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Abstract— This paper describes the use of sums-of-square whose equilibriumz* depend on parametét, the bifurca-
(SOS) program to compute a resilience measure for non- tion set are those parametersthat satisfy the bifurcation
negative dynamical systems. Such measure is defined as theqqgitions in table I. Previous works have proposed several

distance between system’s nominal parameter and the cloges thods f fi in th text of robust stabilit
critical paramater at which a bifurcation occur. Our propos ed methods Tor computing, In the context of robust stability

method uses a modeling formalism from chemical reaction analysis [7], [8], [9], [10] and voltage collapse in power
network theory to describe the dynamics of nonnegative syst.  systems [2], [3]. In general, these methods use numerical
We show that such modeling formalism allow us to describe - gptimization techniques to search for the minimyraubject

the bifurcation condition only in term of system’s paramete. to the constraints that the critical parameter satisfy the

The SOS program for computing the distance to the closest | . . e
bifurcation is formulated using the positvstellensatz conept bifurcation condition in table I. These methods, howeve, a

from real algebraic geometry and the SOS relaxation technige ~ COmputationally demanding since the search for minimum

in semidefinite programming. requires the computation of equilibriuni at every iteration.
I. INTRODUCTION TABLE I: Local bifurcation condition
Many real life systems are subject to external perturba-  Type Jacobian Eigenvalue Transversality
tions which cause variation on systems parameters from the = o ¢ simple 0 Dp{Re(s)} # 0
nominal values. For nonlinear systems, parameter vaniatio
of certain magnitude can change the qualitative behavibrs o simple Y (D‘“f wk) 70
the system (i.e. phase portrait or stability) through a mifu Saddle node  imaginary pair w (D?Ef!(v U)) #0

cation. A bifurcation is characterized by the appearance of
topologically nonequivalerthase portrait of the system [1]. simple (Dkf Jﬁk) #0
In many cases, these changes come with catastrophic effects Transcritical imaginary pair w ( D2, f| ) 40
)70
)0

g

For example, load variation in power network which exceeds

certain treshold can induces a saddle node bifurcation that simple (Dkf .
causes a voltage collapse [2], [3]. Another example is in the  pynion imaginary pair (Dgf
lake eutrophication process where the increase of nutrient

loading which exceeds a critical limit results in a saddldeno ) )
This paper uses sums-of-square (SOS) programming

bifurcation that shifts a previously clear water lake witgh > :
method to compute the resilience measui@ non-negative

biodiversity into a turbid water lake dominated by algae [4] . al
Each of these effects has the potential to disrupt the m'vicdyn""m'CaI systems. Our method stems from recognizing that

that these systems provide to the society. Understanding tjon-negative dynam|hcal s;lllstems (1) have a special stllmc_turl
resilience of these systems in the presence of parametSf€ €quation (2)) that allow us to compute an analytica

variation is therefore crucial for managing their secudnd Parameterization of the equilibrium in term of the system
sustainability [5], [6] parameter. The method for this equilibrium parameteriza-

éi,?” was first introduced in the context of stoichiometric
network analysis and is based on the concepttafc
variety from algebraic geometry [11]. Such parameterization
is beneficial for computingy since we can now express
the constraint functions only in term of the parameters. We
formulate the optimization ofy as an SOS program using
the positivstellensatz concept from real algebraic gepmet
[12], [13] and the SOS relaxation technique in semidefinite
programming [14]. The optimal obtained from the SOS
i = f(x, k), (1) program is a lower bound of some positive semidefinite
function V(i) and is guaranteed to be a global minimum
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The resilience of a system under parameter variation c
be measured by the distanee= |k* — k°| between the
nominal parametek® and the closest critical paramatet
at which a bifurcation occur. The quantity, often called
distance to closest bifurcatioiis an indication of how close
the system is to a collapse. The computation & generally
difficult since thebifurcation setin the parameter space that
containu* is usually unknown. For dynamical systems



Section Il describes the model structure. Section Ill dises real coefficientk. The rate vector can be decomposed as
semialgebraic description for bifurcation condition ibla v (x, k) = diagk)z?, with Z € Z'*™ is a matrix whoseth

I. Section IV presents the characterization of bifurcafiee column is the multi-index of théth monomials inv(z, k).
parameter set and SOS program to compute the minimum If matrix N has no full row rank (i.erank(NT) =r < n),
Section V illustrates an application of the proposed method there exist conservation relations of the folfi”’z = «,
study the resilience of a tritrophic food chain from ecologywhere W e Z(~")*™ is a matrix whose column form the
Notational convention: Let R, Q and Z denote the set of basis of ker(NT) and ¢ is an appropriately dimensioned
real, rational and integer numbers, respectively, andRlet constant vector. Equation (2) is often used in stoichioimetr
andZ. the set of non-negative real and non-negative integaetwork analysis (SNA) to model the dynamics of chemical
numbers, respectively. LeR™ denote then-dimensional speciese that involved in a reaction of rate(z, k) [17].

