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INTERMITTENT COMMUNICATION

Abstract

by

Mostafa Khoshnevisan

We formulate a model for intermittent communication that can capture bursty

transmissions or a sporadically available channel, where in either case the receiver

does not know a priori when the transmissions will occur. For the point-to-point case,

we develop two decoding structures and their achievable rates for such communication

scenarios. One structure determines the transmitted codeword through exhaustive

search, and the other structure first detects the locations of codeword symbols and

then uses them to decode. We introduce the concept of partial divergence and study

some of its properties in order to obtain stronger achievability results. As the system

becomes more intermittent, the achievable rates decrease due to the additional un-

certainty about the positions of the codeword symbols at the decoder. Additionally,

we provide upper bounds on the capacity of binary noiseless intermittent communi-

cation with the help of a genie-aided encoder and decoder. The upper bounds imply

a tradeoff between the capacity and the intermittency rate of the communication

system, even if the receive window scales linearly with the codeword length.

Upon this foundation, we develop two extensions. First, we extend the model to

intermittent multi-access communication for two users that captures the bursty trans-

mission of the codeword symbols for each user and the possible asynchronism between

the receiver and the transmitters as well as between the transmitters themselves.

This model can be viewed as another attempt to combine information-theoretic and
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network-oriented multi-access models. We characterize the performance of the system

in terms of achievable rate regions. In our achievable schemes, the intermittency of

the system comes with a significant cost. Second, we extend the model to packet-level

intermittent communication in which codeword and noise symbols are grouped into

packets. Depending on the scaling behavior of the packet length relative to the code-

word length, we identify some interesting scenarios, and characterize the performance

of the system in terms of the achievable rates for each model.

Finally, we apply the insights and tools developed for intermittent communication

to several related problems. First, we obtain new results on the capacity of deletion

channels and a random access model that drops the collided symbols. Second, we

study the problem of lossless source coding in the presence of intermittent side-

information.
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CHAPTER 1

INTRODUCTION

Communication systems are traditionally analyzed assuming contiguous trans-

mission of encoded symbols through the channel. However, in many practical appli-

cations such an assumption may not be appropriate, and transmitting a codeword

can be intermittent due to lack of synchronization, shortage of transmission energy,

or burstiness of the system. The challenge is that the receiver may not explicitly

know whether a given output symbol of the channel is the result of sending a symbol

of the codeword or is simply a noise symbol containing no information about the

message. This dissertation provides one model, called intermittent communication

for non-contiguous transmission of codewords in such settings. Figure 1.1 compares

the contiguous and intermittent transmission of the codeword symbols.

In this chapter, we first provide some motivations and practical examples in Sec-

tion 1.1. Next, we summarize the contributions of the dissertation in Section 1.2.

Finally, we summarize the outline of the dissertation in Section 1.3.

1.1 Motivations and Practical Examples

Intermittent communications captures bursty transmissions or a sporadically avail-

able channel, where in either case the receiver does not know a priori when the

transmissions will occur. In the system model for intermittent communication, we

consider a random process in between the transmitter and the channel, which we call

intermittent process.

1



Figure 1.1. Comparing contiguous and intermittent transmission of
codeword symbols.

If the intermittent process is considered to be part of the channel behavior, then

intermittent communication models a sporadically available channel in which at some

times a symbol from the codeword is sent, and at other times the receiver observes

only noise. We extend the model beyond individual symbols to consider intermittent

transmission of packets that are part of a larger codeword. As another application,

we can think of the intermittent process as the random amount of delay that occurs

for transmission of each symbol in a communication network, in which the realization

of the delay is not known to the receiver, and during this delay the receiver observes

only noise. The model can be interpreted as an insertion channel in which some

number of silent / noise symbols are inserted between the codeword symbols.

If the intermittent process is considered to be part of the transmitter, then we say

that the transmitter is intermittent. Practical examples include energy harvesting

systems in which the transmitter harvests energy usually from a natural source and

uses it for transmission. Assuming that there is a special input that can be trans-

mitted with zero energy, the transmitter sends the symbols of the codeword if there

is enough energy for transmission, and sends the zero-cost symbol otherwise.

The framework for intermittent communication we develop in this dissertation

can also be extended to multi-access communication. In this case, practical examples

include a cognitive radio in which the primary user is bursty, i.e., sends codeword
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symbols or packets at some times and remains silent at other times, and a secondary

user also wants to communicate with the same receiver and can sense the channel

and transmit its codeword symbols whenever the primary user is silent. As another

application, consider an ALOHA random access protocol with a collision-avoidance

mechanism in which at each time either only one of the users transmits or the channel

remains idle.

Packet-level intermittent communication arises in network applications in which

the data is packetized, and each packet goes through a network with intermittent

connectivity and / or random delay. As a result, packets are received at some random

intervals after experiencing some sort of roaming and / or delay. The receiver’s task

is to identify the packets in order to reconstruct the original data. The intermittency

of the system and the size of the packet might allow for individual packet detection

at the receiver, in which case the communication problem simplifies to individual

packet detection and message decoding. However, if the intermittency of the system

increases or the packet length decreases, then we may not reliably detect all the data

packets individually, and encoding and decoding across packets could be a better

solution. In this dissertation, we extend the symbol-level model for intermittent

communication to the packet-level, with the packet lengths having different scaling

relative to the codeword length. We refer to the case in which individual packet

detection is effective as large-packet intermittent communication, and to two other

cases as small- and medium-packet intermittent communication.

1.2 Contributions of the Dissertation

In this section, we summarize the contribution of the dissertation.

• We formulate a model for intermittent communication that can capture bursty
transmissions or a sporadically available channel by inserting a random number
of silent symbols between each codeword symbol, where the receiver may not
know a priori when the transmissions occur. The intermittency rate in this
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model controls how widely separated, on averages, the transmission bursts are.
We consider a linear scaling for the receive window relative to the codeword
length.

• We introduce a quantity called partial divergence, which is a generalization of
the Kullback-Leibler divergence, and is the normalized exponent of the proba-
bility that a sequence with independent elements generated partially according
to one distribution and partially according to another distribution has a specific
type. This exponent is useful in characterizing a decoder’s ability to distinguish
a sequence obtained partially from the codewords and partially from the noise
from a codeword sequence or a noise sequence. We study some of the proper-
ties of partial divergence that provide insights about the achievable rates for
intermittent communication.

• Using the results on partial divergence, we show that as long as the intermit-
tency rate is finite and the capacity of the channel is not zero, rate R = 0 with
only two messages is achievable for intermittent communication. Therefore, no
matter how large the intermittency rate becomes, if it is finite, the receiver can
distinguish between two messages with vanishing probability of error.

• We specify two decoding structures in order to develop achievable rates: de-
coding from exhaustive search and decoding from pattern detection. Decoding
from pattern detection, which achieves a larger rate, is based on the partial
divergence and its properties. As the system becomes more intermittent, the
achievable rates decrease due to the additional uncertainty about the positions
of the codeword symbols at the decoder.

• For the case of a binary-input binary-output noiseless channel, we obtain upper
bounds on the capacity of intermittent communication by providing the encoder
and the decoder with various amounts of side-information, and calculating or
upper bounding the capacity of this genie-aided system. The results suggest
that the linear scaling of the receive window with respect to the codeword
length considered in the system model is relevant since the upper bounds imply
a tradeoff between the capacity and the intermittency rate.

• We derive bounds on the capacity per unit cost of intermittent communication.
To obtain the lower bound, we use pulse-position modulation at the encoder,
and searched for the position of the pulse at the decoder. The achievable rate
per unit cost decreases as the system becomes more intermittent.

• Extending to multi-user communication, we formulate a model for intermit-
tent multi-access for two users that captures the bursty transmission of the
codeword symbols for each user and the possible asynchronism between the
receiver and the transmitters as well as between the transmitters themselves.
This model can be viewed as an attempt to combine information-theoretic and
network-oriented multi-access models. By making different assumptions for the
intermittent process, we specialize the system to three models: random access
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with no idle-times and no collisions, random access with idle-times and no col-
lisions, and random access with collisions and no idle-times. For each model,
we characterize the performance of the system in terms of an achievable rate
region. In our achievable schemes, the intermittency of the system comes with
a significant cost, i.e., it reduces the size of the achievable rate regions, which
can be interpreted as communication overhead.

• Inspired by network applications, we extend the model to packet-level inter-
mittent communication in which codeword and noise symbols are grouped into
packets. Depending on the scaling behavior of the packet length relative to the
codeword length, we identify three scenarios: small-packet, medium-packet, and
large-packet intermittent communication. For small- and medium-packet inter-
mittent communication, we utilize both decoding from exhaustive search and
decoding from pattern detection in order to obtain achievable rates, whereas,
for large-packet intermittent communication, we utilize decoding from packet
detection in order to obtain achievable rates. In all three cases, the intermit-
tency rate determines the scaling of the receive window relative to the codeword
length (or the packet length), even though the scaling behavior itself depends on
the scenario. Increasing the intermittency rate generally reduces the achievable
rate for each of the three scenarios, because it makes the receive window larger,
and therefore, increases the uncertainty about the positions of the codeword
packets at the receiver, making the decoder’s task more involved.

• We use some of the insights and tools developed in this dissertation to obtain
some new results on related problems. Specifically, we first use a similar decod-
ing structure to decoding from exhaustive search in conjunction with a lemma
on the longest common subsequence of random sequences to prove a side result
on lower bounding the capacity of the deletion channels. Second, we obtain
achievability results for a random access model that drops / deletes collided
symbols using a similar decoding structure to decoding from pattern detection.

• Inspired by the problem of file synchronization in which we compress a source
sequence with the benefit of decoder side-information that is related to the
source via insertions, deletions, and substitutions, we study a similar problem
in which the side-information at the decoder is related to the source via an
intermittent process. Focusing on achievability, we introduce encoding and de-
coding structures in order to compress the source at the encoder and reconstruct
it reliably at the decoder.

1.3 Outline of the Dissertation

In Chapter 2, we briefly review system models and main results of some related

work and identify the gaps in the literature. After reviewing some of the results
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from the method of types, we study the system model and main results on frame

synchronization, asynchronous communication, and insertion / deletion channels.

Finally, we discuss several networking issues, such as asynchronism, collisions, and

random access in the context of multiple-access communication with an information-

theoretic approach.

In Chapter 3, we present a lemma, which generalizes some of the results of method

of types, and then specialize the lemma to a certain case in which the partial diver-

gence will be defined. Next, we study some of the properties of the partial divergence

that provide insights about the achievable rates for intermittent communication in

Chapter 4. Finally, we generalize the lemma and the partial divergence to the case

of three distributions, which will be used in Chapter 5.

In Chapter 4, we introduce a model for single-user intermittent communication

that consists of an intermittent process followed by a discrete memoryless channel

(DMC), and develop two coding theorems for achievable rates to lower bound the

capacity. Toward this end, we use some of the results on partial divergence and its

properties from Chapter 3. We show that, as long as the ratio of the receive window

to the codeword length is finite and the capacity of the DMC is not zero, rate R = 0

is achievable for intermittent communication. By using decoding from exhaustive

search and decoding from pattern detection, we obtain two achievable rates that

are also valid for arbitrary intermittent processes. Next, we focus on the binary-

input binary-output noiseless channel, and obtain upper bounds on the capacity of

intermittent communication. Finally, we develop lower and upper bounds on the

capacity per unit cost of intermittent communication.

In Chapter 5, we generalize the single-user intermittent communication model

introduced in Chapter 4 to multi-user intermittent communication for two users that

captures the bursty transmission of the codeword symbols for each user and the

possible asynchronism between the receiver and the transmitters as well as between
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the transmitters themselves. By making different assumptions for the intermittent

process, we specialize the system to three models: random access with no idle-times

and no collisions, random access with idle-times and no collisions, and random access

with collisions and no idle-times. For each model, we obtain an achievable rate

region that depend on the concept of partial divergence and decoding from pattern

detection.

In Chapter 6, we consider three extensions. First, we introduce a system model

for packet-level intermittent communication in which codeword and noise symbols

are grouped into packets. Depending on the scaling behavior of the packet length

relative to the codeword length, we identify three scenarios: small-packet, medium-

packet, and large-packet intermittent communication. For each model, we obtain

some achievability results. Next, we use some of the insights and tools developed in

this dissertation to obtain some new results on the capacity of deletion channels and

a random access that drops the collided symbols. Finally, we study the problem of

lossless source coding in the presence of intermittent side-information, and introduce

encoding and decoding structures in order to compress the source at the encoder and

reconstruct it reliably at the decoder.

