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Stochastic Reachability of Jump-Diffusion Process
Using Sum Of Squares Optimization

Tua A. Tamba and M.D. Lemmon

Abstract—This note uses sum of squares (SOS) relaxation
to solve stochastic reachability problems for jump-diffusion
processes. The main result is a polynomial characterization of
the infinitesimal generator for the solution of a jump-diffusion
process’ boundary value problem, thereby enabling one to
compute a bound on the probability of reaching a target set
in finite time using SOS optimization.

I. INTRODUCTION

Consider a continuous time stochastic process {x(t)} whose
sample path x(t) ∈ X at time t ∈ R+ takes values in an
open subset X ⊆ Rn of Euclidean space. The stochastic
reachability analysis computes an upper bound, γ ∈ [0, 1], for
the probability that, starting from an initial set X0 ⊂ X , the
sample path of {x(t)} will reach a given target set Xu ⊂ X in
a finite time T , where T = inf{t ∈ R+ |x(t) ∈ Xu}. Formally
stated, this problem is to find a constant γ ∈ [0, 1] such that

P{x(t) ∈ Xu for some 0 ≤ t ≤ T | x(0) ∈ X0} ≤ γ. (1)

One approach for computing the bound γ was proposed in
[1] for a regular diffusion process {x(t)} that satisfies the
stochastic differential equation dx(t) = f(x)dt + σ(x)dw(t)
in which {w(t)} is a Wiener process. This approach essen-
tially seeks a ”stochastic” Lyapunov function, V (x(t)), that
generates a supermartingale from which a bound γ in (1) can
be deduced. As in standard Lyapunov methods, this approach
is hindered by the difficulty of finding such a V (x(t)). Recent
developments in semidefinite programming and sum of squares
(SOS) relaxation methods [2] can now help circumvent this
difficulty. As shown recently in [3], the search for function
V (x(t)) characterizing the probabilitistic bound in (1) can be
formulated and solved using SOS optimization methods [4],
[5], provided the functions f(x), σ(x) are polynomial and the
sets X ,X0,Xu are semialgebraic. The success of this compu-
tational method has since motivated its use to address related
problems in feedback control (e.g. [6]), safety verification (e.g.
[7]), modeling and analysis of complex biological networks
(e.g. [8]) and model approximation (e.g. [9]).

Many applications, however, require models that also cap-
ture the jumps or discontinuous changes on the states due to
the presence of extreme or abnormal events. These events are
no longer suitable to be described by Wiener processes but are
better characterized as stochastic renewal processes. Examples
of such applications can be found in models of failure and
repair events of a workstation in manufacturing systems (e.g.
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[10]), abnormal variations on the stock price due to the arrival
of important new information about the stocks (e.g. [11]), or
the impact of human activities and extreme natural events due
to climate change on ecosystem dynamics (e.g. [12], [13]).
Stochastic reachability can be used to characterize methods
for managing such systems in a safe and sustainable manner
and so it is valuable to extend the basic approach in [1], [3]
to systems that are described by jump-diffusion processes.

This note extends the methods in [3], [1] to address the
stochastic reachability analysis for systems that are described
by jump-diffusion processes. To the best of our knowledge,
this paper is the first study on using SOS relaxations for
stochastic reachability analysis of jump-diffusion processes.
As in the case of diffusion processes, the proposed method
is also based on searching for a barrier certificate, V (x(t)),
that generates a supermartingale from which the bounds in (1)
can be deduced. This note’s main contribution is a polynomial
characterization of the infinitesimal generator that corresponds
to the solution of a jump-diffusion process’ boundary value
problem (cf. [14]), thereby making it possible to use SOS
relaxations to search for the appropriate barrier certificate.