Euclidean vector space. Given a vectoe R", we let z; This paper uses the structure in (2) to model non-negative
denote theith component of that vector. An-dimensional dynamical systems in (1). System (1) is said to be nonnega-
multi-index is an n-tuple, o = (a1, 2, -+ ,a,) of non-  tive if z(t) € R’} for all ¢ € [0,00). The necessary condition

negative integers. The absolute value of a multi-indels  for system (1) to be non-negative is that for &alle RE,
defined aga| = >°;" ; o;. The sum/difference of two multi- it satisfy f(z,k) > 0 whenz € R? and f(z,k) = 0
indices inZ’ is the component wise sum/difference of theotherwise. Non-negative dynamical systems cover a large
indices. Similarly, we say that > 5 if and only if a; > 8,  number of real world systems including compartmental sys-
fori=1,2,...,n. tems, biological systems, ecological systems, etc [18]. In
Given a vectorz € R™ and ann-dimensional multi- general, the model of these systems does not always satisfies
index «, amonomialin = with total degreda| is a product the conditions in model (2), i.e. the vector fiel{z, k)
of the form z® = z{"z3?---z%~. A monomial ordering being polynomial functions defined over polynomial ring
is used to arrange a pair of monomials unambiguously iR(k)[z]. The well-known result from approximation theory
an ascending/descending order. ket= (ag,...,a,) and [19], however, states that any analytic functions defines ov
B = (bi,-..,Bn) be multi-indices of vector € R". We say a compact set can always be approximated as closely as
a andp is in lexicographic (lex) orderingx >;., 5 if the desirable by polynomial function. Moreover, there are also
left-most nonzero entry of the vectar— 5 is positive. A lex exist techniques for transforming any rational polynomial
ordering of monomialg® >, z° is satisfied ifa >;., 3.  functions into polynomial functions defined over polynomia
Let F be any field such as the real numb¢Fs= R) . A  ring [20]. These facts show that model (2) can cover a large

pth order polynomial inn unknownz = (z1,...,2,) with  class of non-negative dynamical systems and therefore the
coefficientsk = (k1,...,kp) in the fieldF is a finite linear parameterization of their equilibrium set and Jacobiarrimat
combination of monomials of the form can also be obtained using the techniques discussed above.

Fla k) = Z bz with k. € F The zeros of (2) define thetate equilibriumz*

lel<p ¥ ={x e Q"(k) : Nu(z, k) = 0}, 3)

The set of all such polynomials formpolynomial ringde-
noted byF(k)[x]. We mostly consider polynomial ring over
the real field. Fori = 1,...,q, the solution to polynomial
equationsf;(z, k) = 0 with f; € R(k)[z] is the set of all its
zeros, i.e. the setr € Q" (k) : f;(z, k) = 0}. A polynomial
f(z,k) is said to benonnegativeor positive semidefinite
(psd) if f(z,k) > 0,Vz € R™. A necessary condition for
a polynomial to be psd is that its total degree is even.

Definition 1.1: We say that the polynomidl(z, k) is SOS
if it can be rewritten asf(z, k) = >_;_, ¢?(z, k) for some
polynomialsg;(x, k),i = 1,...,s.
Clearly, a polynomialf (z, k) being SOS implies (z, k) is
psd. We useP2? to denote the set of SOS polynomialsrin
unknowns with degree less than or equabib

such that:* is a vector inR"™ for fixed £, and is a continuum
otherwise. Computating the analytical expression for légjui
rium (3) in high dimensional systems usually requires the us
of symbolic methods. One of such methods is based on the
techniques from algebraic geometry which uses the Grobner
basis of equationd’v(x, k) = 0 [21]. This method originates
from the fact that the zeros of polynomial equations are
equivalent with the zeros of its basis. Grobner bases of
polynomial equation can be computed using Buchberger
algorithm which have been implemented in many computer
algebra softwares [22]. The standard Buchberger algorithm
however, has a drawback in that (in the worst case) the degree
of the computed bases grow doubly exponential with respect
to the number of unknown variables [23].

Il. SYSTEM MODEL An alternative method to characterizé is proposed in

Consider dynamical system described as follows. [11], [24] by taking advantage from the structure of (2) in
) . which f(x, k) is decomposed into lineaf\{) and nonlinear
#(t) = f(x, k), with f(z, k) € R(k)[z] @) (v(x, k) parts. Such decomposition define an isomorphic
= Nu(z, k), mappingv(z, k) from the stater to the ratev of the form

wherez € R, is the state vectol; € RY is the parameter o(z, k) Rlz] = R, v =kaZ. ()
vector, N € Z"*™ is a sparse matrix, and(xz, k) € R is
a rate vector consisting monomials in the unknowrwith  This isomorphism implies that the state equilibriurh can



be characterized if theate equilibriumv™* in (5) is known. method [1]. This method, however, is currently limited to
. m low dimensional parameter spage< 3). The main reason

