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Abstract— This paper describes the use of sums-of-square
(SOS) program to compute a resilience measure for non-
negative dynamical systems. Such measure is defined as the
distance between system’s nominal parameter and the closest
critical paramater at which a bifurcation occur. Our propos ed
method uses a modeling formalism from chemical reaction
network theory to describe the dynamics of nonnegative system.
We show that such modeling formalism allow us to describe
the bifurcation condition only in term of system’s parameter.
The SOS program for computing the distance to the closest
bifurcation is formulated using the positvstellensatz concept
from real algebraic geometry and the SOS relaxation technique
in semidefinite programming.

I. I NTRODUCTION

Many real life systems are subject to external perturba-
tions which cause variation on systems parameters from the
nominal values. For nonlinear systems, parameter variation
of certain magnitude can change the qualitative behaviors of
the system (i.e. phase portrait or stability) through a bifur-
cation. A bifurcation is characterized by the appearance ofa
topologically nonequivalentphase portrait of the system [1].
In many cases, these changes come with catastrophic effects.
For example, load variation in power network which exceeds
certain treshold can induces a saddle node bifurcation that
causes a voltage collapse [2], [3]. Another example is in the
lake eutrophication process where the increase of nutrient
loading which exceeds a critical limit results in a saddle node
bifurcation that shifts a previously clear water lake with high
biodiversity into a turbid water lake dominated by algae [4].
Each of these effects has the potential to disrupt the services
that these systems provide to the society. Understanding the
resilience of these systems in the presence of parameter
variation is therefore crucial for managing their securityand
sustainability [5], [6].

The resilience of a system under parameter variation can
be measured by the distanceγ = |k∗ − k0| between the
nominal parameterk0 and the closest critical paramaterk∗

at which a bifurcation occur. The quantityγ, often called
distance to closest bifurcation, is an indication of how close
the system is to a collapse. The computation ofγ is generally
difficult since thebifurcation setin the parameter space that
containµ∗ is usually unknown. For dynamical systems

ẋ = f(x, k), (1)
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whose equilibriumx∗ depend on parameterk, the bifurca-
tion set are those parametersk that satisfy the bifurcation
conditions in table I. Previous works have proposed several
methods for computingγ in the context of robust stability
analysis [7], [8], [9], [10] and voltage collapse in power
systems [2], [3]. In general, these methods use numerical
optimization techniques to search for the minimumγ subject
to the constraints that the critical parameterk∗ satisfy the
bifurcation condition in table I. These methods, however, are
computationally demanding since the search for minimumγ
requires the computation of equilibriumx∗ at every iteration.

TABLE I: Local bifurcation condition

Type Jacobian Eigenvalue Transversality

Hopf simple 0 Dk{Re(s)} 6= 0

Saddle node
simple

imaginary pair
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∣
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Transcritical
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Pitchfork
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Dkf
∣

∣

x∗,k∗

)
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w
(
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xf

∣

∣

x∗,k∗

)

6= 0

This paper uses sums-of-square (SOS) programming
method to compute the resilience measureγ of non-negative
dynamical systems. Our method stems from recognizing that
non-negative dynamical systems (1) have a special structure
(see equation (2)) that allow us to compute an analytical
parameterization of the equilibrium in term of the system
parameter. The method for this equilibrium parameteriza-
tion was first introduced in the context of stoichiometric
network analysis and is based on the concept oftoric
variety from algebraic geometry [11]. Such parameterization
is beneficial for computingγ since we can now express
the constraint functions only in term of the parameters. We
formulate the optimization ofγ as an SOS program using
the positivstellensatz concept from real algebraic geometry
[12], [13] and the SOS relaxation technique in semidefinite
programming [14]. The optimalγ obtained from the SOS
program is a lower bound of some positive semidefinite
function V (µ) and is guaranteed to be a global minimum
with respect to a prespecified parameterization ofV (µ). The
SOS program can be solved efficiently using SOSTOOLS
[15] and semidefinite program solver such as Sedumi [16].

The remainder of the paper is structured as follows.



Section II describes the model structure. Section III discusses
semialgebraic description for bifurcation condition in table
I. Section IV presents the characterization of bifurcation-free
parameter set and SOS program to compute the minimumγ.
Section V illustrates an application of the proposed methodto
study the resilience of a tritrophic food chain from ecology.
Notational convention: Let R,Q and Z denote the set of
real, rational and integer numbers, respectively, and letR+

andZ+ the set of non-negative real and non-negative integer
numbers, respectively. LetRn denote then-dimensional
Euclidean vector space. Given a vectorx ∈ Rn, we let xi

denote theith component of that vector. Ann-dimensional
multi-index is an n-tuple, α ≡ (α1, α2, · · · , αn) of non-
negative integers. The absolute value of a multi-indexα is
defined as|α| =

∑n
i=1 αi. The sum/difference of two multi-

indices inZn
+ is the component wise sum/difference of the

indices. Similarly, we say thatα ≥ β if and only if αi ≥ βi

for i = 1, 2, . . . , n.
Given a vectorx ∈ Rn and ann-dimensional multi-

indexα, a monomialin x with total degree|α| is a product
of the form xα ≡ xα1

1 xα2

2 · · ·xαn

n . A monomial ordering
is used to arrange a pair of monomials unambiguously in
an ascending/descending order. Letα = (α1, . . . , αn) and
β = (β1, . . . , βn) be multi-indices of vectorx ∈ Rn. We say
α andβ is in lexicographic (lex) orderingα >lex β if the
left-most nonzero entry of the vectorα−β is positive. A lex
ordering of monomialsxα >lex xβ is satisfied ifα >lex β.
Let F be any field such as the real numbers(F = R) . A
pth order polynomial inn unknownx = (x1, . . . , xn) with
coefficientsk = (k1, . . . , kp) in the fieldF is a finite linear
combination of monomials of the form

f(x, k) =
∑

|α|≤p

kαx
α, with kα ∈ F.