The note is structured as follows. Background on jump-
diffusion processes is found in section II. Section III presents
the main result on stochastic reachability analysis of jump-
diffusion processes. Section IV illustrates an example use of
the proposed method in ecosystem management. Section V
concludes the note with some remarks.
Notational Conventions: Let Z+ and R+ denote the set of
positive integers and non-negative real numbers, respectively.
Let {x(t)} denote a random process whose state x(t) ∈ X
at time t ∈ R+ takes values in an open subset X ⊆ Rn of
Euclidean space. The total and conditional expected values of
a random variable are denoted as E{·} and E{·|·}, respectively,
and the total and conditional probabilities of an event is de-
noted as P{·} and P{·|·}, repectively. If {x(t)} has distribution
F (x), then its nth moment is denoted as Mn

x = ∫ xndF (x).
An n-dimensional multi-index is an n-tuple α ≡

(α1, · · · , αn) of non-negative integers and its absolute value
is defined as |α| = Σni=1 αi. The sum/difference of two multi-
indices is the component-wise sum/difference of the indices.
We say that α ≥ β if and only if αi ≥ βi for i = 1, . . . , n. Let
α! ≡ α1!α2! · · ·αn!. The binomial coefficient of α and β is
defined as

(
α
β

)
=
(
α1

β1

)
· · ·
(
αn
βn

)
= α!/(β!(α−β)!). For a vector

x ∈ Rn and an n-dimensional multi-index α, the αth power of
x is defined as x[α] ≡ xα1

1 xα2
2 · · ·xαnn . The multi-index bino-

mial theorem states that (x+ y)[α] = Σ0≤β≤α
(
α
β

)
x[α−β]y[β].

It can be shown that

∂[α]x[β] =

{
β!

(β−α)!x
[β−α], if α ≤ β,

0, otherwise.

Given a bounded, real-valued function V (x) : Rn → R and an
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n-dimensional multi-index α, the αth order partial derivative
of V is defined as ∂[α]V = ∂α1V

∂x
α1
1

∂α2V
∂x
α2
2

. . . ∂
αn

∂xαnn
.

A pth order polynomial may be written in multi-index
notation as V (x) = Σ|α|≤p cαx

[α], where α is a multi-index
and cα is some coefficients associated with the x[α] monomial.
The set of all polynomials in variables x with real coefficients
is denoted as R[x]. A polynomial V (x) ∈ R[x] is said to be
positive semidefinite (psd) if V (x) ≥ 0, ∀x ∈ Rn. A necessary
condition for V (x) to be psd is that its total degree is even.
We say that a polynomial V (x) is SOS if it can be rewritten
as V (x) = ΣMk=1 q

2
k(x) for some set of M polynomials qk(x)

where k = 1, 2, . . . ,M . Clearly, a polynomial V (x) being
SOS implies V (x) is psd. The set of all SOS polynomials in
variables x is denoted as Σ(x).

The space of n × n real symmetric matrices is denoted
as Sn×n. A matrix Q ∈ Sn×n is positive definite (pd) if
xTQx > 0 and is psd if xTQx ≥ 0, ∀x ∈ Rn. We use Sn×n++

and Sn×n+ to denote the space of n×n symmetric pd and psd
matrices, respectively.

II. JUMP-DIFFUSION PROCESSES

Let {Ω,F ,P} be a complete probability space and let
{Ft}t≥0 be a filtration over {Ω,F ,P} which satisfies the usual
conditions (cf. [15]): (i) Ft contains the P−negligible sets for
all t, (ii) Ft is right continuous, i.e. Ft+ = Ft, for all t (i.e.
the totality of information are observable by time t). Consider
a jump-diffusion process (JDP)

dx(t) = f(x(t))dt+σ(x(t))dw(t)+dJ(t), x(0) = x0, (2)

where f(·) : Rn → Rn and σ(·) : Rn → Rn are Lipschitz
continuous functions, {x(t)} is a stochastic process, {w(t)}
is a Wiener process, {J(t)} is a shot noise process defined as

J(t) =

N(t)∑
`=1

y`e
−δ(t−τ`), ` ∈ Z+. (3)

In equation (3), N(t) is a Poisson process with intensity ρ,
{τ`} are the event times of a Poisson jump, {y`} is an i.i.d.
random process with distribution F (y) describing the `-th
jump’s size, and δ is a real positive constant representing the
rate of exponential decay after a jump. The JDP in (2) is
understood in Itô’s sense and {w(t)} is independent of {J(t)}.