vt ={veQ"(k,): Nv=0}, ®) for such limitation is because the evalution of bifurcation
where )\ is known asconvex parameterin particular, the condition in table | requires the knowledge of system’s
rate equilibriumv* is parameterized by the intersectionequilibrium z* which is difficult to obtain in practice.
of two geometric objects nameltpric variety and convex The parameterized Jacobian mattbuc in (6), however,
polyhedral cone Both of these objects can be computeds defined at equilibrium and so the eigenvalue condition
efficiently using techniques from algebraic geometry anih table | can be analyzed without having to compute the
convex analysis [11], [24]. On one hand, the toric varietgquilibrium z* for all possible parametek. This section
provides a parameterization of the rate equilibriurh(k), presents semialgebraic descriptions of bifurcation doodi
in term of system paramete(). It can be obtained from in table I.
the Grobner bases of the kernel of (4) using a modified Consider the Jacobian matrix (6). Lets) = [s/ — Jac|
Buchberger algorithm (more efficient with worst case combe the characteristic polynomial dfac defined as
plexity only exponential) [25]. On the other hand, one can
observe from (5) that the rate equilibriuni is confined
to the setkC, = {ker(N) NRY}. The setk, is a convex where the coefficients; (), k) are function of the parameters
polyhedral cone and gives another parameterizatioi\) (), k). Towards the end, we denote these parameters-as
in term of some convex parametar The intersection of (), k). The eigenvalues ofac is given by the roots op(s),
these two geometric objects forms a reparameterization @hd matrix.Jac is asymptotically stable if and only if all
the rate equilibriump*(X, k), in term of parameteré\, k). its eigenvalues have negative real parts and it is unstable
By the isomorphic mapping in (4), the state equilibriumptherwise. For: = 1,...,n, the zth Hurwitz determinant,
parameterization* (), k) that correspond to a giveri(\, k) A, associated with the characteristic polynomié) is
can be obtained using Hermite transformation (see appendix

p(s) = aps™ + ars" M4t ap_15+ an, @)

B and [26] for details). ar az as ... G2z
An implication of such parameterization is that the Jaco- o 4Gz G4 ... (272

bian matrix (Jac) of (2) at equilibrium is given by [11], [24] A, = 0 a a3z ... e
Jac(\ k) = Ndiagv*)Z”" diag(1/z*). (6) N

0 0 0 az_o a,
This implies that the bifurcation condition in table | can be

evaluated directly in term of the parametey, k) without such that
having to compute the equilibrium* for differentk. a ar az as
1 as
A1:|a1|,A2: ,Agz ap a2 Q4 |,...
[1l. SEMIALGEBRAIC CONDITION FORBIFURCATION ap G2 0 a; as

Consider dynamical systems in (2) and assume that iﬁe coefficientsz;'s and Hurwitz determinant\,’s can be
(3 4

equilibrium z* is asymptotically stable for an initial pa- used 1o infer some properties about the roote(@) [27] .

rameterk®. When the parameter vary from its initial value . I
0 . P vary . For example, th&®outh Hurwitz criteriorstates that all roots
kY, thenz* and the phase portrait of the system will also

vary in the state space. If such parameter variation crca;se% Lg (2) wil Oh]%\;e nﬁgfmve rea!rﬁzrésrlgn%r;d fg?g fg '>eos
certain treshold:*, the equilibriumz* may lose stability in : = N 2= Ly T . ulagiv

: . ; L . the relationship between tHe — 1)th Hurwitz determinant
bifurcation. A bifurcation is characterized by the appeas and the roots op(s) of the form
of new phase portrait (dt = k£*) around the equilibriunx* (5)

that istopologically nonequivalenwith the original one (at L..n
k = k°) [1]. Since the phase change that being considered®,—1 = (—1)”("_1)/2ag_1 H (si +s5), forn>2.
is locally around the equilibrium, this type of bifurcatids i<j

called local bifurcation. There are different types of loca The following propositions give the conditions for matrix
bifurcation which correspond to different changes of they,. to have simple zero eigenvalue.
phase portrait includingopf (appearance of limit cycle from  proposition 3.1: Consider matrix/ac in (6) with charac-
stable equ_llllbr.lum).saddle nodgcollision anc_i annihilation gristic polynomiabp(s) in (7). If p(s) satisfies the conditions
of two equilibria), pitchfork (appearance or dissapearance of, — ( and a,_, # 0, then matrix.Jac will have zero
symmetric equilibria), andranscritical (stability change). eigenvalue with multiplicity not greater than one.

The appearance of local bifurcation is related with the = proof: Thata,, = 0 implies one of the roots ab(s) is

change on the number or stability of the equilibriums undejerg js clear. Now notice thai(s) will have zero eigenvalue
parameter variation. Thus, these changes can be characigji, multiplicity not greater than one if

ized in term of theeigenvalue conditiorof the Jacobian

matrix with some additionatransversality conditiongsee 9p(s) £0

table 1). The critical parametek* at which bifurcation Js ls=0 ’

occur is usually searched numerically using continuatiowhich will be satisfied whem,,_; # 0. ]




The following lemma from [28] gives the condition foiac Theorem 4.1 (Positivstellensatz, [12])et {f;}, {9},
to have a simple pair of imaginary eigenvalues. The proof iand{h;} be finite families of polynomials ifR(k)[z]. Then,
based on the Orlando formula and Hurwitz determinant. the following properties are equivalent

Lemma 3.2:[28] Consider matrix/ac in (6) with charac- e The set
teristic polynomiab(s) in (7). If p(s) satisfies the conditions n B
An_1 = 0, then matrixJac will have a pair of imaginary {z eR*(K)If; 20, 9: #0, hy =0}, (11)
eigenvalues with multiplicity not greater than one. is empty.