The set of all such polynomials form apolynomial ringde-
noted byF(k)[x]. We mostly consider polynomial ring over
the real field. Fori = 1, . . . , q, the solution to polynomial
equationsfi(x, k) = 0 with fi ∈ R(k)[x] is the set of all its
zeros, i.e. the set{x ∈ Qn(k) : fi(x, k) = 0}. A polynomial
f(x, k) is said to benonnegativeor positive semidefinite
(psd) if f(x, k) ≥ 0, ∀x ∈ Rn. A necessary condition for
a polynomial to be psd is that its total degree is even.

Definition 1.1: We say that the polynomialf(x, k) is SOS
if it can be rewritten asf(x, k) =

∑s
i=1 q

2
i (x, k) for some

polynomialsqi(x, k), i = 1, . . . , s.
Clearly, a polynomialf(x, k) being SOS impliesf(x, k) is
psd. We useP2d

n to denote the set of SOS polynomials inn
unknowns with degree less than or equal to2d.

II. SYSTEM MODEL

Consider dynamical system described as follows.

ẋ(t) = f(x, k), with f(x, k) ∈ R(k)[x]

= Nv(x, k),
(2)

wherex ∈ Rn
+ is the state vector,k ∈ R

p
+ is the parameter

vector,N ∈ Zn×m is a sparse matrix, andv(x, k) ∈ Rm
+ is

a rate vector consisting monomials in the unknownx with

real coefficientk. The rate vector can be decomposed as
v(x, k) = diag(k)xZ , with Z ∈ Zn×m

+ is a matrix whoseith
column is the multi-index of theith monomials inv(x, k).
If matrix N has no full row rank (i.e.rank(NT ) = r < n),
there exist conservation relations of the formWTx = c,
whereW ∈ Z(n−r)×m is a matrix whose column form the
basis of ker(NT ) and c is an appropriately dimensioned
constant vector. Equation (2) is often used in stoichiometric
network analysis (SNA) to model the dynamics of chemical
speciesx that involved in a reaction of ratev(x, k) [17].

This paper uses the structure in (2) to model non-negative
dynamical systems in (1). System (1) is said to be nonnega-
tive if x(t) ∈ Rn

+ for all t ∈ [0,∞). The necessary condition
for system (1) to be non-negative is that for allk ∈ R

p
+,

it satisfy f(x, k) ≥ 0 when x ∈ Rn
+ and f(x, k) = 0

otherwise. Non-negative dynamical systems cover a large
number of real world systems including compartmental sys-
tems, biological systems, ecological systems, etc [18]. In
general, the model of these systems does not always satisfies
the conditions in model (2), i.e. the vector fieldf(x, k)
being polynomial functions defined over polynomial ring
R(k)[x]. The well-known result from approximation theory
[19], however, states that any analytic functions defined over
a compact set can always be approximated as closely as
desirable by polynomial function. Moreover, there are also
exist techniques for transforming any rational polynomial
functions into polynomial functions defined over polynomial
ring [20]. These facts show that model (2) can cover a large
class of non-negative dynamical systems and therefore the
parameterization of their equilibrium set and Jacobian matrix
can also be obtained using the techniques discussed above.

The zeros of (2) define thestate equilibriumx∗

x∗ = {x ∈ Qn(k) : Nv(x, k) = 0}, (3)

such thatx∗ is a vector inRn for fixedk, and is a continuum
otherwise. Computating the analytical expression for equilib-
rium (3) in high dimensional systems usually requires the use
of symbolic methods. One of such methods is based on the
techniques from algebraic geometry which uses the Gröbner
basis of equationsNv(x, k) = 0 [21]. This method originates
from the fact that the zeros of polynomial equations are
equivalent with the zeros of its basis. Gröbner bases of
polynomial equation can be computed using Buchberger
algorithm which have been implemented in many computer
algebra softwares [22]. The standard Buchberger algorithm,
however, has a drawback in that (in the worst case) the degree
of the computed bases grow doubly exponential with respect
to the number of unknown variables [23].

An alternative method to characterizex∗ is proposed in
[11], [24] by taking advantage from the structure of (2) in
which f(x, k) is decomposed into linear (N ) and nonlinear
(v(x, k)) parts. Such decomposition define an isomorphic
mappingv(x, k) from the statex to the ratev of the form

v(x, k) : R[x] 7→ R[v], x 7→ v = kxZ . (4)

This isomorphism implies that the state equilibriumx∗ can



be characterized if therate equilibriumv∗ in (5) is known.

v∗ = {v ∈ Qm(k, λ) : Nv = 0}, (5)

whereλ is known asconvex parameter. In particular, the
rate equilibrium v∗ is parameterized by the intersection
of two geometric objects namelytoric variety and convex
polyhedral cone. Both of these objects can be computed
efficiently using techniques from algebraic geometry and
convex analysis [11], [24]. On one hand, the toric variety
provides a parameterization of the rate equilibrium,v∗(k),
in term of system parameters(k). It can be obtained from
the Gröbner bases of the kernel of (4) using a modified
Buchberger algorithm (more efficient with worst case com-
plexity only exponential) [25]. On the other hand, one can
observe from (5) that the rate equilibriumv∗ is confined
to the setKv = {ker(N) ∩ Rm

+}. The setKv is a convex
polyhedral cone and gives another parameterizationv∗(λ)
in term of some convex parameterλ. The intersection of
these two geometric objects forms a reparameterization of
the rate equilibrium,v∗(λ, k), in term of parameters(λ, k).
By the isomorphic mapping in (4), the state equilibrium
parameterizationx∗(λ, k) that correspond to a givenv∗(λ, k)
can be obtained using Hermite transformation (see appendix
B and [26] for details).

