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Abstract—Time division multiple access (TDMA) is widely
considered to be a practical multi-access communication scheme
that can achieve the highest possible sum-rate with appropriate
power allocation. Exploring a Gaussian multiple access channel,
we show that this result does not carry over to second-order
coding rates. In particular, as the number of users grows, the
cost of using TDMA is significant relative to the largest known
achievable second-order sum-rate for the Gaussian MAC. The
latter sum-rate is established by a random coding argument with
non-i.i.d. spherical inputs, which is conveniently analyzed via a
central limit theorem (CLT) for functions.

I. INTRODUCTION

Medium access control is a crucial aspect of communication
networks, which determines the policy for allocating resources
to multiple users in the system. Simplicity of implementation
is a critical feature for deciding on the channel access method,
which is why time division multiple access (TDMA) or
variants thereof are commonly used even in modern wireless
networks. TDMA has the advantage that it avoids multi-
user interference, but this is usually at the expense of lower
communication rates due to the shorter time frames that
each user can utilize. An interesting observation, however, is
that TDMA achieves the optimal sum-rate in the regime of
asymptotically long channel codes [1]. This observation has
encouraged the application of TDMA as a simple, yet powerful
channel access policy.

In this paper, motivated by applications in machine-
to-machine (M2M) communications and the Internet of
things (IoT) in which channel coding may be limited to
finite blocklength, we revisit the TDMA method form the
perspective of second-order channel coding rates. We consider
the K-user Gaussian MAC modeled as

Y n =

K∑
u=1

Xn
u + Zn, (1)

where Xn
u := (Xu1, · · · , Xun) is the n-letter input for the user

u ∈ {1, · · · ,K} satisfying power constraint ||Xn
u ||2 ≤ nPu

almost surely, and Y n := (Y1, · · · , Yn) is the n-letter output
resulting from the multi-user interference and the additive
white Gaussian noise Zn ∼ N (0, In). To highlight the key
finding of this paper, let us consider the symmetric case,
in which all users u ∈ {1, · · · ,K} have maximal power
constraints equal to P . To maximize the sum-rate of TDMA,

the first-order asymptotic analysis allocates a fraction n/K of
the time to each user, in which all the other users remain silent,
and guarantees the optimal sum-rate C(KP ) using simple
single-user encoding and decoding methods, where

C(P ) :=
1

2
log(1 + P ) (2)

is the capacity of the point-to-point Gaussian channel with
signal-to-noise ratio P . In this paper, however, we will show
that the maximum second-order sum-rate achieved by TDMA
(using any power control strategy) with moderately short
coding blocklength n and average block error probability ε is

R∗TD =C (KP )−
√
K

n
V (KP )Q−1

(
1−K
√

1− ε
)
+O

(
log n

n

)
(3)

which can be well approximated for small ε ≤ 0.01 by

R∗TD ≈C (KP )−
√
K

n
V (KP )Q−1

( ε
K

)
+O

(
log n

n

)
. (4)

Here, Q−1(·) is the inverse of the complementary CDF of a
standard Gaussian distribution, Q(x) := 1√

2π

∫∞
x
e−t

2/2dt, and
V (P ) is the dispersion of the Gaussian channel [2], [3]

V (P ) :=
log2 e

2

P (P + 2)

(1 + P )2
. (5)

A larger sum-rate can be achieved by allowing all the users
to access the channel all the time, but with proper encoding at
the transmitter and joint decoding at the receiver. In particular,
it is straightforward to show [4] that random coding with
independent and identically distributed (i.i.d.) Gaussian inputs
Xn
u ∼ N (0, P̄ In) achieves

R∗G = C
(
KP̄

)
−

√
VG
(
KP̄

)
n

Q−1 (ε) +O

(
1

n

)
, (6)

where P̄ := P − δ with δ a small constant or even decaying
but slower than 1/

√
n, and VG(P ) is the Gaussian-induced

dispersion [5]