In Chapter 7, we conclude the dissertation and introduce some directions for

future research.
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CHAPTER 2

BACKGROUND

In this chapter, we briefly summarize the system model and main results of some

related work, identify the gaps in the literature, and explain how the models and re-

sults in the remaining chapters close the gaps to some extent. Additionally, we would

like to provide insights about intermittent communication as well as the techniques

used to obtain the results.

Before studying the relevant literature, we briefly review the method of types in

Section 2.1 since we make frequent use of this tool, and specifically, the notations

in our analysis. In Section 2.2, we review the literature on frame synchronization

in single-user communication systems, which studies the problem of locating a sync

pattern in a string of data. In Section 2.3, we study the problem of joint frame

synchronization and decoding in asynchronous communication, which corresponds to

contiguous transmission of codeword symbols in which the receiver observes noise

before and after transmission. In Section 2.4, we summarize the results on the lower

and upper bounds of the capacity of insertion / deletion channels, which are also

called channels with synchronization errors. In Section 2.5, we discuss on several

networking issues, such as asynchronism, random access, and collisions in the context

of multiple-access communication with an information-theoretic approach.

A key assumption of these communication models is the lack of knowledge of

the state of the channel and / or a timing reference at the transmitter and receiver,

capturing certain kinds of asynchronism. Generally, this asynchronism makes the

task of the receiver more difficult since it must acquire synchronization in the first
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place. Intermittent communication is just another attempt to model asynchronism

at the symbol or packet level.

Before proceeding to the next sections, we summarize several notations that are

used throughout the sequel:

• We use o(·) and poly(·) to denote quantities that grow strictly slower than their
arguments and are polynomial in their arguments, respectively.

• By X ∼ P (x), we mean that random variable X is distributed according to
probability distribution P .

• h(p) := −p log p − (1 − p) log(1 − p) is the binary entropy function, and for
β1 + β2 < 1, let h(β1, β2) denote the entropy of the ternary probability mass
function (β1, β2, 1− β1 − β2).

• We use the convention that the binomial coefficient
(
n
k

)
= 0 if k < 0 or n < k,

and the entropy H(P ) = −∞ if P is not a probability mass function, i.e., one
of its elements is negative or the sum of its elements is larger than one.

• We use the conventional definition x+ := max{x, 0}.

• If 0 ≤ ρ ≤ 1, then ρ̄ := 1− ρ.

• .
= denotes equality in the exponential sense as k → ∞, i.e., limk→∞

1
k

log(·)
of both sides are equal. In the same way, ≤̇ and ≥̇ denote inequalities in the
exponential sense.

• Let [1 : M ] denote the set of integers {1, 2, ...,M}.

• We denote sequences / vectors using both boldface and superscript, i.e., x =
xk = (x1, x2, ..., xk).

2.1 Method of Types

The method of types is a powerful technique in large deviation theory which was

developed by Csiszár and Körner [9], [10], and is summarized in [7, Chapter 12.1].

We now briefly review the definitions and results.

Let PX denote the set of probability distributions over the finite alphabet X . The

empirical distribution (or type) of a sequence xn ∈ X n is denoted by P̂xn ∈ PX and
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is defined as

P̂xn(x) :=
1

n

n∑
i=1

1[xi=x],

where 1[·] is the indicator function. A sequence xn is said to have a type P ∈ PX if

P̂xn = P . The set of all sequences that have type P is denoted T nP ⊆ X n, or more

simply TP . Joint empirical distributions on X × Y are denoted similarly, i.e.,

P̂xn,yn(x, y) :=
1

n

n∑
i=1

1[xi=x,yi=y].

Let PY|X denote the set of probability distributions over the finite alphabet Y

conditioned on the finite alphabet X . A sequence yn is said to have a conditional

empirical distribution P̂yn|xn given xn, if for all (x, y) ∈ X × Y ,

P̂xn,yn(x, y) = P̂xn(x)P̂yn|xn(y|x),

and the set of sequences yn that have a conditional type W given xn is denoted by

TW (xn).

For P, P ′ ∈ PX and W,W ′ ∈ PY|X , the Kullback-Leibler divergence between P

and P ′ is defined as [7]

D(P‖P ′) :=
∑
x∈X

P (x) log
P (x)

P ′(x)
,

and the conditional information divergence between W and W ′ conditioned on P is

defined as

D(W‖W ′|P ) :=
∑
x∈X

P (x)
∑
y∈Y

W (y|x) log
W (y|x)

W ′(y|x)
.

The average mutual information between X ∼ P and Y ∼ PW and coupled via
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PY |X = W is defined as

I(P,W ) :=
∑
x∈X

P (x)
∑
y∈Y

W (y|x) log
W (y|x)

(PW )(y)
.

We also use I(X;Y ) to denote the average mutual information in this dissertation.

With these definitions, we now state the following lemmas, which are used through-

out the dissertation.

Lemma 2.1. ([10, Lemma 1.2.6]): If Xn is an independent and identically dis-

tributed (iid) sequence according to P ′, then the probability that it has a type P is

bounded by

1

(n+ 1)|X |
e−nD(P‖P ′) ≤ P(Xn ∈ TP ) ≤ e−nD(P‖P ′).

Also, if the input xn ∈ X n to a memoryless channel W ′ ∈ PY|X has type P , then the

probability that the observed channel output sequence Y n has a conditional type W

given xn is bounded by

1

(n+ 1)|X‖Y|
e−nD(W‖W ′|P ) ≤ P(Y n ∈ TW (xn)) ≤ e−nD(W‖W ′|P ).

A sequence xn ∈ X n is called P -typical with constant µ, denoted xn ∈ T[P ]µ , if

|P̂xn(x)− P (x)| ≤ µ for every x ∈ X ,

and a sequence yn ∈ Yn is called W -typical conditioned on xn ∈ X n with constant µ,

denoted yn ∈ T[W ]µ , if

|P̂xn,yn(x, y)− P̂xn(x)W (y|x)| ≤ µ for every (x, y) ∈ X × Y .
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Lemma 2.2. ([10, Lemma 1.2.12]): If Xn is an iid sequence according to P , then

P(Xn ∈ T[P ]µ) ≥ 1− |X |
4nµ2

.

Also, if the input xn ∈ X n to a memoryless channel W ∈ PY|X , and Y n is the output,

then

P(Y n ∈ T[W ]µ(xn)) ≥ 1− |X‖Y|
4nµ2

.

Remark 2.1. ([10]): In Lemma 2.2 the terms subtracted from 1 could be replaced

even by exponentially small terms 2|X |e−2nµ2 and 2|X‖Y|e−2nµ2, respectively.

Finally, we state a stronger version of the packing lemma [23, Lemma 3.1] that

will be useful in typicality decoding, and is proved in [54, Equations (24) and (25)]

based on the method of types.

Lemma 2.3. Assume that Xn and Ỹ n are independent, Xn is generated iid according

to P , and Ỹ n is generated arbitrarily, i.e., does not need to be iid or even the output

of the channel W given input Xn, then

P(Ỹ n ∈ T[W ]µ(Xn)) ≤ poly(n)e−n(I(P,W )−ε)

for all n sufficiently large, where ε > 0 can be made arbitrarily small by choosing a

small enough typicality parameter µ.

2.2 Frame Synchronization

Frame synchronization usually refers to the problem of locating a sync pattern

in a string of data, and is treated in various ways in the literature. In this section,

we review three different approaches to this problem for single-user communication,

namely, the problem of locating a sync word periodically embedded into the data
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stream [37] and [43], the design of frame markers [49], and the one-shot frame syn-

chronization problem [3].

In this section, the problem of interest is to acquire frame synchronization at

the receiver by locating a sync pattern that is inserted into the data stream at the

transmitter. For simplicity, we consider binary sequences for now. It has been com-

mon engineering practice to detect the sync pattern of length k by passing successive

k-digit segments of the received sequence through a “pattern recognizer”, which eval-

uates the similarity between the sync word and the corresponding received segment,

e.g., correlation, typicality, or Hamming distance. It has been shown in [37] that this

intuitive rule is not optimum in general, because it disregards the effect of the ran-

dom data surrounding the sync word. However, such sequential pattern recognizer

approaches may be optimal for the case of infinite block length in the context of [3].

To see what the optimum frame synchronization algorithm is, we summarize the

problem formulation of [37]. It is important to note the underlying assumption in

this part, namely, the sync word is periodically embedded into a data stream; the

one shot approach is treated in [3] and will be discussed later. Let n denote the

frame length and k < n denote the sync word length, such that the binary sync word

s = (s0, ..., sk−1) is followed by n − k random binary data bits d = (dk, ..., dn−1),

where the di’s are iid random variables with P(di = +1) = P(di = −1) = 1/2. Next,

let sd denote the concatenation of the two sequences s and d, and T be the cyclic

shift operator such that T (sd) = (dn−1, s0, ..., sk−1, dk, ..., dn−2).

Due to asynchronism, we assume that the sync word is a priori equally likely

to begin in any of the n positions of the received signal y = (y0, ..., yn−1). If the

sync word actually begins at position ν, which is unknown to the receiver, then the

received sequence is modeled as

y =
√
ET ν(sd) + n, (2.1)

13



where n is a sequence of real-valued, iid Gaussian random variables with mean zero

and variance N0/2. The problem of frame synchronization is to detect the actual

realization of ν at the receiver given the received sequence y and the sync word s.

Let ν̂ denote the detected location. Since the location of the sync word is a priori

equally likely, the optimum decision rule in the sense of maximizing the probability

of correctly locating the sync word is

ν̂ = argmaxν∈[1:n]P(y|ν)

= argmaxν∈[1:n]

∑
d∈{−1,+1}n−k

P(y|d, ν)P(d)

= argmaxν∈[1:n]

∑
d∈{−1,+1}n−k

P(n = y −
√
ET ν(sd)) (2.2)

= argmaxν∈[1:n]

k−1∑
i=0

siyi+ν −
k−1∑
i=0

f(yi+ν), (2.3)

where (2.2) follows from (2.1), and the details of the derivation of (2.3) from (2.2)

can be found in [37]. Note that the subscripts in (2.3) are taken modulo n, and the

function f(x) := (N0/2
√
E) ln cosh(2

√
Ex/N0).

It is important to note that the first summation in (2.3) is the ordinary correlation

between the sync word and a k-digit segment of the received sequence. The second

summation represents a kind of correction term required to account for the random

data surrounding the sync word. In order to obtain some insight into the nature of

the optimal decision rule (2.3), we consider two limiting cases of very high and very

low signal-to-noise-ratios (SNRs).
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If E/N0 � 1, then the optimal decision rule can be approximated by

ν̂ = argmaxν∈[1:n]

k−1∑
i=0

siyi+ν −
k−1∑
i=0

|yi+ν |

= argmaxν∈[1:n]

k−1∑
i=0

|yi+ν |(sign(siyi+ν)− 1), (2.4)

which means that whenever si and yi+ν agree in sign, their contribution to the cor-

relation term is exactly canceled out and only negatively correlated terms contribute

to the optimal decision rule. Note that the decision rule (2.4) finds the location ν for

the sync word that yields the least total negative correlation.

If E/N0 � 1, then the optimal decision rule can be approximated by

ν̂ = argmaxν∈[1:n]

k−1∑
i=0

siyi+ν −
√
E

N0

k−1∑
i=0

y2
i+ν ,

which indicates that the the correction term in the decision rule becomes an energy

correction in the low SNR regime.

Performance analysis, i.e., characterization of the probability of a sync error under

the optimal decision rule (2.3), depends on the sync word s. Therefore, it is important

to find the properties of a “good” sync word, which is called “marker design” in [49].

