
Decentralized Supervisory Control of Discrete Event Systems with
Unknown Plants: A Learning-based Synthesis Approach

Jin Dai and Hai Lin

Abstract— In this paper, we consider automatic synthesis of
decentralized supervisor synthesis for uncertain discrete event
systems. In particular, we study the case when the uncontrolled
plant is unknown a priori. To deal with the unknown plants,
we first characterize the co-normality of prefix-closed regular
languages and propose formulas for computing the supremal
co-normal sublanguages; then sufficient conditions for the exis-
tence of decentralized supervisors are given in terms of language
co-normality and a learning-based algorithm to synthesize
the supervisor automatically is proposed. The correctness and
convergence of the algorithms is proved, and its implementation
and effectiveness are illustrated through examples.

I. INTRODUCTION

The discrete event system (DES) supervisory control
theory initiated by Ramadge and Wonham [14], [15] has
been widely used to model and control large-scale systems,
including multi-agent systems, traffic networks and man-
ufacturing systems, see e.g., [2,8] and references therein..
Motivated by the fact that more and more complex systems
built up nowadays are becoming physically distributed and
networked, the decentralized control architecture of DESs
has arisen in the study of supervisory control problems and
has attracted many researchers’ interest, see e.g. [17] [7] [13].

There have been a lot of studies of the decentralized
supervisory control problems. In [11] a sufficient condi-
tion for the existence of decentralized supervisors that the
controlled behavior of the system lies in a given range
expressed by local specifications was proposed. Cieslak
et al. [3] considered the decentralized control where the
specification is given as a prefix-closed regular language, and
the property of co-observability was introduced in place of
observability and the result was then generalized to the case
of non-prefix-closed specification by Rudie and Wonham
[17]. In [19], Willner and Heymann studied the decentralized
supervisory control of concurrent discrete event systems, and
a necessary and sufficient condition for the existence of the
decentralized supervisor was proposed based on separability
of the specification. However, most of the existing supervisor
synthesis algorithms require prior and complete knowledge
of the uncontrolled plant. This requirement has been pointed
out to be unreasonable [4] due to the uncertain nature of the
plant.

There have been some studies of the uncertainty of the
plant. Lin considered the plant as a set of possible plants

This work was supported by the National Science Foundation (NSF-
CNS-1239222 and NSF- EECS-1253488)

The authors are with the Department of Electrical Engineering, U-
niversity of Notre Dame, Notre Dame, IN 46556, USA. {jdai1,
hlin1}@nd.edu.

and designed robust supervisor applicable for the whole
range of plants [10]. In recent years, fault-tolerant control
scheme has been proposed to deal with the faults occur-
ring during the evolution of the system. Wen et al. [18]
proposed a framework of fault-tolerant supervisory control
of DESs, in which the supervisor was designed to ensure
the recovery from fault. Liu and Lin [12] investigated the
reliable decentralized supervisory control problem of DES
under the general architecture, which seeked the minimal
number of supervisors required for correct functionality of
the supervised systems.

This paper differs from the aforementioned work in the
sense that we focus on automatic decentralized supervisor
synthesis for unknown plant instead of partially known or
bounded cases. The contribution of this paper is as follows:
first, we propose a sufficient condition for the existence of
decentralized supervisor in terms of language controllability
and co-normality; secondly, to deal with the uncertain or
even unknown nature of the plant, we propose an L∗ learning
based synthesis algorithm where new dynamical membership
queries are used instead of static ones in the original learning
procedure, and the algorithm can synthesize a sub-optimal
decentralized supervisors that are consistent with the supre-
mal controllable and co-normal sublanguage of the given
prefix-closed specification language; thirdly, the correctness
and convergence of the proposed synthesis algorithm are
proved, and its effectiveness is illustrated through examples.

The rest of this paper is organized as follows. Section
II briefly reviews the result of decentralized supervisory
control and L∗ learning procedure. The discussion about
language co-normality and the sufficient conditions for the
existence of decentralized supervisor based on co-normality
are given in Section III. The modified L∗ learning algorithm
for supervisor synthesis is provided in section IV. Section V
presents a simple example to illustrate the effectiveness of
the proposed algorithm. In conclusion we will discuss future
work.