VG(P ) := log2 e
P

1 + P
. (7)

Following Shannon [6], a still larger sum-rate can be achieved
via non-i.i.d. inputs that are uniformly distributed over the n-
dimensional power shell ||xnu|| =

√
nP . This ensures that each
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Fig. 1. Sum-rate, up to second-order, in bits per channel use (b/cu) of
a symmetric Gaussian MAC as a function of the number K of users. The
setting has blocklength n = 500, average block error probability ε = 10−3,
and power constraint Pu = 0 dB for all users u ∈ {1, · · · ,K}. The power
margin for the i.i.d. Gaussian input is δ = 0.052.

codeword utilizes all the power budget. We will show that this
scheme achieves the following second-order sum-rate:

R∗PS = C (KP )−
√
V (KP )+Vc (K,P )

n
Q−1 (ε)+O

(
1

n

)
,

(8)

where Vc(K,P ) is a cross dispersion

Vc(K,P ) :=
log2 e

2

K(K − 1)P 2

(1 +KP )2
, (9)

arising from the inner-product of independent power shell
inputs. In the last section of this paper, we conjecture that
dropping this cross dispersion leads to a second-order upper
bound on the sum-rate of the form

R∗UB = C (KP )−
√
V (KP )

n
Q−1 (ε) +O

(
log n

n

)
. (10)

Figure 1 compares, up to second order, the sum rate
achievable via TDMA with that achievable using the Gaussian
and power shell coding schemes, all as functions of the number
of users K. For reference, the asymptotically optimal sum-
rate C(KP ) and a conjectured upper bound [7] are also
depicted. One observes that TDMA is not second-order sum-
rate optimal. In fact, it has a considerably high back-off from
the first-order asymptotic sum-capacity C(KP ), and this gap
increases as the number of users grows. The power-shell and
the Gaussian coding schemes, however, very closely follow
the conjectured upper bound and the asymptotic sum-rate.

It is worth mentioning that in our setup, the number of users
can be large, but still needs to satisfy K = O(1) with respect
to the blocklength. A first-order study of the case in which K
grows as a function of blocklength n is developed in [8].

II. TDMA ANALYSIS

In this section, we present achievability and converse argu-
ments that characterize the second-order performance of the
time-sharing scheme for the general, potentially asymmetric
case.

Theorem 1: The second-order characterization of the
TDMA with power control scheme for the K-user Gaussian
MAC with power constraint Pu for user u ∈ {1, · · · ,K} is
the set of all tuples (R1, · · · , RK) satisfying

Ru < αuC

(
Pu
αu

)
−

√
αu
n
V

(
Pu
αu

)
Q−1(eu) +O

(
log n

n

)
,

(11)

for some 0 ≤ αu ≤ 1 and 0 ≤ eu ≤ ε for all u ∈ {1, · · · ,K};∑K
u=1 αu = 1; and

K∑
u=1

(−1)u+1
∑

1≤l1<···<lu≤K

el1 · · · elu = ε. (12)

Remark 1. The parameters {αu}Ku=1 and {eu}Ku=1 denote
the fraction of blocklength allocated to and the average block
error probability achieved by each user in its TDMA time slot,
respectively. To clarify, (12) for the example of K = 3 reads:

e1 + e2 + e3 − e1e2 − e1e3 − e2e3 + e1e2e3 = ε. (13)

Before giving the proof of Theorem 1, let us show how
it implies the sum-rate (3) for the symmetric case. First note
that, the selections αu = 1/K and eu = e := 1− K

√
1− ε for

all u ∈ {1, · · · ,K} satisfy the conditions of Theorem 1 and
recover (3). In particular,

K∑
u=1

(−1)u+1

(
K

u

)
eu = 1− (1− e)K = ε. (14)

To prove that these are the optimal selections, note that any
pair of α := (α1, · · · , αK) and e := (e1, · · · , eK) tuples
achieve the following sum-rate:

R∗TS(α, e) =

(
K∑
u=1

αuC

(
P

αu

))

+
1√
n

(
−

K∑
u=1

√
αuV

(
P

αu

)
Q−1(eu)

)
+O

(
log n

n

)
, (15)

To maximize R∗TS(α, e) first over the choice of α, we rely on a
vector-extension of [2, Lemma 63] which states the maximum
occurs by choosing the α that individually maximizes the
second-order term, only among those α that individually
maximize the first-order term; moreover, the residual term
is O

(
1
n

)
if the two functions in the first- and second-order

terms satisfy differentiability conditions; cf. [2, Lemma 64].
In our case, the only α that maximizes the first order term is
the well-known choice of equal fractions αu = 1

K for all
u ∈ {1, · · · ,K}. Thus, it is the global optimizer for the
function R∗TS(α, e) with O

(
1
n

)
as the residual, since regularity



conditions are satisfied. To maximize the resulting function,
one performs

min
e

K∑
u=1

Q−1(eu) (16)

subject to
K∑
u=1

(−1)u+1
∑

1≤l1<···<lu≤K

el1 · · · elu = ε. (17)

One can verify that the solution of this minimization problem
is symmetric, i.e. e1 = · · · = ek := e, thus satisfying (14).

Now, we turn to the proof of Theorem 1.
Proof: Since each user in its turn observes an

interference-free P2P Gaussian channel, both achievability and
converse parts follow directly from the achievability and con-
verse results of the P2P Gaussian channel [2], [3], respectively,
upon recalling that (i) the total fraction of users’ turns adds
up to one, and (ii) the error probability analysis follows from

Pr

[
K⋃
u=1

Eu

]
= ε, (18)

where Eu, with Pr[Eu] = eu, denotes the individual error event
of user u ∈ {1, · · · ,K} on a P2P Gaussian channel. Due to
the independence of the error events, (18) simplifies to (12) via
the inclusion-exclusion principle, thus concluding the proof.

III. ACHIEVABLE REGION WITH POWER SHELL INPUT

In this section, we state and prove the second-order achiev-
able rate region using the power shell input for the general,
potentially asymmetric Gaussian MAC. As we mentioned in
Section I, this gives the largest region among all the regions
we analyze in this paper.

Theorem 2: A second-order achievable rate region with
power shell inputs for the K-user Gaussian MAC with power
constraint Pu for user u ∈ {1, · · · ,K} is the set of all rate
tuples (R1, · · · , RK) satisfying

R ∈ C(P)− 1√
n
Q−1(ε; V(P)) +O

(
1

n

)
1, (19)

where: 1 is the all-one vector of length 2K−1; R denotes
the 2K−1 tuple with elements RS =

∑
u∈S Ru with S ⊆

{1, · · · ,K}; P denotes the 2K − 1 tuple with elements

PS =
∑
u∈S

Pu ; (20)

C(P) denotes the 2K − 1 tuple with elements CS := C (PS);
V(P) is the (2K − 1) × (2K − 1) dispersion matrix with
elements

VS,S′ =V (PS , PS′)

:=
log2 e

2

PSPS′ + 2PS∩S′ + (PS∩S′)
2 −

∑
u∈S∩S′ P

2
u

(1 + PS)(1 + PS′)
;

(21)

and Q−1(ε;Σ) is the inverse complementary CDF of a (2K−1)-
dimensional Gaussian random variable defined as the set

Q−1(ε; Σ) :=
{

z ∈ R2K−1:Pr (N (0,Σ) ≤ z)≥1−ε
}
. (22)

Since the evaluation of the rate region in Theorem 2 is
cumbersome for large K, we provide a simpler rate region
via the outage-splitting idea [7].

