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Abstract— Wireless networked control systems (WNCS) with
the control loops closed over a wireless network are prevailing
these days. But it also produces new challenges for stability
analysis when considering the nuance of the practical commu-
nication protocols. The IEEE 802.15.4 protocol has been very
popular among communication protocols utilized in WNCS.
However, usually its medium access control (MAC) is not
tailored towards WNCS which may be greatly affected by
the choice of MAC parameters. Most previous research either
focuses on WNCS or the communication protocol but few
of them considered the modelling and analysis on both. To
this end, this paper serves to bridge these two interactive
parts. We first propose a Markov chain model to analyze the
communication network’s impact on the delay from sensor to
controller and apply an extended Bernoulli jump linear system
framework to study how MAC parameters affect control system
stability. It has been revealed that there are certain MAC
parameters greatly affect system stability and they have to be
carefully designed and tuned systematically.

I. INTRODUCTION

Wireless networked control systems (WNCS) are spatially
distributed systems in which the communication between
sensors, controllers and actuators occurs through a shared
wireless communication network. There has been growing
interest in WNCS because of its flexible architectures, re-
duced installation and maintenance costs [1]. However con-
trol loops being closed over shared communication networks
also introduces new challenges [2]. It is no longer suitable
to assume that the delays between sensor and actuator are
negligible or constant. Indeed, WNCS will inevitably suffer
from random delays or packet dropouts introduced by trans-
mission, channel access, retransmission and routing which
may affect the control system stability or even destabilize
the system [3].

The stability of WNCS subject to data rate, time-varying
transmission delay and communication constraints has been
considered in [4], [5], [6] and references therein. However,
it has been pointed out that in most control applications the
packet size is relatively small [7], [8] and thus the end to
end delay is actually dominated by the duration of random
access [8] instead of data transmission. Therefore the effect
of random access plays a significant role in the delay of
WNCS, which is a function of data traffic, medium access
control (MAC) protocol and topology [9]. But most of such
studies either assume an oversimplified communication pro-
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tocol model or assume a delay characteristic as given a pri-
ori without considering practical communication protocols.
Hence this paper first gives a detailed analytical model of
delay effects in the WNCS using a practical communication
protocol, particularly the IEEE 802.15.4 standard [10].

Most of the theoretical analysis on the IEEE 802.15.4
protocol is based on the multi-state Markov model proposed
in Bianchi’s work [9]. The key approximation in [9] which is
also adopted in most subsequent researches such as [11], [12]
is the assumption of a constant and independent channel busy
probability at each attempt for each node, regardless of the
number of backoffs or retransmissions already suffered. This
assumption has been proven to be quite accurate in saturated
traffic scenario meaning that the transmission queue of each
node is assumed to be always nonempty, and has also been
widely adopted in the literature for unsaturated traffic [8],
[13]. We will also adopt this assumption in our work.

The main concern of this paper is the stability analysis
of WNCS with the IEEE 802.15.4 communication protocol.
Unlike previous related works that either concern only stabil-
ity or protocol, in this study we bridge them and study both
to provide a control and communication system co-design
framework. We first model and analyze the MAC protocol
and end to end delay, show that they are functions of MAC
and WNCS parameters. Then we apply the WNCS stability
analysis based on the extended Bernoulli jump linear system
theory. From the results we identify the most significant
MAC parameters to stabilize the system with the potential to
maximize the stability margin. In this way, when designing
the protocol tailored to control applications, it is possible to
assess the stability of the control system subject to the com-
munication network beforehand and adjust the corresponding
MAC or WNCS parameters. Also when there is variation in
the size of WNCS or the channel conditions, this work can
give guidance on the MAC parameter adaptation.

The paper is organized as follows. Section II formulates
the problem. Section III gives an overview of the unslotted
IEEE 802.15.4. In Section IV, we propose a Markov chain
model for the standard unslotted IEEE 802.15.4 protocol
followed by Section V where we study the end to end delay
distribution using approximations. In Section VI, we apply an
extended Bernoulli jump linear system framework to study
the stability of WNCS.