Let Y (τ`, y`) = y`e
δτ` , then J(t) in (3) may be written as

J(t) = e−δt
∫ t

0

∫
Rn
Y (τ, y)N(dτ, dy), (4)

where N(dτ, dy) is a Poisson random measure with
E{N(dt, dy)} = ρdtF (dy). We define the increment of J(t)
as dJ(t) = J(t+ dt)− J(t) where dt is an infinitesimal time
increment. Using (4) to expand out dJ(t) and retaining the
first order terms in dt, one finds the jump process increment
can be written as

dJ(t) = −δJ(t)dt+

∫
Rn
yN(dt, dy), (5)

where the second term in (5) is known as a compound Poisson
process. Using the expression for the jump increment in (5),
the JDP in (2) can be rewritten as

dx(t) = (f(x(t))− δJ(t)) dt+ σ(x(t))dw(t)

+

∫
Rn
yN(dt, dy), x(0) = x0. (6)

Since {J(t)} and {w(t)} in (6) are independent Markov
processes, one may conclude that the solution of the JDP in
(6) is also a Markov process (cf. [16]).

Now consider a Markov process {x(t)} with right continu-
ous sample path and consider any function V (x(t)) : Rn → R.
The (infinitesimal) generator of {x(t)} is an operator, L,
whose action on V (x(t)) is defined by

LV (x) = lim
h↘0+

E{V (x(h))|V (x0)} − V (x0)

h
(if the limit exists),

where ↘ means that the limit is taken from the right. For the
jump process in (5) and a function V (x(t)) ∈ C2(Rn) that is
twice continuously differentiable and bounded for all x ∈ Rn
(denote this class of functions as C2(Rn)), one can show that
its generator, LJP , is (cf. [15])

LJPV (x(t)) = ρ

∫ ∞
0

(V (x+ y)− V (x)) dF (y)− ∂V (x)

∂x
δJ(t).

Combining the generator of the above jump process with the
generator of diffusion process dx(t) = f(x)dt + σ(x)dw(t)
(cf. [17]), one may conclude that the generator, L, of the JDP
in (6) is given by

LV (x(t)) =
∂V (x(t))

∂x
(f(x(t))− δJ(t))

+
1

2
Tr

(
σT (x(t))

∂2V (x(t))

∂x2
σ(x(t))

)
+ ρ

∫ ∞
0

(V (x+ y)− V (x))dF (y). (7)

Dynkin’s formula for JDP in (6) which can be used to
characterize a supermartingale V (x(t)) is stated below.

Lemma 2.1 ([14]): Consider the JDP in (6) defined on a
bounded open set X ⊆ Rn with smooth boundary ∂X .
Let τ < ∞ with τ ≤ τX := inf{t ∈ R+ |x(t) ∈
∂X} be a stopping time. For V (x(t)) ∈ C2(Rn), suppose
E
{
|V (x(τ))|+

∫ τ
0
|LV (x(s))|ds

}
<∞. Then

V (x(τ)) = V (x0) +

∫ τ

0

LV (s, x(s))ds. (8)

Now recall that a process {V (x(t))} is said to be a super-
martingale with respect to the filtration {Ft}t≥0 generated by
the process {x(t)} if: (i) ∀t ≥ 0, V (x(t)) is Ft-measurable,
(ii) E{|V (x(t))|} < ∞, and (iii) E{V (x(t2))|V (x(t1))} ≤
V (x(t1)) for all 0 ≤ t1 ≤ t2 ≤ τ (cf. [17]). By the
choice of V (x(t)) ∈ C2(Rn) in (7) and the boundedness of
x ∈ X , it is known that V (x(t)) will always satisfy conditions
(i) and (ii), respectively (cf. [14]). If V (x(t)) also satisfies
LV (x(t)) ≤ 0, ∀x ∈ X with LV (x(t)) as defined in (7), then
Dynkin’s formula in (8) implies that condition (iii) will also
be satistied. One may then conclude that V (x(t)) ∈ C2(Rn)
with LV (x(t)) ≤ 0, ∀x ∈ X is a supermartingale with
respect to {x(t)}. In this paper, we will consider nonnegative
supermartingale, i.e. V (x(t)) ≥ 0, ∀x ∈ X , for which the
following inequality holds.