Theorem 3: A second-order achievable rate region with
power shell inputs for the K-user Gaussian MAC with power
constraint Pu for user u ∈ {1, · · · ,K} is the set of all rate
tuples (R1, · · · , RK) satisfying

RS ≤ C(PS)−
√
V (PS) + Vc (PS)

n
Q−1(λSε) +O

(
1

n

)
,

(23)

for all subsets of the users S ⊆ {1, · · · ,K} and any
choice of non-negative coefficients λS that sum to one,∑
S⊆{1,··· ,K} λS = 1, where RS and PS are defined as in

Theorem 2, V (P ) is the dispersion (5) of the P2P Gaussian
channel, and Vc(PS) is a cross dispersion

Vc(PS) :=
log2 e

2

(PS)
2 −

∑
u∈S P

2
u

(1 + PS)2
. (24)

The sum-rate (8) for the symmetric Gaussian MAC is an
immediate consequence of Theorem 3 upon noting that the
dominant inequality for the sum-rate is the one corresponding
to the set of all users S = {1, · · · ,K} with PS = KP . In
particular, the error probabilities of all other subsets of users
are in the large deviation regime, so that λSε captures all
but a vanishing part of the error probability ε. This vanishing
perturbation can then be dropped via an application of Taylor’s
theorem, cf. [9] for related details.

The key tool for our analysis of power shell inputs is a
powerful, yet convenient, version of the central limit theorem
(CLT), called the CLT for functions, which handles sums of
dependent random variables that can be expressed as functions
of sums of independent random variables. In particular, let
{Wt := (W1t, ...,WKt)}∞t=1 be i.i.d. random vectors with
positive variance and finite third moment, and let f(w) =
(f1(w), ..., fL(w)) be an L-component vector-function with
continuous second-order partial derivatives in a neighborhood
of w = E[W1]. Then, for any convex Borel-measurable set D
in RL, there exists a finite positive constant B such that [10],
[7, Prop. 1]∣∣∣∣∣Pr

[
f

(
1

n

n∑
t=1

Wt

)
∈D

]

−Pr

[
N
(
f (E[W1]),

1

n
JCov(W1)JT

)
∈D
]∣∣∣∣∣≤ B√

n
, (25)

where J is the Jacobian matrix of f(w) at w = E[W1]
consisting of the following first-order partial derivatives

Jlk :=
∂fl(w)

∂wk

∣∣∣∣
u=E[W1]

l = 1, ..., L, k = 1, ...,K. (26)



We are now ready to present the proof of Theorems 2 and 3.
Proof: The proof builds on random coding and modified

typicality decoding. Each user u ∈ {1, · · · ,K} indepen-
dently generates Mu independent codewords {xnu(ju)}Mu

ju=1

according to the n-letter input distribution PXn
u

(xnu). To com-
municate a message tuple (j1, · · · , jK), each user u sends
xnu(ju). Upon reception of yn, the decoder searches for the first
codeword tuple (xn1 (ĵ1), · · · , xnK(ĵK)) that looks “typical”
with yn in the following one-sided sense:

ĩ
(
xnS(ĵS); yn

∣∣xnSc(ĵSc)
)
> log(κSMS), (27)

for all subsets S ⊆ {1, · · · ,K}, where jS and xnS(jS)
are the |S|-tuples consisting of the messages ju and the
codewords xnu(ju), respectively, for all u ∈ S . Moreover, we
define MS :=

∏
u∈SMu, the κS coefficients

κS := sup
xn
Sc∈X

n
Sc , y

n∈Yn

dPY n|Xn
Sc

(yn|xnSc)

dQ
(S)
Y n|Xn

Sc
(yn|xnSc)

, (28)

and ĩ the modified mutual information random variable

ĩ
(
xnS ; yn

∣∣xnSc

)
:= log

PY n|Xn
SX

n
Sc

(yn
∣∣xnS , xnSc)

Q
(S)
Y n|Xn

Sc
(yn
∣∣xnSc)

, (29)

with any reference (conditional) output distribution Q(S)
Y n|Xn

Sc
.

