y iy, Tit1,...Ty). In a rectangular and polar
partitioned space, this property allows us to find the
value of a multi-affine vector field at any point inside a
partition just based on the values of the vector field at
its vertices. This property has been formally described
in the following proposition.

Lemma 1 (Adopted from [16] and [21]) Given a
multi - affine function g(X) defined over a partitioned
element R, j, the function g can be uniquely described
based on the values of g at vertices of R; ; as follows:

3
VX = (a,b) € Rij: g(X) = Amglvm), (1)
m=0

where v,,, m =0, ..., 3, are the vertices of the element
R; ;. The coefficients \p,, can be obtained uniquely as
follows:

A = A (1= Ao ) 17N (1 — Ap) L™ (2)

where m,, my, are the corresponding binary digits of
the index m.

For rectangular partitioning, \, and X\, can be
found as follows:

— b — v
Ay = AT Ny = 7Y (3)
Lit1 — X4 Yji+1 — Yj
and for polar partitioning,
a—r; b—0;
Ay = ———— Ap = —-L— “)
Tit1 — T4 ’ 0541 — 0,

In this theorem, it can be verified that A\,,, > 0, and
> Am = 1. Also, since the above theorem holds true
for all points in R; ;, the theorem can be also applied to
the points on the edges.

Now, using these properties, for a system with
multi-affine dynamics it is possible to construct multi-
affine controllers to either keep the system’s trajectory
inside the region (invariant region) or to push it out from
the desired edge (exit edge) as it is described in the
following two lemmas.

Lemma?2 []6] (Constructing an invariant
region) For a continuous multi-affine  vector
field X = h(X,u(X)) = g(X), the region

R;; is an invariant region if there exists a
controller w, such that for each vertex vy,
m = 0,1,2,3, with incident edges Ej € E(vy,), and
corresponding outer normals ny we have U,,(Inv) =

{u|nflT.g(vm) <0, forall ES € E(vy)} # 0.

Lemma3 [/2] (Constructing an exit edge)
For a continuous  multi-affine  vector  field
X = h(X,u(X)) = g(X), the edge E; with the outer
normal ny, is an exit edge if there exists a controller
u, such that for each vertex v,, m=0,1,23
we have Uy (Ex(F?)) ={ueR? ni" g(vy) >

0, forallvy, and nZ:T.g(vm) <0, forall E;: #
ES, v € V(ES)} #0.
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Next proposition shows that if we construct a
controller based on Lemma 3, all of the points on an
exit edge are reachable.

Proposition 1 For a continuous multi-affine vector
field X = h(X,u(X)) = g(X), ina region R; j with the
exit edge Ej constructed by Lemma 3, all y € E;\ E
are reachable from a point inside the region R; ;.

Proof: Respecting the condition of Lemma 3 for the
points on the exit edge £, we will have nf(y)".g(y) >
0, Vy € E. This strictly positive inequality guarantees
that the trajectories that leave the region do not return
back any more. In addition, it shows that the points
on the exit edge are not reachable from other points
on the edge. Therefore, y € E; is not reachable form
an adjacent region or from another point on Ej. Then,
considering 7} (y)”.g(y) > 0, by continuity of g, it can
be concluded that there is a point inside the region R; ;
on the neighborhood of y from which y is reachable. B

With these controllers defined over the partitioned
space, it is possible to drive the system’s trajectory
to one of the adjacent regions or to keep it inside
the current region. This system can be captured by a
transition system T = (Xq, Xq,,Uq, —q, Yq, Hg),
where

e Xo=V,UR,;Ud([i,j],[¢,j])UPUW is the
set of system’s states, where 1 <4i,i < N, —
L, 1<4,j <N, — L

e X, € R, ; is the set of initial states. Here, we
assume that the system initially starts from the
inside of the regions R; ;.

e Uy =U,UUyg, where

— Uy = Uer | U{Co} is the set of labels where

the label C) corresponds to the the controller
that make the region R;; an invariant
region. For rectangular partitioning, the set
U, consists of the labels C;f, C., C; ,
C,; correspond to the controllers that make
the edges EF, B, E; , B, the exit edges,
respectively. For the polar partitioning, the
set U, includes the labels C;F, C.-, Cy,
Cy correspond to the controllers that make
the edges E, E, B, E, the exit edges,
respectively.
For these control labels, the sets of
control actions that can be activated in
this region are : 7(C?) = {u(X)[u(X) =
Yo Amt(vm) m =0,1,2,3 v, € V(R 5),
u(vy,) € Upn(Ex(F;))},  and  r(Co) =
{u(X)[u(X) =3 Amu(vm) vm € V(Ri;),
w(vm) € Up(Inv)}, where A, can be
obtained by (2).