II. PRELIMINARIES

A. Decentralized Supervisory Control of Discrete-event Sys-
tems

An uncontrolled plant is modeled by a deterministic finite
automaton G = (Q,Σ, q0, δ, Qm), where Σ is a set of
events, Q is a set of states, q0 ∈ Q is the initial state,
Qm ⊆ Q is the set of marked states, δ is the (partial)
transition function. Let Σ∗ denote the set of all finite strings
over Σ plus the null string ε, then δ can be extended to
δ : Q× Σ∗ → Q in a natural way. The languages generated

by G is given by L(G) = {s ∈ Σ∗|δ(q0, s) is defined}
and the language marked by G is given by Lm(G) =
{s ∈ Σ∗|s ∈ L(G), δ(q0, s) ∈ Qm}. The prefix closure K of
a language K ⊆ Σ∗ is the set of all prefixes of strings in K.
K is called prefix-closed if K = K.

In supervisory control theory, the event set are divided into
the set of controllable events and the set of uncontrollable
events, i.e., Σ = Σuc∪̇Σc. Given a non-empty prefix-closed
specification K ⊆ L(G), a supervisor S exists such that
L(S||G) = K if and only if K is controllable, i.e., KΣuc ∪
L(G) ⊆ K [14]. If not, then a supervisor is synthesized for
the supremal controllable (also prefix-closed) sublanguage of
K, namely, supC(K).

Moreover, the supervisor may also be constrained to ob-
serve only events in a specified set of observable events and
the event set is divided into the subset of unobservable and
observable events, i.e., Σ = Σuo∪̇Σo. The presence of partial
observation can be captured by an the natural projection
mapping P : Σ→ Σo ∪{ε} that erases the occurrence of all
unobservable events. A prefix-closed language K ⊆ L(G)
is said to be observable if the conditions s, t ∈ K,σ ∈ Σ,
P (s) = P (t), sσ ∈ K, and tσ ∈ L(G) together imply
tσ ∈ K [9]. Given a non-empty prefix-closed specification
K ⊆ L(G), a supervisor S exists such that L(S||G) = K if
and only if K is controllable and observable [2].

In this paper, we study the general decentralized supervi-
sory control problem, where the plant is controlled jointly by
n local supervisors, each of which observes the locally ob-
servable events and controls the locally controllable events.
Let I = {1, 2, . . . , n} denote the indices of the supervisors.
For each i ∈ I , let Σi denote the i-th local event set, hence
Σ =

⋂
i∈I Σi. Σi is divided into the set of controllable

events Σi,c and the set of uncontrollable events Σi,uc. Let
Σi,o and Σi,uo denote the sets of locally observable and
unobservable events, respectively. For notational simplicity,
the set of globally controllable events is denoted as Σc =⋃
i∈I Σi,c and the globally observable event set is denoted

as Σo =
⋃
i∈I Σi,o. The sets Σuc = Σ − Σc =

⋂
i∈I Σi,uc

and Σuo = Σ − Σo =
⋂
i∈I Σi,uo denote the uncontrollable

and unobservable event sets, respectively, with the natural
projection mapping PΣi

: Σ∗ → Σ∗i,o. We use Pi to replace
PΣi and use P to denote the natural projection from Σ∗ to
Σ∗o in the rest of this paper. The closed loop behavior of the
DES under decentralized supervisors {Si}i∈I is denoted as
L({Si}i∈I , G).

Let In(σ) = {i ∈ I|σ ∈ Σi,c} denote the index set. A
language K ⊆ L(G) is said to be

• Normal [3] [9] if P−1P (K) ∩ L(G) = K.
• C&P co-observable with respect to A ⊆ Σc [7] if for

any s ∈ K and any σ ∈ A such that sσ ∈ L(G) −K,
then there exists i ∈ In(σ) such that: for any s′ ∈ K,
[Pi(s) = Pi(s

′)] ∧ [s′σ ∈ L(G)]⇒ [s′σ 6∈ K].
• D&A co-observable with respect to A ⊆ Σc [7] if for

any s ∈ K and any σ ∈ A such that sσ ∈ K, then there
exists i ∈ In(σ) such that: for any s′ ∈ K, [Pi(s) =
Pi(s

′)] ∧ [s′σ ∈ L(G)]⇒ [s′σ ∈ K].