Following standard arguments [1], [2], [7], one can prove
the existence of a code with blocklength n, average error
probability ε, and satisfying the power constraints such that1

ε ≤ PXnPY n|Xn

 ⋃
S⊆{1,··· ,K}

ĩ(Xn
S ;Y n|Xn

Sc)≤ log(κSMS)


+
∑

S⊆{1,··· ,K}

κSMSPXnQ
(S)
Y n|Xn

Sc

[
ĩ(Xn
S ;Y n|Xn

Sc)> log(κSMS)
]

+ PXn

 ⋃
u∈{1,··· ,K}

||Xn
u ||2 > nPu

 , (30)

where PXn :=
∏K
u=1 PXn

u
.

Now, we choose the input distribution PXn
u

to be the
uniform distribution on the power shell ||xnu|| =

√
nPu, for

which the constraint-violation probability in the third term
of (30) is zero. Moreover, we select the reference distribution
as Q(S)

Y n|Xn
Sc

(yn
∣∣xnSc) ∼ N (yn;xnSc , (1+PS)In), which can be

considered as the output of the channel Y n = Xn
S +xnSc +Zn

with the input Xn
S following Q(S)

Xn
S
∼ N (0, PSIn).

A critical step in the analysis is to show that

κS = O(1), ∀ S ⊆ {1, · · · ,K}. (31)

If |S| = 1, (31) immediately follows from [7, Prop. 2].
If |S| ≥ 2, (31) is proved by extending our idea in [7,
Prop. 3], that the probability density function (pdf) of the

1We use PXPY PZ|X [f(X,Y, Z) ∈ A] to indicate that (X,Y, Z)
follow the joint distribution PXY Z(x, y, z) = PX(x)PY (y)PZ|X(z|x) in
determining the probability Pr[f(X,Y, Z) ∈ A].

superposition of any number of independent uniform-on-the-
shell input distributions is bounded by a constant times the
pdf of a Gaussian input distribution with an equal sum-power:

sup
xn
S∈Xn

S

dPXn
S

(xnS)

dQ
(S)
Xn
S

(xnS)
≤ cS = O(1), (32)

which is proved in the Appendix. Since κS is the ratio
of the corresponding outputs through the same channel
Y n = Xn

S + xnSc + Zn, we conclude (31). The confusion
probability in the second term of (30), Pconf(S) :=

κSMSPXnQ
(S)
Y n|Xn

Sc

[
ĩ(Xn
S ;Y n|Xn

Sc)> log(κSMS)
]
, can

now be analyzed using the strong large deviation result of [2,
Lemma 47] to conclude∑

S⊆{1,··· ,K}

Pconf(S) ≤ O
(

1√
n

)
, (33)

since the number of users is constant w.r.t. the blocklength.
Hence, it only remains to analyze the outage probability in

the first term of (30). We have

ĩ
(
xnS ; yn

∣∣xnSc

)
= nC(PS) +

log e

2(1 + PS)

[
PS(n− ||Zn||2)

+ 2〈Xn
S , Z

n〉+
∑
u,ū∈S
u<ū

2〈Xn
u , X

n
ū 〉
]
. (34)

Note that, due to the non-i.i.d. structure of the power shell
input, ĩ

(
xnS ; yn

∣∣xnSc

)
is a sum of dependent random variables.

However, recall that Xn
u is distributed uniformly on the power

shell ||xnu|| =
√
nPu if and only if

Xut =
√
nPu

Gut
||Gnu||

, (35)

where Gnu ∼ N (0, In). Therefore, ĩ
(
xnS ; yn

∣∣xnSc

)
can be

expressed as a function of independent random variables, and
analyzed via our CLT of functions in (25). In particular,
1
n ĩ
(
xnS ; yn

∣∣xnSc

)
= fS

(
1
n

∑n
t=1 Wt

)
, where the function

fS(w) with 1 + 2K +
(
K
2

)
input variables is defined as

fS(w) = C(PS) +
log e

2(1 + PS)