II. PROBLEM FORMULATION

Let’s consider a WNCS with the star topology consisting
of N identical linear time invariant (LTI) systems. The
sensors are spatially distributed while the controllers and



the actuators are collocated in the center of the network.
The communication conforms to the IEEE 802.15.4 unslotted
protocol. Assume that each control system has the dynamic
as the following:

dx

dt
= Ax(t) +Bu(t) (1)

where x(t) ∈ Rn, u(t) ∈ Rm, A,B are matrices of appro-
priate sizes and u(t) = −Kx(t) is the control input.

The control system is sampled with a random sampling
period and then the sampled value is transmitted to the
controller via a wireless channel. Once the controller receives
the data, it immediately computes the corresponding control
and applies it to the corresponding actuator. The control value
is then used until next update comes. We assume that there
is no delay in this stage.

In a typical contention based MAC protocol, there are
three possible outcomes for each transmission attempt. First
the sender successfully gets access to the wireless channel
and transmits the data while no other senders was transmit-
ting. So no collision occurs and the receiver gets the data
without any distortion. Here we assume that the wireless
channel is perfect so once the data is transmitted without
collision, the receiver will get the data. Second, the sender
gets access to the channel and sends the data, but it is
dropped due to collision. In this case, the receiver will not get
anything and no retransmission is assumed. The third case
is that the data is dropped due to accessing failures within
allowed number of attempts.

Let rk ∈ {0, 1, 2} denote the above states of successful
transmissions, packet drop due to collisions and packet drop
due to access failures respectively at the kth sampling period.
Since we assumed that at each attempt, the channel busy
probability is constant and independent and also each sensor
tries to access the channel independently, it can be obtained
that rk is a Bernoulli process. Let h0, h1, h2 denote the
random sampling period in each state, consequently they are
i.i.d with certain distributions respectively.

When rk = 0 , the sampled system can be written as [14]

xk+1 = φ0(k)xk + Γ0,0uk + Γ1,0uk−1 (2)

where

φ0(k) = eAh0

uk = −Kxk

Γ0,0 =

∫ h0−Dk

0

eAs dsB

Γ1,0 =

∫ h0

h0−Dk

eAs dsB

(3)

Dk denotes the delay experienced in the kth transmission
which is the sum of the backoff delay and the time spent on
transmitting the data packet. Set zk = [xk, uk−1]T . The new
augmented system is as follows:

zk+1 = Φ0zk (4)

where
Φ0 =

[
φ0(k)− Γ0,0K Γ1,0

−K 0

]
(5)

For rk = i where i = 1, 2, the sample system can be written
as

xk+1 = φi(k)xk + Γ0,iuk−1 (6)

where

φi(k) = eAhi

Γ0,i =

∫ hi

0

eAs dsB
(7)

The sampled data was not received by the system, the
controller will use the previous control value. Therefore, in
the augmented system for i = 1, 2 we have

Φi =

[
φi(k) Γ0,i

0 1

]
(8)

Consequently, the single control system can be modelled
as an extended Bernoulli jump linear system in which the
system dynamic in one of the three states is random with
a certain distribution. It is different from the traditional
Bernoulli jumper linear system in which the system dynamic
in each state is deterministic [15]. In our case, the mean
square stability condition for such a system is [16]:

R = ρ(

2∑
i=0

piE[Φi ⊗ Φi]) < 1 (9)

where pi denotes the probability in the ith state, ρ(G)
denotes the spectral radius of some matrix G and ⊗ is the
Kronecker product. Note that the stability results also apply
if we consider additive Gaussian noises.

Observe that the stability of the system depends on pi
and hi which are functions of MAC parameters, data length
and N . Thus we need the protocol modelling and analysis
which will be conducted in section IV. Before that, let’s first
introduce the IEEE 802.15.4 protocol.