- Ug={d*(li,5], [I",i'D} U {d([i ],

[i',5'])} U {P} is the set of the detection
events, where 1<, <N, -1,
and 1<j,j<N,—1. The events
d* (i), 1 7). d (6.1, 5]).  and
P respectively show that the detection
element d([7,j],[¢,5']) is crossed in
positive direction of z, y, r, or 6; the
detection element d([i, j], [#/, j']) is crossed
in negative direction of z, y, r, 6; and the
perimeter of the partitioned motion space is
crossed.

o (X1,Xs,v) €—(q, denoted by X, 1>Q X, if and
only if one of the following conditions holds true:

1. Actuation:

- Exit edge: v eUe; mo(Xh)#
mo(X2); 34,5, %,5° such that
TQ(Xl) = Ri,j and FQ(XQ) ~=
d(i. g, [ 5. or  mo(Xa) = P;
Furthermore, 3r(finite) ande > 0
such that 9(t) : [0,7 4+ ] — R? is the
solution of X = h(X,r(v)), ¥(0) =
X1; 9(7) = Xa, m(¥(t)) = m@(X1)
for t € [0,7), and 7o (¥(t)) # mo(X1)
for t € [r,7 +¢]. Here, r(v) is the
continuous controller corresponding
to the control label v, which can be
constructed as discussed above.

— Invariant region: v = Cp; EIRM
such  that  7g(X1) = mo(X2) =
R, j; 9(t) : RT — R? s the solution of
X = h(X,r(v)), ¥(0) = X1, (1) =
Xo,  and  mo(p(t) = mo(Xy) =
mo(X2) for all t > 0.

2. Detection:

— Crossing a detection element to enter to

a new region:

(@) ve{d"([i,J, 1", 5'])} C
U, m(X1) 7# mQ(Xa);
IR, j, Ry, d([i, 5], [, 5])s
i">4i, and j' >j such that
TrQ(Xl) :d([l,]],[2'7]/]) and
ﬂQ(%z):Ri/,j/; D<e<r
and Jw e {CF,Cf} or
Jw e {CF,Cy} such  that
¥(t) : [0,7] = R? is the solution
of X = h(X,r(w)), ¥(e) =
X1; 9(7) = Xa,m(¥(t)) = Ri
for te€ (0,e), and wo(¢(t)) =
Ry jo for t € (e,7].
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(b) v e {d([i, 5], [i", 5'])} € Uas_
TQ(X1) # mo(X2); IRi . Ry,
d([i,5],[¢',5")) ¥ <i, and j' <j

]

such that g (X1) = d([i, 4], i, 5'])
and mo(ze) = Ry, 0<e<T
and Jw e {C;,C } or
we{C,Cp} such that
P(t) : [0,7] = R? is the solution
of X =h(X,r(w)), ¥(e) =
X; (1) = Xs, o($(t)) =

R;; forte(0,¢), and
WQ(i/)(t)) = Ri’,j/ forte (6,7’].

— Crossing the  motion space’s
boundary: v=P; wo(Xy)=P
and mo(X2)=W; 3R,; and
0 <e <7 and Jw € U,, such that
¥(t) : [0,7] = R? is the solution of

X = h(X,r(w)), ¥(e) = X1; ¥(1) =
X2, mQ(¢(t)) = Ri; for t € (0,e),
and o (¥ (t)) =W for t € (e, 7).

e Yo = Xq is the output space.
e Hg : X — Yg is the output map. Here, we have
chosen Hp(X) = mo(X).

Remark 1 The transition system Tg captures only
important transitions form one region to another region
under the exit commands, or from one region to itself
under the invariant controller, Cy.

Analogous with [18], to model this partitioned
system, we can define an interface layer which
connects this partitioned system to a higher discrete
supervision layer. The interface layer has two main
blocks: Detector and Actuator. The detector converts
continuous time signals to a sequence of symbols.
Upon crossing partitioning hypersurfaces, plant sym-
bols, d*([i,j],[¢,5]).d~([i,4],[¢,5]), and P, will be
generated, which inform the current situation of the
plant to the supervisor. Based on the observed plant
symbols, the supervisor decides which control signal
should be injected to the plant to satisfy the desired
specification. This command has a discrete nature and
the control commands to the plant are continuous.
The actuator, will translate these discrete commands to
continuous signals. The block diagram of this control
structure is shown in Fig. 3.