Lemma 2.2 ([1]): Let {V (x(t))} be a supermartingale with
respect to the process {x(t)} where x(t) ∈ X ⊆ Rn and
0 ≤ t ≤ τ := inf{t : x(t) 6∈ X}. Let V (x(t)) be nonnegative
in X . Then for any constant θ > 0 and any x(0) = x0 ∈ X ,

P
{

sup
0≤t≤τ

V (x(t)) ≥ θ
∣∣∣x(0) = x0

}
≤ V (x0)

θ
. (9)
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III. MAIN RESULTS

As discussed in section I, provided that the functions
f(x), σ(x) and the jump term in (6) are polynomials and
the sets X ,X0,Xu in (1) are semialgebraic, the search for a
barrier certificate, V (x(t)), can be formulated as an SOS op-
timization. In this SOS optimization, V (x(t)) is a polynomial
function whose coefficients are the decision variables that will
be determined in the optimization task. Thus, our goal is to
formulate a polynomial representation for the conditions which
guarantee {V (x(t))} to be a supermartingale (cf. section II).
One issue in formulating such a representation comes from the
integral term in the generator of the JDP in (7). The following
proposition shows how to address this issue.

Proposition 3.1: Let y ∈ Rn be an n-dimensional inde-
pendent random variable with distribution F (y). Let V (x) =∑
|α|≤p cαx

[α] be a multi-index representation of a polynomial
function. Then∫

(V (x+ y)− V (x)) dF (y) =
∑

1≤|β|≤p

1

β!
∂[β] [V (x)]M|β|,

(10)
and the generator in (7) can be rewritten as

L̃V (x(t)) =
∑

1≤|β|≤p

1

β!
∂[β] [V (x)]+

∂V (x(t))

∂x
(f(x(t))− δJ(t))

+
1

2
Tr

(
σT (x(t))

∂2V (x(t))

∂x2
σ(x(t))

)
(11)

Proof: We only need to show that (10) holds since its
substitution into the integral term in (7) gives the generator in
(11). Let us write

V (x+ y) =
∑
|α|≤p

cα(x+ y)[α] =
∑
|α|≤p

cα
∑

0≤|β|,β≤α

(
α

β

)
x[α−β]y[β],

=
∑
|α|≤p

cα

x[α] +
∑

1≤|β|,β≤α

(
α

β

)
x[α−β]y[β]

 .
For notational convenience, let us denote the difference V (x+
y)− V (x) as ∆V (x, y). Using the above sum, one can write
this difference as

∆V (x, y) =
∑
|α|≤p

cα
∑

1≤|β|,β≤α

(
α

β

)
x[α−β]y[β],

and since

∂[β]
[
x[α]

]
=

{
α!

(α−β)!x
[α−β] if β ≤ α,

0 otherwise,

the expression for ∆V (x, y) can be rewritten as

∆V (x, y) =
∑
|α|≤p

cα
∑

1≤|β|,β≤α

1

β!
∂[β]

[
x[α]

]
y[β].

Expand out the first summation to obtain

∆V (x, y) =
∑
|α|=1

cα
∑
|β|=1

1

β!
∂[β]

[
x[α]

]
y[β]

+
∑
|α|=2

cα
∑

1≤|β|≤2

1

β!
∂[β]

[
x[α]

]
y[β] + · · ·

+
∑
|α|=p

cα
∑

1≤|β|≤p

1

β!
∂[β]

[
x[α]

]
y[β].

The order of the summations can now be interchanged since
α and β are no longer directly coupled to yield

∆V (x, y) =
∑
|β|=1

1

β!

∑
|α|=1

cα∂
[β]
[
x[α]

] y[β] + · · ·

+
∑

1≤|β|≤p

1

β!

∑
|α|=p

cα∂
[β]
[
x[α]

] y[β].
Reordering the terms in the first summation yields,

∆V (x, y) =
∑
|β|=1

1

β!

 ∑
1≤|α|≤p

cα∂
[β]
[
x[α]

] y[β] + · · ·

+
∑
|β|=p

1

β!