An implication of such parameterization is that the Jaco-
bian matrix (Jac) of (2) at equilibrium is given by [11], [24]

Jac(λ, k) = Ndiag(v∗)ZTdiag(1/x∗). (6)

This implies that the bifurcation condition in table I can be
evaluated directly in term of the parameter(λ, k) without
having to compute the equilibriumx∗ for differentk.

III. SEMIALGEBRAIC CONDITION FOR BIFURCATION

Consider dynamical systems in (2) and assume that its
equilibrium x∗ is asymptotically stable for an initial pa-
rameterk0. When the parameter vary from its initial value
k0, thenx∗ and the phase portrait of the system will also
vary in the state space. If such parameter variation crossesa
certain tresholdk∗, the equilibriumx∗ may lose stability in
bifurcation. A bifurcation is characterized by the appearance
of new phase portrait (atk = k∗) around the equilibriumx∗

that is topologically nonequivalentwith the original one (at
k = k0) [1]. Since the phase change that being considered
is locally around the equilibrium, this type of bifurcationis
called local bifurcation. There are different types of local
bifurcation which correspond to different changes of the
phase portrait includinghopf (appearance of limit cycle from
stable equilibrium),saddle node(collision and annihilation
of two equilibria),pitchfork (appearance or dissapearance of
symmetric equilibria), andtranscritical (stability change).

The appearance of local bifurcation is related with the
change on the number or stability of the equilibriums under
parameter variation. Thus, these changes can be character-
ized in term of theeigenvalue conditionof the Jacobian
matrix with some additionaltransversality conditions(see
table I). The critical parameterk∗ at which bifurcation
occur is usually searched numerically using continuation

method [1]. This method, however, is currently limited to
low dimensional parameter space (p ≤ 3). The main reason
for such limitation is because the evalution of bifurcation
condition in table I requires the knowledge of system’s
equilibrium x∗ which is difficult to obtain in practice.
The parameterized Jacobian matrixJac in (6), however,
is defined at equilibrium and so the eigenvalue condition
in table I can be analyzed without having to compute the
equilibrium x∗ for all possible parameterk. This section
presents semialgebraic descriptions of bifurcation condition
in table I.

Consider the Jacobian matrix (6). Letp(s) = |sI − Jac|
be the characteristic polynomial ofJac defined as

p(s) = a0s
n + a1s

n−1 + · · ·+ an−1s+ an, (7)

where the coefficientsai(λ, k) are function of the parameters
(λ, k). Towards the end, we denote these parameters asµ =
(λ, k). The eigenvalues ofJac is given by the roots ofp(s),
and matrixJac is asymptotically stable if and only if all
its eigenvalues have negative real parts and it is unstable
otherwise. Forz = 1, . . . , n, the zth Hurwitz determinant,
△z, associated with the characteristic polynomialp(s) is

△z =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

a1 a3 a5 . . . a2z−1

a0 a2 a4 . . . a2z−2

0 a1 a3 . . . . . .
...

...
...

. . . az+1

0 0 0 az−2 az

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

such that

△1 = |a1|,△2 =

∣

∣

∣

∣

a1 a3
a0 a2

∣

∣

∣

∣

,△3 =

∣

∣

∣

∣

∣

∣

a1 a3 a5
a0 a2 a4
0 a1 a3

∣

∣

∣

∣

∣

∣

, . . .

The coefficientsai’s and Hurwitz determinant△z ’s can be
used to infer some properties about the roots ofp(s) [27] .
For example, theRouth Hurwitz criterionstates that all roots
of p(s) will have negative real parts if and only ifan > 0
and△z > 0 for z = 1, . . . , n. The Orlando formulagives
the relationship between the(n− 1)th Hurwitz determinant
and the roots ofp(s) of the form

△n−1 = (−1)n(n−1)/2an−1
0

1,...,n
∏

i<j

(si + sj), for n ≥ 2.

The following propositions give the conditions for matrix
Jac to have simple zero eigenvalue.

Proposition 3.1:Consider matrixJac in (6) with charac-
teristic polynomialp(s) in (7). If p(s) satisfies the conditions
an = 0 and an−1 6= 0, then matrixJac will have zero
eigenvalue with multiplicity not greater than one.

Proof: Thatan = 0 implies one of the roots ofp(s) is
zero is clear. Now notice thatp(s) will have zero eigenvalue
with multiplicity not greater than one if

∂p(s)

∂s

∣

∣

∣

s=0
6= 0,

which will be satisfied whenan−1 6= 0.



The following lemma from [28] gives the condition forJac
to have a simple pair of imaginary eigenvalues. The proof is
based on the Orlando formula and Hurwitz determinant.

Lemma 3.2:[28] Consider matrixJac in (6) with charac-
teristic polynomialp(s) in (7). If p(s) satisfies the conditions
△n−1 = 0, then matrixJac will have a pair of imaginary
eigenvalues with multiplicity not greater than one.