[
PSw0 +

∑
u∈S

2wu√
1 + w(K+u)

+
∑
u,ū∈S
u<ū

2wu,ū√
1 +W(K+u)

√
1 +W(K+ū)

 , (36)

and Wt = (W0t; {Wut}Ku=1; {W(K+u)t}Ku=1; {W(u,ū)t}Ku,ū=1
u<ū

)

is the set of random variables

W0t = 1− Z2
t , Wut =

√
PuGutZt, (37)

W(K+u)t = G2
u,t − 1, W(u,ū)t =

√
PuPūGutGūt, (38)

for all u, ū ∈ {1, · · · ,K}, u < ū.
Since Wt is zero mean, we obtain fS(E[W1]) = C(PS).

Moreover, it is straightforward to verify that Wt has finite
third moment and a diagonal covariance matrix as:

Cov(W1) = Diag[2;P1 · · ·PK ; 2 · · · 2; (P1P2) · · · (PK−1PK)],



and that fS(w) has a Jacobian matrix J whose row corre-
sponding to S is log e

2 times[
PS

1 + PS︸ ︷︷ ︸
size 1

;
2

1 + PS
1{u ∈ S}︸ ︷︷ ︸

size K

; 0︸︷︷︸
size K

;
2

1 + PS
1{u < u′ ∈ S}︸ ︷︷ ︸
size

(K
2

)

]
.

Therefore, the (S,S ′)-entry in JCov(W1)J
T is computed as(

log e

2

)2
[

2PSPS′

(1 + PS)(1 + PS′)

+
∑

1≤u≤K

2Pu · 1{u ∈ S}
1 + PS

2 · 1{u ∈ S ′}
1 + P ′S

+
∑

1≤u,ū≤K

2PuPū · 1{u < ū ∈ S}
1 + PS

2 · 1{u < ū ∈ S ′}
1 + P ′S

]
which simplifies to (21). Combining the CLT for functions (25)
with (30) and (33), we obtain

Pr

[
N
(
C(P),

V(P)

n

)
>R +O

(
1

n

)
1

]
≥1−

(
ε−O

(
1√
n

))
.

The proof of Theorem 2 concludes by recalling the symmetry
property and the inverse complementary CDF definition (22)
of the multi-dimensional Gaussian RV.

For the proof of Theorem 3, we instead use the union bound
to split the joint-outage event as in [7] and assign a portion λSε
of the error probability to the individual outage events of each
subset S of users. The analysis would then rely solely on the
regular one-dimensional CLT and only deals with the diagonal
entries of the dispersion matrix V(P), i.e., only the variances
of the corresponding mutual information random variables.

IV. A CONJECTURED OUTER BOUND

A set of straightforward outer bounds for the second-
order capacity region of the K-user Gaussian MAC can be
obtained via single-user bounds that assume a genie has
provided the receiver with the messages of all users, except
one of them. We suspect an extension of this idea to all
subsets S ⊆ {1, · · · ,K} holds, which implies our conjectured
outer bound in (10) for the symmetric case.

Conjecture 1: An outer bound on the second-order rate
region of the K-user Gaussian MAC with power constraint
Pu for the user u ∈ {1, · · · ,K} is the set of all rate tuples
(R1, · · · , RK) satisfying

RS ≤ C(PS)−
√
V (PS)

n
Q−1(ε) +O

(
log n

n

)
, (39)

for all subsets of the users S ⊆ {1, · · · ,K}, where all
notations are defined as in Theorem 2.

APPENDIX

In this appendix, we sketch the proof of inequality (32)
in the confusion probability analysis. The main idea is to first
derive the pdf of the super-imposed spherical distributions and
then prove that it is bounded w.r.t. the corresponding Gaussian

pdf. For brevity, we focus on the case of symmetric Gaussian
MAC with equal powers P across users; the proof for the
asymmetric case generalizes similar arguments.