III. OVERVIEW OF THE UNSLOTTED IEEE 802.15.4

The IEEE 802.15.4 standard defines two channel access
modalities: the beacon-enabled modality, which uses a slotted
CSMA/CA and the optional GTS allocation mechanism, and
a simpler unslotted CSMA/CA without beacons. This paper
focuses on the latter modality.

According to the standard, there are three types of nodes:
coordinator, routers and end devices. The coordinator estab-
lishes a network and can allow others to join. The routers are
similar to the coordinators but do not start a network. The
end devices only join the network. There must be and can
only be one coordinator in a network but multiple routers and
end devices. The nodes have to use the unslotted CSMA/CA
protocol to access the channel. The algorithm is implemented
using units of time called backoff periods Tb which contains
20 symbol time Ts. One symbol consists of 4 bits and the bit
rate is 250 kbps. Therefore it can be obtained that Ts = 16µs
and Tb = 320µs.

Basically at the beginning of every transmission attempt,
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Fig. 1. The unslotted IEEE 802.15.4 CSMA/CA algorithm.

each node initializes two variables : NB and BE. NB is the
number of times that the CSMA/CA algorithm was required
to backoff because the channel is sensed to be busy. This
value is initialized to 0 before each new transmission attempt
and is upper bounded by NBmax, which is equal to 4 by
default. BE is the backoff exponent related to the maximum
number of backoff periods. It will be initialized to BEmin

and cannot exceed BEmax whose default values are 3 and 5
respectively. There is no retransmission assumed so no ACK
is transmitted.

As Fig. 1 illustrates, a node first initializes the two
variables and then uniformly delays a discrete time duration
between 0 to (2BEmin − 1) ∗ Tb. When the waiting time
is up, it performs channel sensing which takes Tb. If the
channel is busy, NB and NE will be increased by 1 and
the node performs second round of backoff. If the channel is
idle, the node will simply transmit the packet immediately.
If at least two nodes happen to sense the channel idle at
the same time slot and thus start transmission at the same
time, the packets will collide and be lost. When NB ≤
NBmax and if channel is busy repeatedly, it will continue to
backoff. When the number of backoff exceeds the maximum
allowable value, the node will stop transmission attempt and
the packet is dropped. Since Tb is 320 µs, it can be calculated
that the maximum backoff time that a node can have is
38.4 ms. We assume that the wireless channel is perfect,
so in the unslotted CSMA/CA, the packets are lost due to
two reasons: channel access failure and packet collision. The
former happens when a packet fails to obtain an idle channel
after channel sensing within m+1 backoff stages. The latter
happens if the transmission collides with other packets. After
each transmission, whether it is successful or not, we assume
that the node will enter the idle state for a constant time
period and prepare for the next data arrival.
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Fig. 2. Markov chain model for unslotted IEEE 802.15.4 CSMA/CA.

IV. MARKOV CHAIN MODEL

In this section, we propose an analytical model of the
unslotted CSMA/CA mechanism of IEEE 802.15.4 following
the discussion in [17]. The key difference is that [17]
discussed the slotted IEEE 802.15.4 and assumes that each
node goes to the idle state with certain probability.

As discussed in problem formulation, a star topology
network is considered. The coordinator is the collocated
controllers and actuators for N control systems. The N
end devices are the sensors contending to send data to
the coordinator, which is the data sink. The behavior of
each single node in the network is studied by the following
Markov model.

Let s(t), c(t) be the stochastic processes representing the
backoff stage and the state of the backoff counter at time
t respectively, experienced by a node to transmit a packet.
By assuming the independent probability that the nodes start
sensing, the stationary probability τ that a node attempts
carrier sensing in a randomly chosen time slot is constant and
independent of other nodes [17], and the tuple (s(t), c(t)) is
a two dimensional Markov chain.