We can now express the conditions for jacobian eigenval-
ues in table I in term of parameterµ = (λ, k). Let ΩSN

be the set of parameter for which a saddle node bifurcation
occurs. Using the conditions in proposition 3.1, we have that

ΩSN = {µ ∈ Rm|an = 0, an−1 6= 0}. (8)

Note thatΩSN also describes the parameters where pitchfork
and transcritical bifurcations occur. In a similar way, lemma
3.2 can be used to describe the parameter setΩH where hopf
bifurcation occurs

ΩH = {µ ∈ Rm|△n−1 = 0}. (9)

Given the setsΩSN andΩH , we can define the parameter set
for which at least one type of bifurcation occurs as follows.

Ω = ΩSN ∪ ΩH . (10)

Thus, system (2) will undergoes bifurcation ifΩ is not empty.

IV. B IFURCATION-FREE PARAMETER SET& DISTANCE TO

BIFURCATION

We note from the previous section that the conditions
for the existence of a particular bifurcation can be speci-
fied by the nonemptiness of the corresponding bifurcation
set. In particular, these sets are described as semialgebraic
sets in the parameter space. This section presents a com-
putational method that can be used to check the empti-
ness/nonemptiness of these sets and to compute the minimum
distance to bifurcationγ from a given initial values of the
parameters. This method is based onpositivstellensatzfrom
real algebraic geometry [12], [13] and the SOS relaxation
method in semidefinite programming [14].

A. The Positivstellensatz

The positivstellensatz (psatz) is a generalization of the
Hilbert’s nullstellensatz[21] for polynomials defined over
the real field. It gives a sufficient condition for the infea-
sibility of real solutions to a system of polynomial equal-
ity/inequality. The main attracting feature of psatz is that it
provides ancertificateor refutation for such infeasibility.

Let R(k)[x] be polynomial ring and consider finite fami-
lies of polynomials{fj}j=1,...,s, {gi}i=1,...,t, {hl}l=1,...,u ∈
R(k)[x]. The ideal I(h) generated byhl is the set

I(h) = {Σu
l=1µlhl, for µl ∈ R(k)[x]}.

The multiplicative monoidM(g) generated bygi(x) is the
set of all finite products ofgi(x)’s including the identity and
the empty products. Thealgebraic coneC(f) generated by
fj is the set

C(f) = {p0 +Σs
j=1pjFj with pj ∈ P2d

n , Fj ∈ M(f)}.

Theorem 4.1 (Positivstellensatz, [12]):Let {fj}, {gi},
and{hl} be finite families of polynomials inR(k)[x]. Then,
the following properties are equivalent

• The set

{x ∈ Rn(k)|fj ≥ 0, gi 6= 0, hl = 0} , (11)

is empty.
• There existf ∈ C(f), g ∈ M(g), h ∈ I(h) such that
f + g2 + h = 0.

The psatz essentially gives a sufficient condition for the
nonexistence of solutions to a system of polynomial equa-
tions/inequation and inequalities. Such nonexistence is cer-
tified by the psat refutation in form of polynomialsf, g
andh. As shown in [14], the search of the psatz refutation
can be cast as an SOS program and solved efficiently using
SOSTOOLS and Sedumi [15], [16].

B. Characterization of bifurcation-free parameter set

Consider the setΩSN in (8). Letβ1 > 0 be a constant and
let V1(µ) be polynomial in the unknownµ. Consider the set

Ω̃SN = {µ ∈ Rm|V1(µ) ≤ β1},

which satisfiesΩ̃SN ∩ ΩSN = ∅. The setΩ̃SN can be
interpreted as a subset in the parameter space (defined by the
level setV1(µ) ≤ β1) at which no saddle node bifurcation
will occur. The following proposition characterizes the set
Ω̃SN by the level set ofV1(µ).

Proposition 4.2:Consider the setΩSN in (8). Suppose
there exists polynomialsV1(µ) andr(µ) and a constantβ1 >
0 such that

a2n−1(µ)(V1(µ)− β1) + r(µ)an(µ) is SOS. (12)

Let Ω̃SN = {µ ∈ Rm|V1(µ) ≤ β1}. ThenΩSN ∩ Ω̃SN = ∅.
Proof: Verifying the conditionΩSN ∩ Ω̃SN = ∅

amounts to check the emptiness of the set

{µ|an = 0, an−1 6= 0, V1(µ)−β1 6= 0,−(V1(µ)−β1) ≥ 0}.

Using the psatz theorem, the emptiness of this set is guaran-
teed by the existence of SOS polynomialss0, s1, polynomials
V1(µ), t(µ) and constantβ1 > 0 such that

s0 − s1(V1(µ)− β1) + a2mn−1(V1(µ)− β1)
2m + t(µ)an = 0.

Let s0 = 0,m = 1, andt(µ) = (V1(µ)− β1)r(µ). We have

s1(V1(µ)−β1) = (V1(µ)−β1)
[

a2n−1(V1(µ)− β1) + r(µ)an
]

,

which implies the SOS condition in (12). Now consider any
µ ∈ ΩSN for which the conditionan(µ) = 0 is satisfied.
Upon substitution with the SOS condition in (12), we have

a2n−1(µ)(V1(µ)− β1) ≥ 0.

Sincea2n−1 > 0, we have thatV1(µ)−β1 ≥ 0 which implies
that anyµ ∈ ΩSN will lies outside the level set defined by
V1(µ) ≤ β1.
In a similar way, we can define the parameter setV2(µ)
at which no hopf bifurcation will occur. Forβ2 > 0 be a
constant and define the set

Ω̃H = {µ ∈ Rm|V2(µ) ≤ β2},



such thatΩ̃H ∩ ΩH = ∅. The level setΩ̃H can also be
characterized in term of the level set ofV2(µ).