We now focus on the probability of a sync error, denoted here by Ps := P(ν̂ 6= ν),

in the high SNR regime in which we approximate the sequence being received without

error [43]. Note that even if the channel is error-free, it is still possible to have a

sync error, which is the probability that the sync word appears elsewhere than its

intended location. In this regime, it is easy to see that it is desirable to choose a

sync word with good autocorrelation properties, and in particular, we should ensure

that no overlap between a sync word and random data bits may be equal to the sync
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word itself. Mathematically,

(s0, s1, ..., sl−1) 6= (sk−l, sk−l+1, ..., sk−1), l = 1, 2, ..., k − 1. (2.5)

It is shown in [43] that in the high SNR regime if the sync word has the property (2.5),

then

Ps =
r∑
j=1

(−1)j+1

j + 1

(
n− k − (k − 1)j

j

)
2−kj, (2.6)

where r := b(n− k)/kc.

The property (2.5) of a good sync word is generalized in [49] for a noisy channel,

and can be qualitatively expressed as follows: The probability of a random data

sequence of length k looking like the sync word should be larger than the probability

of a sequence of length k containing both random data and a part of the sync word

looking like the sync word.

Next, we turn our attention to the one shot approach for frame synchronization [3].

The receiver’s aim is still to locate a sync word s = (s0, ..., sk−1) of length k. We

consider a general discrete memoryless channel (DMC) with probability transition

matrix W and input and output alphabets X and Y , respectively. Also, let ? ∈ X

denote the data symbol that is transmitted before and after the sync word, and let

W? denote the distribution of the output of the channel if the input is data, and more

generally, let Wx denote the distribution of the output of the channel if the input is

x ∈ X .

The transmission of the sync word starts at a random time ν, uniformly dis-

tributed in [1 : A = eαk], where the integer A and the exponent α are called the

asynchronism level and the asynchronism exponent, respectively. The received se-
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quence y = (y1, ..., yn) has length n = A+ k − 1 and is distributed as

P(y) =
ν−1∏
i=1

W?(yi)
ν+k−1∏
i=ν

W (yi|si−ν)
n∏

i=ν+k

W?(yi).

The receiver observes the output sequence y and detects the location where the

sync word starts, denoted by ν̂. The probability of sync error is defined as before,

i.e., Ps = P(ν̂ 6= ν). An asynchronism exponent α is called achievable if there

exists a sequence of sync words and decoders such that the probability of sync error

approaches zero under asynchronism level A = eαk as the length of the sync word,

k →∞. The asynchronous threshold, denoted by α(W ), is the supremum of the set

of achievable asynchronism exponents. Note that in the system model above, the

scaling behavior of the received window n with respect to the sync word’s length k is

assumed to be exponential, and the performance of the system is analyzed in terms

of the asynchronous threshold in regime of infinitely large k and n. However, it is

worth pointing out that the results in [37, 43, 49] are valid for any value of k and n

as long as k ≤ n.

The main result of [3] is that the asynchronous threshold as defined above is given

by

α(W ) = max
x∈X

D(Wx‖W?), (2.7)

where D(·‖·) is the Kullback-Leibler divergence.

One scheme that achieves the asynchronism exponent, and is therefore optimal

in the problem formulation above, is the sequential detector that looks for the first

sequence of length k in the received sequence y that is jointly typical with the sync

word s. Furthermore, it is sufficient to use a sync word s that is mainly composed of

x̄’s, where x̄ is input symbol that achieves the maximum in (2.7), but with a few ?’s

mixed in so that shifts of the sync word look sufficiently different from the original

sync word. This structure is consistent with the properties of a good sync word

17



described in [43] and [49].

The problem considered so far is about acquiring synchronization in a commu-

nication system without emphasizing the encoding of data/messages. The problem

of joint or successive synchronization and decoding in a single-user communication

system with similar problem settings to those in [3] is studied in Section 2.3. Further-

more, the problem of joint synchronization and decoding in multi-user communication

systems with a different model for asynchronism than [3] is studied in Section 2.5.

2.3 Asynchronous Communication

Asynchronous communication arises in practical communication scenarios in which

the fundamental performance of the system and the problem of acquiring synchro-

nization might vary depending upon the type of asynchronism and the system model.

One particular information theoretic model for asynchronous communication is

developed in [4, 47, 52, 54] with a single block transmission that starts at a random

time unknown to the receiver, within an exponentially large window known to the

receiver, which is similar to the one shot frame synchronization problem reviewed in

Section 2.2. In this model, the transmission is contiguous; once it begins, the whole

codeword is transmitted, and the receiver observes only noise both before and after

transmission.

A discrete memoryless channel with finite input and output alphabets X and

Y , respectively, and transition probability matrix W is considered. The transmitter

wants to communicate a message m ∈ [1 : M ] to a receiver through the channel,

where M ≥ 2. For each message m, there is an associated codeword

ck(m) := c1(m)c2(m)...ck(m),

which is the output of the encoder and is a sequence of k symbols drawn from X .
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Figure 2.1. Representation of the channel input sequence in asynchronous
communication model (obtained from [54] with modification).

The transmitter starts sending the codeword ck(m) at a random time ν, unknown to

the receiver, independent of ck(m), and uniformly distributed over [1 : A = eαk], and

n = A+k−1 is the length of the receive window, and α is the asynchronism exponent

as before. During the interval that a codeword is transmitted, the distribution of the

output Yt is W (·|ct−ν+1(m)), t ∈ {ν, ν + 1, ..., ν + k − 1}.

Before and after transmitting the codeword, the transmitter is silent, and the

receiver observes only noise, containing no information about the message m. In

order to characterize the output of the channel for channel uses when the transmitter

is silent, we fix a silent / noise symbol denoted by ? ∈ X , so that W?(·) := W (·|x = ?)

characterizes the noise distribution of the channel. Figure 2.1, obtained from [54] with

modification, illustrates the channel input sequence.

The decoder observes the output sequence yn sequentially, and decodes the mes-

sage denoted by m̂. Stopping time k ≤ τ ≤ n with respect to the output sequence

indicates when decoding occurs. For convenience, we define ν̂ := τ−k+1 as decoders

estimate of ν.

There are different definitions for probability of error and communication rate for

this problem. In [52], the probability of error is defined as the average (over messages

and transmission time ν) of the decoding error probability, i.e., the probability that

the decoded message does not correspond to the sent message. In [54], the probability

of error is defined as the maximum (over messages), time-averaged decoding error

probability. In both [52, 54], the communication rate is defined as the logarithm of
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the codebook size divided by the average elapsed time between the time the codeword

starts being sent and the time the decoder makes a decision, i.e., a delay-compensated

definition of rate. However, with this definition for communication rate, the problem

of finding the capacity of asynchronous communication becomes more difficult. In

fact, only inner and outer bounds for the capacity of asynchronous communication

with the delay-compensated definition of rate are given in [52, 54].

In [47], the probability of error is defined as P[m̂ 6= m or ν̂ ≥ ν], which is greater

or equal to the average probability of error P[m̂ 6= m] and therefore imposes a stronger

constraint on the definition of achievable rates. The communication rate in [4, 47]

is defined as the logarithm of the codebook size divided by the codeword length,

i.e., R := logM/k. With these definitions, the delay constraint is detached from the

rate definition by considering the stronger condition for the probability of error. In

stating the results on the capacity of asynchronous communication, we focus on the

later definitions for probability of error and communication rate.

A pair (R,α) is called achievable if for an asynchronous communication system

described above with a receive window of size n = A + k − 1, where A = eαk, there

exists a sequence of length k codes of size ekR such that the probability of error

vanishes as k → ∞. The asynchronous capacity with asynchronism exponent α is

defined as

C(α) := sup{R : (R,α) is achievable}.

If R = 0, then we assume that M = 2, and the problem reduces to a reliable

communication with only two possible messages. The asynchronous threshold is

defined as

α(W ) := sup{α : (0, α) is achievable},

which is equivalent to the definition given in Section 2.2 for the asynchronous thresh-

old.
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Theorem 2.1 recalls the main result on the synchronization threshold and asyn-

chronous capacity.

Theorem 2.1. ( [52], [4], [47]): For any DMC W , we have

α(W ) = max
x∈X

D(Wx‖W?). (2.8)

The asynchronous capacity of the DMC W is

C(α) = max
P :D(PW‖W?)≥α

I(P,W ), (2.9)

where the maximum is defined to be zero if α ≥ α(W ).

To interpret these results, note that in (2.8), D(Wx‖W?) is the negative exponent

of the probability that noise outputs are misinterpreted as codeword outputs, and α

gives the positive exponent of the number of starting times for the transmission. This

result basically states that the divergence has to be larger than α for the probability

of synchronization error to go to zero, and maximizing over x gives the largest diver-

gence, and therefore, allows for the largest α. The result of (2.9) essentially allows

an exponential number of messages, but constrains the choice of input distributions

to ensure that the synchronization error does not dominate.

The performance of training-based schemes, which handle the synchronization

separately from the information transmission by using a preamble as an identifier,

are studied in [54]. It is shown that such schemes are suboptimal and cannot achieve

the asynchronous capacity in general, and the penalty is substantial in the high-rate

regime. The authors in [4] focus on the capacity of asynchronous communication per

unit cost [58], or equivalently the minimum cost to transmit one bit of information

asynchronously.

The finite blocklength regime for asynchronous communication is investigated
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in [47] and it is shown that the channel dispersion does not increase due to asyn-

chronism. In a recent work [53], the authors study the capacity per unit cost for

asynchronous communication if the receiver is constrained to sample only a fraction

of the channel outputs, and they show that the capacity remains unchanged under

this constraint.

A slotted asynchronous channel model is investigated in [60]. For the entire

communication period of length k, the transmitter is either silent, which is modeled

by transmitting ?k, or transmits a codeword xm of length k from a given codebook

of size M . The task of the receiver is to determine whether or not transmission has

taken place, and if so, to decode the message. The fundamental limits of asynchronous

communication in terms of misdetection, false alarm, and decoding error exponents

are characterized and partially solved in [60] and [59] for the case in which at least

one of the exponents vanishes; the optimum detection/decoding rule in the sense of

the best trade-off among the probabilities of misdetection, false alarm, and decoding

error is derived in [39] for the general case of non-vanishing exponents. Denoting the

channel output vector of length k by y, then according to this rule, a transmission is

detected if and only if

ekβ1
M∑
m=1

W (y|xm) + max
1≤m≤M

W (y|xm) ≥ ekβ2W (y|?k), (2.10)

where β1 and β2 are chosen to meet the misdetection and false alarm constraints. If

the received y passes the test (2.10), then decoder outputs the maximum likelihood

(ML) estimate. As a final note, [61] studies the same problem in the context of

single-message unequal error protection (UEP).

With this context, it is important to compare and contrast asynchronous com-

munication with intermittent communication studied in this dissertation. Although

we delay the precise development of the system model for intermittent communica-
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Figure 2.2. Representation of the channel input sequence in intermittent
communication model.

tion until Chapter 4, it is adequate at this point to demonstrate the system model

graphically. Figure 2.2 characterizes the channel input sequence in intermittent com-

munication. As opposed to asynchronous communication in which the transmission

of codeword symbols is contiguous as illustrated in Figure 2.1, the transmission of

codeword symbols in intermittent communication can be bursty, i.e., the transmitter

becomes silent at random times and the receiver observes only noise, while at the

other times codeword symbols are transmitted non-contiguously.

2.4 Insertion / Deletion Channels

Non-contiguous transmission of codeword symbols, as illustrated in Figure 2.2, is

reminiscent of insertion channels. In fact, if the intermittent process is considered

as part of the channel behavior, then intermittent communication can be described

by the following insertion channel: after the ith symbol of the codeword, Ni noise

symbols are inserted, where Ni, i = 1, 2, ..., k are random variables, possibly iid. The

resulting sequence passes through a discrete memoryless channel, and the receiver

should decode the message based on the output of the channel without knowing

the positions of the codeword symbols. To the best of our knowledge, this specific

insertion channel model has not been studied previously. However, some of our

techniques, especially for providing upper bounds for the capacity of intermittent

communication, are similar to those of insertion / deletion channels in the literature.
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A more general class of channels with synchronization errors is studied in [13],

in which every transmitted symbol is independently replaced with a random number

of symbols, possibly including the empty string to model a deletion event, and the

transmitter and receiver do not know a priori the positions or the pattern of the

insertions / deletions. Dobrushin [13] proved the following characterization of the

capacity for such iid synchronization error channels.

