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Abstract—We formulate a model for intermittent multi-access
communication for two users that captures the bursty transmis-
sion of the codeword symbols for each user and the possible
asynchronism between the receiver and the transmitters as well
as between the transmitters themselves. By making different
assumptions for the intermittent process, we specialize the system
to a random access system with or without collisions. For each
model, we characterize the performance of the system in terms
of achievable rate regions. The intermittency of the system comes
with a significant cost in our achievable schemes.

I. INTRODUCTION

Multi-access communication is treated in different ways in
the literature. Gallager [1] reviews both information-theoretic
and network-oriented approaches, and emphasizes the need
for a perspective that can merge elements from these two
approaches. As also pointed out in [2], information-theoretic
models focus on accurate analysis of the effect of the noise and
interference, whereas network-oriented models focus on bursty
transmissions and collision-resolution approaches. An example
of a recent work that introduces a model for multi-access
communication capturing elements from these two approaches
is [3], which introduces an information-theoretic model for a
random access communication scenario with two modes of
operation for each user, active or inactive.

This paper can be viewed as another attempt to combine
the information-theoretic and network-oriented multi-access
models and to characterize the performance of the system in
terms of the achievable rate regions. We formulate a model
for intermittent multi-access communication for two users that
captures two network-oriented concepts. First, it models bursty
transmission of the codeword symbols for each user. Second,
it takes into account the possible asynchronism between the
receiver and the transmitters as well as between the trans-
mitters themselves. A basic system model is introduced in
Section II, which generalizes the intermittent communication
model introduced in [4]. By making different assumptions
for the intermittent process, we specialize the system to two
models: random access with collision avoidance, and random
access with collisions in Sections IV and V, respectively. The
collisions are treated as interference, and information can be
extracted from the collided symbols.

For each model, we obtain achievable rate regions that
depend on the concept of partial divergence introduced in [4],

Fig. 1. System model for intermittent multi-access communication.

[5]. Because of the assumption that the receiver does not know
a priori that an output symbol corresponds to transmission
by a given user or both, the decoder has to both detect the
positions and decode the messages. In our achievable schemes,
the intermittency of the system comes with a significant cost,
i.e., it reduces the size of the achievable rate regions, which
can be interpreted as communication overhead [6]. Note that
as opposed to [6], where the constraint is the lack of coordi-
nation between the users in multi-access communication, the
constraint in this paper is the intermittency of the system.

II. SYSTEM MODEL

We consider a 2-user discrete memoryless multiple ac-
cess channel (DM-MAC) with conditional probability mass
functions W (y|x1, x2) over input alphabets X1 and X2 and
output alphabet Y . The two senders wish to communicate
independent messages m1 ∈ {1, 2, ..., ekR1 = M1} and m2 ∈
{1, 2, ..., ekR2 = M2} to a receiver. Let ? ∈ X1,X2 denote
a special symbol, corresponding to the input of the channel
when the sender is silent. Let W·? := W (y|x1, x2 = ?) denote
the probability transition matrix for the point to point channel
for user 1 if user 2 is silent, let W?· be defined analogously,
and let W?? := W (y|x1 = ?, x2 = ?) denote the output
distribution if both users are silent. Each user encodes the
message to a codeword of length k: ck1(m1) and ck2(m2) denote
the codewords of user 1 and user 2, respectively. Assume
that xn1 and xn2 are the input sequences and yn is the output
sequence of the channel, where n is the length of the receive
window at the decoder.

Figure 1 shows a block diagram for the system model
in which the intermittent process stores inputs ck1(m1) and
ck2(m2) in two separate buffers, and generates outputs xn1 and
xn2 to capture the burstiness and the asynchronism of the users.
The intermittent process, in general, has memory, and can be



described as a state-dependent process with four possible states
(s1, s2), s1, s2 ∈ {0, 1} in each time slot. If si = 0, then user
i is silent and transmits the symbol ?. If si = 1, which is only
possible if there are codeword symbols remaining in user i’s
buffer, then user i transmits the next codeword symbol. We
assume that neither the encoders nor the decoder know the
states of the intermittent process. Note that the intermittent
process together with the DM-MAC can be collected into a
state-dependent MAC with memory with the states unknown
to the encoders and the decoder. See [7], [8] and the references
therein for some setups on memoryless state-dependent MAC.