Proposition 4.3:Consider the setΩH in (9). Suppose
there exists polynomialsV2(µ) andr(µ) and constantβ2 > 0
such that

V2(µ)− β1 + r(µ)△n−1(µ) is SOS. (13)

Let Ω̃H = {µ ∈ Rm|V2(µ) ≤ β2}. ThenΩH ∩ Ω̃H = ∅.
Proof: Verifying the conditionΩH ∩ Ω̃H = ∅ amounts

to check the emptiness of the set

{µ|△n−1 = 0, V2(µ)− β1 6= 0,−(V2(µ)− β2) ≥ 0}.

Using the psatz theorem, this set is empty if there exist SOS
polynomialss0 and s1, polynomialsV2(µ) and t(µ), and a
constantβ2 > 0 such that

s0 − s1(V2(µ)− β1) + (V2(µ)− β2)
2m + t(µ)△n−1 = 0.

Let s0 = 0,m = 1, t(µ) = (V2(µ)− β2)r(µ), we then have

s1(V2(µ)−β2) = (V2(µ)−β2) [(V2(µ)− β2) + r(µ)△n−1] ,

which implies the SOS condition in (13). Now consider any
µ ∈ ΩH for which the condition△n−1(µ) = 0 is satisfied.
Substitution to the SOS condition in (13) givesV2(µ) > β2

which implies that anyµ ∈ ΩH lies outside the level set
defined byV2(µ) ≤ β2.

Using the level setsV1(µ) andV2(µ), the sublevel set in
the parameter space at which no bifurcation occur is defined
by Ω̃ = min(β1, β2). Each of the boundbi, (i = 1, 2) can be
computed using SOS program to obtain the level set of the
form Vi(µ) ≤ βi. For example, the SOS program to compute
the setV1(µ) ≤ β1 is given by

max β1

s.t. a2n−1(µ)(V1(µ)− β1) + r(µ)an(µ) is SOS.

In this SOS program, bothV1(µ) andr(µ) are polynomials
parameterization of fixed order and their coeficients will be
solved during the optimization. It can be solved eficiently
using SOSTOOLS and Sedumi [15], [16].

C. Minimum distance to bifurcation

The SOS program described in the previous section
shows that the maximum value ofβi gives the maximum
bifurcation-free parameter setVi(µ). Now letµ0 denotes the
initial parameter values for system (2) such thatµ0 ∈ Vi(µ),
and letµ∗ denotes the critical parameter value at which a
bifurcation occur. Consider the case thatVi(µ) takes the form
Vi(µ) = |µ∗−µ0|, which also define the distance betweenµ0

andµ∗. Then the minimum distance to bifurcation between
an initial parameterµ0 and the critical parameterµ∗ can be
computed as follows.

Proposition 4.4:Consider system (2) and its Jacobian
matrix defined in (6). Letµ0 be the initial parameters and
let µ∗ denotes the critical parameters at which a saddle
node bifurcation occur. If there exists a constantβ̄1 > 0,

polynomialsV̄1 = |µ∗−µ0| andr(µ) such that the following
SOS program

max β̄1

s.t. a2n−1(µ)(V̄1(µ)− β1) + r(µ)an(µ) is SOS,

has a feasible solution, then the distance to bifurcation is
defined as|µ∗ − µ0| ≥ β1.

Proof: From proposition 4.2, we know that the maxi-
mum value ofβ̄1 defines the maximum distance|µ∗ − µ0|
at which no saddle node bifurcation exit. Equivalently, this
means that̄β1 serves as a lower bound for the distance to
bifurcation from an initial parameterµ0.

V. EXAMPLE

The method for identifying the set of bifurcation-free
parameter and the computation of minimum distance to
bifurcation described in the previous sections will be applied
to analyze a tritrophic food chain model described in [29].

A. Model

Consider a tritrophic food chain model described by the
following state equation [29].

ẋ1 = x1 (1− x1)−
k1x1x2

k2 + x1
,

ẋ2 =
k3x1x2

k2 + x1
− k4x2x3 − k5x2,

ẋ3 = k6x2x3 − k7x3,

(14)

wherex1, x2, x3 denote the population density of primary
producer, primary consumer, and top predator, respectively.
The initial condition is denoted byx0 = (x10, x20, x30)

T .
The primary producer grows according to the standard logis-
tic growth function and consumed by the primary consumer
according to the Holling type II response function with
efficient consumption ratek1. Parameterk1(k6) describes
the consumption rate of predator (super-predator) on prey
(predator), whereask5(k7) denote the death rate of predator
(super-predator). We first transform (14) into an equivalent
model defined on the ringR(k)[x]. Introducing an extra state
variablex4 = k2 + x1 to model (14), we have

ẋ4 =
∂(k2 + x1)

∂x1
ẋ1 = x1x

2
4(x1 − 1) + k1x1x2x

3
4.

The augmented model is now given by

ẋ1 = x1 (1− x1)− k1x1x2x4,

ẋ2 = k3x1x2x4 − k4x2x3 − k5x2,

ẋ3 = k6x2x3 − k7x3,

ẋ4 = x1x
2
4(x1 − 1) + k1x1x2x

3
4,

(15)

with initial condition x0 = (x10, x20, x30, (k2 + x10)
−1)T .

