
On the Second-Order Coding Rate of Non-Ergodic Fading Channels

Ebrahim MolavianJazi and J. Nicholas Laneman
Department of Electrical Engineering

University of Notre Dame
Email: {emolavia,jnl}@nd.edu

Abstract— This paper analyzes the rate-reliability trade-off
for non-ergodic fading channels with state information available
at the receiver, specifically the second-order coding rate with a
fixed length corresponding to one channel coherence time and
a target average error probability. Achievability is developed
using random coding and modified typicality decoding, and the
converse is developed using generalized information spectrum
methods. Although the infinite blocklength performance of such
a wireless channel depends only upon the fading, our results
suggest that both fading and noise affect finite blocklength per-
formance. Furthermore, although our non-asymptotic bounds
conform with those in the recent work by Yang et al., our
finite blocklength approximation is more useful for numerical
evaluation.

I. INTRODUCTION

Wireless networks with latency requirements are finding
numerous applications in various settings. One example is
machine-to-machine (M2M) communications, in which small
sensors and machines with limited energy budgets rely on
wireless communications to control a network with limited
or no human interaction. Transmissions in such networks are
often bursty and correspond to only a few hundred informa-
tion bits when a new event or measurement is available.

Motivated by these scenarios, we are interested in the
trade-off between rate and reliability of codes over a wireless
channel with a random gain that remains constant during one
data transmission interval. For such a non-ergodic channel
model, the Shannon capacity is in many cases zero because
no positive rate can have vanishing error probability. By
tolerating a non-vanishing error probability ε > 0, positive
communication rates can be achieved over the channel with
probability at least 1−ε, and the channel experiences outage
with probability at most ε. In such scenarios, the performance
inherently depends upon the channel mutual information
random variable [1], which is a stochastic measure of channel
quality as a function of the noise and fading realizations.
In the limit of asymptotically large blocklength, the noise
behaves typically and outage capacity is defined in terms of
the distribution of the fading only [2], [3].

Inspired by a recent line of work on the finite blocklength
regime [4], [5], we analyze the finite blocklength channel
coding rate over such a non-ergodic fading channel with
a per-codeword average power constraint, additive white
Gaussian noise, Rayleigh fading, and ideal channel state in-
formation at the receiver (CSIR). We employ the conditional
statistics of the mutual information random variable (RV),
namely the capacity and dispersion of the Gaussian channel

as functions of the fading realization, along with central
limit theorem (CLT) arguments to prove that the maximum
achievable rate is characterized by an information outage
probability computed with respect to (w.r.t.) both noise and
fading. Due to the power and finite blocklength constraints,
our achievability proof does not use the independent and
identically distributed (i.i.d.) Gaussian inputs, and instead
relies on the more stringent uniform-on-the-shell input dis-
tribution [6], [7].

II. PROBLEM STATEMENT

A point-to-point non-ergodic fading channel can be mod-
eled as

Y n = HXn + Zn, (1)

where input Xn and output Y n are real-valued vectors of
length n, the noise Zn is an i.i.d. zero-mean unit-variance
Gaussian random vector of length n, namely distributed
as PZn(zn) = (2π)−n/2 exp

(
−||zn||2/2

)
, and the fading

coefficient H is a real-valued random variable which remains
fixed over a fading coherence interval of length n. Further-
more, the fading H is independent of both the input Xn

and the noise Zn, and is considered to be available to the
receiver.

In this paper, the data transmission period n is con-
sidered to be equal to the coherence time of the fading
channel, so that each message experiences only one fading
realization, thereby the non-ergodic setting. Additionally,
our non-asymptotic results in Section III hold for arbitrary
fading distributions, but our second-order approximation in
Section IV focuses on the Rayleigh distribution PH(h) =
he−h

2/2 for simplicity of exposition, although our approach
can be extended to more general fading distributions.