V. Abstraction over the partitioned space

In the partitioned system 7Tg, although all
important transitions have been captured, this transition

—1 DES Supervisor

u, €U, x,eU,
\,

u =r(;) | X
— Plant —

Fig. 3. The hierarchical hybrid control structure.

system still has infinite number of states which
makes the control synthesis problem very difficult or
even impossible. Abstraction [22] is a technique that
reduces the number of states by aggregating similar
states. Hence, using this strategy, and considering
each partitioning element as one of the states in the
abstracted model, the resulting model will be :

T§ = (Xg, X§07 U§7 — ¢, 5/5, Hg), where

o Xe={Rij[1<i<N,—1, 1<j <N,
B ULd([E ), [0 )L < 6 S No =1, 1<
4,5 < Ny — 1} J{P,W}. Note that since the
system starts from a point inside the regions
R; ; and due to strictly negative inequalities in
Lemmas 2 and 3, the system trajectory never
crosses the vertices, and hence, the set V,. does
not need to be considered in the abstracted

system.

Xey C{Rij| 1<, S Ng—1, 1<j,5 <
Ny — 1}

Us = U, U Uy is like what we have in Tj,.
(r1,r2,v) E—¢, denoted by r; i>§ ro, if Jv €
U,;:, X, € C\}(Tl), X5 € %(TQ) such that X, i)Q
Xo.

Ye = Xe.

H¢(r) = r is the output map.

With this method, the partitioned system, Tg
which previously was modelled by the regulation layer
and the interface layer, now is abstracted to a finite state
transition system 1 for which we can design a discrete
supervisor [7] to achieve the desired specification.
Then, with the aid of the interface layer, the designed
supervisor for the abstract model can be applied to
the original continuous model. To guarantee that the
discrete supervisor for the abstract model can also
work for the original continuous model, it is necessary
that the abstract model and the original continuous
model represent the same behavior which requires them
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to be bisimilar. A bisimulation relation between two
transition systems can be formally defined as follows:

Definition 1 [22] Given Ti=(Q;, Q0,Us, —, Yi, Hy),
(i = 1,2), R is a bisimulation relation between T\ and
T5, denoted by Ty ~pr T, iff:

1. Yq1 € QY) then 3q2 € QY that (q1,q2) € R. Also,
Vg € Qg then dq, € Q(l) that (ql, qg) € R.

2. ¥Yq1 —1 ¢4, and (q1,q2) € R then 3¢}, € Q2 such
that qo —2 g5 and (qy, ¢5) € R. Also, Vg2 —2 g3,
and (q1,q2) € R then 3¢} € Q1 such that g1 —
q1 and (q1,95) € R.

For multi-affine functions defined over a rectangu-
lar or polar partitioned space, and with the controllers
which we defined to construct exit edges or to make
a region invariant, the abstract model and the original
partitioned system are bisimialr as proven in Theorem
1.

Theorem 1 The original partitioned system, Tg, and
the abstract model, T¢, are bisimilar.

Proof:

consider the relation R = {(gg,q¢)lqq €
X, qc € Xe, and qg € I(qe)}. We will show
that this relation is a bisimulation relation between T
and T¢. To prove this bismulation relation we should
verify both conditions of Definition 1.

To verify the first condition of the bisimulation
relation in Definition 1, we know that for any ¢g €
Xq, there exists a region R;; such that gg € R; ;.
For this region, there exists a label, Ri,j such that
R,‘,J’ = S(R77]) and Ri,j S Xfo' Hence, (QQ, R@j) € R.
Conversely, it can be similarly shown that for any ¢ €
Xe,, there exists a g € Xg, such that (g¢, gg) € R.

To verify the second condition of the bisimulation
relation, following from the definition of 7¢, we know
that for any (¢, ¢¢) € R and qg —¢ q’Q, there exists a
transition ge ¢ qg. Where g € 3(gg) or equivalently
(95 9¢) € R. For the converse case, assume that ge e
qg- According to the definition of R, all z € I(g¢) are
related to g¢. Hence, to prove the second condition
of the bisimulation relation, we should investigate it
for all = € 3(ge). Based on the control construction
procedure, the labels u, g¢, and qé can be the one of
the following cases:

I. u=Cy and g :qé. In this case, since the
controller Cy makes the region an invariant region
(Proposition 2), all of the trajectories starting
from any ¢q € S(ge) will remain inside the

region 3(g¢). Therefore, for any qg € S(qe),
there exists a q’Q € 3(ge) such that gg < q’Q
and g = S(q;). i

2. u€Uer, qe €E{Rij|1<i<N,—1, 1<j5<
N, —1}, and g € {d([i, 5], [i",j')|1 < i, <
N,—1, 1<j,j’<Ny,—1} or ¢ =P. In
this case, based on Lemma 3 starting from any
qq € (qe), the controller v drives the system
trajectory towards the detection element J(gg).
Therefore, for any qq € 3(qe), there exists a
g € S(g¢) such that gq %0 qg and q¢ € 3(qp).