Thus, matrixN and vectorv(x, k) in equation (2) are

N =









1 −1 −1 0 0 0 0 0 0 0 0
0 0 0 1 −1 1 0 0 0 1 0
0 0 0 0 0 0 1 −1 0 0 0
0 0 0 0 0 0 0 0 1 −1 1









,



v(x, k) = [x1, x
2
1, k1x1x2x4, k3x1x2x4, k4x2x3, k5x2,

k6x2x3, k7x3, x
2
1x

2
4, x1x

2
4, k1x1x2x

3
4]

T .

One can veriy that matrixN has a full row rank and therefore
no conservation relation exist (i.e.W = 0 in (2)). The matrix
Z which satisfyv(x, k) = diag(k)xZ is

Z =









1 2 1 1 0 0 0 0 2 1 1
0 0 1 1 1 1 1 0 0 0 1
0 0 0 0 1 0 1 1 0 0 0
0 0 1 1 0 0 0 0 2 2 3









.

For i = 1, . . . , 4, let hi = 1/x∗
i where x∗

i is the state
equilibrium parameterization given by

x∗
1 = λ6/(λ6 + λ7), x∗

2 = λ6/k6(λ6 + λ7),

x∗
3 = k6λ7/k1λ6, x∗

4 = k5λ5(λ6 + λ7)
2/λ2

6, (16)

which are obtained using the technique described in appendix
B. The jacobian matrix (6) for system (15) is given by

Jac = Ndiag(Eλ)ZT diag(h)

=









−h1λ1 −h2λ2 0 −h4λ2

h1(λ3 + λ4) 0 −h3λ3 h4(λ3 + λ4)
0 h2λ5 0 0

h1λ6 h2λ7 0 h4λ7









with characteristic polynomial

s4 + a1s
3 + a2s

2 + a3s+ a4 = 0,

wherea1 = h1λ1 − h4λ7 and

a2 = h2h3λ3λ5 + h2(λ3 + λ4)(h1λ2 − h4λ7)
+h1h4(λ2λ6 − λ1λ7),

a3 = h2h3λ3λ5(h1λ1 − h4λ7) + h1h2h4(λ2λ3λ6

+λ2λ4λ6 − λ1λ3λ6 − λ1λ4λ7)
a4 = h1h2h3h4(λ2λ6 − λ1λ7).

The first three Hurwitz determinants are△1 = a1, △2 =
a1a2 − a3, △3 = a1(a2a3 − a1a4)− a23.

B. Minimum distance to bifurcation

Let x0 = (x0
1, x

0
2, x

0
3) = (0.7, 0.8, 1.4) be an initial

condition and letk0 = (0.4, 0.4, 0.25, 0.1, 0.02, 0.25, 0.2) be
an initial parameter. One can verify that this initial condition
is an asymptotically stable equilibrium point. Using the
equilibrium parameterization in (16), the initial convex pa-
rameters areλ0 = (0.1, 0.25, 0.084, 0.016, 0.21, 0.25, 0.1).
The combined parameter that will be used to computeγ
areµ0 = (k1, k5, k6, λ3, λ5, λ6, λ7). We aim to compute the
minimum distanceγ from k0 to the nearest hopf bifurcation
point. Using Jacobian matrixJac, the necessary condition
for hopf bifurcation in lemma 3.2 is△n−1(µ) = 0 with

△n−1(µ) = h1h2h3h4λ3λ5(λ2λ6 − λ1λ7).

Sincehi ≥ 0, (i = 1, . . . , 4) andλj ≥ 0, (j = 1, . . . , 7),
this condition can be simplified asλ2λ6 − λ1λ7 = 0. Thus,
the SOS program takes the form

max β̄2

s.t. V2(µ)− β̄2 + r(µ)△n−1(µ) is SOS.

where V2(µ) =
∑

(µ0
i − µ∗

i )
2, for i = 1, . . . , 7. Using

SOSTOOLS and Sedumi, we get a minimum distance of
γ = 0.142 which corresponds to critical parametersk∗ =
(0.02, 0.4, 0.25, 0.1, 0.0002, 0.2766, 0.18).

APPENDIX

A. Basic Algebraic Geometry

These materials can be found in standard algebraic geome-
try literature such as [21]. Consider polynomial ringC(k)[x].
The setI ⊆ C(k)[x] is an ideal if it satisfies: (i)0 ∈ I, (ii)
∀a, b ∈ I ⇒ a + b ∈ I, and (iii) ∀a ∈ I, b ∈ C(k)[x] ⇒
a · b ∈ I. Let f1, . . . , fq be polynomials inC(k)[x]. We set

I = {Σq
i=1hifi, with hi ∈ C(k)[x]},

= 〈f1, . . . , fq〉 ⊂ C(k)[x].

One can show thatI is an ideal called theideal generated
by f1, . . . , fq. Correspondingly, the polynomialsf1, . . . , fq
are called thebasisof I. The zeros of an idealI is called
its affine variety, i.e. for I = 〈f1, . . . , fq〉, the set

V (I) = {x ∈ Cn(k) : fi(x) = 0, for all 1 ≤ i ≤ q},

= V (f1, . . . , fq),

is theaffine varietyof I defined byf1, . . . , fq. An affine va-
riety is the set of solution to system of polynomial equation.

Given idealI, the existence of its complex solution can
be proved using Hilbert’s Nullstellensatz.

Theorem 1.1 (Hilbert’s Nullstellensatz):Let (fj)j=1,...,s

be finite family of polynomials inC(k)[x]. Let I be the ideal
generated by(fj). The following statements are equivalent:

• The set{x ∈ Cn(k)|fj = 0, j = 1, . . . , s} is empty.
• The polynomial1 belongs to idealI, i.e., 1 ∈ I.
• I = C(k)[x].
• There exist polynomialsgi ∈ C(k)[x] such that
f1(x, k)g1(x, k) + · · ·+ fs(x, k)gs(x, k) = 1.