∑
|α|=p

cα∂
[β]
[
x[α]

] y[β].
Because ∂[β]

[
x[α]

]
= 0 when α ≤ β, the summation limits of

the inner sums can be extended from 1 to p thereby yielding

∆V (x, y) =
∑
|β|=1

1

β!

 ∑
1≤|α|≤p

cα∂
[β]
[
x[α]

] y[β] + · · ·

+
∑
|β|=p

1

β!

 ∑
1≤|α|≤p

cα∂
[β]
[
x[α]

] y[β]. (12)

Now note that

∂[β]V (x) = ∂[β]

∑
|α|≤p

cαx
[α]

 =
∑

1≤|α|≤p

cα∂
[β]
[
x[α]

]
,

which is the inner sum in (12) and so the difference becomes

∆V (x, y) =
∑

1≤|β|≤p

1

β!
∂[β] [V (x)] y[β].

Integrating both sides with respect to F (y), and since each
component of y is independent, gives∫

∆V (x, y)dF (y) =
∑

1≤|β|≤p

1

β!
∂[β] [V (x)]

∫
y|β|dF (y)

=
∑

1≤|β|≤p

1

β!
∂[β] [V (x)]M|β|,

where we have noted that the integral
∫
y|β|dF (y) = M|β| is

the |β|-th moment of y. Substitution of the above expression
into (7) gives the JDP generator in (11).

Using the generator in (11), the supermartingale inequality
in (9), and Dynkin’s formula in (8), then proposition 3.2 below
can be used to characterize a function V (x(t)) that bounds
the probability in (1) for the JDP in (6). The proof of this
proposition is given in the appendix and is based on the proof
in [1, Theorem 1] except that we use the generator in (11).

Proposition 3.2: For a constant γ > 0 and a function
V (x(t)) ∈ C2(Rn), consider the open set ΩV,γ = {x ∈
X |V (x) < γ}. Let {x(t)} be a right continuous JDP in (6)
defined on ΩV,γ until at least some time τ > τγ

.
= inf{t ∈

R+ |x(t) 6∈ ΩV,γ}. Let L̃V (x(t)) be the JDP’s generator
defined in (11) and let V (x(t)) be in the domain of L̃V (x(t)).
For a constant α > 0 and a finite time interval t ∈ [0, T ],
assume the following condition holds in ΩV,γ .

L̃V (x(t)) ≤ −αV (x(t)) + β(t), (13)
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where β(t) is a continuous, strictly positive function on [0, T ].
In the interval t ∈ [0, T ], define

W (x(t)) = e
αt
β(t) V (x(t)) +

β(t)

α

(
e
αB(T )
β(t) − e

αB(t)
β(t)

)
, (14)

with B(t) =
∫ t
0
β(s)ds. Let λ > 0 be such that if V (x(t)) > γ,

then W (x(t)) ≥ λ. Then,

P{ sup
0≤t≤T

V (x(t)) ≥ γ | V (x0)} ≤
V (x0) + 1

θ
(eθB(T ) − 1)

γeθB(t) + 1
θ
(eθB(T ) − eθB(t))

.

(15)
Remark 3.3: Note that the condition in (13) which allows

the generator L̃V (x) to be positive is less restrictive than the
requirement L̃V (x) ≤ 0 used in [3]. This comparison therefore
suggests that a better estimate of the probability bound in (15)
can be obtained by choosing β(t) in (13) to be a function with
a small maxima and whose value decreases as time increases.
One choice of such function is illustrated in the next section.

A. SOS Optimization

This section presents a two-step SOS optimization method
to compute the probability bound in proposition 3.2. The first
step in this method searches for a Lyapunov function V (x)
and the set ΩV,γ ≡ {x ∈ X , γ > 0 |V (x) < γ} for the
deterministic part of the JDP in equation (6). Note that the
set ΩV,γ is the region of attraction (ROA) that corresponds to
Lyapunov function V (x). Using the obtained V (x) and ΩV,γ ,
the second step estimates a constant α > 0 and a function β(t)
which satisfy the condition in (13). This two-step optimization
method is illustrated in algorithm 1 and each of these steps is
discussed as follows.