We can now express the conditions for jacobian eigenval- « There existf € C(f),g € M(g),h € Z(h) such that
ues in table | in term of parameter = (\, k). Let QY f+d*+h=0.
be the set of parameter for which a saddle node bifurcatiothe psatz essentially gives a sufficient condition for the
occurs. Using the conditions in proposition 3.1, we have thamonexistence of solutions to a system of polynomial equa-

N m tions/inequation and inequalities. Such nonexistenceeis ¢
Q%N = {n € R™|an = 0,an-1 # 0}. ®)  ified by the psat refutation in form of polynomialg ¢

Note thatQ“" also describes the parameters where pitchfor&nd 2. As shown in [14], the search of the psatz refutation
and transcritical bifurcations occur. In a similar way, lem can be cast as an SOS program and solved efficiently using
3.2 can be used to describe the parametef&etvhere hopf SOSTOOLS and Sedumi [15], [16].
bifurcation occurs

Qf = {u e R™A, 1 =0}.

B. Characterization of bifurcation-free parameter set

Consider the se®°" in (8). Let; > 0 be a constant and

9)
Given the set§2°Y andQ, we can define the parameter setIet Vi(p) be polynomial in the unknown. Consider the set
Q5N = {u € R™Vi(n) < Br},

for which at least one type of bifurcation occurs as follows.
which satisfiesQY N QSN = @. The setQ*" can be

Q=0Nuaqf. (10)
interpreted as a subset in the parameter space (defined by the

Thus, system (2) will undergoes bifurcatiornfifis not empty.

IV. BIFURCATION-FREE PARAMETER SET& DISTANCE TO
BIFURCATION

We note from the previous section that the condition§n
for the existence of a particular bifurcation can be specy;

level setV;(u) < B1) at which no saddle node bifurcation
will occur. The following proposition characterizes the se
Q5N by the level set off; (y).

Proposition 4.2:Consider the sef2®" in (8). Suppose
ere exists polynomialg; (1) andr(u) and a constant; >
such that

fied by the nonemptiness of the corresponding bifurcation

set. In particular, these sets are described as semiaigebra
sets in the parameter space. This section presents a com-
putational method that can be used to check the empﬂ‘

ness/nonemptiness of these sets and to compute the minimum

distance to bifurcationy from a given initial values of the
parameters. This method is basedpwsitivstellensatfrom

real algebraic geometry [12], [13] and the SOS relaxatio

method in semidefinite programming [14].

A. The Positivstellensatz

2
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(1) (Vi(p) = B1) +r(wan(p) is SOS  (12)
et QSN = {p e R™|Vi(u) < Br}. ThenQ5VNNQSN = g,

Proof: Verifying the conditionQSY N QSN = o
amounts to check the emptiness of the set

{Mlan =0,an-1 7é 0, Vl(ﬂ) - b 7é 0, _(Vl(ﬂ) _51) > 0}

Using the psatz theorem, the emptiness of this set is guaran-
teed by the existence of SOS polynomigjss;, polynomials
Vi(w),t(w) and constang; > 0 such that

The positivstellensatz (psatz) is a generalization of the, — s, (V;(u) — 1) + a®™, (Vi(p) — B1)*™ + t()a, = 0.

Hilbert's nullstellensatZ[21] for polynomials defined over

the real field. It gives a sufficient condition for the infea-
sibility of real solutions to a system of polynomial equal-

ity/inequality. The main attracting feature of psatz isttha
provides arcertificateor refutationfor such infeasibility.

Let R(k)[z] be polynomial ring and consider finite fami-
lies of polynomials{f;},=1.....s;{gi}i=1,..t; {Pi}1=1,...u €
R(k)[z]. Theideal I(h) generated by, is the set

I(h) = {ZiZ putu, for € R(k)[z]}.

The multiplicative monoidM (g) generated by;(x) is the
set of all finite products of;(x)’s including the identity and
the empty products. Thalgebraic coneC(f) generated by
f; is the set

C(f) = {po + Z:_p; Fy with p; € P24 F; € M(f)}.

Let so =0,m =1, andt(u) = (Vi(p) — f1)r(1). We have

s1(Vi(p)—B1) = (Vi(pu)—=51) [as_,(Vi(p) — B1) + r(p)an]

which implies the SOS condition in (12). Now consider any
p € Q5N for which the conditiona,, (1) = 0 is satisfied.
Upon substitution with the SOS condition in (12), we have

() (Vi(p) — B1) > 0.