Theorem 2.2. ([13]): For iid synchronization error channels, let Xk := (X1, X2, ..., Xk)

denote the channel input sequence of length k, and Y N := (Y1, Y2, ..., YN) denote the

corresponding output sequence at the decoder, where the output length N is a random

variable determined by the channel realization. The channel capacity is

C = lim
k→∞

max
P
Xk

1

k
I(Xk;Y N). (2.11)

Theorem 2.2 demonstrates that iid synchronization error channels are information

stable [44]. However, there are several difficulties related to computing the capac-

ity through this characterization. First, it is challenging to compute the mutual

information because of the memory inherent in the joint distribution of the input

and output sequences. Second, the optimization over all the input distributions is

computationally involved. A single-letter characterization for the capacity of the

general class of synchronization error channels is still an open problem, even though

there are many papers deriving bounds on the capacity of the insertion / deletion

channels [11, 12, 14, 18–20, 26, 31, 41, 42, 55].

We first focus on lower bounds for the capacity of the insertion / deletion channels.

Gallager [20] considers a channel model with substitution and insertion / deletion

errors and derives a lower bound on the channel capacity as is summarized in the

following theorem.

Theorem 2.3. ([20]): Consider a substitution / insertion / deletion binary-input
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binary-output channel in which every bit gets deleted with probability pd, replaced

with two random bits with probability pi, correctly received with probability pc = (1−

pd − pi)(1 − ps), and inverted with probability pf = (1 − pd − pi)ps. The capacity of

this channel is lower bounded by

C ≥ 1 + pd log pd + pi log pi + pc log pc + pf log pf .

In [11], codebooks from first-order Markov chains are used to improve the achiev-

ability results for deletion channels. The intuition is that it is helpful to put some

memory in the codewords if the channel has some inherent memory. Therefore, they

consider codewords generated randomly by a first order Markov process, which yields

codewords consisting of blocks of alternating 0’s and 1’s with the lengths geometri-

cally distributed. Most of the subsequent results on lower bounding the capacity of

deletion and duplication channels rely on this specific codebook generation. For ex-

ample [31] directly lower bounds the information capacity given by (2.11) for channels

with iid deletions and duplications with an input distribution following a symmetric,

first-order Markov chain.

However, the specific case of the insertion channel we described at the beginning

of this section is different from the duplication channels, and the same techniques

cannot directly be used in order to derive an achievability result.

The first difference is that, in our model, a specific symbol is considered as an

insertion symbol, and it is not necessarily a duplication. Intuitively, this makes the

decoders task more difficult, because the inserted symbol has no information about

the transmitted message and introduces uncertainty about the positions of codeword

symbols. This observation suggests that for our insertion channel model, it is a better

idea to detect and remove the inserted symbols than treating all the output symbols

as information symbols. In Chapter 4, we introduce a decoding structure which is
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based on this intuitive idea.

The second difference in our insertion channel model is that runs of the input

sequence are subject to significant changes once they pass through the channel: In

the binary case, if the specific insertion symbol is 0, a block of l consecutive 1’s can

be split into as many as 2l blocks. This will make it difficult to directly bound (2.11)

if we would like to generate codewords with iid run lengths (first order Markov chain

codeword generation). For comparison, consider sticky channels [41] in which each

symbol may be duplicated many times. A convenient feature of a binary sticky

channel is that runs at the transmitter correspond to the runs at the receiver, i.e.,

the length of the runs might change, but no run is deleted and no new run is created.

Therefore, the mutual information in (2.11) becomes easier to evaluate and bound.

The last difference is that in our insertion channel model, we consider arbitrary

alphabet size for the input and output of the channel, while the insertion channels in

the literature mostly focus on the binary alphabets. This difference provides another

reason to not focus on runs of the input and output sequences, because considering

the corresponding runs in the output sequence becomes computationally involved

for non-binary channels. In fact, for our insertion channel model, a simple codebook

design combined with detecting the patterns in the output sequence leads to a simpler

analysis that gives more general theoretical results.

Next, we consider upper bounds on the capacity of insertion / deletion chan-

nels. In fact, only a few upper bounds have been derived on the capacity of iid

insertion / deletion channels [12, 18, 19], which numerically evaluate the capacity of

an auxiliary channel obtained by a genie-aided decoder (and encoder) with access

to side-information about the insertion / deletion process. Although our insertion

channel model is different, we can apply some of these ideas and techniques to upper

bound the capacity of intermittent communication, as we will see in Chapter 4.

Finally, bounds on the capacity per unit cost for a noisy channel with synchroniza-
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tion errors are given in a recent work [24], in which an encoding / decoding scheme

with only loose transmitter-receiver synchronization is proposed. We use the same

approach for obtaining a lower bound on the capacity per unit cost of intermittent

communication in Chapter 4.

2.5 Networking and Information Theory for Multi-Access Communication

Multi-access communication is treated in various ways in the literature. Gal-

lager [22] reviews both information-theoretic and network-oriented approaches, and

emphasizes the need for a perspective that can merge elements from these two ap-

proaches. As also pointed out in [16], information-theoretic models focus on accurate

analysis of the effect of the noise and interference, whereas network-oriented models

focus on bursty transmissions and collision-resolution approaches.

In Chapter 5, we introduce a model for intermittent multi-access communication

with two users that can be viewed as an attempt to combine the information-theoretic

and network-oriented multi-access models and to characterize the performance of

the system in terms of achievable rate regions. The model captures two network-

oriented concepts. First, it models bursty transmission of the codeword symbols

for each user. Second, it takes into account the possible asynchronism between the

receiver and the transmitters as well as between the transmitters themselves. In

this section, we summarize the system model and results of some of the works that

give an information-theoretic model for multi-access communication with some focus

on the network-oriented concepts. Specifically, we review models and results for

asynchronous multi-access communication, random access, and the collision channel.

As we will see in Chapter 5, some of the assumptions and / or conclusions are similar

to those of intermittent multi-access communication.
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2.5.1 Asynchronous Multi-Access Communication

Asynchronism in multi-user communication usually refers to the inability of the

users to start the transmission at the same time, with the receiver is unaware of this

time difference. We can ask, for example, how the lack synchronization affects the

capacity region of the channel. In this context, two types of asynchronism have been

studied in the literature. One type is frame asynchronism in which the two users are

not able to start the transmission of their codewords in unison [8, 17, 25, 45, 57].

The other type is symbol asynchronism in which each codeword symbol modulates a

fixed assigned waveform that are not perfectly aligned in time [56].

We briefly review the system models and results concerning frame asynchronous

multiple-access channel (MAC). A good review of the results and a unified model for

the two-user frame asynchronous memoryless MAC introduced in [8, 25, 45] is given

in [23, Section 24.3], while [17] treats frame asynchronism when there are more than

two users and [57] treats frame asynchronism if the MAC has memory.

Consider a two-user discrete memoryless multiple-access channel (DM-MAC) with

conditional probability mass functions W (y|x1, x2) over input alphabets X1 and X2

and output alphabet Y . We focus on the frame-asynchronous case in which the

system is symbol-synchronous. The system model is depicted in Figure 2.3. Suppose

that user 1 and user 2 wish to communicate iid message sequences {M1l}∞l=1 and

{M2l}∞l=1, respectively. These two sequences are independent, and each message pair

(M1l,M2l), l = 1, 2, ..., is uniformly distributed over [1 : 2nR1 ]× [1 : 2nR2 ]. Encoder

j, j = 1, 2 assigns a sequence of codewords xnj (mjl) of length n to each message

sequence mjl ∈ [1 : 2nRj ] for l = 1, 2, ....

Also, assume that symbols are synchronized, but that the blocks sent by the two

encoders incur arbitrary delays d1, d2 ∈ [0 : d], respectively for some d ≤ n − 1, and

that the encoders and the decoder do not know the delays a priori. The received
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Figure 2.3. Frame asynchronous multiple access communication
system [23].

sequence Y n is distributed according to

P(yn|xn1,1−d1 , x
n
2,1−d2) =

n∏
i=1

pY |X1,X2(yi|x1,i−d1 , x2,i−d2).

The decoder assigns a sequence of message pairs (m̂1l, m̂2l) ∈ [1 : 2nR1 ]× [1 : 2nR2 ] or

an error message e to each received sequence yln+d
(l−1)n+1 for each l = 1, 2, .... Note that

the received sequence yln+d
(l−1)n+1 can include parts of the previous and the next blocks.

The average probability of error for this model is defined as

P (n)
e = max

d1,d2∈[0:d]
sup
l

P((M̂1l, M̂2l) 6= (M1l,M2l)|d1, d2).

Achievability and the capacity regions are defined as for the synchronous DM-

MAC. Two types of asynchrony are considered. Mild asynchrony refers to the case

in which d/n tends to zero as n → ∞. It is shown in [8] that the capacity region of

any DM-MAC under mild asynchrony is the same as for the synchronous case: the
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closure of the set of rate pairs (R1, R2) such that

R1 < I(X1;Y |X2, Q),

R2 < I(X2;Y |X1, Q),

R1 +R2 < I(X1, X2;Y |Q)

for some distribution p(q)p(x1|q)p(x2|q), with the cardinality of Q bounded as |Q| ≤

2. In the region above, Q is called the time sharing random variable, which makes

the capacity region convex.

Total asynchrony refers to the case in which d = n − 1, i.e., d1 and d2 can vary

from 0 to n−1. It is shown in [25] and [45] that the capacity region of any DM-MAC

under total asynchrony is the closure of the set of rate pairs (R1, R2) such that

R1 < I(X1;Y |X2),

R2 < I(X2;Y |X1),

R1 +R2 < I(X1, X2;Y )

for some input distribution p(x1)p(x2). It is important to note that this region is

not convex in general, and unlike the synchronous case or mild asynchronous case,

the capacity region of DM-MAC with total asynchrony is not necessarily convex.

Furthermore, the sum-capacity of the totally asynchronous DM-MAC is the same as

that of the synchronous DM-MAC, i.e., if the channel is memoryless, we do not need

time sharing in order to achieve the sum-capacity Csum = maxp(x1)p(x2) I(X1, X2;Y ).

However, this does not remain true for channels with memory, as we will discuss

shortly.

For asynchrony in between the mild and the total asynchrony, i.e., when 0 <

d/n < 1 as n → ∞, the capacity region of the asynchronous MAC is an open
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problem [23].

Next, we study the effect of frame asynchronism on the capacity region of MACs

with memory. It is shown in [57] that if the channel has memory, the lack of frame

synchronism does not allow for non-stationary inputs to achieve any point in the

capacity region, and cooperation in the time domain is not possible. This restriction,

unlike in the case of DM-MAC which only results in the removal of the convex hull

operation from the expression of the capacity region, has more destructive effects on

the capacity region of some MACs with memory. In particular, the sum-capacity

of some MACs with memory could be drastically reduced as a result of total frame

asynchronism, which is not the case in DM-MACs.

As expected, the capacity region of the MAC with memory stated in [57] does not

admit single-letter characterizations. Instead, it is given in terms of a limit of regions.

One example of the MAC with memory for which the limits are computable, and the

frame-synchronous and frame-asynchronous capacity rate regions can be explicitly

characterized, is given in [57] and is summarized below.

Consider a MAC with memory with X1 = X2 = {0, 1, 2}, Y = {1, 2}, and

yi =


x1,i, if x1,i 6= 0 and x2,i = 0 and x2,i−1 6= 0

x2,i, if x2,i 6= 0 and x1,i = 0 and x1,i−1 6= 0

(1/2, 1/2), otherwise

(2.12)

where (1/2, 1/2) indicates that yi is equally likely to be 1 or 2. Note that simultaneous

zeros or non-zeros for both users and consecutive zeros for one user result in equally

likely outputs. In this channel, it is necessary for the encoders to use some sort of

time sharing to achieve optimum rates. Figure 2.4 shows achievable rate regions with

and without frame synchronism of the MAC with memory characterized by (2.12).

The region for the synchronous case is an achievable region, whereas the region for
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Figure 2.4. Achievable rate regions with and without frame synchronism of
an example MAC with memory [57].

the asynchronous case is shown to be the capacity region in [57].

It can be seen that frame asynchronism drastically reduces the capacity region

of this example, which is because non-stationary inputs are necessary to achieve the

optimum rates, and this is not possible when the system is frame asynchronous.