3. we {d* (i), [7, /DL < i SNy —1, 1<
3, J" < Ny — 1} C Uy, g E{Ry y[1 <" <
N, —1, 1 <4 < Npy — 1}, and qe €
{d([i, j], [7", DI < ii’ < Na=1, 1< 55" <
Ny, —1} such that ¢ >4 and j' >j. In
this case, based on Lemma 1, for any
qq € S(qe) = d([4, 4], [, 5']), there exists a
controller v € {C;f,C;} or v € {C;},Cy} that
has led the trajectory of the system from the
region R;; to the point gg on the detection
element d([¢, j], [¢', j']). Since Ry j is the unique
adjacent region of the element R; ;, common in
the detection element d([, j],[¢’,j']), based on
the definition of the controller for the exit edge
and Lemma 3, the controller v leads the trajectory
of the system to a point inside the region R; ;/
so that the detection event u = d*([i, j], [i', j'])
is generated. Therefore, for any g¢g € (ge),
there exists a ¢ € S(gz) such that gq 50 a0
Similar explanation can be provided for the case
we {d=([i, 4], [, 51 < 4,7 SN, —1, 1<
4, j' < Ny—1}oru=P.

In all of the above mentioned cases, the second
condition of the bisimulation relation for the converse
case holds true. Since both conditions of the
bismulation relation hold, 7, and T are bisimilar. B

VI. Adopting the DES supervisory control to the
abstracted model

For the abstracted model with finite number of
states we can design a discrete supervisor using Discrete
Event Systems (DES) supervisory control theory
initiated by Ramadge and Wonham [7]. Formally,
the finite state machine model of the abstracted
system can be represented by an automaton G =
(@Q,%, @, Qo,Qm), Where Q = Q¢ is the set of states;
Qo = Q¢, € Q is the set of initial states; ¥ = U, U Uy
is the (finite) set of events; Q,,, C @ is the set of final
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(marked) states, and « : Q X ¥ — @ is the transition
function which is a partial function and determines the
possible transitions in the system caused by different
events. Based on the transitions in T¢, the function o
can be defined as follows:

(X(Ri7j,0') =

Ri,j if o =0Cy
d([i,j),li+1,4]) ifo=CF CFandi# N,—1
d([i, 5], [i — 1, 5)) ifo=C;,C  and i #1
d(li, 1,6, +1]) ifo=Cyf, Cy and j# Ny -1
Q([27]]7[27]_1]) ’LfO':Cy_,C‘; and ]75]_
d([i, 5], [i, No — 1]) ifo=Cy and j=1
d([i, 41, [i,1]) ifo=Cf and j =N, -1

izl;a:C;tj:Nbfl, or
e=Cpg=1
Oé(d([Z,j], [ilvj/’pvg) = Ri'»j'
ifo=dt([i,4],17,5'),i >, j' > j,
oro=d ([i,5),[,7)), 7 <i,j <j
(P, P)=W

In this automaton, the sequence of events generates
a string. € is an empty string, and X* is the set of all
possible strings over the set 3 including . The function
« can be extended from acting on events to acting on the
strings as gt 1 Q@ X X* — @ in which ae.(q,¢) = ¢
and  @ert(q, 50) = a(aest(q,8),0) Vs € £*  and
o €X. The Ilanguage of the automaton is a
sequence of strings that can be generated by G
and can be defined as L(G)={se€¥*|3q €
Qo s.t. Qert(qo, s) is defined.}. The marked
language, denoted by L,,(G) consists of the
strings that can be generated by the automaton G
and end with the marked states, which formally
can be defined as L, (G)={seX*|3g €
Qo 8.t. aeqt(qo, 8) is defined and cert(qo, s) € Qum}-
The event set > consists of two types of events: the
controllable event set . = U, and the uncontrollable
event set X,.= Uy. The controllable events are
those that can be disabled or enabled by an external
supervisor; however, the uncontrollable events cannot
be affected by the supervisor. Playing with the
controllable events, the supervisor can modify the
plant’s generable language so that e € L(S/G)
and [(s € L(S/G)) A (so € L(G)) A (o € L(S))] &
[so € L(S/G)]. Accordingly, the closed-loop marked
language will be L, (S/G)= L(S/G)Ln(G).
This supervisor can be used to achieve a controllable
language specification. A language specification K is
said to be controllable with respect to the language
of the plant G and set of uncontrollable events

P ifo=Cf,Ct i=N,—-1, 0 =C,

E,. if Vs€ K, e€ Eye,5e € L(G) = se€ K. To
realize this control strategy and to combine the plant
discrete model and the supervisor, we can use parallel
composition [23] which is a binary operation between
two automata. Next theorem shows how the parallel
composition can be used to modify the plant language
to achieve a desirable specification given in terms of a
controllable language.