Sincea?_, > 0, we have that; (1) — 81 > 0 which implies
that anyu € Q%Y will lies outside the level set defined by
Vi(u) < Br. ]

In a similar way, we can define the parameter Befu)
at which no hopf bifurcation will occur. Fof, > 0 be a
constant and define the set

Qff = {u e R™|Va(p) < Ba},

2
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such thatQ” N QF = @. The level setQ)” can also be polynomialsV; = |u* — 1°| andr(x) such that the following
characterized in term of the level set Bf(u). SOS program

Proposition 4.3:Consider the sef2” in (9). Suppose
there exists polynomialg, (x) andr () and constangs > 0
such that

max [ )
st ap_1(W(Vi(p) = Br) +r(wan(p) is SOS

_ has a feasible solution, then the distance to bifurcation is
Va(p) = B+ r(p)Dn-1(p) is SOS (13)  defined agu* — u| > py.
Let O — {11 € R™|Va (i) < Bo}. ThenQH 1 OH — o, Proof: From proposition 4.2, we know that the maxi-

3 3 i i i * _ 0
Proof: Verifying the conditionQ” NQf = @ amounts mum yalue offf, defines th? maximum .dlstanc_tﬁ a .
. at which no saddle node bifurcation exit. Equivalentlysthi
to check the emptiness of the set

means that3; serves as a lower bound for the distance to
(| D1 = 0, Va(p) — B1 # 0, —(Va(p) — B2) > O}. bifurcation from an initial parameter®. ]

Using the psatz theorem, this set is empty if there exist SOS V. EXAMPLE

polynomialssy ands;, polynomialsVz(u) andt(x), and a  The method for identifying the set of bifurcation-free

constant3, > 0 such that parameter and the computation of minimum distance to
9 bifurcation described in the previous sections will be aapl

so = s1(Va(p) = B1) + (Va(p) = B2)™" + (1) Bn1 = 0. 49 analyze a tritrophic food chain model described in [29].

Letso = 0,m = 1,t(p) = (Va(u) — B2)r(n), we then have p  model
s1(Va(p)—B2) = (Val(p) —B2) [(Va(p) — B2) + r(p) A1), Consider a tritrophic food chain model described by the

following state equation [29].
which implies the SOS condition in (13). Now consider any

u € QHfor which the condition,,_; (1) = 0 is satisfied. i1 = 21 (1— 1) — M7
Substitution to the SOS condition in (13) gives(u) > B2 ko + a1
which implies that any: € Q7 lies outside the level set Gy = FBTIT2 e ks, (14)
defined byVz () < Bo. ] ko + x1
Using the level setd/; (1) and Va (i), the sublevel set in &3 = kexows — ks,

the parameter space at which no bifurcation occur is defingﬂqere%1 2,73 denote the population density of primary
by €2 = min(3,, f2). Each of the bound;, (i = 1,2) canbe .4 cer, primary consumer, and top predator, respeytivel
computed using SOS program to obtain the level set of thﬁqe initial condition is denoted by, = (10, 220, 30)" -

form Vi(u) < B;. For example, the SOS program to cOMpUtehe primary producer grows according to the standard logis-
the setV(u) < pi is given by tic growth function and consumed by the primary consumer

according to the Holling type Il response function with

max
st aﬁ% L) (Vi (i) = By) + r()an(p) is SOS efficient consumption raté,. Parameterk;(ks) describes

the consumption rate of predator (super-predator) on prey
In this SOS program, both; () andr(u) are polynomials (predator), whereaks(k7) denote the death rate of predator
parameterization of fixed order and their coeficients will bésuper-predator). We first transform (14) into an equivalen
solved during the optimization. It can be solved eficientlynodel defined on the rinB.(k)[z]. Introducing an extra state

using SOSTOOLS and Sedumi [15], [16]. variablex, = ks + 21 to model (14), we have
C. Minimum distance to bifurcation Ty = Wj:l =mzi(r1 — 1) + bz zeas.
21

The SOS program described in the previous secti

shows that the maximum value ¢f gives the maximum O'Phe augmented model is now given by

bifurcation-free parameter s&}(x). Now let u° denotes the iy = 11 (1 —21) — kiv1w024,

initial parflmeter values fo_r lsystem (2) such théte Vi(u)_, G5 = kawidoxs — kaTows — ksia,

and let ,* denotes the critical parameter value at which a A & (15)
bifurcation occur. Consider the case that.) takes the form T3 = ReTads — Rrds,

Vi(u) = |u* — ], which also define the distance betweéh 4 = maf(z1 — 1) + ki zoa,
and p.*. Then the minimum distance to bifurcation between

e " B T
an initial parametep® and the critical parametgr* can be with initial condition zp = (x10, 220, %30, (k2 + Z10) ™).

Thus, matrix N and vectorv(z, k) in equation (2) are
computed as follows.