For such a non ergodic fading channel, an (n,M, ε, P )
code is composed of a message set M = {1, ...,M} and a
corresponding set of codewords and fading-dependent mutu-
ally exclusive and collectively exhaustive decoding regions
{(xn(j), Dj(H))} with j ∈ M, such that the average error
probability satisfies

P (n)
e :=

1

M

M∑
j=1

Pr[Y n /∈ Dj(H)|Xn = xn(j)] ≤ ε, (2)

and each codeword satisfies a maximal power constraint:

1

n
||xn(j)||2 ≤ P, ∀j ∈M. (3)



Accordingly, a rate log(M)/n is achievable for the non-
ergodic fading channel with finite blocklength n, average
error probability ε, and maximal power P if such an
(n,M, ε, P ) code exists.

III. NON-ASYMPTOTIC BOUNDS

In this section, we state and prove non-asymptotic lower
and upper bounds on the coding rate over the non-ergodic
fading channel, which are valid for any arbitrary finite
blocklength n. We will use these bounds in the next section to
prove a tight approximation of the coding rate for moderately
short blocklengths.

Our non-asymptotic lower bound relies on the standard
method of random coding and typicality decoding [8], [9].
A typicality decoder for our scenario can be described as
one that, having access to the fading realization h and the
channel output yn, chooses the first codeword xn(m̂) of the
codebook that looks “typical” with yn in a one-sided sense

i(xn(m̂);h, yn) > log γ, (4)

where γ is a prescribed threshold and i(xn(m̂);h, yn) is the
corresponding realization of the mutual information RV

i(xn;h, yn) := log
PHY n|Xn(h, yn|xn)

PHY n(h, yn)
. (5)

Here, the reference distribution PHY n is the marginal distri-
bution induced by the (arbitrary) input distribution PXn :

PHY n(h, yn) =
∑
xn

PXn(xn)PHY n|Xn(h, yn|xn). (6)

Note that, due to the independence of input and channel
gain, the mutual information RV can be described more
conveniently as

i(xn;h, yn)= i(xn; yn|h) :=log
PY n|HXn(yn|h, xn)

PY n|H(yn|h)
. (7)

The conventional analysis of fading channels [2], [3]
relies on the i.i.d. Gaussian input distribution. In our anal-
ysis, however, the power and finite blocklength constraints
motivate the use of non-product input distributions, whose
corresponding output distributions are even more complex.
To circumvent this difficulty, we slightly generalize the
decoder as in [10], [4], [7] and employ the modified typicality
decoding rule

ĩ(xn(m̂); yn|h) > log γ, (8)

where the modified mutual information RV ĩ(Xn;Y n|H) is
defined as

ĩ(xn; yn|h) := log
PY n|HXn(yn|h, xn)

QY n|H(yn|h)
, (9)

for any arbitrary, but preferably a product-form, conditional
output distribution QY n|H .

In the following theorem, we state a non-asymptotic
achievable rate for general non-ergodic fading channels,
which is based on random coding and modified typicality
decoding. It describes the error probability in terms of the

outage, confusion, and constraint-violation probabilities, and
is based on the dependence testing (DT) bound of [4] and
the random coding bound of [7], [11].

Theorem 1: For a non-ergodic fading channel
PHPY n|HXn , any input distribution PXn and any
conditional output distribution QY n|H , there exists an
(n,M, ε, P ) code with1

ε ≤ PXnPHPY n|HXn [ ĩ(Xn;Y n|H) ≤ log γn]

+Kn
M − 1

2
PXnPHQY n|H [ ĩ(Xn;Y n|H) > log γn]

+ PXn [ ||Xn||2 > nP ], (10)

where

Kn := max
h,yn

dPY n|H(yn|h)

dQY n|H(yn|h)
(11)

with PY n|H(yn|h) being the conditional output distribution
induced by the input distribution PXn , and where γn is an
arbitrary threshold for which the optimal choice to yield the
highest rates is γn = Kn

M−1
2 .