We define W0 = 2BEmin , m0 = BEmin, mb = BEmax,
m = NBmax. The states (i, 1) to (i,Wm − 1), i ∈ [0,m]
denote backoff states. For example, state (i, j) denotes that
a node is in the backoff stage i and its counter is j. States
Q0, ..., QL0−1 denote the idle states, where L0 is the prede-
fined idle duration. So whenever the state reaches QL0−1, a
new data packet will be ready for transmission. This is the
main difference with the Markov chain model proposed in
[18] which assumes that the generation of a new packet in
each time unit is governed by a specified probability q. States
(i, 0), i ∈ [0,m] denote the counter decreases to 0. States
(−1, k) and (−2, k) model the successful transmission and
packet collision. Pc is the collision probability and Pb is the
probability for channel being busy. L is the data length in
integer number of Tb. If we denote h as the end to end delay
for each transmission which is also the sampling period, it is
obvious that h is a random variable. The model is illustrated
in Fig. 2. The transition probabilities associated with the
Markov chain are:

P (i, k|i, k + 1) = 1, k ≥ 0 (10)



which represents the decrement of backoff counter that
happens with probability 1.

P (i, k|i− 1, 0) =
Pb

Wi
, i ≤ m (11)

which represents the probability of finding busy channel and
then of selecting a state uniformly the in the next backoff
stage.

P (−1, L− 1|i, 0) = (1− Pb)(1− Pc) (12)

which gives the probability of successful transmission with-
out collision after finding an idle channel.

P (−2, L− 1|i, 0) = (1− Pb)Pc (13)

which denotes the probability of unsuccessful transmission
due to collision after finding channel to be idle.

P (Q0|m, 0) = Pb (14)

which represents the probability of going back to the idle
stage due to the channel access failure and backoff limits.

P (Q0| − i, 0) = 1 (15)

(15) for i = 1, 2 are the probabilities of going back to the
idle stage after a transmission with or without collision.

P (0, k|QL0
) =

1

W0
(16)

(16) models the probability of going back to the first backoff
stage from the idle stage. Also, in idle stage, Qi moves to
Qi+1 with probability 1.

We then compute the stationary distribution of the Markov
chain based on (10)-(16). Define bi,k = limt→∞ P (s(t) =
i, c(t) = k) to be the stationary distribution of the Markov
chain. Then from the transition probabilities above, we can
see that

bi,k =
Wi − k
Wi

bi,0, i ≥= 0 (17)

Where

Wi =

{
2iW0 i ∈ [0,mb −m0]

2mb−m0W0 i ∈ [mb −m0 + 1,m]

and
bi,0 = P i

bb0,0 (18)

The normalization condition is that
m∑
i=0

Wi−1∑
k=0

bi,k +

L−1∑
k=0

b−1,k +

L−1∑
k=0

b−2,k +

L0−1∑
l=0

Ql = 1 (19)

From (17) and (18), we can take a closer look at the four
terms in (19).

m∑
i=0

Wi−1∑
k=0

bi,k = b0,0

m∑
i=0

P i
b

Wi

Wi−1∑
k=0

Wi − k

=
b0,0W0

2
(
1− Pm+1

b

1− Pb
+

1− (2Pb)
mb−m0+1

1− 2Pb

+ 2mb−m0
Pmb−m0+1
b (1− Pm0

b )

1− Pb
)

(20)

L−1∑
k=0

b−1,k = L(1− Pc)(1− Pb)

m∑
i=0

bi,0

= L(1− Pc)(1− Pm+1
b b0,0)

(21)

Similarly,
L−1∑
k=0

b−2,k = LPc(1− Pm+1
b )b0,0 (22)

L0−1∑
l=0

Ql = L0Q0

= L0(Pm+1
b b0,0 + b0,0(1− Pm+1

b )) = L0b0,0
(23)

Plug (20)-(23) into (19), we can get an equation of Pb, b0,0
and Pc. On the other hand, the probability τ that a node
attempts to sense the channel at any given time is

τ =

m∑
i=0

bi,0 =
1− Pm+1

b

1− Pb
b0,0 (24)

Then the probability Pc that the package transmission col-
lides is the probability that at least one of the N−1 remaining
nodes transmits in the same time slot. It can be written as

Pc = 1− (1− τ)N−1 (25)

Similarly, the channel busy probability Pb can be expressed
as

Pb = L(1− (1− τ)N−1)(1− Pb) (26)

Combine these expressions it is possible to solve for
b0,0, τ, Pc, Pb from a set of nonlinear equations.