Interestingly, even under mild frame asynchronism, we cannot do better than the

inner region of Figure 2.4 for this example, which is in contrast to the memoryless

channels discussed earlier. The reason is that mild frame asynchronism allows for

cooperation in the large time-scale, but not in the small time-scale, which may be

necessary for the encoders if the channels has memory [57].
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2.5.2 Random Access

Another model for multi-access communication capturing elements from information-

theoretic and network-oriented approaches is introduced in a recent work [40]. Specif-

ically, this work presents an information-theoretic model for a random access com-

munication scenario with two modes of operation for each user, active or inactive.

The set of active users is available to the decoder only, and active users encode their

messages into two streams: one high priority stream ensures that part of the trans-

mitted information is decoded reliably even in the presence of interference from other

users, and one low priority stream opportunistically takes advantage of the channel

when other users do not transmit. Therefore, some part of the information can be

decoded only in the absence of interference.

A different information-theoretic model for random access communication is in-

troduced in [34] and [33] in which a new channel coding approach is presented for

coding within each data packet with built-in support for message underflow and

packet collision detection. The key feature of this coding approach is that it does

not require joint communication rate determination either among the transmitters or

between the transmitters and the receiver. An achievable region is defined such that

reliable message recovery is supported for all the rates inside the region and reliable

collision detection is supported for all the rates outside the region. The main results

of [34] and [33] is that for a DM-MAC, the achievable rate region of the coding

scheme equals the Shannon information rate region without a convex hull operation.

This removal of the convex hull operation was seen for the capacity region of the

totally frame asynchronous DM-MAC we reviewed earlier.

2.5.3 The Collision Channel without Feedback

Finally, we briefly review the system model and the results on the collision channel

without feedback [38] in which users share a common communication resource with

33



unknown time offsets among their clocks. We focus on the slot-synchronized case

in which a discrete-time communication is considered with the time offsets of the K

users being arbitrary integers δ1, δ2, ..., δK . All the time offsets are unknown to all

users, and can never be learned as the users receive no feedback from the channel,

and are also a priori unknown to the receiver. If two users transmit a packet at the

same time slot, it is considered as a “collision” and cannot be decoded; otherwise,

the packets are received error-free in the absence of a collision.

It is assumed that each encoder has a periodic protocol sequence denoted by

si with period Ni, i = 1, 2, ..., K, and the users may jointly choose their protocol

sequences and their choice is known by the receiver. Assuming that N is the least

common multiple of N1, N2,..., and NK , we would like to design the protocol sequence

si = (si1, ..., siN). Denoting the transmitted signal of the i’th user at time n by xi(n)

for i = 1, 2, ..., K and n = 1, 2, ..., N , and an idle signal in a slot by ?, we have

xi(n) = ? if sin = 0, and otherwise, it contains a packet of information. The output

of the channel is

y(n) =


?, if xi(n− δi) = ? for all 1 ≤ i ≤ K

xi(n− δi), if xj(n− δj) = ? for all j 6= i

∆, otherwise ,

where ∆ denotes a collision of two or more packets. The encoding and decoding are

defined across all N packets. It is obvious that the randomness of the channel comes

from the time offsets δ1, δ2, ..., δK , which are assumed to be iid and uniform on [1 : N ].

In [38], the capacity region and the zero-error capacity region are obtained and are

shown to be equal.

For the case of two users, K = 2, the outer boundary of the capacity region is

the rates that satisfy the equation
√
R1 +

√
R2 = 1, and is illustrated in Figure 2.5.
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Figure 2.5. Capacity region of two-user collision channel without
feedback [38].

Clearly, this capacity rate region is not convex. This is because the users cannot time

share due to the unknown time offsets. As we have seen earlier in this section, the

capacity regions of neither the total frame asynchronous MAC [25] nor the random

access [34] is generally convex.

In Chapter 5, after introducing a model for intermittent multi-access communi-

cation and obtaining the results, we compare various assumptions and conclusions

with those of the related works reviewed in this section.
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2.6 Summary

In this chapter, we summarized the system model and main results of some re-

lated work, identified the gaps in the literature, and explained how the models and

results in the remaining chapters close the gaps to some extent. First, we briefly re-

viewed the method of types since we make frequent use of this tool, and specifically,

the notations in our analysis. Second, we reviewed the literature on frame synchro-

nization in single-user communication systems, which studies the problem of locating

a sync pattern in a string of data. Third, we studied the problem of joint frame

synchronization and decoding in asynchronous communication, which corresponds to

contiguous transmission of codeword symbols in which the receiver observes noise

before and after transmission. Next, we summarized the results on the lower and

upper bounds of the capacity of insertion / deletion channels. Finally, we discussed

on several networking issues, such as asynchronism, random access, and collisions

in the context of multiple-access communication with an information-theoretic ap-

proach. A key assumption of these communication models is the lack of knowledge of

the state of the channel and / or a timing reference at the transmitter and receiver,

capturing certain kinds of asynchronism. Generally, this asynchronism makes the

task of the receiver more difficult since it must acquire synchronization in the first

place. Intermittent communication is just another attempt to model asynchronism

at the symbol or packet level.
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CHAPTER 3

PARTIAL DIVERGENCE

We will see in Chapter 4 that that a relevant function is dρ(P‖Q), which we call

partial divergence and view as a generalization of the Kullback-Leibler divergence.

Qualitatively speaking, partial divergence is the normalized exponent of the prob-

ability that a sequence with independent elements generated partially according to

one distribution and partially according to another distribution has a specific type.

This exponent is useful in characterizing a decoder’s ability to distinguish a sequence

obtained partially from the codewords and partially from noise from a codeword

sequence or a noise sequence.

In this chapter, we present a lemma that generalizes some of the results of the

method of types reviewed in Section 2.1, and then specialize the lemma to a certain

case in which the partial divergence is defined. Next, we study some of the properties

of the partial divergence, which are used in Chapter 4 to provide insights about the

achievable rates in Section 4.2.3. Finally, we generalize the lemma and the partial

divergence to the case of three distributions, which is applied in Chapter 5.

3.1 A Lemma and Specializing to Partial Divergence

In this section, we first present a lemma, which generalizes some of the results of

method of types reviewed in Section 2.1, and then specialize the lemma to a certain

case in which the partial divergence will be defined.

Lemma 3.1. Consider the distributions P,Q,Q′ ∈ PX on a finite alphabet X . A

random sequence Xk is generated as follows: ρk symbols iid according to Q and ρ̄k
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symbols iid according to Q′, where 0 ≤ ρ ≤ 1. The normalized exponent of the

probability that Xk has type P is

d(P,Q,Q′, ρ) := lim
k→∞
−1

k
logP(Xk ∈ TP )

= min
P1,P2∈PX :
ρP1+ρ̄P2=P

ρD(P1‖Q) + ρ̄D(P2‖Q′). (3.1)

The proof follows from the proof of Lemma 3.2 in Section 3.3. A different char-

acterization and proof of Lemma 3.1 can be found in [27, 28].

Specializing Lemma 3.1 forQ′ = Q results in Lemma 2.1, and we have d(P,Q,Q, ρ) =

D(P‖Q). However, we will be interested in the special case of Lemma 3.1 for which

Q′ = P . In other words, we need to upper bound the probability that a sequence has

a type P if its elements are generated independently with a fraction ρ according to

Q and the remaining fraction ρ̄ according to P . For this case, we call

dρ(P‖Q) := d(P,Q, P, ρ)

the partial divergence between P and Q with mismatch ratio 0 ≤ ρ ≤ 1. Proposi-

tion 3.1 gives an explicit expression for the partial divergence by solving the opti-

mization problem in (3.1) for the special case of Q′ = P .

Proposition 3.1. If X = [1 : |X |] and P,Q ∈ PX , where P := (p1, p2, ..., p|X |) and

Q := (q1, q2, ..., q|X |) and we assume that all values of the PMF Q are nonzero, then

the partial divergence can be written as

dρ(P‖Q) = D(P‖Q)−
|X |∑
j=1

pj log(c∗ +
pj
qj

) + ρ log c∗ + h(ρ), (3.2)
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where c∗ is a function of ρ, P , and Q, and can be uniquely determined from

c∗
|X |∑
j=1

pjqj
c∗qj + pj

= ρ. (3.3)

Proof. It can readily be verified that the function d(P,Q,Q′, ρ) in (3.1) can be written

as [28]

d(P,Q,Q′, ρ) = H(P ) +D(P‖Q)− ρ̄ log
q′|X |
q|X |
− e(P,Q,Q′, ρ), (3.4)

where

e(P,Q,Q′, ρ) := max
0≤θj≤1,j=1,2,...,|X |−1

{ρH(P1) + ρ̄H(P2) +

|X |−1∑
j=1

θjpj log aj}, (3.5)

aj :=
q′jq|X |

qjq′|X |
, j = 1, 2, ..., |X | − 1, (3.6)

P1 := (
θ̄1p1

ρ
,
θ̄2p2

ρ
, ...,

θ̄|X |−1p|X |−1

ρ
, 1−

∑|X |−1
j=1 θ̄jpj

ρ
), (3.7)

P2 := (
θ1p1

ρ̄
,
θ2p2

ρ̄
, ...,

θ|X |−1p|X |−1

ρ̄
, 1−

∑|X |−1
j=1 θjpj

ρ̄
). (3.8)

Now, we prove the proposition by solving the optimization problem in (3.5) and

simplifying (3.4) for the special case of Q′ = P . We would like to find the optimal

Θ := (θ1, θ2, ..., θ|X |−1) for which the function

ẽ(P,Q, ρ,Θ) := ρH(P1) + ρ̄H(P2) +

|X |−1∑
j=1

θjpj log aj
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is maximized subject to the constraints

0 ≤ θj ≤ 1, j = 1, 2, ..., |X | − 1, (3.9)

|X |−1∑
j=1

θ̄jpj ≤ ρ, (3.10)

|X |−1∑
j=1

θjpj ≤ ρ̄, (3.11)

where (3.10) and (3.11) arise from the fact that P1 and P2 should be probability

mass functions, respectively. Note that ẽ is concave in Θ, because H(P ) is a concave

function in P , and P1 and P2 are linear functions in Θ. Therefore, the optimal Θ

can be found by setting the derivative of ẽ with respect to θj’s, j = 1, 2, ..., |X | − 1

to zero, and verifying that the solution satisfies the constraints [2]. We have

∂ẽ

∂θj
= pj log

θj(ρ−
∑|X |−1

j=1 θ̄jpj)

θ̄j(ρ̄−
∑|X |−1

j=1 θjpj)aj
= 0, j = 1, 2, ..., |X | − 1.

Therefore, we have

θ̄j
θj

pj
qj

= c∗ =
p|X |
q|X |−1

ρ−
∑|X |−1

j=1 θ̄jpj

ρ̄−
∑|X |−1

j=1 θjpj
, j = 1, 2, ..., |X | − 1, (3.12)

where c∗ is defined to be equal to the right term in (3.12) since it is fixed for all j’s.

From the left equality in (3.12), the optimal solution is characterized by

θ∗j =
pj

c∗qj + pj
, j = 1, 2, ..., |X | − 1, (3.13)

and from the right equality in (3.12), c∗ is found to be the solution to (3.3). Now,

we check that this solution satisfies the constraints. Let g(c) := c
∑|X |

j=1
pjqj
cqj+pj

− ρ be

a function of c for a fixed P , Q, and ρ whose root gives the value of c∗. Note that

the equation g(c) = 0 cannot have more than one solutions, otherwise, the concave
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and differentiable function ẽ would have more than one local maximums, which is a

contradiction. Also, note that

lim
c→0

g(c) = −ρ ≤ 0,

lim
c→∞

g(c) = 1− ρ ≥ 0,

and because the function g(c) is continuous in c, the root of this function is unique

and is non-negative. Therefore, c∗ ≥ 0 is the unique solution to (3.3). From (3.13)

and the fact that c∗ ≥ 0, the constraint (3.9) is satisfied. From the right equality

in (3.12) and the fact that c∗ ≥ 0, we observe that

ρ−
∑|X |−1

j=1 θ̄jpj

ρ̄−
∑|X |−1

j=1 θjpj
≥ 0.

Also, note that numerator and denominator of the above expression cannot simulta-

neously be negative, and therefore, both constraints (3.10) and (3.11) are satisfied as

well.