Proposition 4.4:Consider system (2) and its Jacobian 1 -1 -1 0 0 00O O O O O
matrix defined in (6). Lei® be the initial parameters and o 0o 0 1 -1 10 0 O 1 O
let u* denotes the critical parameters at which a saddl‘éf: o o 0 0 0O 01 -10 0 0]
node bifurcation occur. If there exists a constgt > 0, 0 0 o 0 0 00 O 1 -1 1



v(z, k) = [x1,22, kix120oxy, k32 Tota, kaoxs, ks, where Va(p) = Y (p? — up)?, for i = 1,...,7. Using
SOSTOOLS and Sedumi, we get a minimum distance of
~v = 0.142 which corresponds to critical parametérs =
One can veriy that matrid’ has a full row rank and therefore (0.02,0.4,0.25,0.1, 0.0002, 0.2766, 0.18).

no conservation relation exist (i.B8/ = 0 in (2)). The matrix

Z which satisfyv(z, k) = diag(k)z? is APPENDIX

2,2 2 3T
kexoxs, krxs, x7x], x127, k1x1T0xy]" .

121100002 11 A. Basic Algebraic Geometry
7 0600111110001 These materials can be found in standard algebraic geome-
0600001011000 try literature such as [21]. Consider polynomial ri6gk)[z].
660110000223 The setl C C(k)[z| is anideal if it satisfies: (i)0 € I, (ii)
Fori¢ = 1,...,4, let h; = 1/z} wherez] is the state Va,bb EIIL:> etbe I,band l('") Va_ Ie Ir’éi (C(kz/[\;c] -
equilibrium parameterization given by a-bel Letf, ..., [y be polynomials inC(k)[z]. We set
5= Me/Oe+ ). 73 =de/ks(Ao + A7), I = {Zihits, with b € C(k)(el},
#h = hehe/kide, @i = ksAs( + Ar)?/ A2, (16) = e fo) cCR

which are obtained using the technique described in append?n€ can show that is anideal called theideal generated

B. The jacobian matrix (6) for system (15) is given by ~ BY f1,-.., fq- Correspondingly, the polynomialf, ..., f,
are called thebasisof I. The zeros of an ideal is called

Jac = Ndiag EX)Z" diag(h) its affine variety i.e. for I = (f1,..., f,), the set
—hiA —halo 0 —ha)o
- hl()\g + /\4) 0 —h3As h4()\3 + )\4) V(I) = {I € (Cn(k) : fl(:c) =0, forall 1 <:< q},
0 hz)\5 0 0 = V(fl,---,fq),
hl)\ﬁ hg)\7 0 h4)\7
_ o ) is theaffine varietyof I defined byfi, ..., f,. An affine va-
with characteristic polynomial riety is the set of solution to system of polynomial equation
s 4 a183 + ags? 4+ azs +ag = 0, Given ideall, the existence of its complex solution can
be proved using Hilbert's Nullstellensatz.
wherea; = hiA; — hyA7 and Theorem 1.1 (Hilbert's Nullstellensatz):et (f;);—1, .. s
az = hahshshs + ho(As + M) (i Aa — hadr) be finite family of polynomial_s irC(k)[z]. Let I be the _ideal
Fhiha(Aade — M A7), generated by f;). The following statements are equivalent:
ag = h2h3/\3)\5(h1/\1 - h4/\7) + h1h2h4()\2)\3)\6 e The Set{x € (Cn(k)|f7 =0, j=1,..., S} is empty.
FA2M406 — A1 A3A6 — A1 AgA7) « The polynomiall belongs to ideal, i.e.,1 € I.
ay = h1h2h3h4(A2A6 - )\1A7). o [ = C(k)[d?]

o There exist polynomialsg; € C(k)[z] such that
fl('rv k)gl('rv k) +e fs('rv k)gﬁ('rv k) =1L
The nullstellensatz basically states that if there exisgmpm
B. Minimum distance to bifurcation mialsg’'s satisfying the last statement, then the set of complex
Let 2 = (9.4%,49) = (0.7.0.8,1.4) be an inital SOMONS{z & C'(K)|f(x. k) = 0} is empty. In particular,
condition and le&° = (0.4,0.4,0.25,0.1,0.02, 0.25,0.2) be such emptiness is certified by the existence of polynomials
an initial parameter. One can verify that this initial carah g's. The generglizqtion of n_qllstellensatz for polynomiag
is an asymptotically stable equilibrium point. Using theover the real field is th@ositivstellensatfsection 1V-A).

equilibrium parameterization in (16), the initial convea-p || SUCh solutions are known to exist, they can be computed
rameters are\’ = (0.1,0.25,0.084,0.016,0.21,0.25,0.1). YSIng the method of Grobner basis. This method is based on

the fundamental result in algebraic geometry which states
that the zeros of the basis elements of an iddalequivalent

to the zeros of the whole idedl Since the Hilbert’'s Basis
Theorem guarantees the existence of finite basis for every
ideal I, the zeros of an ideal can be computed usiing the
zeros o its basis elements. Grobner basis with elimination
Ap—1(p) = hihohghgAsAs(Aade — A A7). ordering is an important basis for such purpose since itsszer
can often be solved easily using standard back substitution
procedure. Grobner basis can be computed using the standar
Buchberger algorithm which has been implemented in many
computer algebra software [22]. Computing the zeros of an
max [ ideal I using Grobner basis method consists of two main
st Va(u) — Ba+r(u)An_1(p) is SOS steps namely theliminationand theextensionsteps.