Theorem 2 [23] Let G be the plant and K C ¥* be
a desired language. If ) # K = K C L(G) and K
is controllable, there exist a nonblocking supervisor
S such that L(S/G) = L(S||G) = K. In this case, S
could be any automaton that satisfies L,,(S) = L(S) =
K.

VII. Illustrative example for symbolic motion
planning and control for the formation control of
unmanned helicopters

Formation control is the jointly movement of a
group of agents with a relatively fixed distances, and has
been addressed by different methods (see e.g. [24], [25],
[26], [27], [28]). Here, we use our proposed method of
symbolic motion planning for formation control of a
team of unmanned aerial vehicles. The team consists
of two UAV helicopters, HeLion and SheLion which
are developed by our research group at the National
University of Singapore. The modelling and low level
control structure of the NUS UAV helicopters are
explained in [29], [30], [31]. For the regulation layer of
these helicopters we have proposed a two-layer control
structure in which the inner-loop controller stabilizes
the system using H, control design techniques, and
their outer-loop is used to derive the system towards the
desired location. As it has been discussed in [30], in this
control structure, the inner-loop is fast enough to track
the given references, so that the outer-loop dynamics
can be approximately described as follows:

t=u, zeR? welUCR? 5)

where z is the position of the UAV; w is the
UAV velocity reference generated by the formation
algorithm, and U is the velocity constraint set, which
is a convex set.

Now, in a leader follower formation scenario,
consider the follower velocity in the following form:

Vfollowe'r = Vicader + Vel (6)

In this relative framework, consider a circle with
the radius of R,,, that is centered at the desired position
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Fig. 4. An abstract model for the UAV motion dynamics over a partitioned space.

of the follower, and is partitioned as discussed in
Section II. A part of the discrete abstracted model of
the follower motion dynamics is shown in Fig. 4.

For these helicopters, our aim is to design the
formation controller to generate the relative velocity of
the follower, V;..;, such that starting from any initial
point inside the control horizon, it eventually reaches
the desired relative distance with respect to the leader.
Moreover, after reaching the formation, the follower
UAV should remain at the desired position. Using the
proposed polar partitioning approach, the formation can
be achieved if the controller drives the system directly
to the regions R;;, 1 <j <ng— 1. After reaching
the formation by this scenario, the controller should
maintain the state of the system at the final state to
keep the formation by activating the command CYy. This
specification can be achieved by the supervisor, Sf, as
shown in Fig. 5.

To verify the algorithm and to monitor how the
follower can reach the formation and maintain the
achieved formation, a flight test has been conducted in
which the leader tracks a line path, and the follower
should reach and keep the formation. In this flight
test, the control horizon R,, is 50 meter, N, = 10,
and N, = 20. The follower is initially located at a
point which has a relative distance of (dz,dy) =
(—17.8m, 11.4m) with respect to the desired position

and the distance between the desired position and the
leader is (dz, dy) = (—5m, —15m).

The position of the UAVs in x-y plane is shown in
Fig. 6. The relative distance of the follower UAV from
the desired position is shown in Fig. 7. As it can be seen
the follower UAV has finally reached the first circle and
then, it has been able to maintain the formation.

x-y plane

70 T
——Follower UAV
——-Leader UAV
~

60| Sl R

501

X (m)

30+

Formation reaches

10+

o |
120 100 80 60 -0 20 0
Y (m)

Fig. 6. The position of the UAVs in the x-y plane.
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Fig. 7. The distance of the follower from the desired position.

VIII. Conclusion

In this paper, a hybrid framework was proposed
for the symbolic motion planning and control of robots.
The approach was based on rectangular and polar
partitioning of the motion space and then, abstracting
the original continuous system with infinite number
of states to a finite state machine. To implement the
idea, a multi-layer control structure was proposed in
which the discrete supervisor was connected to the
plant via an interface layer. The continuous plant
and the interface layer together were shown to be
bisimilar with the abstract model. This bismilarity let
us apply the discrete supervisor which was designed
for the abstract model to the continuous plant while the
closed-loop behavior does not change. The algorithm
was successfully applied to the formation control of
unmanned helicopters.
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