Proof: Following the line of arguments in [7], we
use the conventional random coding method along with the
modified typicality decoding rule (8). The channel encoder
randomly generates M codewords of the codebook indepen-
dently according to some n-letter distribution PXn . The error
probability averaged over the set of messages and all possible
codebooks can be bounded as

ε ≤ PXnPHPY n|HXn [ ĩ(Xn;Y n|H) ≤ log γ]

+
M − 1

2
PXnPHPY n|H [ ĩ(Xn;Y n|H) > log γ]. (12)

To simplify the analysis for non-product input (and the
corresponding output) distributions, we further bound the
confusion probability using the following change of measure
technique.

PXnPHPY n|H [ ĩ(Xn;Y n|H) > log γ]

= EPXnPH

[
EPY n|H

[
1
{
ĩ(Xn;Y n|H) > log γ

}]]
=EPXnPH

[
EQY n|H

[
dPY n|H(Y n|H)

dQY n|H(Y n|H)
1
{
ĩ(Xn;Y n|H)>logγ

}]]
≤ Kn EPXnPH

[
EQY n|H

[
1
{
ĩ(Xn;Y n|H) > log γ

}]]
= Kn PXnPHQY n|H [ ĩ(Xn;Y n|H) > log γ]. (13)

This enables us to compute the confusion probability w.r.t.
the more convenient measure QY n|H , but at the expense of
the additional factor Kn. This bound will be particularly
useful if Kn for a properly chosen QY n|H is a slowly
growing function of n and its rate loss is negligible w.r.t.
higher order coding rates. All together, the average error
probability is then bounded as

ε≤PXnPHPY n|HXn [ ĩ(Xn;Y n|H) ≤ log γ]

+Kn
M − 1

2
PXnPHQY n|H [ ĩ(Xn;Y n|H)> log γ]. (14)

1Throughout this paper, we use a non-standard notation of the
form PXPY PZ|X [f(X,Y, Z) ∈ A] to explicitly indicate that (X,Y, Z)
follow the joint distribution PXY Z(x, y, z) = PX(x)PY (y)PZ|X(z|x)
in determining the probability Pr[f(X,Y, Z) ∈ A].



The power constraint can be addressed similar to [4] by
simply taking the decoding threshold γ = γn for the
valid sequences, and γ = ∞ for the constraint-violating
sequences and then remapping all of them to an arbitrary
valid sequence. Hence, there exists a deterministic codebook
with M codewords, all meeting the power constraint, whose
average error probability ε satisfies (10). That the threshold
γn = Kn

M−1
2 is optimal is a consequence of the optimality

of the Neyman-Pearson hypothesis test.
In the rest of this section, we present our non-asymptotic

upper bound on the coding rate for non-ergodic fading
channels, which relates the error probability of any arbitrary
code to the outage probability w.r.t. the modified mutual in-
formation RV. Our result relies on a generalized information
spectrum converse [1], [5], [12] and is also implied by the
meta-converse method of [4], but we prefer to give a more
direct proof using another “change-of-measure” technique.

Theorem 2: Every (n,M, ε, P ) code over the general non-
ergodic fading channel PHPY n|HXn satisfies

ε≥PXnPHPY n|HXn

[
ĩ(Xn;Y n|H) ≤ log γn

]
− γn
M
, (15)

where Xn is the input distribution induced by the code (i.e.,
the RV uniformly distributed over the n-letter codewords),
Y n is the output distribution over the general non-
ergodic fading channel PHY n|Xn with Xn as the input,
ĩ(Xn;Y n|H) is defined as in (9) w.r.t. any arbitrary con-
ditional output distribution QY n|H , and γn is an arbitrary
positive threshold.