The first three Hurwitz determinants are; = a;, Ay =
ajas — as, A3 = al(a2a3 — a1a4) — a%.

The combined parameter that will be used to compute
areu’ = (k1, ks, ke, A3, A5, A¢, \7). We aim to compute the
minimum distancey from &° to the nearest hopf bifurcation
point. Using Jacobian matriXac, the necessary condition
for hopf bifurcation in lemma 3.2 ig\,,_1 () = 0 with

Sinceh; >0, (i=1,...,4)and); >0, (j=1,...,7),
this condition can be simplified as\¢ — A A7 = 0. Thus,
the SOS program takes the form



1) Elimination:; This step aims to compute th¢h elimi- 1) Toric variety: The approach to compute® is based

nation ideall,. of I whose zeros can be solved easily. on recognizing that the kernel of the mapping betwaen
Definition 1.2: GivenI = (f1,..., fq) C C(k)[z], therth andwv(z, k) induces an algebraic object known as toric ideal
elimination ideall, c C(k)[xy41,-..,z,] defined by whose variety is called toric variety. Following the two mai

steps in using Grobner basis to compute the variety of an
o I =1n C(k)[xrfl’ cos ). ideal, we describe both the elimination and extension steps
The Elimination Theorem provides a method to compute gy harameterizing*. The elimination step aims to compute
Grobner basis for theth elimination ideall,.. the toric variety which gives the rate equilibriund. This

Theorem 1.3 (Elimination)Let I C C(k)[x] and letG'be  oric variety is then used in the extension step to compute
a Grobner basis of with respect to the lex order; > the state equilibrium:*.

T2 et >lex Tn. Then, for eveny) <r <n, the set a) The Elimination Steplet R(k)[z] be a ring in the
unknownz = (z1,...,z,) and let R(k)[v] be a ring in
G, =GNCK)[xrs1,---,2n T .
(k)lwr4a o] another unknowmw = (vy,...,v,,). Recall that the mapping
is a Grobner basis of theth elimination ideall,.. v(z, k) betweenr € R™ andv € R™ in (2) is given by
The varietyV(I,.) of elimination ideall,. can be obtained o(a, k) R = RT, 20 =ka?

from its Groebner basi&,.. V(I,.), however, is a subvariety ) _ _

of the original ideall (i.e. V(I,) C V(I)) and therefore With the image ofv(z, k) is defined as

serves only as partial solution o v1(z, k) = kia? o (2, k) = kpa?m
2) Extension: The extension step aims to extend th

partial solutionV'(Z,.) obtained in the elimination step to

get the whole solutioiV (I) for ideal I. The condition that

allow this extension is given by the Elimination theorem.

A given v* € R’ will correspond to anw* € R if the
conditionv* € im(v(z*, k)) is satisfied (i.e. if* lies on the
image of the map/(z*, k)). This condition can be checked
by evaluating the zeros of the expressions

Theorem 1.4 (Extensionyet I = (fi,...,f,)
C(k)[x] and letI; be the first elimination ideal of. For v; —vi(z, k), fori=1,...,m. (18)
eachl < < ¢, write f; in the form The expression in (18) is binomial ideal @{(k)[z,v]. The
fi = gi(xa, ..., xg)ali+ terms wherer; has degree: N;, rate equilibriumv*, however, lies on the variety of a toric
(17) ideaI_I = (v; - vi(x, k)) QR(k)_[v] (note the diffe_zrgnc_e of
where N; > 0 and g; € C(k)[za,..., 2] is nonzero. thering)and is called toric variety (Z). Using Elimitation
Suppose that we have a partial solutiém;,...,z%) € 1heorem, a Grobner basis f@rcan be computed from the
V(L). If (z3,...,2%) ¢ V(gi,...,g,), then there exists Grobner basis of binomial ideal (18) in the following way.
2% € C(k) such that(z%, ..., z%) € V(I). First, define ideal € R(k)[x,v] corresponding to (18)
It can be seen that the goal of the elimination step is to | — (v] — iz, .. v — kmxzm> € R(k)[z,v]. (19)

iteratively reduces the original problem into problemshwit
smaller number of variables for which the solutions can b
computed easily. The extension step then back substitutes Z = (v — k1z?*, ..., v — kma?™) NR(K)[v],

these solution to the original problem to get the total sofut = INR(k)[]. (20)