Remark 1: The term “C&P ” and “D&A” in the defini-
tion of co-observability stands for “conjunctive architecture
and permissive decision rule” and “disjunctive architecture
and antipermissive decision rule”, respectively. In general,
we may use “co-observability” when the considered language
is either C&P or D&A co-observable.
In this paper, we aim at solving the problem that given a
non-empty prefix-closed specification K ⊆ L(G), find the
decentralized supervisors Si such that L({Si}i∈I , G) with
no prior knowledge of G, and we expect to apply a modified
L∗ learning method.

B. L∗ learning

The L∗ learning algorithm introduced by Angluin [1] and
improved by Rivest and Schapire [16] learns an unknown
regular language U over alphabet Σ and produces a minimal
deterministic finite automaton (DFA) that accepts it. The
algorithm infers the structure of the DFA by asking an
oracle that answers two types of queries. The first type is a
membership query, in which L∗ asks whether a string s ∈ Σ∗

is included in U . The second type is a conjecture, in which
L∗ constructs a conjectured DFA M and asks whether M is
such that L(M) = U . If L(M) 6= U the oracle returns
a counterexample, which is a string s in the symmetric
difference of L(M) and U . At any given time, L∗ has,
in order to construct the conjectured DFA M , information
about a finite collection of strings over Σ, classified either as
members or non-members of U . L∗ creates an observation
table to incrementally record and maintain the information
whether strings in Σ∗ belong to U . The observation table is a
three-tuple (S,E, T) consisting of: a non-empty finite set S
of prefix-closed languages, a non-empty finite set E of suffix-
closed languages and a function T : (S ∪ SΣ)E → {0, 1}
which is often referred to as the membership oracle, i.e., the
function T takes strings in s ∈ (S ∪ SΣ) onto 0 if they are
not in K, otherwise the function T returns 1.

The ith observation table constructed by L∗ will be
denoted as Ti. Each table can be depicted as a 2-dimensional
array whose rows are labeled by strings s ∈ S ∪ SΣ and
whose columns are labeled by symbols σ ∈ E. The entries
in the labeled rows and columns are given by the function
value T (sσ). The row function row : (S ∪ SΣ)→ {0, 1}|E|
denotes the table entries in the row labeled by string s ∈
S ∪ SΣ.

An observation table is said to be

• Closed if for all t ∈ SΣ, there exists an s ∈ S such
that row(t) = row(s).

• Consistent if there exist strings s1, s2 ∈ S such that
row(s1) = row(s2), and for all σ ∈ Σ, row(s1σ) =
row(s2σ).

• Complete if it is closed and consistent.

Once the observation table is complete, a candidate DFA
M(S,E, T) = (Q, q0, δ, Qm) over the alphabet Σ is con-

structed isomorphically by the following rules:

Q = {row(s) : s ∈ S} ,
q0 = row(ε),
Qm = {row(s) : (s ∈ S) ∧ (T (s) = 1)} ,
δ(row(s), σ) = row(sσ).

The DFA M is presented as a conjecture to the oracle.
If the conjecture is correct, i.e., L(M) = U , then the
oracle returns “True” with the current DFA M ; otherwise, a
counterexample c ∈ (U−L(M))∪(L(M)−U) is generated
by the oracle. The L∗ algorithm analyzes the counterexample
c and finds the longest prefix cp of c that witnesses the
difference between L(M) and U . Adding cp to S reflects the
difference in next conjecture by splitting states in M . Once
cp is added to S, L∗ iterates the entire process to update M
with respect to cp.

The L∗ algorithm is guaranteed to construct a minimal
DFA accepting the unknown regular language U using only
O(|Σ|n2 + n ˙logm) membership queries and at most n − 1
equivalence queries, where n is the number of states in the
final DFA and m is the length of the longest counterexample
provided by the oracle when answering equivalence queries
[1].