Lemma 1: The pdf of the superposition of k = 2, 3, · · ·
power shell input distributions is given by

PUn
k

(unk ) = ck
(Sn−1(1))k−1

(Sn(
√
nP ))k

(
√

2πP )k−2(nP )

× (k2nP − ||unk ||2)k−2

(k(k − 2)nP + ||unk ||2)
k−1
2

×
(

(k2nP − ||un2 ||2)k−1

(k − 1)k−1kk

)n−3
2

, (40)

where 0 < ||unk || < k
√
nP and ck < 1 is a normalizing

constant, independent of n and P , that depends only on the
number of layers k.
The proof of this lemma is given elsewhere [4], but basically
relies on a recursive formula for the pdf of interest along with
the Laplace method for integration [11].

To prove inequality (32), let d(unk ) :=
PUn

k
(un

k )

QUn
k

(un
k ) where

QUn
k

(unk ) = (2π)−n/2(kP )−n/2e−||u
n
k ||

2/(2kP ) is the pdf of
the superposition of k layers of i.i.d. Gaussian inputs. Letting
||unk || =

√
nt with t ∈ (0, k2P ), we obtain ln d(unk ) =

a(t) + n
2 fk,P (t) where

a(t) := c+ (k − 2) ln(k2P − t)− k − 1

2
ln(k(k − 2)P + t)

with c a constant only depending on k and P , and

fk,P (t) :=− 1− k lnP + ln(kP )− (k − 1) ln(k − 1)

− k ln k + (k − 1) ln(k2P − t) +
t

kP
,

for sufficiently large n. It is then straightforward to verify that
fk,P (t) achieves its maximum at t = kP where its value is
fk,P (kP ) = 0. Therefore, fk,P (t) ≤ 0 for all t ∈ (0, k2P )
that implies d(unk ) ≤ exp(maxt a(t)) = O(1), since a(t) has
a finite maximum that occurs at t = 0.

REFERENCES

[1] T. M. Cover and J. A. Thomas, Elements of Information Theory, 1991.
[2] Y. Polyanskiy, H. V. Poor and S. Verdú, “Channel Coding Rate in the

Finite Blocklength Regime,” IEEE Trans. Inf. Th., pp. 2307–2359, 2010.
[3] M. Hayashi, “Information Spectrum Approach to Second-Order Coding

Rate in Channel Coding,” IEEE Trans. Inf. Th., pp. 4947–4966, 2009.
[4] E. MolavianJazi, “A Unified Approach to Gaussian Channels with Finite

Blocklength,” Ph.D. Dissertation, in preparation, University of Notre
Dame, IN, 2014.

[5] S. O. Rice, “Communication in the Presence of Noise - Probability of
Error for Two Encoding Schemes,” Bell Sys. Tech. J., pp. 60–93, 1950.

[6] C. E. Shannon, “Probability of Error for Optimal Codes in a Gaussian
Channel,” Bell Sys. Tech. J., vol. 38, pp. 611–656, 1959.

[7] E. MolavianJazi and J. N. Laneman, “A Finite-Blocklength Perspective
on Gaussian Multi-Access Channels,” IEEE Trans. Inf. Th., submitted
for publication, arXiv:1309.2343, Sep. 2013.

[8] X. Chen and D. Guo, “Gaussian Many-Access Channels: Definition and
Symmetric Capacity,” in Proc. ITW, pp. 1–5, Sevilla, Spain, Sep. 2013.

[9] E. Haim, Y. Kochman and U. Erez, “A Note on the Dispersion of
Network Problems,” in Proc. IEEEI, pp. 1-9, Eilat, Israel, Nov. 2012.

[10] W. Hoeffding and H. Robbins, “The Central Limit Theorem for Depen-
dent Random Variables,” Duke Math. J., vol. 15, pp. 773–780, 1948.

[11] D. J. C. MacKay, Information Theory, Inference and Learning Algo-
rithms, Cambridge University Press, Sep. 2003.