Using the optimal solution obtained above, the elements of the PMF’s P1 and P2

in (3.7) and (3.8), respectively, are obtained as

p1,j =
pjqj

c∗qj + pj
/

|X |∑
j=1

pjqj
c∗qj + pj

,

p2,j =
p2
j

c∗qj + pj
/

|X |∑
j=1

p2
j

c∗qj + pj
,

for j = 1, 2, ..., |X |. Substituting the optimal solution into (3.5) and then into (3.4), (3.2)

can be obtained after some manipulation.
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3.2 Properties of Partial Divergence

In this section, we examine some of the interesting properties of partial divergence

that provide insights about the achievable rates in Chapter 4.

Proposition 3.2. The partial divergence dρ(P‖Q), 0 ≤ ρ ≤ 1, where all of the

elements of the PMF Q are nonzero, has the following properties:

(a) d0(P‖Q) = 0.

(b) d1(P‖Q) = D(P‖Q).

(c) Partial divergence is zero if P = Q, i.e., dρ(P‖P ) = 0.

(d) Let d′ρ(P‖Q) := ∂dρ(P‖Q)

∂ρ
denote the derivative of the partial divergence with re-

spect to ρ, then d′0(P‖Q) = 0.

(e) If P 6= Q, then d′ρ(P‖Q) > 0, for all 0 < ρ ≤ 1, i.e., partial divergence is
increasing in ρ.

(f) If P 6= Q, then d′′ρ(P‖Q) > 0, for all 0 ≤ ρ ≤ 1, i.e., partial divergence is convex
in ρ.

(g) 0 ≤ dρ(P‖Q) ≤ ρD(P‖Q).

Proof. (a) From (3.3), we observe that c∗ → 0 as ρ → 0. Therefore, from (3.2), we
have

d0(P‖Q) = D(P‖Q)−
|X |∑
j=1

pj log
pj
qj

+ c∗ log c∗ + h(0) = 0,

for c∗ → 0.

(b) From (3.3), we observe that c∗ →∞ as ρ→ 1. Therefore, from (3.2), we have

d1(P‖Q)=D(P‖Q)−
|X |∑
j=1

pj log(1 +
pj
c∗qj

) + h(1)=D(P‖Q),

for c∗ →∞.

(c) If P = Q, then (3.3) simplifies to c∗

c∗+1
= ρ, and therefore c∗ = ρ/ρ̄. By substi-

tuting c∗ into (3.2) and because D(P‖P ) = 0, we obtain

dρ(P‖P ) = − log

(
ρ

ρ̄
+ 1

)
+ ρ log

ρ

ρ̄
+ h(ρ) = 0.
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(d) By taking the derivative of (3.2) with respect to ρ, we obtain

d′ρ(P‖Q)=−∂c
∗

∂ρ

|X |∑
j=1

pjqj
c∗qj + pj

+ log c∗ +
∂c∗

∂ρ

ρ

c∗
+ log

ρ̄

ρ

=
∂c∗

∂ρ
(
ρ

c∗
−
|X |∑
j=1

pjqj
c∗qj + pj

) + log(c∗
ρ̄

ρ
)

= log(c∗
ρ̄

ρ
), (3.14)

where (3.14) is obtained by using (3.3). Therefore,

d′0(P‖Q) = lim
ρ→0

d′ρ(P‖Q) = lim
ρ→0

log(c∗
ρ̄

ρ
) = 0,

because we have limρ→0
ρ
c∗

=
∑|X |

j=1
pjqj
pj

= 1 from (3.3).

(e) According to (3.14), in order to prove d′ρ(P‖Q) > 0, 0 < ρ ≤ 1, it is enough to
show that ρ

ρ̄
< c∗, 0 < ρ ≤ 1:

1 =

 |X |∑
j=1

pj

2

<

|X |∑
j=1

(
√
c∗qj + pj)

2 ·
|X |∑
j=1

(
pj√

c∗qj + pj
)2 (3.15)

= (c∗ + 1)

|X |∑
j=1

p2
j

c∗qj + pj

= (c∗ + 1)ρ̄, (3.16)

where (3.15) follows from the Cauchy-Schwarz inequality, and (3.16) is true be-
cause

ρ̄ = 1− ρ =

|X |∑
j=1

pj − ρ

=

|X |∑
j=1

pj −
|X |∑
j=1

c∗pjqj
c∗qj + pj

(3.17)

=

|X |∑
j=1

p2
j

c∗qj + pj
,
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where (3.17) follows from (3.3). Note that the Cauchy-Schwarz inequality in (3.15)
cannot hold with equality for 0 < ρ (and therefore, for 0 < c∗), because other-
wise, pj = qj, j = 1, 2, ..., |X |, and P = Q. From (3.16), 1 < (c∗ + 1)ρ̄, which
results in the desirable inequality ρ

ρ̄
< c∗.

(f) By taking the derivative of (3.14) with respect to ρ, it can be seen that

d′′ρ(P‖Q) =
1

c∗
∂c∗

∂ρ
− 1

ρρ̄
. (3.18)

Also, by taking the derivative of (3.3) with respect to ρ and after some calculation,
we have

|X |∑
j=1

(c∗qj)
2pj

(c∗qj + pj)2
= ρ− c∗

∂c∗

∂ρ

. (3.19)

Therefore,

ρ2 =

 |X |∑
j=1

c∗pjqj
c∗qj + pj

2

<

|X |∑
j=1

(c∗qj)
2pj

(c∗qj + pj)2
·
|X |∑
j=1

pj (3.20)

= ρ− c∗

∂c∗

∂ρ

, (3.21)

where (3.20) follows from the Cauchy-Schwarz inequality, which cannot hold
with equality since otherwise P = Q, and where (3.21) follows from (3.19).
From (3.21), ρ2 < ρ− c∗

∂c∗
∂ρ

, which implies that d′′ρ(P‖Q) > 0 according to (3.18).

(g) From part (f), dρ(P‖Q) is convex in ρ, and therefore, dρ(P‖Q)

ρ
is increasing in ρ.

In addition, from part (d), limρ→0
dρ(P‖Q)

ρ
= d′0(P‖Q) = 0, and from part (b),

limρ→1
dρ(P‖Q)

ρ
= D(P‖Q). Consequently, 0 ≤ dρ(P‖Q) ≤ ρD(P‖Q).

Figure 3.1 shows two examples of the partial divergence for PMF’s with alphabets

of size 4. Specifically, dρ(P‖Q) versus ρ is plotted for P = (0.25, 0.25, 0.25, 0.25), and

two different Q’s, Q1 = (0.1, 0.1, 0.1, 0.7) and Q2 = (0.1, 0.4, 0.1, 0.4). The properties

in Proposition 3.2 are apparent in the figure for these examples.
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Figure 3.1. Partial divergence dρ(P‖Q) versus ρ for
P = (0.25, 0.25, 0.25, 0.25), Q1 = (0.1, 0.1, 0.1, 0.7), and

Q2 = (0.1, 0.4, 0.1, 0.4).

Proposition 3.3. The partial divergence dρ(P‖Q), 0 ≤ ρ ≤ 1, satisfies

dρ(P‖Q) ≥ D(P‖ρQ+ ρ̄P ).

Proof. From the definition of the partial divergence and (3.1), we have

dρ(P‖Q) = min
P1,P2∈PX :
ρP1+ρ̄P2=P

ρD(P1‖Q) + ρ̄D(P2‖P )

≥ min
P1,P2∈PX :
ρP1+ρ̄P2=P

D(ρP1 + ρ̄P2‖ρQ+ ρ̄P ) (3.22)

= D(P‖ρQ+ ρ̄P ), (3.23)
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where (3.22) follows from the convexity of the Kullback-Leibler divergence [7]; and (3.23)

follows from the constraint ρP1 + ρ̄P2 = P in the minimization.

The interpretation of Proposition 3.3 is that if all the elements of a sequence

are generated independently according to a mixture probability ρQ + ρ̄P , then it is

more probable that this sequence has type P than in the case that a fraction ρ of its

elements are generated independently according to Q and the remaining fraction ρ̄

are generated independently according to P . Since the partial divergence dρ(P‖Q) is

used to obtain achievability results, it can be substituted with the less complicated

function D(P‖ρQ+ ρ̄P ) in the achievable rates throughout this dissertation with the

expense of loosening the bounds according to Proposition 3.3.

3.3 Generalization of the Lemma and Partial Divergence

In this section, we first state a generalization for Lemma 3.1 for which the se-

quence is generated according to three distributions, and then specialize it to partial

divergence with two mismatch factors ρ1 and ρ2.

Lemma 3.2. Consider the distributions P,Q1, Q2, Q3 ∈ PX on a finite alphabet X .

A random sequence Xk is generated as follows: ρ1k symbols iid according to Q1, ρ2k

symbols iid according to Q2, and ρ3k iid according to Q3, where ρ1 +ρ2 +ρ3 = 1. The

normalized exponent of the probability that Xk has type P is

lim
k→∞
−1

k
logP(Xk ∈ TP )

= min
P1,P2,P3∈PX :

ρ1P1+ρ2P2+ρ3P3=P

ρ1D(P1‖Q1)+ρ2D(P2‖Q2)+ρ3D(P3‖Q3) (3.24)

Proof. With some abuse of notation, let Xρ1k
1 , Xρ2k

2 , and Xρ3k
3 be the sequence of

symbols in Xk that are iid according to Q1, Q2, and Q3, respectively. If these

sequences have types P1, P2, and P3, respectively, then the whole sequence Xk has

46



type ρ1P1 + ρ2P2 + ρ3P3. Therefore, we have

P(Xk ∈ TP )

=P
(
∪ P1,P2,P3∈PX :
ρ1P1+ρ2P2+ρ3P3=P

{Xρ1k
1 ∈TP1 ,X

ρ2k
2 ∈TP2 ,X

ρ3k
3 ∈TP3}

)
(3.25)

=
∑

P1,P2,P3∈PX :
ρ1P1+ρ2P2+ρ3P3=P

P(Xρ1k
1 ∈TP1 , X

ρ2k
2 ∈TP2 , X

ρ3k
3 ∈TP3) (3.26)

.
=

∑
P1,P2,P3∈PX :

ρ1P1+ρ2P2+ρ3P3=P

exp{−k(ρ1D(P1‖Q1) + ρ2D(P2‖Q2) + ρ3D(P3‖Q3))}, (3.27)

.
=exp

−k min
P1,P2,P3∈PX :

ρ1P1+ρ2P2+ρ3P3=P

ρ1D(P1‖Q1)+ρ2D(P2‖Q2)+ρ3D(P3‖Q3)

 (3.28)

where: (3.26) follows from the disjointedness of the events in (3.25) since a sequence

has a unique type; (3.27) follows from the independence of the three events in (3.26)

and obtaining the probability of each of them according to Lemma 2.1 to first order

in the exponent; and (3.28) follows from the fact that the number of different types

is polynomial in the length of the sequence [10], which makes the total number of

terms in the summation (3.27) polynomial in k, and therefore, the exponent equals

the largest exponent of the terms in the summation (3.27).

We will be interested in a special case of Lemma 3.2 for which Q3 = P . In other

words, we need to find the exponent of the probability that a sequence has a type

P if its elements are generated independently according to Q1, Q2, and P . For this

case, we denote the right-hand side of (3.24) by dρ1,ρ2(P‖Q1, Q2), where ρ1 + ρ2 < 1.

This function will be used in Chapter 5.

3.4 Summary

In this chapter, we introduced a quantity called partial divergence, which is a gen-

eralization of the Kullback-Leibler divergence, and is the normalized exponent of the
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probability that a sequence with independent elements generated partially accord-

ing to one distribution and partially according to another distribution has a specific

type. This exponent is useful in characterizing a decoder’s ability to distinguish a

sequence obtained partially from the codewords and partially from the noise from a

codeword sequence or a noise sequence. We also studied some of the properties of

partial divergence that provide insights about the achievable rates for intermittent

communication. Finally, we generalized the partial divergence to the case of three

distributions.
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CHAPTER 4

SINGLE-USER INTERMITTENT COMMUNICATION

In this chapter, after introducing a model for single-user intermittent communi-

cation in Section 4.1, we develop two coding theorems for achievable rates to lower

bound the capacity in Section 4.2. Toward this end, we use some of the results on

partial divergence and its properties from Chapter 3. We show that, as long as the

ratio of the receive window to the codeword length is finite and the capacity of the

DMC is not zero, rate R = 0 is achievable for intermittent communication; i.e., if

there are only two messages, then the probability of decoding error vanishes as the

codeword length becomes sufficiently large. By using two decoding structures, we

obtain achievable rates that are also valid for arbitrary intermittent processes.