III. DECENTRALIZED CONTROL BASED ON
CO-NORMALITY

The sufficient condition for existence of decentralized
supervisors is related to the language decomposability, which
is first introduced by Rudie and Wonham [17], as follows.

Definition 1: A language K ⊆ L(G) is said to be
decomposable (with respect to G and {Pi}i∈I) if K =
L(G) ∩ (

⋂
i∈I P

−1
i Pi(K)).

In general, decomposability is stronger than co-
observability, i.e., a language K is decomposable implies that
K is also co-observable. However, under certain conditions
of decentralized local control [17], decomposability and co-
observability are equivalent..

Remark 2: If we extend L(G) = Σ∗, then the con-
dition for language decomposability is reduced to K =⋂
i∈I P

−1
i Pi(K), which is equivalent to the language sep-

arability discussed in [19].
The following theorem provides a necessary and sufficient

condition for the existence of decentralized supervisors based
on language decomposability.

Theorem 1: [6] Let G be a plant, Σ be the global event
set, and Σi ⊆ Σ, i ∈ I be the local event sets. Let Pi be the
natural projection from Σ to Σi. Then for a given non-empty,
prefix-closed specification language K ⊂ L(G), local super-
visors {Si, i ∈ I} exist such that L({Si}i∈I , G) = K if and
only if K is Σuc-controllable and {Pi}i∈I -decomposable.

When the given specification K is not controllable or
decomposable, a supervisor synthesis problem arises that we
need to find a controllable and decomposable sublanguage
of K. However, it has been pointed out that decomposabil-
ity is not closed under unions [13], hence it is therefore
not guaranteed that this set contains a unique supremal
element, which implies that no optimal solution (in the

sense of maximal permissiveness) exists for the decentralized
supervisory control problem. One suggestion to obtain a
sub-optimal solution takes advantage of the following co-
normality property.

Definition 2: A language K ⊆ L(G) is said to be
co-normal with respect to {Pi}i∈I if K = L(G) ∩
(
⋃
i∈I P

−1
i Pi(K))

Recall the definition of language normality and decom-
posability, it is proved that co-normality is preserved under
arbitrary unions and is a stronger property than decompos-
ability [17] [13]. The following theorem provide a sufficient
condition for the existence of decentralized supervisors in
terms of co-normality.

Theorem 2: Let G be a plant, Σ be the global event
set, and Σi ⊆ Σ, i ∈ I be the local event sets. Let
Pi be the natural projection from Σ to Σi. Then for a
given non-empty, prefix-closed specification language K ⊆
L(G), if K is Σuc-controllable and {Pi}i∈I -co-normal, then
there exist decentralized supervisors {Si, i ∈ I} such that
L({Si}i∈I , G) = K.
Proof The theorem is a direct corollary of Theorem 1 since
co-normality always implies decomposability. �

Since controllability and prefix-closeness of regular lan-
guages are also preserved under union, the supremal prefix-
closed, controllable and co-normal sublanguage of a given
prefix-closed language K, denoted as supCCN(K), exists.
The following proposition illustrates that co-normality is a
“decentralized version” of normality.

Proposition 1: If K ⊆ L(G) is co-normal with respect
to Σi, i ∈ I , then K is normal with respect to each Σi,
respectively.

Proof The inclusion K ⊆ P−1
i Pi(K) ∩ L(G) is always

satisfied for any language K ⊆ L(G). Therefore it is
sufficient to prove that K ⊇ P−1

i Pi(K) ∩ L(G). In fact,
K is co-normal with respect to Σi, i ∈ I implies that
K = L(G) ∩ (

⋃
i∈I P

−1
i Pi(K)), thus

K = L(G) ∩ (
⋃
i∈I

P−1
i Pi(K))

=
⋃
i∈I

[P−1
i Pi(K)) ∩ L(G)]

⊇ P−1
i Pi(K)) ∩ L(G),∀i ∈ I

Hence, K = P−1
i Pi(K) ∩ L(G), which implies that K is

normal with Pi, i ∈ I . �
Intuitively, Proposition 1 states that, if a language K ⊆

L(G) is co-normal, then it is normal with all the local
observation mappings, therefore, if there exists i ∈ I such
that K is not normal with respect to Pi, then we can conclude
that K is not co-normal. Based on this conclusion, we pro-
pose the following formula for the computation of supremal
co-normal language of a given language K, denoted as
supCN(K).