Assuming that the decoded messages are denoted by m̂1

and m̂2, which are functions of the random sequence Y n, we
say that the rate pair (R1, R2) is achievable if there exists
two sequences of length k codes of size ekR1 and ekR2 for
the two encoders with 1

M1M2

∑M1

m1=1

∑M2

m2=1 P((m̂1, m̂2) 6=
(m1,m2))→ 0 as k →∞. We refer to this general scenario as
intermittent multi-access communication, and in Sections IV
and V we consider several instances of the intermittent process
in Figure 1. But first, Section III reviews some prerequisite
material upon which the results are based.

III. PRELIMINARIES

A. Notation

Most of the notation in this paper follows that of [9].
By X ∼ P (x), we mean X is distributed according to P .
The empirical distribution (or type) of a sequence xn ∈ Xn
is denoted by P̂xn . Joint empirical distributions are denoted
similarly. We say a sequence xn has type P if P̂xn = P
and denote it by xn ∈ TnP , where TnP or more simply TP
is the set of all sequences that have type P . We use PX to
denote the set of distributions over the finite alphabet X . The
set of sequences yn that have a conditional type W given xn

is denoted by TW (xn). The Kullback-Leibler divergence is
denoted by D(P‖Q). We use o(·) to denote quantities that
grow strictly slower than their arguments. In this paper, we
use the convention that

(
n
k

)
= 0 if k < 0 or n < k, and the

entropy H(P ) = −∞ if P is not a probability mass function,
i.e., one of its elements is negative or the sum of its elements
is larger than one. h(·) is the binary entropy function, and for
β1 + β2 < 1, let h(β1, β2) denote the entropy of the ternary
probability mass function (β1, β2, 1 − β1 − β2). Finally, if
0 ≤ ρ ≤ 1, then ρ̄ := 1− ρ.

B. Partial Divergence and Its Generalization

Partial divergence dρ(P‖Q) between distributions P and
Q with mismatched factor ρ is introduced in [4], [5] to
characterize the exponent of the probability that a sequence
with length k has a type P if ρk of its elements are generated
independently according to Q and ρ̄k of them are generated
independently according to P . For alphabets of size t, e.g.,
X = {0, 1, ..., t − 1}, and distributions P,Q ∈ PX , where
P := (p0, p1, ..., pt−1), and Q := (q0, q1, ..., qt−1), partial

divergence can be expressed as [5]

dρ(P‖Q) = D(P‖Q)−
t−1∑
j=0

pj log(c∗+
pj
qj

) +ρ log c∗+h(ρ),

(1)
where c∗ is a function of ρ, P , and Q that can be uniquely
determined from

c∗
t−1∑
j=0

pjqj
c∗qj + pj

= ρ.

We now state a generalization for [4, Lemma 1] for which
the sequence is generated according to three distributions.

Lemma 1. Consider the alphabet X = {0, 1, ..., t − 1}, and
distributions P,Q1, Q2, Q3 ∈ PX . A random sequence Xk

is generated as follows: ρ1k symbols are i.i.d. according to
Q1, ρ2k symbols are i.i.d. according to Q2, and ρ3k are i.i.d.
according to Q3, where ρ1 + ρ2 + ρ3 = 1. Then, the exponent
of the probability that Xk has type P is

lim
k→∞

−1

k
logP(Xk ∈ TP )

= min
P1,P2,P3∈PX :

ρ1P1+ρ2P2+ρ3P3=P

ρ1D(P1‖Q1)+ρ2D(P2‖Q2)+ρ3D(P3‖Q3)

(2)

Proof. See Appendix A.

We will be interested in a special case of Lemma 1 in
which Q3 = P . In other words, we need to find the expo-
nent of the probability that a sequence has a type P if its
elements are generated independently according to Q1, Q2,
and P . For this case, we denote the right-hand side of (2) by
dρ1,ρ2(P‖Q1, Q2), where ρ1 + ρ2 < 1. This function will be
used in Section V.

IV. RANDOM ACCESS WITH COLLISION AVOIDANCE

In this section, we consider an intermittent process in Fig-
ure 1 that models a random access channel in which, at each
time slot, exactly one of the users sends an information symbol
and the other remains silent by sending the special symbol ?,
until both users have finished sending their codewords. In this
model, there are only two possible states for the intermittent
process (s1, s2) ∈ {(1, 0), (0, 1)}, and therefore, the output
pair (x1, x2) of the intermittent process at each time slot takes
one of the two following forms: (c1, ?) or (?, c2), where c1
and c2 denote the next codeword symbol to be transmitted
from the first and the second user, respectively. Note that
if both input buffers of the intermittent process are empty,
then the transmission terminates, and if exactly one of them
is empty, then only the state corresponding to transmission of
the codeword symbol from the user with the non-empty buffer
is allowed. As a result, the length of the receive window in
this model is n = 2k. The receiver observes the sequence yn,
wishes to decode both messages, but does not know a priori
which output symbol corresponds to which user’s codeword.