The nullstellensatz basically states that if there exist polyno-
mialsg’s satisfying the last statement, then the set of complex
solutions{x ∈ Cn(k)|f(x, k) = 0} is empty. In particular,
such emptiness is certified by the existence of polynomials
g’s. The generalization of nullstellensatz for polynomial ring
over the real field is thepositivstellensatz(section IV-A).

If such solutions are known to exist, they can be computed
using the method of Gröbner basis. This method is based on
the fundamental result in algebraic geometry which states
that the zeros of the basis elements of an idealI is equivalent
to the zeros of the whole idealI. Since the Hilbert’s Basis
Theorem guarantees the existence of finite basis for every
ideal I, the zeros of an ideal can be computed usiing the
zeros o its basis elements. Gröbner basis with elimination
ordering is an important basis for such purpose since its zeros
can often be solved easily using standard back substitution
procedure. Gröbner basis can be computed using the standard
Buchberger algorithm which has been implemented in many
computer algebra software [22]. Computing the zeros of an
ideal I using Gröbner basis method consists of two main
steps namely theeliminationand theextensionsteps.



1) Elimination: This step aims to compute therth elimi-
nation idealIr of I whose zeros can be solved easily.

Definition 1.2: GivenI = 〈f1, . . . , fq〉 ⊂ C(k)[x], therth
elimination idealIr ⊂ C(k)[xr+1, . . . , xn] defined by

Ir = I ∩ C(k)[xr+1, . . . , xn].
The Elimination Theorem provides a method to compute a
Gröbner basis for therth elimination idealIr .

Theorem 1.3 (Elimination):Let I ⊂ C(k)[x] and letG be
a Gröbner basis ofI with respect to the lex orderx1 >lex

x2 >lex · · · >lex xn. Then, for every0 ≤ r ≤ n, the set

Gr = G ∩ C(k)[xr+1, . . . , xn]

is a Gröbner basis of therth elimination idealIr.
The varietyV (Ir) of elimination idealIr can be obtained
from its Gröebner basisGr. V (Ir), however, is a subvariety
of the original idealI (i.e. V (Ir) ⊂ V (I)) and therefore
serves only as partial solution toI.

2) Extension: The extension step aims to extend the
partial solutionV (Ir) obtained in the elimination step to
get the whole solutionV (I) for ideal I. The condition that
allow this extension is given by the Elimination theorem.

Theorem 1.4 (Extension):Let I = 〈f1, . . . , fq〉 ⊂
C(k)[x] and let I1 be the first elimination ideal ofI. For
each1 ≤ i ≤ q, write fi in the form

fi = gi(x2, . . . , xq)x
Ni

1 + terms wherex1 has degree< Ni,
(17)

where Ni > 0 and gi ∈ C(k)[x2, . . . , xn] is nonzero.
Suppose that we have a partial solution(x∗

2, . . . , x
∗
n) ∈

V (I1). If (x∗
2, . . . , x

∗
n) /∈ V (g1, . . . , gq), then there exists

x∗
1 ∈ C(k) such that(x∗

1, . . . , x
∗
n) ∈ V (I).

It can be seen that the goal of the elimination step is to
iteratively reduces the original problem into problems with
smaller number of variables for which the solutions can be
computed easily. The extension step then back substitutes
these solution to the original problem to get the total solution.
The importance of Gröbner basis in this case is that it allows
for a systematic execution of the elimination step. Gröbner
basis can be computed using Buchberger algorithm which
have been implemented in many computer algebra softwares
such as Singular [22]. Buchberger algorithm, however, have
doubly exponential worst case complexity in the number
of unknown variables. As shown in [23], when there are
n unknown variables (x1, . . . , xn) and the polynomials in
f(x, k) have a total degree not exceedingd, then the degree
of polynomials in Gröbner basisG is bounded by2(12d

2 +

d)2
n−1

. This bound is doubly exponential with respect ton
which makes the Buchberger algorithm may require a large
memory. Nevertheless, many applications have shown that
such worst case bound is not always encountered.

B. Equilibrium parameterization

This section reviews the method proposed in [11], [24] for
parameterizing the state equilibriumx∗ of (2). It involves
computating the parameterized rate equilibriumv∗ formed
by the intersection of toric variety and convex cone.

1) Toric variety: The approach to computev∗ is based
on recognizing that the kernel of the mapping betweenx
andv(x, k) induces an algebraic object known as toric ideal
whose variety is called toric variety. Following the two main
steps in using Gröbner basis to compute the variety of an
ideal, we describe both the elimination and extension steps
for parameterizingx∗. The elimination step aims to compute
the toric variety which gives the rate equilibriumv∗. This
toric variety is then used in the extension step to compute
the state equilibriumx∗.

a) The Elimination Step:Let R(k)[x] be a ring in the
unknown x = (x1, . . . , xn) and let R(k)[v] be a ring in
another unknownv = (v1, . . . , vm). Recall that the mapping
v(x, k) betweenx ∈ Rn andv ∈ Rm in (2) is given by

v(x, k) : Rn
+ 7→ Rm

+ , x 7→ v = kxZ

with the image ofv(x, k) is defined as

v1(x, k) = k1x
Z1 , . . . , vm(x, k) = kmxZm .