Theorem 3: For a language K ⊆ L(G), the supremal co-
normal sublanguage of K is given by

supCN(K) = L(G)− [
⋃
i∈I

P−1
i Pi(L(G)−K)]Σ∗ (1)

Proof The proof of Theorem 3 can follow immediately the
proof for the computation of supremal normal sublanguage
of the given language in [8], Chapter 4, by simply replacing
P by

⋃
i∈I P

−1
i Pi in the proof. �

IV. L∗ LEARNING IN SYNTHESIS OF DECENTRALIZED
SUPERVISORS

In the previous work by Yang et al. [20] [21], L∗-based
algorithm for supervisor synthesis, and in their framework,
the knowledge of the plant behaviors is confined to a limited
lookahead window, which was first introduced by Chung
and Lafortune [4]. However, this assumption is difficult in
realization. Due to this drawback of the limited lookahead
windows, in this section, we derive a modified L∗ learning
algorithm to synthesize the supervisor with an totally un-
known plant model.

Recall that a language K is controllable if KΣuc∪L(G) ⊆
K, therefore it is difficult to verify the controllability of the
given specification language due to lack of knowledge of
the plant, hence modification to the existing L∗ learning
procedure is required. We solve this difficulty by using
dynamical membership queries discussed that is capable of
learning the supremal controllable sublanguage of the given
specification (note that since the specification language is
prefix-closed, its supremal controllable sublanguage is also
prefix-closed), and hence a supervisor is synthesized.

A. Learning for controllability

We start by modifying the L∗ so that it can learn the supre-
mal contrllable sublanguage supC(K) of a given prefix-
closed specification K. A string s generated by G is said
to be legal with respect to K if s ∈ K, and s is said to be
illegal if s /∈ K.

In this paper, the dynamical membership queries presented
to the oracle in the modified L∗ is based on the observed
illegal behaviors generated by the system along with the
given specification language. A plant behavior st ∈ Σ∗ is
said to be uncontrollably illegal if s is legal, t ∈ Σ∗u and st /∈
K. Let C denote the collection of observed uncontrollably
illegal behaviors. We define the operator Du(·) as

Du(C) = {s ∈ L(G) : ∃t ∈ Σ∗uc such that st ∈ C}

to represent the collection of the strings formed by discarding
the uncontrollable suffixes of strings in C, and let Ci denote
the set of uncontrollably illegal behaviors after the i-th
iteration, then if a new uncontrollably illegal behavior si (a
new counterexample) is generated by the oracle, we update
Ci to Ci+1 = {si} ∪ Ci. Finally, we propose the following
membership oracle Ti for i ∈ N. For t ∈ Σ∗, let T (t) denote
the membership Boolean function, initially,

T1(t) =

{
0, if t /∈ K
1. otherwise

(2)

For i > 1

Ti(t) =

{
0, if Ti−1(t) = 0 or t ∈ Du(Ci)Σ

∗

1. otherwise
(3)

Note that different from conventional L∗ discussed in
Section II, the dynamical membership queries used in (2)
and (3) are dynamical.

The correctness and convergence of the modified L∗ al-
gorithm using membership queries (2) and (3)is summarized
as the following theorem.