Focusing on the binary-input binary-output noiseless case, we obtain upper bounds

on the capacity of intermittent communication in Section 4.3 by providing the en-

coder and the decoder with various amounts of side-information, and calculating or

upper bounding the capacity of this genie-aided system. Although the gap between

the achievable rates and upper bounds is fairly large, especially for large values of

intermittency rate, the results suggest that linear scaling of the receive window with

respect to the codeword length considered in the system model is relevant since the

upper bounds imply a tradeoff between the capacity and the intermittency rate.

Finally, in Section 4.4 we obtain lower and upper bounds on the capacity per unit

cost of intermittent communication. To obtain the lower bound, we use a similar

approach to the one in [24], in which pulse-position modulation codewords are used

at the encoder, and the decoder searches for the position of the pulse in the output
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Figure 4.1. System model for intermittent communication.

sequence. The upper bound is the capacity per unit cost of the DMC.

4.1 System Model and Foundations

We consider a communication scenario in which a transmitter communicates a

single messagem ∈ [1 : ekR = M ] to a receiver over a DMC with probability transition

matrix W and input and output alphabets X and Y , respectively. Let CW denote

the capacity of the DMC. Also, let ? ∈ X denote the “silent” or the “noise” symbol,

which corresponds to the input of the channel when the transmitter is “silent”. For

convenience, we define W?(·) := W (·|X = ?), and more generally, Wx(·) := W (·|X =

x). The transmitter encodes the message as a codeword ck(m) of length k, which is

the input sequence of intermittent process shown in Figure 4.1.

The intermittent process captures the burstiness of the channel or the transmitter

and can be described as follows: After the ith symbol from the codeword, Ni noise

symbols ? are inserted, where Ni’s are iid geometric random variables with mean

α − 1, where α ≥ 1 is the intermittency rate. As will see later, if N ≥ k is the

random variable denoting the total number of received symbols, the intermittency

rate N/k
p−→ α as k → ∞ will be an important parameter of the system. In fact,

the larger the value of α, the larger the receive window, and therefore, the more

intermittent the system becomes with more uncertainty about the positions of the

codeword symbols; if α = 1, the system is not intermittent and corresponds to

contiguous communication. We call this scenario intermittent communication and
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denote it by the tuple (X ,Y ,W, ?, α).

This model corresponds to an iid insertion channel model in which at each time

slot a codeword symbol is sent with probability pt := 1/α and the noise symbol ? is

sent with probability 1− pt until the whole codeword is transmitted.

The output of the intermittent process then goes through a DMC. At the decoder,

there are N symbols, where N is a random variable having a negative binomial

distribution with parameters k and pt:

P (N = n) =

(
n− 1

k − 1

)
pkt (1− pt)n−k, n ≥ k, (4.1)

with E [N ] = αk, and we have

N

k
=
k +N0 +N1 +N2 + ...+Nk

k

p−→ 1 + E(N0) = α, as k →∞, (4.2)

Therefore, the receive window N scales linearly with the codeword length k, as op-

posed to the exponential scaling in asynchronous communication summarized in Sec-

tion 2.3. The intermittent communication model represents bursty communication

in which either the transmitter or the channel is bursty. In a bursty communication

scenario, the receiver usually does not know the realization of the bursts. Therefore,

we assume that the receiver does not know the positions of the codeword symbols,

making the decoder’s task more involved. However, we assume that the receiver

knows the codeword length k and the realization of the size of the receive window n.

Denoting the decoded message by m̂, which is a function of the random sequence

Y N , and defining a code as in [7], we say that rate R is achievable if there exists

a sequence of length k codes of size M = ekR with average probability of error

1
M

∑M
m=1 P(m̂ 6= m)→ 0 as k →∞. Note that the communication rate is defined as

logM/k. The capacity is the supremum of all the achievable rates. Rate region (R,α)

is said to be achievable if the rate R is achievable for the corresponding scenario with
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the intermittency rate α.

It can be seen that the result of Theorem 2.2 for iid synchronization error channels

applies to the intermittent communication model, and therefore, the capacity equals

limk→∞maxP
Ck

1
k
I(Ck;Y N). We have the following theorem.

Theorem 4.1. For intermittent communication (X ,Y ,W, ?, α), rates less than

R1 := (CW − αh(1/α))+ are achievable.

Proof. We show that R1 is a lower bound for the capacity of intermittent communica-

tion by lower bounding the mutual information. Let vector T k+1 := (N0, N1, ..., Nk)

denote the number of noise insertions in between the codeword symbols, where the

Ni’s are iid geometric random variables with mean α− 1. We have

I(Ck;Y N) = I(Ck;Y N , T k+1)− I(Ck;T k+1|Y N)

= I(Xk;Y k)− I(Ck;T k+1|Y N) (4.3)

≥ kI(X;Y )−H(T k+1) (4.4)

= kI(X;Y )− (k + 1)H(N0) (4.5)

= kI(X;Y )− (k + 1)αh(
1

α
), (4.6)

where (4.3) follows from the fact that Ck is independent of the insertion process

T k+1, and conditioned on the positions of noise symbols T k+1, the mutual informa-

tion between Ck and Y N equals the mutual information between input and output

sequences of the DMC without considering the noise insertions; where (4.4) follows

by considering iid codewords and by the fact that conditioning cannot increase the

entropy; and (4.5) and (4.6) follow from the fact that Ni’s are iid geometric random

variables. Finally, the result follows after dividing both sides by k and considering

the capacity achieving input distribution of the DMC.

Although the lower bound on the capacity of intermittent communication in Theo-
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rem 4.1 is valid for the specific intermittent process described above, our achievability

results in Section 4.2 apply to an arbitrary insertion process as long as N/k
p−→ α as

k →∞.

4.2 Achievability

In this section, we obtain achievability results for intermittent communication

based upon two decoding structures: decoding from exhaustive search, which at-

tempts to decode the transmitted codeword from a selected set of output symbols

without any attempt to first locate or detect the codeword symbols; and decoding

from pattern detection, which attempts to decode the transmitted codeword only if

the selected outputs appear to be a pattern of codeword symbols. In order to ana-

lyze the probability of error for the second decoding structure, which gives a larger

achievable rate, we use some of the results on partial divergence and its properties

from Chapter 3 .

In Section 4.2.1, we also show that rate R = 0 is achievable for intermittent

communication with finite intermittency rate, using the properties of partial diver-

gence. In Section 4.2.2, we introduce decoding from exhaustive search and decoding

from pattern detection. Finally, in Section 4.2.3, using these decoding structures, we

obtain achievable rates for intermittent communication.

Although the system model in Section 4.1 assumes iid geometric insertions, the

results of this section apply to a general intermittent process, as we point out in

Remark 4.2.

4.2.1 Achievability of Rate R = 0

Using the results on partial divergence, we now state a result about the achiev-

ability of rate R = 0 in the following theorem. The idea is that no matter how large

the intermittency rate becomes, as long as it is finite, the receiver can distinguish
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between two messages with vanishing probability of error.

Theorem 4.2. If the intermittency rate is finite and the capacity of the DMC,

CW , is non-zero, then rate R = 0 is achievable for intermittent communication

(X ,Y ,W, ?, α) for the case of having only two messages.

Proof. We need to show that the transmission of a message m ∈ {1, 2} is reliable for

intermittent communication (X ,Y ,W, ?, α) as k →∞.

Encoding: If m = 1, then transmit symbol ? at all the times, i.e., ck(1) = ?k.

If m = 2, then transmit symbol x 6= ? at all the times, i.e., ck(2) = xk, where we

consider the symbol x∗ = argmaxxD(W?‖Wx). If the capacity of the DMC is nonzero,

then W? 6= Wx∗ .

Decoding: For arbitrarily small ε, if |N/k − α| > ε, then the decoder declares an

error; otherwise, if the sequence yN has type W? with a fixed typicality parameter

µ > 0, i.e., yN ∈ T[W?]µ , then m̂ = 1; otherwise m̂ = 2.

Analysis of the probability of error: The average probability of error can be

bounded as

pe ≤ P(|N/k − α| > ε)

+

k(α+ε)+1∑
n=k(α−ε)−1

P(N=n)
(
P(Y N /∈T[W?]µ|m=1, N=n)+P(Y N ∈T[W?]µ|m=2, N=n)

)
(4.7)

≤ o(1) + max
n:|n/k−α|<ε

(o(1) + e−ndk/n(W?‖Wx∗ )) (4.8)

≤ o(1) + e−k(α−ε)d1/(α+ε)(W?‖Wx∗ ) → 0 as k →∞, (4.9)

where: (4.7) follows from the union bound; (4.8) follows from the fact that P(|N/k−

α| > ε) → 0 as k → ∞, Lemma 2.2 and Lemma 3.1; and (4.9) follows from the

fact that d1/(α+ε)(W?‖Wx∗) > 0 according to Proposition 3.2 since W? 6= Wx∗ and

1/(α + ε) > 0.
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In order to prove achievability results for the case of an exponential number of

messages, i.e., R > 0, we introduce two decoding structures in the following section.

4.2.2 Decoding Structures

In this section, two decoding structures are introduced. The encoding structure

is identical for both: Given an input distribution P , the codebook is randomly and

independently generated, i.e., all Ci(m), i ∈ [1 : k],m ∈ [1 : M ] are iid according to

P . Although we focus on typicality for detection and decoding for ease of analyzing

the probability of error, other algorithms such as maximum likelihood decoding could

in principle be used in the context of these decoding structures. However, detailed

specification and analysis of such structures and algorithms are beyond the scope of

this dissertation. Note that the number of received symbols at the decoder, N , is a

random variable. However, using the same procedure as in the proof of Theorem 4.2,

we can focus on the case that |N/k− α| < ε, and essentially assume that the receive

window is of length n = αk, which makes the analysis of the probability of error for

the decoding algorithms more concise.

Decoding from exhaustive search: In this structure, the decoder observes the

n symbols of the output sequence yn, chooses k of them, resulting in a subsequence

denoted by ỹk, and performs joint typicality decoding with a fixed typicality param-

eter µ > 0, i.e., checks if ỹk ∈ T[W ]µ(ck(m)) for a unique index m. In words, this

condition corresponds to the joint type for codeword ck(m) and selected outputs ỹk

being close to the joint distribution induced by ck(m) and the channel W (y|x). If the

decoder finds a unique m satisfying this condition, it declares m as the transmitted

message. Otherwise, it makes another choice for the k symbols from symbols of the

sequence yn and again attempts typicality decoding. If at the end of all
(
n
k

)
choices

the typicality decoding procedure does not declare any message as being transmitted,

then the decoder declares an error.
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Decoding from pattern detection: This structure involves two stages for

each choice of the output symbols. As in decoding from exhaustive search, the

decoder chooses k of the n symbols from the output sequence yn. Let ỹk denote

the subsequence of the chosen symbols, and ŷn−k denote the subsequence of the

other symbols. For each choice, the first stage checks if this choice of the output

symbols is a good one, which consists of checking if ỹk is induced by a codeword,

i.e., if ỹk ∈ TPW , and if ŷn−k is induced by noise, i.e., if ŷn−k ∈ TW? . If both of

these conditions are satisfied, then we perform typicality decoding with ỹk over the

codebook as in the decoding from exhaustive search, which is called the second stage

here. Otherwise, we make another choice for the k symbols and repeat the two-stage

decoding procedure. At any step that we run the second stage, if the typicality

decoding declares a message as being sent, then decoding ends. If the decoder does

not declare any message as being sent by the end of all
(
n
k

)
choices, then the decoder

declares an error. In this structure, we constrain the search domain for the typicality

decoding (the second stage) only to typical patterns by checking that our choice of

codeword symbols satisfies the conditions in the first stage.