V. BACKOFF TIME ANALYSIS

Basically there are two cases for sampling period h at the
kth sampling time. First is when the data gets transmitted
regardless of a collision. In this case, h = τb,k + (L+L0)Tb
where τb,k denotes the delay in the backoff stage, LTb is the
time to transmit the data and L0Tb is the time spent in the
idle state waiting for new data. In the second case the node
fails to access the channel within the backoff time limit so
h = τf,k where τf,k denotes the total time spent in m backoff
stages without success. Since Pb is independent of time and
the backoff selection is also an independent event, it can be
obtained that τb,k and τf,k are i.i.d so they can be simply
denoted as τb and τf .

For τb, it is possible to get an exact distribution. For
example in [11], a probability generation function approach
is proposed to compute the discrete probability distribution
of the delay. However, such an approach is computationally
expensive and can only produce lengthy expressions with-
out a closed form. A more general way is to obtain the
approximated distribution by a moment matching approach
in which the mean and variance of the actual delay is derived
and then the probability distribution function of the delay is
approximated by known distributions. Exponential distribu-
tion has been shown to match well the actual distribution
in scenarios like our study [17]. Therefore, in this paper we
use exponential distribution with derived actual average of



the delay to approximate the backoff delay distribution. It
can be seen that

τb =

m∑
i=0

1(Bi|Bs)Di (27)

where 1(.) is the indicator function and Bs denotes the
event of successful channel access (though still could
collide with other packets). Bi denotes the event of
successful transmission at ith backoff stage, Di denotes the
corresponding total delay from backoff stage 0 to i.
Then the expectation of τb is

E[τb] = E[

m∑
i=0

1(Bi|Bs)Di]

=

m∑
i=0

E[1(Bi|Bs)Di] =

m∑
i=0

E[1(Bi|Bs)]E[Di]

(28)

where E[Di] =
∑i

j=0E[dj ] and dj denotes the random
delay at the jth backoff stage and is uniformly distributed so
E[dj ] =

Wj

2 . Furthermore E[1(Bi|Bs)] = P (Bi|Bs) where
P (Bi, Bs) = P i

b (1− Pb) and P (Bs) =
∑m

i=0 P
i
b (1− Pb).

So from (28) we know that

E[τb] =
1

1− Pm−1
b

m∑
i=0

P i
bE[Di] (29)

which is a function of Pb. From the above equation we
can see that Pb is the key parameter to bridge the control
and communication system which is influenced by the total
number of nodes N , the data length L and the idle time
length L0.
For τf , we know thatτf =

∑m
i=0 di. Since di’s are inde-

pendent of each other and each one of them is uniformly
distributed, τf ’s distribution can be obtained.

VI. STABILITY ANALYSIS

Now we are ready to analyze the stability of WNCS with
the unslotted 802.15.4 MAC protocol. We assume that the
WNCS starts at the time when the Markov chain of the
communication network reaches its steady state. The control
system is modelled as in Section II.

In state 0, from the protocol we know that h0 = τb+(L0+
L)Td. Since τb’s distribution has been analyzed and approx-
imated in section V, L0 and L are predefined constants, the
distribution for h0 is also known. Likewise in state 1, h1 =
τb + (L0 + L)Td and in state 2, h2 = τf + L0Td. Then we
can apply our analytical protocol model and delay analysis
to examine the significance of different MAC parameters and
shed some lights on the control and communication system
co-design assuming a given system dynamic as (1) where
A = 1, B = 1, K = 1.5.