Theorem 4: Assume that K ⊆ L(G) is prefix-closed,
then the modified L∗ learning procedure using membership
queries (2) and (3) converges to a supervisor S, such that
L(S||G) = supC(K). Furthermore, this iteration procedure
of synthesizing S will be done in a finite number of coun-
terexample tests. [5]

B. Learning for Co-normality

1) Learning for Co-normality: We now consider using L∗

to learn supCCN(K). To compute supCCN(K) using L∗

learning procedure, we first consider how to deal with the
co-normality. For j ≥ 1, define recursively

K1 = K, (4)

Ccn(Kj) =

{
s ∈ Kj : ∃s′ ∈ L(G),

⋃
i∈I

P−1
i Pi(s) =

⋃
i∈I

P−1
i Pi(s

′), s′ 6∈ Kj

}
,

(5)

K̃j = Kj − Ccn(Kj) (6)

to denote the collection of indistinguishable (with respect
to

⋃
i∈I P

−1
i Pi and K) behaviors. It follows immediately

from Theorem 3 that by using the Ccn(·) operator, the
above iteration will converge to the supremal co-normal
sublanguage of the given prefix-closed specification K ⊆
L(G) within a finite number of steps.

2) Modified membership queries: To capture the illegal
behavior generated by the unknown plant under partial ob-
servations in the decentralized control structure, we modify
C in previous section to be

C̃ =

{
st ∈

⋃
i∈I

P−1
i Pi(L(G)) : s ∈

⋃
i∈I

P−1
i Pi(K̃), t ∈ Σ∗uc,

st /∈
⋃
i∈I

P−1
i Pi(K̃)

}
(7)

Then, we define the following membership queries T̃j , j ∈
N as follows:

K̃1 = K − Ccn(K)

T̃1(t) =

{
0, if t /∈

⋃
i∈I P

−1
i Pi(K̃1))

1, otherwise
(8)

Kj = L(M(Tj−1)), j > 1.

If t ∈ Ccn(Kj), remove t from Kj to obtain K̃j , and,

T̃j(t) =

{
0, if T̃j−1(t) = 0 or t ∈ Du(C̃j)Σ

∗
o

1, otherwise
(9)

The algorithm of supervisor synthesis is summarized as
Algorithm 1.

Algorithm 1 L∗ for learning supCCN(K).
1: Set S = ε and E = ε.
2: Use the membership oracle to form the initial observa-

tion table T̃j(S,E, T̃) where j = 1
3: while T̃j(S,E, T̃) is not completed do
4: if T̃j is not consistent then
5: find s1, s2 ∈ S, σ ∈ Σo and e ∈ E such that

row(s1) = row(s2) but T̃ (s1σe) 6= T̃ (s2σe);
6: Add σe to E;
7: extend T̃j to (S ∪ SΣ)E using aforementioned

membership queries.
8: end if
9: if T̃j is not closed then

10: find s1 ∈ S, σ ∈ Σo such that row(s1σ) is different
from row(s) for all s ∈ S;

11: Add s1σe to S;
12: extend T̃j to (S ∪ SΣ)E using aforementioned

membership queries.
13: end if
14: end while
15: Once T̃j is completed,let M̃j = M(T̃j) as the acceptor;

make the conjecture M̃
16: Set the current T̃j as the membership oracle. Use the

acceptor M(T̃) as the supervisor, and let the closed loop
system evolve.

17: if the counterexample oracle declares that the conjec-
ture to be false and a counterexample (indistinguishable
behavior) t ∈ Ccn(K̃j) is generated then

18: remove t from K̃j .
19: end if
20: Obtain K̃j+1.
21: if the counterexample oracle declares that the conjecture

to be false and a counterexample(illegal behavior) t ∈ Σ∗

is generated then
22: Add P (t) and all its prefixes into S;
23: update T̃j to T̃j+1 by using the counterexample t;
24: end if
25: Set j = j+1 and return to while until that ∃n ∈ N such

that M̃n = M̃n+1.
26: Let Si over Σi such that L(Si) = Pi(Mn), then the

obtained Si, i ∈ I are the decentralized supervisors.