A given v∗ ∈ Rm
+ will correspond to anx∗ ∈ Rn

+ if the
conditionv∗ ∈ im(v(x∗, k)) is satisfied (i.e. ifv∗ lies on the
image of the mapv(x∗, k)). This condition can be checked
by evaluating the zeros of the expressions

vi − vi(x, k), for i = 1, . . . ,m. (18)

The expression in (18) is binomial ideal onR(k)[x, v]. The
rate equilibriumv∗, however, lies on the variety of a toric
ideal I = 〈vi − vi(x, k)〉 ∩ R(k)[v] (note the difference of
the ring) and is called toric varietyV (I). Using Elimitation
Theorem, a Gröbner basis forI can be computed from the
Gröbner basis of binomial ideal (18) in the following way.

First, define idealI ∈ R(k)[x, v] corresponding to (18)

I = 〈v1 − k1x
Z1 , . . . , vm − kmxZm〉 ∈ R(k)[x, v]. (19)

The corresponding toric idealI ∈ R(k)[v] is given by

I = 〈v1 − k1x
Z1 , . . . , vm − kmxZm〉 ∩ R(k)[v],

= I ∩R(k)[v]. (20)

By Hilbert’s Basis Theorem,I is generated by a finite
number of basis and one choice of such basis is the Gröbner
basis. SinceI ∈ R(k)(x, v) is a binomial ideal, its Gröbner
basis will also be binomial defined onR(k)(x, v) [30],
[22]. Let G denotes the Gröbner basis ofI with respect to
elimination ordering forx. Now notice that the toric ideal
I in (20), obtained from the intersectionI ∩R(k)[v], is the
nth elimination ideal ofI (as it is computed by eliminating
n variablesx from I) on R(k)[v]. Using the Gröbner basis
G of idealI, the Elimination Theorem implies that the basis
Gn(v) = G∩R(k)[v] is a Gröbner basis forI∩R(k)[v] = I.
This means one of the Gröbner bases for toric idealI is those
basis inG which only contain variablev. Since the variety
of an ideal is equivalent to the variety of its basis, then the
toric varietyV (I) is given by

V (I) = {v ∈ Qm(k) : Gn(v) = 0} ⊂ R(k)[v]. (21)

The toric variety thus define the rate equilibriumv∗, i.e.

v∗(k) ∈ V (I). (22)



b) The Extension step:By the Ideal-Variety Correspon-
dence theorem [21], we know that any varietyV (I) ∈
R(k)[x, v] of binomial ideal (19) must vanish onv∗(k) ∈
R(k)[v] in (22). Thus,v∗(k) in (22) is a partial solution to
V (I) and we need to extend it to get the remaining solution
x∗ which then define the total solutionV (I) ⊂ R(k)[x, v].

The existence of this extension can be shown using the
Extension Theorem. First, rewrite the ideal in (19) as

v∗ = diag(k)(x∗)Z .

For given nonzero partial solutionv∗(k), this representation
satisfies equation (17) withgi(·) = diag(k) and the second
term on the right hand side of (17) equals to zero. By the
Extension Theorem, solution tox∗ is guaranteed to exist.

In particular,x∗ can be computed using Hermite trans-
formation as follows. Introduce a coordinate transformation
x∗ = ωU with ω ∈ Rn andU is a unimodular matrix. Since
v∗(k) = diag(k)(x∗)Z , we have

diag(k)(x∗)Z = diag(k)ωUZ = diag(k)ωH = v∗(k), (23)

where we have used the fact thatUZ = H , with H is the
Hermite normal form of matrixZ. For givenv∗(k), solving
the equation diag(k)ωH = v∗(k) for ω and then followed by
computingx∗ using relationx∗ = ωU , the solutionx∗(k) ∈
R(k)[x] can be obtained. Bothx∗(k) andv∗(k) then define
the variety of binomial idealI in (19).

2) Convex polyhedral cone:One may see from(2) that
the rate equilibriumv∗ is confined to a setKv defined by

v∗ ∈ Kv = {ker(N) ∩ Rm
+}.

Kv is actually a convex polyhedral cone, generated by linear
combinations of finite number (M ) of extreme rays,Ei for
i = 1, . . . ,M [17], [11]. There are tools that can be used to
compute these extreme rays [31]. SinceKv is convex, there
existsλi > 0 such that the coneKv can be parameterized
asKv =

∑M
i=1 λiEi, whereλ is convex parameters. Thus,

the rate equilibriumv∗ can also be parameterized by convex
parameterλi [17], [11]

v∗(λ) =

M
∑

i=1

λiEi. (24)

Given the parameterization (22) and (24), the rate equilib-
rium of system (2)is then defined as their intersection, i.e.

v∗(λ, k) = {v∗ ∈ V (I)} ∩ {v∗ ∈ Kv} ⊂ R(λ, k)[v]. (25)

By substituting this intersection to (23), the parameterized
state equilibriumx∗(λ, k) can also be obtained. The com-
plete algorith to computev(λ, k) in (25) is depicted on figure
1. Gröbner basis for binomial ideal of the form (18) (step 4
in figure 1) can be computed using Singular [22].

REFERENCES

[1] Y. A. Kuznetsov,Elements of applied bifurcation theory. Springer-
Verlag New York, Inc., 1998.

[2] I. Dobson, “Computing a closest bifurcation instability in multidimen-
sional parameter space,”Journal of nonlinear science, vol. 3, no. 1,
pp. 307–327, 1993.

1: Input : rate vector,v(x, k) = (k1x
Z1 , . . . , kmxZm)T

2: Output : parameterized state equilibrium,x∗(λ, k)

3: Construct idealI ⊂ R(k)[x, v] in (19) as

I = 〈v1 − k1x
Z1 , . . . , vm − kmxZm〉 ∈ R(k)[x, v].
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