The importance of Grobner basis in this case is that it alow ) , ) ) o

for a systematic execution of the elimination step. Grabndy Hilberts Basis Theorem/ is generated by a finite
basis can be computed using Buchberger algorithm whidimber of basis and one choice of such basis is the Grobner
have been implemented in many computer algebra softwarB@Sis- Sincd € R(k)(z,v) is a binomial ideal, its Grobner

such as Singular [22]. Buchberger algorithm, however, haR@Sis Will also be binomial defined oR(k)(x,v) [30],

doubly exponential worst case complexity in the numbe@2l- Let G denotes the Grobner basis biwith respect to
of unknown variables. As shown in [23], when there ar€limination ordering forz. Now notice that the toric ideal
n unknown variablesa, . .., x,) and the polynomials in Z in (20), obtained from the intersectidm R(k)[v], is the
f(z, k) have a total degree not exceedifighen the degree nth e!lmlnatlon ideal ofl (as itis cor_‘nputed by"ellmlnatln_g
of polynomials in Grobner basi§ is bounded by2(1d? + " variablesz from I) on R(k)[v]. Using the Grobner basis
d)TH This bound is doubly exponential with respectrto G of ideal I, the Elimination Theorem implies that the basis

which makes the Buchberger algorithm may require a lar n(v) = GNR(k)|v] is a Grobner basis fafNR(k)[v] = I.

memory. Nevertheless, many applications have shown tth'S. ”?eg‘s E.m;Of t?e Grcib.ner bqs&ta)ls fotst_orlc ﬁe&lthqs?
such worst case bound is not always encountered. asis In; which only contain variable. since the variety

of an ideal is equivalent to the variety of its basis, then the
B. Equilibrium parameterization toric variety V(Z) is given by

This section reviews the method proposed in [11], [24] for  V(Z) = {v € Q™(k) : Gn(v) =0} C R(k)[v].  (21)
parameterizing the state equilibriuaf of (2). It involves

computating the parameterized rate equilibriwinformed i
by the intersection of toric variety and convex cone. v (k) € V(I). (22)

Ihe corresponding toric idedl € R(k)[v] is given by

The toric variety thus define the rate equilibriurh, i.e.



1: Input: rate vectory(z, k) = (kyx?t, ... kpa?m)T

b) The Extension steBy the Ideal-Variety Correspon- i R
2: Output: parameterized state equilibrium’ (A, k)

dence theorem [21], we know that any variefy(l) €
R(k)[z,v] of binomial ideal (19) must vanish on* (k) €
R(k)[v] in (22). Thus,v* (k) in (22) is a partial solution to
V(I) and we need to extend it to get the remaining solution
x* which then define the total solutiorii(I) C R(k)[z, v].

The existence of this extension can be shown using the
Extension Theorem. First, rewrite the ideal in (19) as

v* = diagk)(z*)%.

Construct ideall € R(k)[z,v] in (19) as
I=(vy —kiz?, ... vg — kmz?™) € R(E)[z,v].

Compute a Grdbner bas@ of I using lex orderz; >
ce > Ly > 1 > Uy (TOOIS: [22])

5. Compute the Grdbner bass, € R(k)[v] for the nth
elimination ideal of/ according to

For given nonzero partial solutiost (k), this representation G, = GNR(k)[v],
satisfies equation (17) with;(-) = diag(k) and the second
term on the right hand side of (17) equals to zero. By the
Extension Theorem, solution tg* is guaranteed to exist.

In particular,z* can be computed using Hermite trans-
formation as follows. Introduce a coordinate transforomati
r* = wY with w € R* andU is a unimodular matrix. Since

v*(k) = diag’k)(z*)#, we have

i.e. G,, contains those basis ifd that depend only on.
The toric ideal in (20) becomes(G,,) C R(k)[v]. Its
variety isV(Z) = {v e R(k)™ : G,, = 0} C R(k)[v].

6: The rate equilibrium is then defined as(k) € V(Z).

7: Compute the convex parameterization of rate equilibrium
v*(A) € K,. (Tools: [31])

8: The rate equilibrium is formed by the intersection

diagk)(z*)? = diagk)wV? = diagk)w? = v*(k), (23)

where we have used the fact thatZ = H, with H is the
Hermite normal form of matrixZ. For givenv*(k), solving
the equation diagd)w!’ = v*(k) for w and then followed by
computingz* using relationz* = wY, the solutionz* (k) €
R(k)[z] can be obtained. Both* (k) andv*(k) then define
the variety of binomial ideal in (19).

2) Convex polyhedral coneOne may see fronf2) that
the rate equilibriunv* is confined to a sek’, defined by

v* e K, = {ker(N) N R}

(4]

K, is actually a convex polyhedral cone, generated by lineal®l
combinations of finite number{) of extreme raysk; for
t=1,...,M [17], [11]. There are tools that can be used to g
compute these extreme rays [31]. SiriCg is convex, there
exists \; > 0 such that the conéC, can be parameterized
askC, = Zﬁl A E;, where )\ is convex parameters. Thus,
the rate equilibrium* can also be parameterized by convex
parameter\; [17], [11]

(7]

M [8]
v*(A) = AE;. (24)
i=1 E]
Given the parameterization (22) and (24), the rate equilib-
rium of system (2)is then defined as their intersection, i.e.

v k) = (o € V(D) 1 o € Ko} C RO B[], (25) 0

By substituting this intersection to (23), the paramesstiz [11]
state equilibriumz* (A, k) can also be obtained. The com-
plete algorith to compute(\, k) in (25) is depicted on figure 12]
1. Grodbner basis for binomial ideal of the form (18) (step i

in figure 1) can be computed using Singular [22]. [13]
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