3) Correctness and convergence: The following theorem
states the convergence and correctness of the modified L∗

by using membership queries (8) and (9).
Theorem 5: Let K ⊆ L(G) be a non-empty and prefix-

closed specification, then L∗ with dynamical membership
queries (8) and (9) converges to decentralized supervisors
Si, i ∈ I , such that L({Si}i∈I , G) = supCCN(K). Fur-
thermore, this iteration procedure of synthesizing S will be
done in a finite number of counterexample tests.
Proof The convergence property of Algorithm 1 can be
shown using the similar approach of Theorem 1 in [5]

and is omitted here. We show that the obtained language
from Algorithm 1 is supCCN(K). First, we show that the
obtained language K̃ is co-normal, which can be proved by
contradiction. For the i−th step of iteration, assume that K̃i

is not normal, then there exists a string s ∈ K̃i and another
string t ∈ L(G) such that

⋃
i∈I P

−1
i Pi(s) =

⋃
i∈I P

−1
i Pi(t)

but t /∈ K̃i; then by the definition of Ccn(K), it is clear
to find that s ∈ Ccn(Ki) and should be eliminated from
K̃i. Thus we get the contradiction and K̃i is a co-normal
and so is K̃. Next we show that K̃ = supCCN(K). In
fact, by comparing dynamical membership queries (8) and
(9) with (2) and (3), respectively, we alternatively compute
the supremal co-normal sublanguage and the supremal con-
trollable sublanguage in each iteration, hence it is clear to
show that the obtained language K̃ = supCCN(K). �

V. ILLUSTRATIVE EXAMPLE

In this section, the effectiveness of Algorithm 1 is illus-
trated through the following example.

Consider the global event set Σ = {α, β, γ}. The lo-
cal controllable events and observable events are given
by Σ1,c = {αγ}, Σ2,c = {β γ}, Σ1,o = {α} and
Σ2,o = {β}, respectively. The specification is given as
K = αα+ (αβ + βα)γ and the language generated by the
plant is L(G) = (α+ β)(α+ β)γ. Note that L(G) is not
known to the supervisors. Both L(G) and K are depicted as
the following.

G : //

β

66
α
((

α
66

β
((γ //

K :

β

��

α

OO

//

α

??

β

��

γ //

α

??

We start from the first observation table, and set S = E =
{ε} for Algorithm 1. The first complete observation table
with its corresponding acceptor is given as the following
table (note that we only care about the rows whose first
entries are 1’s).

TABLE I
T1 IN EXAMPLE

T1 ε

S ε 1

SΣ − S α 1
β 1

M(T1) : // α,βee

We detect that the string αββ ∈ M(T1)− P (K1), hence
it is a counterexample and we use Algorithm 1 to update and
complete the observation table.

TABLE II
T2 IN EXAMPLE

T2 ε α

S ε 1 1
α 1 0
αβ 1 0

SΣ − S αδ 1 0
β 1 0
αβγ 1 0

M(T2) : β 99
α // β,γee

We use M(T2) as the supervisor to control the plant
behaviors, the string βαγγ ∈ M(T2) − P (K2) is a coun-
terexample, then we add the prefixes of αδδδ into S and
update the observation table to T3.

TABLE III
T3 IN EXAMPLE

T2 ε α β γ

S ε 1 1 1 0
α 1 0 1 0
αβ 1 0 0 1
β 1 1 0 0
βα 1 0 0 1
βαγ 1 0 0 0

SΣ − S αβγ 1 0 0 0

M(T3) :
β

��//

α

??

β
��

γ //

α

??

In this case no more counterexamples are detected, and
we can conclude that supCCN(K) = (αβ + βα)γ, the
local(decentralized) supervisors can then be obtained such
that Si = Pi(supCCN(K)), i = 1, 2, which are depicted
respectively as follows.

S1 : // α //

S2 : // β //

VI. CONCLUSIONS

In this paper, the decentralized supervisory control and
synthesis problem with no prior knowledge of the plant
is investigated. By using the modified membership queries,
the L∗ can learn the supremal controllabel and co-normal

sublanguage of a given prefix-closed specification language,
and an illustrative example is also provided to show the
effectiveness of the proposed algorithm. The future work
will be focused on the modular synthesis of the decentralized
supervisors.

REFERENCES

[1] D. Angluin,“Learning regular sets from queries and counterexam-
ples,” Int. J. Inform. and Computation, vol. 75, no. 1, pp. 87-106,
1987.