Proof: Let (xn(j), Dj(H)) be the codeword and the
decoding region corresponding to the message j = 1, ...,M ,
respectively. Then,

1−ε≤ 1

M

M∑
j=1

PHPY n|H,Xn=xn(j)(Dj(H)) (16)

≤ 1

M

M∑
j=1

[
γnPHQY n|H(Dj(H))

+PHPY n|H,Xn=xn(j)

(
log

PY n|HXn(Y n|H,xn(j))

QY n|H(Y n|H)
>log γn

)]
(17)

=
γn
M

+ PXnPHPY n|HXn

[
ĩ(Xn;Y n|H) > log γn

]
,

(18)

which gives the desired result after rearranging. Note that
inequality (17) holds due to the following change of measure
argument: for any two probability distributions P and Q,
with P � Q, and for any event D, we have

P (D)=P

(
D∩

(
log

dP

dQ
≤ log γ

))
+P

(
D∩

(
log

dP

dQ
> log γ

))
≤ γQ

(
D∩

(
log

dP

dQ
≤ log γ

))
+P

(
log

dP

dQ
> log γ

)
≤ γQ(D) + P

(
log

dP

dQ
> log γ

)
. (19)

IV. FINITE-BLOCKLENGTH APPROXIMATION

In this section, we combine our non-asymptotic lower and
upper bounds of Theorems 1 and 2 to derive the following
finite blocklength approximation for channel coding rate
over the non-ergodic Rayleigh fading channel, although the
techniques should in principle generalize to other common
fading distributions. This theorem shows that the coding rate
for moderately short values of blocklength is dictated by the
outage probability caused by both noise and fading.

Theorem 3: The maximum achievable coding rate over a
non-ergodic Rayleigh fading channel is given by

R∗(n, ε)+O

(
1

n

)
≤ logM

n
≤ R∗(n, ε)+

1

2

log n

n
+O

(
1

n

)
(20)

where R∗(n, ε) is the largest solution R to

EH

[
Q

(
C(PH2)−R√
V (PH2)/n

)]
= ε, (21)

with C(P ) and V (P ) being the capacity and dispersion of
the Gaussian channel, respectively, [4]

C(P ) =
1

2
log(1 + P ), (22)

V (P ) =
log2 e

2

P (P + 2)

(1 + P )2
, (23)

and Q(·) being the complementary CDF of a standard
Gaussian distribution, Q(x) := 1√

2π

∫∞
x
e−t

2/2dt.

Proof: Starting with the achievability side, we choose
the input distribution to be the uniform distribution on the
power shell

PXn(xn) =
δ(||xn|| −

√
nP )

Sn(
√
nP )

, (24)

where δ is the Dirac delta function and Sn(r) = 2πn/2

Γ(n/2)r
n−1

is the surface area of an n-dimensional sphere of radius r.
Note that this distribution satisfies the power constraint with
probability one, so that

PXn [||Xn|| > nP ] = 0. (25)

Moreover, the output distribution induced by this input is [11]

PY n|H(yn|h)

=
π−n/2

2
Γ
(n

2

)
e−||y

n||2/2e−nPh
2/2 In/2−1(||yn||

√
nPh2)

(||yn||
√
nPh2)n/2−1

,

(26)

where Iv(·) is the modified Bessel function of the first kind
and v-th order. Next, we select the auxiliary conditional out-
put distribution QY n|H(yn|h) to be the conditional capacity-
achieving output distribution N (yn;0, (1 + Ph2)In).

The proof of [11, Proposition 2] indicates that the factor
Kn in (11) converges, that is, there exists a positive con-
stant K ≤ 1 such that, for n sufficiently large,

dPY n|H(yn|h)

dQY n|H(yn|h)
≤ K, ∀ yn ∈ Rn, ∀h ∈ R+. (27)



Applying the CLT to the outage probability for this spheri-
cally symmetric input, along with the property (27) and using
a refined large-deviation analysis for the confusion probabil-
ity as in [4, Lemma 47], the non-asymptotic achievability in
Theorem 1 with the optimal choice of threshold γ = KM
leads to the following achievability2:

ε− B1(P )√
n
≤ EH

[
Q

(
C(PH2)− log(KM)/n√

V (PH2)/n

)]
, (28)

where B1 is a positive constant which only depends on P .
We next analyze the approximate behavior of our non-

asymptotic converse bound. For this purpose, we first notice
that for any codeword which satisfies the power constraint
with strict inequality, ||xn||2 < nP , we can add an extra
symbol and assign the remaining power to it, without using
this symbol in the decoding procedure. Since for large
enough blocklength, the rate loss due to this additional
symbol is negligible, we can therefore focus our attention
only on codes for which all codewords satisfy the power
constraint with equality, ||xn||2 = nP , that is codes on the
power shell. It is then straightforward to apply the CLT to
the non-asymptotic converse bound of Theorem 2 with the
choice of threshold γ = M/

√
n and conclude that

ε+
B2(P )√

n
≥EH

[
Q

(
C(PH2)− log(M/

√
n)/n√

V (PH2)/n

)]
, (29)

where B2 is a positive constant which only depends on P .
Recalling the definition of R∗(n, ε) in the theorem, let us

define the function

f(R) := EH

[
Q

(
C(PH2)−R√
V (PH2)/n

)]
. (30)

It is easy to check that the function f(R) is strictly increasing
in R. Applying this property to the bounds (28) and (29)
yields

R∗
(
n, ε− B1(P )√

n

)
≤ logM

n
+

logK

n
, (31)

R∗
(
n, ε+

B2(P )√
n

)
≥ logM

n
− 1

2

log n

n
, (32)

Moreover, the following perturbation analysis for R∗(n, ε) is
proved in the Appendix similar to [13, Lemma 15]:

R∗
(
n, ε+O

(
1√
n

))
= R∗(n, ε) +O

(
1

n

)
. (33)

The proof ends by combining this with (31) and (32).

V. DISCUSSION

The performance of the non-ergodic fading channel is
commonly described via the concept of outage capacity.
Cout is formally defined as the largest solution R to [2], [3]

PH
[
C(PH2) < R

]
= ε. (34)

2Inequalities (28) and (29) rely on Bu(P ) := EH [Bu(P,H)] < ∞
with u = 1, 2, where Bu(P,H) is the Berry-Esseen constant for the CLT
analysis. This fact is true for the Rayleigh distribution and should generalize
to other common fading distributions.

One observes that our approximation R∗(n, ε) in Theorem 3
is a finite blocklength dual of the outage capacity (34).
Although the latter only accounts for the outage due to fading
in the infinite blocklength, the former takes into account the
joint effect of outage due to both noise and fading for finite
blocklength.

The closest work to ours is the concurrent paper by
Yang et al. [14], which adapts the κβ achievability and the
hypothesis testing meta-converse methods of [4] to tackle
the same non-ergodic fading channel model as ours, but with
multiple antennas at the receiver and different CSI settings.
For such a SIMO channel and irrespective of the availability
of CSI, the following finite blocklength approximation is
proved in [14]:

logM

n
= Cout +O

(
log n

n

)
. (35)

The above characterization is more explicit than our expres-
sion in Theorem 3, in that it clearly shows a zero dispersion
for the non-ergodic fading model, namely the interesting fact
that the coefficient of the second-order term 1/

√
n is zero

and thus even up to second order, only fading contributes to
the outage probability. However, this characterization does
not fully specify3 the coefficient of the third-order term
log(n)/n, which is significant especially for short block-
lengths; basically, a rate versus blocklength curve cannot be
illustrated based on the approximation (35). On the other
hand, our Theorem 3 provides a practical means for an
accurate but simple numerical evaluation of the coding rate
for any moderately short blocklength.