A potential application of this model include a cognitive ra-
dio in which the primary user is bursty, i.e., sends information



symbols in some time slots and remains silent in the other
time slots, and a secondary user also wants to communicate
with the same receiver and can sense the channel and transmit
its information symbols whenever the first user is silent. In
the following theorem, we obtain an achievable rate region
for (R1, R2).

Theorem 1. For intermittent multi-access communication with
collision avoidance, rates (R1, R2) satisfying

R1 < I(X1;Y |X2 = ?)− f1(P1, P2,W ) (3)
R2 < I(X2;Y |X1 = ?)− f1(P1, P2,W ) (4)

are achievable for any (X1, X2) ∼ P1(x1)P2(x2), where

f1(P1, P2,W ) := max
0≤β≤1

{2h(β)− dβ(P1W·?‖P2W?·)

− dβ(P2W?·‖P1W·?)}, (5)

and d·(·‖·) is the partial divergence given in (1).

Remark 1. The result in Theorem 1 is valid for the intermit-
tent process described above with arbitrary probability distri-
bution on the time slots that each user transmits. As a special
case, we might think of an intermittent process in which at each
time slot P((S1, S2) = (1, 0)) = P((S1, S2) = (0, 1)) = 1/2
if both buffers are non-empty; otherwise only the user with
the non-empty buffer transmits. Note that the length of the
receive window remains 2k in any case, since each codeword
has length k and there are no collisions.

Proof. Encoding: Fix two input distributions P1 and P2 for
user 1 and user 2, respectively. Randomly and independently
generate ekR1 sequences ck1(m1), m1 ∈ {1, 2, ..., ekR1} each
i.i.d. according to P1 for user 1, and ekR2 sequences ck2(m2),
m2 ∈ {1, 2, ..., ekR2} each i.i.d. according to P2 for user 2. To
send message m1, encoder 1 transmits ck1(m1), and to send
message m2, encoder 2 transmits ck2(m2).

Decoding: Similar to decoding from pattern detection de-
scribed in [5], the decoder chooses k of the 2k output symbols
y2k. Let ỹk denote the sequence of chosen symbols, and ŷk

denote the other k symbols. For each choice, there are two
stages. In the first stage, the decoder checks if ỹk is induced
by user 1, i.e., if ỹk ∈ TP1W·? , and if ŷk is induced by user 2,
i.e., if ŷk ∈ TP2W?· . If both of these conditions are satisfied,
then we proceed to the second stage; otherwise, we make
another choice for the k symbols and restart the two-stage
decoding procedure. In the second stage, we perform joint
typicality decoding with a fixed typicality parameter µ > 0 for
both sequences ỹk and ŷk, i.e., if ỹk ∈ T[W·?]µ(ck1(m̂1)) and
ŷk ∈ T[W?·]µ(ck2(m̂2)) for a unique message pair (m̂1, m̂2),
then we declare them as the transmitted messages; otherwise,
we make another choice for the k symbols and repeat the two-
stage decoding procedure. If at the end of all

(
2k
k

)
choices the

typicality decoding procedure has not declared any message
pair as being sent, then the decoder declares an error.

Analysis of the probability of error: For any ε > 0, we
prove that if R1 = I(X1;Y |X2 = ?) − f1(P1, P2,W ) − 2ε,
and R2 = I(X2;Y |X1 = ?) − f1(P1, P2,W ) − 2ε, then the

average probability of error vanishes as k → ∞. Consider-
ing independent uniform distributions on the messages and
assuming that the message pair (1, 1) is transmitted, we have

pavge ≤P((m̂1, m̂2) = e|(m1,m2) = (1, 1))

+ P(m̂1 ∈ {2, 3, ..., ekR1}|(m1,m2) = (1, 1))

+ P(m̂2 ∈ {2, 3, ..., ekR2}|(m1,m2) = (1, 1)), (6)

where (6) follows from the union bound in which the first
term is the probability that the decoder declares an error (does
not find any message pair) at the end of all

(
2k
k

)
choices,

which implies that even if we pick the correct output symbols
corresponding to user 1 and user 2, the decoder either does
not pass the first stage or does not declare (m̂1, m̂2) = (1, 1)
in the second stage. The probability of this event vanishes as
k →∞ according to [9, Lemma 2.12].