1) Computation of V (x) and ΩV,γ: Consider a polynomial
system ẋ(t) = f(x) with f(x) ∈ R[x], x(0) = x0 and
consider its linearization in the neighborhood of an equilibrium
point x∗ defined by ˙̃x(t) = Ax̃(t) where A = ∂f(x)

∂x |x∗ .
Without loss of generality, we assume x∗ is the origin. The
linearized system is said to be asymptotically stable if and only
if there exist matrices P ∈ Sn×n++ and Q ∈ Sn×n+ which satisfy
the Lyapunov equation ATP+PA = −Q. Let V0(x) = xTPx
be the Lyapunov function for the linearized system. Then for
a constant γ > 0 and a function σ1(x) ∈ R[x] with σ1(x) ≥ 0
and σ1(0) = 0, the set

ΩV0,γ(x) = {x | V0(x) ≤ γ} ⊆ {x | ∇V0(x) · f(x) + σ1(x) < 0} ,

is the ROA of the origin such that for all x0 ∈ ΩV0,γ then
limt→∞ x(t) = 0. Using the generalized S−procedure (cf.
[18]), the ROA ΩV0,γ can be enlarged by searching a function
V (x) and a constant γ > 0 using the SOS optimization below.

max γ,
s.t. (V (x)− σ2(x)) ∈ Σ(x),

−
(
∂V (x)
∂x
· f(x) + σ1(x) + s(x)(γ − V (x))

)
∈ Σ(x),

(16)
where s(x) ∈ Σ(x) and σ2(x) ∈ R[x] with σ2(x) ≥ 0
and σ2(0) = 0. For a feasible solution of the above SOS
optimization, the set ΩV,γ(x) = {x ∈ X | V (x) ≤ γ} is
a subset of the maximal ROA of the origin. Note that the
second constraint in the SOS optimization (16) is bilinear in
the unknowns γ and V (x) and so one has to iterate between
γ and V (x) by using V0(x) for initialization (see e.g. [18],
[19] for the detail of such iteration).

Algorithm 1 Two-step SOS optimization.

Step 1 - Computation of V (x) and ΩV,γ

Require: f(x) and d (prespecified order of V (x))
1: procedure [V, ΩV,γ ] = ROA(f(x), d)
2: solve SOS optimization (16)
3: end procedure

Step 2 - Computation of α and c

Require: V (x), ΩV,γ , ε0 > ε
4: procedure [α, c] = BOUND (V, ΩV,γ , ε0)
5: set ε > 0, ε← ε0
6: while ε ≥ ε do
7: max α, s.t. [−L̃V − αV + ε] ∈ Σ(x)
8: while α exists do
9: max c, s.t. [tq−1 − (c+ t2q)(L̃V + αV )] ∈ Σ(x)

10: end while
11: ε← ε/2 . Bisection on ε
12: end while
13: return α and c . The optimal α and c
14: end procedure

2) Computation of α and β(t): For given Lyapunov func-
tion V (x) and the corresponding ROA ΩV,γ , the second
optimization step searches for a constant α > 0 and a function
β(t) which satisfy equation (13). In this paper, we consider
the function β(t) to be a rational function of time of the form
β(t) = tq−1/(c + t2q) for q = 1, 2, . . . and q ∈ Z+ which
satisfies the condition discussed in remark 3.3. With this choice
of β(t), the estimates for constants α and c can be computed
using the following SOS optimization.

max α, c,

s.t.
(
−(c+ t2q)(L̃V (x) + αV (x)) + tq−1

)
∈ Σ(x),

(17)

where the constraint of the optimization in (17) is the SOS
relaxation of the condition in (13). Since the constraint in
(17) is bilinear in the decision variables, one has to solve it
iteratively between α and c as illustrated in step 2 of algorithm
1. The specified constant ε > 0 in algorithm 1 can be used as a
tightness criteria of the bound in proposition 3.2. In particular,
remark 3.3 suggests that a small value of ε will gives a better
estimate of the bound in equation (15).

Remark 3.4: The feasibility of α and c in step 2 of algo-
rithm 1 depends on the existence of function V (x) (of order d)
and the set ΩV,γ which satisfy condition (13). If the solution
for α for a given V (x) of order d and fixed ε is not feasible,
one may repeat step 1 to search for higher order V (x).