Another comparison between the result of [14] and ours
is that Theorem 3 can distinguish between the common i.i.d.
Gaussian codebook [2], [3], [15] and the more stringent
uniform-on-the-shell codebook, but the approximation (35)
of [14] cannot. In fact, using [14, Lemma 4], one can
show the second-order expansion (35) and thus prove a zero
dispersion for the non-ergodic fading channel using both the
i.i.d. Gaussian and uniform-on-the-shell input distributions.
However, we can extend our analysis in Theorem 3 to
show that using i.i.d. Gaussian input distribution PXn ∼
N (0, (P − δ)In), with an arbitrarily small constant δ > 0,
the following rates can be achieved:

logM

n
≤ RG(n, ε) +O

(
1

n

)
, (37)

where RG(n, ε) is the largest solution R to

EH

[
Q

(
C((P − δ)H2)−R√
VG((P − δ)H2)/n

)]
= ε, (38)

3In fact, the gap in the third-order term between the achievability and
converse bounds in (35) is slightly larger than ours in Theorem 3. More
precisely, [14, Eq. (100), (101), (117)] prove that

Cout −
logn

n
+O

(
1

n

)
≤

logM

n
≤ Cout +

logn

n
+O

(
1

n

)
. (36)

One could infer that our result in Theorem 3 uses part of the third-order term
log(n)/n of (36) into the expression R∗(n, ε) to capture the contribution
of the noise to the outage probability.
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Fig. 1. Channel coding rate as a function of blocklength over a Rayleigh
non-ergodic fading channel with P = 10dB and ε = 10−3

and VG(P ) = log2 e P
1+P . Since VG(P ) > V (P ), comparison

of (38) with R∗(n, ε) in Theorem 3 shows that the back-off
from outage capacity due to finite blocklength is larger for
the i.i.d. Gaussian input than that for the uniform-on-the-shell
input distribution.

Figures 1 compares, for a Rayleigh non-ergodic fading
channel with P = 10dB and ε = 10−3, all of the afore-
mentioned rates as a function of the blocklength: the outage
capacity, the finite blocklength approximation of Theorem 3,
and the approximate achievable rate (37),(38) via the i.i.d.
Gaussian codebook. This figure suggests that the gap to
outage capacity for short blocklengths may be considerable,
and therefore the noise contribution to the outage probability
is significant in this regime. Moreover, the convergence of
the coding rate to the outage capacity is observed to be
fast (from around 10% of outage capacity to around 80%
with an increase of blocklength from 100 to 800), which
is a consequence of the zero dispersion result (35) of [14].
Additionally, this figure illustrates the performance loss due
to the use of i.i.d. Gaussian inputs, which does not utilize all
of the available power budget. Although the difference may
seem small in this example, the effect can be significant for
short blocklengths and other fading distributions.

It is also worth mentioning that although the analysis of
the no CSI case in [14] is interesting, the CSITR case is
essentially no different from the CSIR case, since the whole
codeword experiences only one fading realization and the
per-codeword power constraint prevents the use of CSI at
the transmit side for designing any smart power allocation.
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APPENDIX

In this Appendix, we prove the perturbation result (33)
for R∗(n, ε). Recall that the function f(R) defined in (30)
is an increasing function in R and satisfies f(R∗(n, ε)) = ε.
Denote by R∗ the solution to f(R∗) = ε and by R∗∗ the
solution to f(R∗∗) = ε+O

(
1√
n

)
. The increasing property

of f(R) results in ∆R := R∗∗ −R∗ > 0. Now, note that

ε+O

(
1√
n

)
= EH

[
Q

(
C(PH2)−R∗ −∆R√

V (PH2)/n

)]
(39)

= EH

[
Q

(
C(PH2)−R∗√
V (PH2)/n

)
+K1(H)

√
n∆R+ o

(
K2(H)

√
n∆R

)]
(40)

= ε+O
(√
n∆R

)
, (41)

where K1(H) and K2(H) are Taylor expansion coefficients
that satisfy EH [K1(H)] <∞ and EH [K2(H)] <∞ for the
Rayleigh distribution and should generalize to other common
fading distributions. Comparison of (39) and (41) implies that
∆R = O

(
1
n

)
and concludes the proof of (33).
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