The second term in (6) is the probability that for at least
one choice of the output symbols, the decoder passes the first
stage, and then in the second stage, it declares an incorrect
message for user 1. We characterize the

(
2k
k

)
choices based

on the number of incorrectly chosen output symbols, which is
denoted by k1, i.e., the number of symbols in ỹk that are in
fact output symbols corresponding to the second user, which is
equal to the number of symbols in ŷn−k that are in fact output
symbols corresponding to the first user. For any 0 ≤ k1 ≤ k,
there are

(
k
k1

)(
k
k1

)
possible choices. Using the union bound for

all the choices and all the messages m̂1 6= 1, we have

P(m̂1 ∈ {2, 3, ..., ekR1}|(m1,m2) = (1, 1))

≤ (ekR1 − 1)

k∑
k1=0

(
k

k1

)(
k

k1

)
Pk1(m̂1 =2|(m1,m2)=(1, 1)),

(7)

where the index k1 in (7) denotes the condition that the number
of wrongly chosen output symbols is k1. Note that message
m̂1 = 2 is declared at the decoder only if the choice of the
output symbols passes the first stage, and then the condition
ỹk ∈ T[W·?]µ(ck1(2)) is satisfied. Therefore,

Pk1(m̂1 =2|(m1,m2)=(1, 1))

= Pk1
(
{Ỹ k ∈ TP1W·?} ∩ {Ŷ k ∈ TP2W?·}

∩ {Ỹ k ∈ T[W·?]µ(ck1(2))}|(m1,m2)=(1, 1)

)
= Pk1(Ỹ k ∈ TP1W·?) · Pk1(Ŷ k ∈ TP2W?·)

· P(Ỹ k ∈ T[W·?]µ(ck1(2))|(m1,m2)=(1, 1)) (8)

≤ eo(k)e−kdk1/k(P1W·?‖P2W?·)e−kdk1/k(P2W?·‖P1W·?)

· e−k(I(X1;Y |X2=?)−ε), (9)

where (8) follows from the independence of the events {Ỹ k ∈
TP1W·?} and {Ŷ k ∈ TP2W?·} conditioned on k1 (a fixed
number of) wrongly chosen output symbols, and (9) follows
from the results on the partial divergence in Section III-B for
the first two terms in (8) with mismatch ratios k1/k, and using
the packing lemma [7, Lemma 3.1] for the last term in (8),



because conditioned on message m1 = 1 being sent, Ck1 (2)
and Ỹ k are independent regardless of the number of wrongly
chosen output symbols. Substituting (9) into the summation
in (7), using Stirling’s approximation for the terms

(
k
k1

)
, and

finding the largest exponent of the terms in the summation,
we have

P(m̂1 ∈ {2, 3, ..., ekR1}|(m1,m2) = (1, 1))

≤ ekR1eo(k)ekf1(P1,P2,W )e−k(I(X1;Y |X2=?)−ε)

= eo(k)e−kε, (10)

where (10) is obtained by substituting R1 = I(X1;Y |X2 =
?) − f1(P1, P2,W ) − 2ε. Therefore, the second term in (6)
vanishes as k → ∞. Similarly, the third term in (6) also
vanishes as k →∞, which proves the theorem.

The function f1(P1, P2,W ) can be interpreted as an over-
head term due to the system’s burstiness or intermittency. Note
that the result in Theorem 1 implies that there is a tradeoff
between the two terms in (3) and in (4) by choosing the
input distributions P1 and P2. In order to maximize the first
terms we need to choose the capacity achieving input distri-
butions, but at the same time, it is desirable to choose input
distributions such that the two distributions P1W·? and P2W?·
have the largest distance to maximize the partial divergences
dβ(P1W·?‖P2W?·) and dβ(P2W?·‖P1W·?) so that we have
a smaller overhead term f1(P1, P2,W ). Also, note that both
rates R1 and R2 have the same overhead cost for fixed input
distributions P1 and P2. This is not the case if we consider
different codeword lengths for the two users.