IV. EXAMPLE

This section illustrates an example use of the method
presented in the previous sections in ecosystems management.
In particular, we consider the problem of choosing a harvesting
strategy to manage the bass-crayfish population in freshwater
lakes. Bass-crayfish interaction is an intraguild predation sys-
tem in which both species compete for the same resource while
also predate one another. The model used in the example has
two equilibria; one in which the bass dominate the ecosystem
and the other in which the crayfish dominate the ecosystem.
An outbreak of crayfish is undesirable as it can suppress
the bass population. If such an outbreak occurs, management
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strategies are needed to shift the crayfish-dominated equilib-
rium point to the bass-dominated equilibrium point. One such
strategy is to permit the harvesting of crayfish by anglers.
In general, this harvesting process can be modeled as a jump
process in which the size and the intensity of harvesting events
are variables that the ecosystem manager needs to set.

A normalized model of crayfish (x) and bass (y) interaction
under harvesting events is given by [20]

dx(t) = x(1− x2 − 0.7y)− 0.08yx2

0.01 + x2
+ σdw1(t)

−
N(t)∑
i=1

ziδ(t− τi),

dy(t) = 1.5y(1− y2 − 0.9x) +
0.01yx2

0.01 + x2
+ σdw2(t).

(18)

In model (18), the Wiener processes {wi(t)}, (i = 1, 2)
describe small fluctuations in each population due to variations
in growth rate or other environmental conditions. The last
term of the state x’s dynamics in (18) models the harvest of
crayfish as a compound Poisson process in which the harvest
size {zi}Nti=1 and the harvest times {τi}Nti=1 are i.i.d. with
exponential distribution of intensity µ and λ, respectively, and
N(t) is the number of harvest events in the interval [0, t]. In
the absence of stochastic processes {w(t)} and {N(t)}, model
(18) has three equilibria (two stable and one unstable) in R2

+.
Figure 1a plots the isoclines, identifies the two stable equilibria
(E1, E2) and their ROA, and marks the separatrix between
the two ROAs. Note that the plot in figure 1a is obtained after
shifting one of the equilibria (i.e. E1) to the origin.

Assuming the system’s current state lies in the ROA of
equilibrium E1, we are interested in bounding the probability
that the sample path of (18) crosses the separatrix for a given
jump intensity. We consider the set X = {(x, y) ∈ R2 | −
0.7 ≤ x ≤ 0.25, −0.5 ≤ y ≤ 0.6} and define the initial set
X0 as a circle of radius 0.05 centered at (x, y) = (−0.1,−0.1).
We aim to bound the probability that the sample paths of (18)
reach the target set Xu defined by the bass-dominated region
(shaded area in figure 1a). To compute this bound, we use
SOSOPT [21] and SOSTOOLS [4] combined with Sedumi
[5] to solve the SOS optimizations in (16)-(17).

We first solve the SOS optimization in (16) and found
a second order Lyapunov function V (x, y) = 0.6092x2 +
0.4606xy + 0.6805y2 whose ROA ΩV,γ = {(x, y) ∈ X |V ≤
γ} with γ = 0.122 is plotted in figure 1a. The closest
intersection between the level set of V (x, y) and the separatrix
occurs at V (x, y) = θ = 0.19 and so the probability that the
JDP’s sample paths started in X0 reach Xu in a finite time
T is defined as P{ sup

0≤t≤T
V (x, y) ≥ θ |V (x0, y0) ∈ X0} (cf.

figure 1a). We choose β(t) = t/(c+t4) and set σ = 0.05, µ =
0.075, λ = 0.2 for the parameters of the JDP in (18). Using
the obtained V (x, y) and setting ε = 10−4 with ε0 = 0.1, we
then solve the SOS optimization in (17) and found α = 0.0887
and c = 2.56× 105. The obtained functions V (x, y) and β(t)
and constant α can then be used to compute the bound in (15).
Our simulation results show that both steps achieve optimal
solutions as indicated by the reports from Sedumi (feasibility
ratio ≈ 1 with duality gaps of order 10−10, cf. [5]).

(a) Phase portrait and ROA.
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(b) Probability bound.