A. Number of nodes N

We evaluate the spectral radius R given in (9) as the
function of N . Fig. 3(a) illustrates the effect of number
of nodes N on the stability of our Bernoulli jump linear
system. The protocol parameters are default (m0 = 3, mb =

5 10 15 20
0.92

0.94

0.96

0.98

1

1.02

1.04

Number of nodes

S
pe

ct
ra

l r
ad

iu
s 

R

(a)

5 10 15 20
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Number of nodes

 

 

p
0

p
1

p
2

(b)

Fig. 3. Spectral radius R and p0, p1, p2 as function of N .

3 4 5 6 7
0.89

0.9

0.91

0.92

0.93

0.94

MAC parameter, m
0

S
pe

ct
ra

l r
ad

iu
s 

R

(a)

3 4 5 6 7
0

0.2

0.4

0.6

0.8

MAC parameter, m
0

 

 

p
0

p
1

p
2

(b)

Fig. 4. Spectral radius R and p0, p1, p2 as function of m0.

5, m = 4) and we set L = 10, L0 = 5. It can be observed
that the system starts to become unstable when N > 17.
The reasons are twofold. With more nodes, there is a higher
busy channel probability which results in longer delays in
successful transmissions. Furthermore, it is also more likely
to have collisions or dropouts due to channel access failures
as shown in Fig. 3(b). Observe that it is interesting to see R
first decreases and then increases indicating an optimal N .

B. Initial backoff exponent m0

Fig. 4(a) illustrates the R as a function of the initial
backoff exponent m0 with N = 20, mb = 8, m = 5, L =
10, L0 = 5. A smaller m0 gives less backoff delay if
successfully transmitted but at the same time the channel
being busy is more likely. Likewise, a larger m0 will decrease
the channel busy probability and thus increase the chance to
transmit the data but at the cost of longer delays occurring
with higher probability. So increasing m0 to a certain point
the longer delay will cancel the benefit of a higher success
transmission probability which can be seen in Fig. 4(a) as R
first decreases and then increases. Obviously there is a trade
off to choose m0 to minimize R.

Also from Fig. 4(b) it can be found that Pb decreases
rapidly and the chance of successful transmission increases
dramatically as m0 increases. So m0 is a key parameter that
affects the channel busy probability and delay.
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C. Maximum backoff exponent mb

Fig. 5(a) and Fig. 5(b) are plotted with N = 10, m0 =
3, m = 5, L = 10, L0 = 5. With a higher mb, it can be
observed that the channel being busy is less likely because
at the higher backoff stage there will be exponentially more
time slots available to choose from. But at the same time the
system may experience a longer delay for the same reason.
It can be seen that R starts to level off as mb increases
because of these two competing factors. So increasing mb

initially can be beneficial but when mb is already large it
will not greatly improve the system performance.

D. Idle time length L0

With larger L0, the average sampling period will be higher
since the control system spends more time in the idle state.
However, it is also less likely to sense the channel busy
because of less traffic in the network. From Fig. 6(a) and
Fig. 6(b) it can be observed that increasing L0 has very little
impact on R which decreases by less than 0.004 while L0

changes from 5 to 30.

VII. CONCLUSION

This paper mainly addressed two problems. First we
presented a two dimensional Markov chain model and delay
distribution analysis in the unslotted IEEE 802.15.4 protocol.
We analyzed the model, derived the channel busy probability
and collision probability. Based on the derived analytic
model, we studied the WNCS stability problem. It can be
seen that before deploying a WNCS with IEEE 802.15.4

protocol, it is possible to assess the system stability. If the
system tends to be unstable, the main parameters to be
considered tuning is m0 and mb. Increasing L0 may help
very little and finally, if no MAC parameter tuning can
stabilize the system, we may decrease the number of nodes
in the network.
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