V. RANDOM ACCESS WITH COLLISIONS

In this section, we consider an intermittent process in
Figure 1 that models a random access channel with collisions.
In principle, we can consider a random access channel that
allows for both idle-times and collisions, where idle times,
corresponding to the state (s1, s2) = (0, 0) of the intermittent
process, can be handled using a similar generalization of the
partial divergence result stated in Lemma 1. However, we as-
sume that there are no idle times in order to avoid overcompli-
cating the results. In this model, there are three possible states
for the intermittent process (s1, s2) ∈ {(1, 0), (0, 1), (1, 1)},
where the total number of states representing a collision, i.e.,
(s1, s2) = (1, 1), is assumed to be d ≤ k. Therefore, the
output pair (x1, x2) of the intermittent process with length
n = 2k− d consists of k− d of the form (c1, ?), k− d of the
form (?, c2), and d of the form (c1, c2). In other words, user
1 and user 2 transmit k− d information symbols over a point
to point channel, W·,? and W?,·, respectively, and transmit d
information symbols over the MAC channel W , through which
there is interference between the users, but the decoder does
not know a priori these positions. Let θ := d/k ≤ 1 denote
the ratio of the collided symbols of each user to the codeword
length. In the following theorem, we obtain an achievable rate
region for (R1, R2).

Theorem 2. For intermittent multi-access communication with
collisions, rates (R1, R2) satisfying

R1 <θ̄I(X1;Y |X2 =?)+θI(X1;Y |X2)−f2(P1, P2,W, θ)

R2 <θ̄I(X2;Y |X1 =?)+θI(X2;Y |X1)−f2(P1, P2,W, θ)

R1+R2 <θ̄I(X1;Y |X2 =?)+θ̄I(X2;Y |X1 =?)

+θI(X1, X2;Y )−f2(P1, P2,W, θ)

are achievable for any (X1, X2) ∼ P1(x1)P2(x2), where

f2(P1, P2,W, θ) :=

max
0≤β1+β2≤1

0≤β′1+β′2≤1

{
θ̄h(β1, β2)+θ̄h(β′1, β

′
2)+θh(

θ̄(β1+β2−β′2)
θ

,
θ̄(β′1+β

′
2−β2)

θ
)

−θ̄dβ1,β2(P1W·?‖P1P2W,P2W?·)−θ̄dβ′
1
,β′

2
(P2W?·‖P1P2W,P1W·?)

−θd(β1+β2−β′2)θ̄/θ,(β′
1
+β′

2
−β2)θ̄/θ(P1P2W‖P1W·?, P2W?·)

}
, (11)

and d·,·(·‖·, ·) is the function defined in Section III-B.

Remark 2. The result in Theorem 2 is valid for the in-
termittent process described above with arbitrary probability
distribution on the time slots that each user transmits as long
as the number of collided symbols d is fixed. Furthermore,
the result remains valid if the number of collided symbols
is a random variable denoted by D, such that the ratio
of the collided symbols to the codeword length converges,
i.e., D/k

p−→ θ as k → ∞. As a special case, we might
think of the following intermittent process: If the length of
the buffers are equal, then P((S1, S2) = (1, 1)) = θ and
P((S1, S2) = (1, 0)) = P((S1, S2) = (0, 1)) = (1 − θ)/2;
otherwise only the user with more symbols in its buffer
transmits. Note that in this example, the length of the receive
window is a random variable N = 2k − D, but D/k

p−→ θ
as k →∞.

Sketch of the Proof: Encoding is the same as in the proof of
Theorem 1. We briefly explain the decoding procedure. The
analysis of the probability of error is lengthy and is omitted
due to space considerations.

Decoding: The decoder splits the output sequence y2k−d

into three subsequences of length k − d, k − d, and d, and
denotes them by ỹk−d1 , ỹk−d2 , and ŷd, respectively. For each
choice, there are two stages. In the first stage, we check
three conditions: ỹk−d1 ∈ TP1W·? , ỹk−d2 ∈ TP2W?· , and
ŷd ∈ TP1P2W . If all three conditions are satisfied, then
we proceed to the second stage; otherwise, we make another
choice for the three output subsequences and restart the two-
stage decoding procedure.