Fig. 1: Phase portrait, ROA and probability bound.

Figure 1b (solid curve) shows the probability bound ob-
tained using the proposed SOS optimization method for a finite
time T = 104. One may then conclude that the transition
from the crayfish-dominated to the bass-dominated lakes for
the specified harvesting parameters can be expected to occur
after T ≥ 103. Although higher harvesting intensities can be
chosen to ensure a shorter transition period, one should realize
that it may also drive the crayfish population toward extinction.
As discussed in [22], a good harvesting parameter should be
chosen to ensure that both the deadline for a transition and
the desired level of ecosystem biodiversity are achieved.

Figure 1b also plots an estimate of the probability bound
obtained from 500 realizations of a Monte Carlo (MC) sim-
ulation (dashed circle curve). One may see that the SOS
optimization result upper bounds the MC simulation result
with an average difference of 0.1 over the specified period
T . The main advantage of the SOS optimization method can
be seen in term of the computation time. For example, the MC
simulation takes about one minute to compute the bound for
given T = 103 and this computation time increases linearly as
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T increases. On the other hand, the SOS optimization method
only requires an average of 30 seconds to compute the bound
for any values of T . This illustrates the effectiveness of the
SOS optimization method to prove reachability of a process
without having to rely on excessive simulations of the process.

V. CONCLUDING REMARKS

This note presented an extension of the SOS optimization
method in [3] to solve stochastic reachability problems for
jump-diffusion processes. To the best of our knowledge, this
paper is the first study on using SOS relaxation techniques for
stochastic reachability analysis of jump-diffusion processes.
The extension is achieved by identifying a polynomial ex-
pression for the JDP’s generator from which a two-step SOS
optimization method can be formulated to compute probability
bound in equation (1). The paper illustrated the value of the
approach on an example drawn from ecosystem management.

APPENDIX

Proof of proposition 3.2
Proof: Let T > 0 and consider the set

ΩW,λ , {x ∈ Rn, t ∈ R+ : W (x(t)) < λ, t < T}. (19)

Let τ .
= inft{t ∈ R+ |x(t) 6∈ ΩW,λ} and consider the process

{x(s)} = {x(t ∧ τ)} taking values on the set ΩW,λ, where
t ∧ τ = min(t, τ). Let L̂ be the infinitesimal generator of
{x(s)} acting on the function W (x(s)) defined on ΩW,λ. From
the definition of W (x(s)) in (14), we have

L̂W (x(s)) = θβ(s)eθB(s)V (x(s)) + eθB(s)L̃V (x(s))− β(s)eθB(s),

= eθB(s)
(
θβ(s)V (x(s)) + L̃V (x(s))− β(s)

)
.

Since θβ(s) = αβ(s)
max0≤t≤s β(t)

= α and by the condition on
L̃V (x(t)) in (13), then

L̂W (x(s)) ≤ eθB(s) (αV (x(s))− αV (x(s)) + β(s)− β(s)) ≤ 0.

Applying Dynkin’s formula to function W (x(t)) gives

E{W (x(t))} = E{W (x(0))}+E
{∫ s

0

L̂W (x(t)) dt

}
≤W (x(0)),

which implies that W (x(t)) is a supermartingale with respect
to process {x(s)}. Thus, for λ ≥ 0

P
{

sup
0≤t≤T

W (x(t)) ≥ λ
∣∣∣W (x(0))

}
≤ W (x(0))

λ

≤ V (x0) + (eθB(T ) − 1)/θ

λ
.

(20)
Now since W (x(t)) ≥ λ implies V (x(t)) ≥ γ, then

W (x(t)) = eθB(t)V (x(t)) +
1

θ

(
eθB(T ) − eθB(t)

)
≥ λ

can be rearranged to obtain

V (x(t)) ≥ e−θB(t)
(
λ− 1

θ

(
eθB(T ) − eθB(t)

))
.

Thus, the condition that V (x(t)) ≥ γ implies

γ = e−θB(t)
(
λ− 1

θ

(
eθB(T ) − eθB(t)

))
.

Solving the above equation for λ and substituting back into
(20) gives the probability bound in equation (15).
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