[2] C. G.Cassandras, S. Lafortune, Introduction to Discrete Event Sys-
tems, USA: Springer, 2008.

[3] R. Cieslak, C. Desclaux, A. S. Fawaz, and P. Valaiya, “Supervisory
Control of Discrete-event Process with Partial Observation,” IEEE
Trans. Autom. Control, vol. 33, no. 3, pp. 249-260, 1988.

[4] S. Chung. S. Lafortune, “Limited lookahead policies in supervisory
control of discrete event systems,” IEEE Trans. Autom. Control, vol.
37, no. 12, pp. 1921-1935, 1992.

[5] J. Dai and H. Lin, “Automatic discrete-event supervisor synthesis for
unknown plants,” submitted to 2014 American Control Conference.

[6] S. Jiang and R. Kumar, “Decentralized control of discrete event
systems with specializations to local control and concurrent systems.”
IEEE Transactions on Systems, Man, and Cybernetics, Part B:
Cybernetics,vol. 30, no. 5, pp. 653-660, 2000.

[7] P. Kozak W. M. Wonham, “Fully decentralized solutions of super-
visory control problems,” IEEE Trans. Autom. Control, vol. 40, no.
12, pp. 2094-2097, 1995.

[8] R. Kumar and V. K. Garg, Modeling and Control of Logical Discrete
Event Systems. Boston: Kluwer, 1995.

[9] F. Lin, W. M. Wonham, “On observability of Discrete-event Sys-
tems,” Inform. Sci., vol. 44, pp. 173-198, 1988.

[10] F. Lin, “Robust and Adaptive Supervisory Control of Discrete Event
Systens,” IEEE Trans. Autom. Control, vol. 38, no. 12, pp. 1848-
1852, 1993.

[11] —, “Decentralized control and coordination of discrete-event systems
with partial observation,” IEEE Trans. Automat. Contr., vol. 35, pp.
1330C1337, Dec. 1990.

[12] F. Liu and H. Lin, “Reliable supervisory control for general archi-
tecture of decentralized discrete event systems,” Automatica, vol. 46,
no. 9, pp. 1510-1516, 2010.

[13] A. Overkamp and J. H. van Schuppen, “Maximal solutions in
decentralized supervisory control,” SIAM J. Control Optim., vol. 39,
no. 2, pp. 492-511, 2000.

[14] P. J. Ramadge and W. M. Wonham, “Supervisory control of a class
of discrete event processes,” SIAM J. Control Optim., vol. 25, no. 1,
pp. 206-230, 1987.

[15] P. J. Ramadge and W. M. Wonham, “The control of discrete event
systems,” Proc. of the IEEE, vol. 77, no. 1, pp. 81-98, 1989.

[16] R. L. Rivest and R. E. Schapire. “Inference of finite automata using
homing sequences.” Machine Learning: From Theory to Applications,
Springer Berlin Heidelberg, pp. 51-73, 1993.

[17] K. Rudie and W. M. Wonham, “Think globally, act locally: Decen-
tralized supervisory control,” IEEE Trans. Autom. Control, vol. 37,
no. 11, pp. 1692C1708, Nov. 1992.

[18] Q. Wen, R. Kumar, J. Huang and H. Liu, “A Framework for Fault-
Tolerant Control of Discrete Event Systems,” IEEE Tran. Autom.
Control, vol. 53, no. 8, pp. 1839-1849, 2008.

[19] Y. Willner and M. Heymann, “Supervisory control of concurrent
discrete-event systems,” Int. J. Contr., vol. 54, no. 5, pp. 1143C1169,
1991.

[20] X. Yang, M. D. Lemmon, and P. Antsaklis, “Inductive inference
of optimal controllers for uncertain logical discrete event systems,”
Proc. American Control Conference, Seattle, Jun. 1995,vol. 5, pp.
3163-3167.

[21] X. Yang, M. D. Lemmon, and P. Antsaklis, “Inductive inference of
logical DES controllers using the L∗ algorithm,” Proc. 1995 IEEE
International Symposium on Intelligent Control, pp. 585-590, 1995.