In the second stage, we perform simultaneous joint typi-
cality decoding. We first split all of the codewords as fol-
lows. Let c̃k−d1 (m1) and ĉd1(m1) be the subsequences of
ck1(m1) corresponding to the positions of the symbols of the
chosen subsequences ỹk−d1 and ŷd, respectively. Similarly,
let c̃k−d2 (m2) and ĉd2(m2) be the subsequences of ck2(m2)
corresponding to the positions of the symbols of the chosen
subsequences ỹk−d2 and ŷd, respectively. We declare the mes-
sage pair (m̂1, m̂2) as being transmitted if it is the unique
message pair such that the following three conditions are



Fig. 2. Comparing the capacity rate region of the DM-MAC with the
achievable rates for the intermittent MAC with collision avoidance mechanism
obtained from Theorem 1.

satisfied simultaneously: (c̃k−d1 (m̂1), ỹk−d1 ) is jointly typical,
(c̃k−d2 (m̂2), ỹk−d2 ) is jointly typical, and (ĉd1(m̂1), ĉd2(m̂2), ŷd)
is jointly typical; otherwise, we make another choice for the
three output subsequences and repeat the two-stage decoding
procedure. If at the end of all

(
2k−d

k−d,k−d,d
)

choices the typical-
ity decoding procedure has not declared any message pair as
being sent, then the decoder declares an error. �

VI. A SIMPLE EXAMPLE

Consider a DM-MAC with X1,X2 = {0, 1, 2, 3} and Y =
{0, 1, ..., 6} such that Y = X1 +X2, where + corresponds to
real addition. The capacity region of this channel is shown
with the blue curve in Figure 2. The red dots correspond
to achievable rates (R1, R2) for the intermittent MAC with
collision avoidance obtained from Theorem 1 using different
input distributions P1(x1) and P2(x2). For simplicity, we
only focus on the result of Theorem 1. Not surprisingly,
the plot suggests that the intermittency of the system and
lack of knowledge about the position of the symbols at the
decoder come with a significant cost. We should mention
that achieving the rate pairs shown by points A and B in
the figure is surprisingly simple. In order to achieve point A,
we use P1(x1) = [0, 1/3, 1/3, 1/3] and P2(x2) = [1, 0, 0, 0],
and to achieve point B, we use P1(x1) = [0, 0, 1/2, 1/2] and
P2(x2) = [1/2, 1/2, 0, 0]. In both cases, the overhead function
f1(P1, P2,W ) in Theorem 1 evaluates to zero, since the
distributions P1W·? and P2W?· become disjoint and the partial
divergence terms become infinite. It is also worth pointing out
that the achievable rate region for the intermittent MAC model
does not have to be convex, as can be seen from the figure,
because time sharing is not possible due to the intermittency

and asynchronism of the system.

APPENDIX A
PROOF OF LEMMA 1

With a little abuse of notation, let Xρ1k
1 , Xρ2k

2 , and Xρ3k
3 be

the sequence of symbols in Xk that are i.i.d. according to Q1, Q2,
and Q3, respectively. If these sequences have types P1, P2, and P3,
respectively, then the whole sequence Xk has type ρ1P1 + ρ2P2 +
ρ3P3. Therefore, we have

P(Xk ∈ TP )
=P(∪ P1,P2,P3∈PX :

ρ1P1+ρ2P2+ρ3P3=P

{Xρ1k
1 ∈TP1 ,X

ρ2k
2 ∈TP2 ,X

ρ3k
3 ∈TP3})

(12)

=
∑

P1,P2,P3∈PX :
ρ1P1+ρ2P2+ρ3P3=P

P(Xρ1k
1 ∈TP1 , X

ρ2k
2 ∈TP2 , X

ρ3k
3 ∈TP3) (13)

.
=

∑
P1,P2,P3∈PX :

ρ1P1+ρ2P2+ρ3P3=P

e−k(ρ1D(P1‖Q1)+ρ2D(P2‖Q2)+ρ3D(P3‖Q3)),

(14)

.
=e

−kmin
P1,P2,P3∈PX :

ρ1P1+ρ2P2+ρ3P3=P

ρ1D(P1‖Q1)+ρ2D(P2‖Q2)+ρ3D(P3‖Q3)

(15)

where (13) follows from the disjointness of the events in (12) since
a sequence has a unique type; where (14) follows from the indepen-
dence of the three events in (13) and obtaining the probability of
each of them according to [9, Lemma 1.2.6]; and where (15) follows
from the fact that the number of different types is polynomial in the
length of the sequence [9], which makes the total number of terms in
the summation (14) polynomial in k, and therefore, the exponent
equals the largest exponent of the terms in the summation (14).
Note that .

= denotes an equality in exponential sense as k → ∞,
i.e., limk→∞

1
k
log(·) of both sides are equal. Thus, (15) proves the

lemma.
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