In decoding from pattern detection, the first stage essentially distinguishes a se-

quence obtained partially from the codewords and partially from the noise from a

codeword sequence or a noise sequence. As a result, in the analysis of the probability

of error, partial divergence and its properties described in Chapter 3 play a role. This

structure always outperforms decoding from exhaustive search, and their difference

in performance indicates how much the results on the partial divergence improve the

achievable rates.

4.2.3 Achievable Rates

In this section, we obtain two achievable rates for intermittent communication

using the decoding algorithms introduced in Section 4.2.2.
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Theorem 4.3. Using decoding from exhaustive search for intermittent communica-

tion with (X ,Y ,W, ?, α), rates less than R1 = (CW − αh(1/α))+ are achievable.

Proof. Let P be the capacity achieving input distribution for the DMC with stochas-

tic matrixW , and consider decoding from exhaustive search described in Sections 4.2.2.

For any ε > 0, we prove that if R = CW −αh(1/α)− 2ε, then the average probability

vanishes as k →∞.

The analysis of the probability of error is similar to that of Theorem 4.4, except

that instead of breaking down the first term in (4.14) as in (4.17), we use the union

bound over all the
(
n
k

)
choices without trying to distinguish the output symbols based

on their empirical distributions.

Specifically, using the union bound, we have (4.14) in which the second term

vanishes as k → ∞ according to (4.16). Using the union bound for the first term

in (4.14), we have

P(m̂ ∈ {2, 3, ...,M}|m = 1) ≤
(
n

k

)
(M − 1)P(Ỹ k ∈ T[W ]µ(Ck(2))|m = 1), (4.10)

because there are
(
n
k

)
choices for the k output symbols, and for each choice, we use

the union bound for all M −1 = ekR−1 messages other than m = 1. Using Stirling’s

approximation, we have

(
n

k

)
≤ e

1
12

√
2π

√
n

k(n− k)
enh(k/n) .= ekαh(1/α), (4.11)

as k → ∞. Note that, conditioned on message m = 1 being sent, Ck(2) and Ỹ k are

independent for any choice of output symbols. Therefore, using Lemma 2.3 with the

capacity achieving input distribution, we have

P(Ỹ k ∈ T[W ]µ(Ck(2))|m = 1) ≤ poly(k)e−k(C−ε). (4.12)
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Combining (4.10), (4.11), and (4.12), and substituting R = CW − αh(1/α) − 2ε,

we have

P(m̂ ∈ {2, 3, ...,M}|m = 1) ≤ eo(k)e−kε → 0 as k →∞.

Therefore, the average probability of error vanishes as k →∞.

Note that R1 is the same as the lower bound in Theorem 4.1, but here we in-

troduced an explicit decoding structure which is also valid for a general intermittent

process. The form of the achievable rate is reminiscent of communications overhead

as the cost of constraints [32], where the constraint is the system’s burstiness or inter-

mittency, and the overhead cost is αh(1/α). Note that the overhead cost is increasing

in the intermittency rate α and is equal to zero at α = 1. These observations suggest

that increasing the receive window makes the decoder’s task more difficult.

Theorem 4.4. Using decoding from pattern detection for intermittent communica-

tion with (X ,Y ,W, ?, α), rates less than maxP{(I(P,W )− f(P,W, α))+} are achiev-

able, where

f(P,W, α) := max
0≤β≤1

{(α−1)h(β)+h((α−1)β)−d(α−1)β(PW‖W?)−(α−1)dβ(W?‖PW )}.

(4.13)

Proof. Fix the input distribution P , and consider decoding from pattern detection

described in Section 4.2.2. For any ε > 0, we prove that if R = I(P,W )−f(P,W, α)−

2ε, then the average probability of error vanishes as k →∞. We have

pavge ≤ P(m̂ ∈ {2, 3, ...,M}|m = 1) + P(m̂ = e|m = 1), (4.14)

where (4.14) follows from the union bound in which the second term is the probability

that the decoder declares an error (does not find any message) at the end of all
(
n
k

)
choices, which implies that even if we pick the correct output symbols, the decoder
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either does not pass the first stage or does not declare m = 1 in the second stage.

Therefore,

P(m̂ = e|m = 1) ≤P(Y k /∈ T[PW ]µ) + P(Y n−k
? /∈ T[W?]µ) + P(Y k /∈ T[W ]µ(Ck(1)))

(4.15)

→ 0, as k →∞, (4.16)

where Y k is the output of the channel if the input is Ck(1), and Y? is the output of

the channel if the input is the noise symbol, and where we use the union bound to

establish (4.15). The limit (4.16) follows because all the three terms in (4.15) vanish

as k →∞ according to Lemma 2.2.

The first term in (4.14) is more challenging. It is the probability that for at

least one choice of the output symbols, the decoder passes the first stage and then

the typicality decoder declares an incorrect message. We characterize the
(
n
k

)
choices

based on the number of incorrectly chosen output symbols, i.e., the number of symbols

in ỹk that are in fact output symbols corresponding to a noise symbol, which is equal

to the number of symbols in ŷn−k that are in fact output symbols corresponding to a

codeword symbol. For any 0 ≤ k1 ≤ n− k, there are
(
k
k1

)(
n−k
k1

)
choices. 1 Using the

union bound for all the choices and all the messages m̂ 6= 1, we have

P(m̂ ∈ {2, 3, ...,M}|m = 1) ≤ (ekR−1)
n−k∑
k1=0

(
k

k1

)(
n− k
k1

)
Pk1(m̂ = 2|m = 1), (4.17)

where the index k1 in (4.17) denotes the condition that the number of incorrectly

chosen output symbols is equal to k1. Note that message m̂ = 2 is declared at the

1According to Vandermonde’s identity, we have
∑n−k
k1=0

(
k
k1

)(
n−k
k1

)
=
(
n
k

)
.
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decoder only if it passes the first and the second stage. Therefore,

Pk1(m̂ = 2|m = 1)

= Pk1
(
{Ỹ k ∈ T[PW ]µ} ∩ {Ŷ n−k ∈ T[W?]µ} ∩ {Ỹ k ∈ T[W ]µ(Ck(2))}|m = 1

)
= Pk1(Ỹ k ∈ T[PW ]µ) · Pk1(Ŷ n−k ∈ T[W?]µ)

· P
(
Ỹ k ∈ T[W ]µ(Ck(2))|m=1,Ỹ k∈T[PW ]µ ,Ŷ

n−k∈T[W?]µ

)
(4.18)

≤ eo(k)e−kdk1/k(PW‖W?)e−(n−k)dk1/(n−k)(W?‖PW )e−k(I(P,W )−ε), (4.19)

where: (4.18) follows from the independence of the events {Ỹ k ∈ T[PW ]µ} and {Ŷ n−k ∈

T[W?]µ} conditioned on k1 incorrectly chosen output symbols; and (4.19) follows from

using Lemma 3.1 for the first two terms in (4.18) with mismatch ratios k1/k and

k1/(n − k), respectively, and using Lemma 2.3 for the last term in (4.18), because

conditioned on message m = 1 being sent, Ck(2) and Ỹ k are independent regardless

of the other conditions in the last term. Substituting (4.19) into the summation

in (4.17), we have

P(m̂ ∈ {2, 3, ...,M}|m = 1)

≤ eo(k)(ekR − 1)e−k(I(P,W )−ε)
n−k∑
k1=0

(
k

k1

)(
n− k
k1

)
e−kdk1/k(PW‖W?)−(n−k)dk1/(n−k)(W?‖PW )

(4.20)

≤ eo(k)ekRe−k(I(P,W )−ε)ekf(P,W,α) (4.21)

= eo(k)e−kε → 0 as k →∞, (4.22)

where: (4.22) is obtained by substituting R = I(P,W )− f(P,W, α)− 2ε; and (4.21)
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is obtained by finding the exponent of the sum in (4.20) as follows

lim
k→∞

1

k
log

n−k∑
k1=0

(
k
k1

)(
n−k
k1

)
e−kdk1/k(PW‖W?)−(n−k)dk1/(n−k)

(W?‖PW )

= lim
k→∞

1

k
log

n−k∑
k1=0

exp{kh(k1
k

)+(n− k)h( k1
n−k )−kd k1

k

(PW‖W?)−(n− k)d k1
n−k

(W?‖PW )}

(4.23)

= lim
k→∞

1

k
max

k1=0,...,n−k
{kh(k1

k
)+(n− k)h( k1

n−k )−kd k1
k

(PW‖W?)−(n− k)d k1
n−k

(W?‖PW )}

(4.24)

≤ max
0≤β≤1

{(α− 1)h(β) + h((α− 1)β)−d(α−1)β(PW‖W?)− (α−1)dβ(W?‖PW )}

(4.25)

= f(P,W, α), (4.26)

where: (4.23) follows by using Stirling’s approximation for the binomial terms; (4.24)

follows by noticing that the exponent of the summation is equal to the largest ex-

ponent of each term in the summation, since the number of terms is polynomial in

k; (4.25) is obtained by letting β := k1/(n−k) (0 ≤ β ≤ 1) and substituting n = αk;

and (4.26) follows from the definition (4.13).

Now, combining (4.14), (4.16), and (4.22), we have pavge → 0 as k → ∞, which

proves the Theorem.

Remark 4.1. The achievable rate in Theorem 4.4 can be expressed as follows: Rate

R is achievable if for any mismatch 0 ≤ β ≤ 1, we have

R+ (α− 1)h(β) + h((α− 1)β) < I(P,W ) + d(α−1)β(PW‖W?) + (α− 1)dβ(W?‖PW ).

The interpretation is that the total amount of uncertainty should be smaller than

the total amount of information. Specifically, R and (α − 1)h(β) + h((α − 1)β) are
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the amount of uncertainty in codewords and patterns, respectively, and I(P,W ) and

d(α−1)β(PW‖W?) + (α − 1)dβ(W?‖PW ) are the amount of information about the

codewords and patterns, respectively.

Remark 4.2. The results of Theorems 4.2, 4.3, and 4.4 are valid for an arbitrary

intermittent process in Figure 4.1 provided N/k
p−→ α as k →∞.

The achievable rate in Theorem 4.4 is larger than the one in Theorem 4.3, because

decoding from pattern detection utilizes the fact that the choice of the codeword sym-

bols at the receiver might not be a good one, and therefore, restricts the typicality

decoding only to the typical patterns and decreases the search domain. In Theo-

rem 4.4, the overhead cost for a fixed input distribution is f(P,W, α). Using the

properties of partial divergence, we state some properties of this overhead cost in the

next proposition.

Proposition 4.1. The overhead cost f(P,W, α) in (4.13) has the following proper-

ties:

(a) The maximum of the term in (4.13) occurs in the interval [0, 1/α], i.e., instead
of the maximization over 0 ≤ β ≤ 1, f(P,W, α) can be found by the same
maximization problem over 0 ≤ β ≤ 1/α.

(b) f(P,W, α) is increasing in α.

(c) f(P,W, 1) = 0.

(d) If D(PW‖W?) is finite, then f(P,W, α)→∞ as α→∞.

Proof. (a) The term (α − 1)h(β) + h((α − 1)β) in (4.13) is maximized at β = 1/α,
because it is concave in β and its derivative with respect to β is zero at 1/α.
Thus, this term is decreasing in β in the interval [1/α, 1]. Also, note that the
partial divergence terms in (4.13) are increasing with respect to β according
to Proposition 3.2 (e). Therefore, the term in the max operator in (4.13) is
decreasing in β in the interval [1/α, 1], and the maximum occurs in the interval
[0, 1/α].

(b) The term in the max operator in (4.13) is concave in β, because h(β) is concave
in β and dβ(·‖·) is convex in β according to Proposition 3.2 (f). Therefore, the
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term is maximized at a point β∗ where the derivative with respect to β is equal
to zero. We then have

log
1− β∗

β∗
+ log

1− (α− 1)β∗

(α− 1)β∗
− log c1

1− (α− 1)β∗

(α− 1)β∗
− log c2

1− β∗

β∗
= 0, (4.27)

where: (3.14) is used to derive (4.27); and c1 and c2 are the corresponding c∗’s
in (3.3) for the two partial divergence terms in (4.13). Taking the derivative
of (4.13) with respect to α assuming that the maximum occurs at β∗, we obtain

∂f(P,W, α)

∂α

=
∂β∗

∂α
(α−1)(·)+h(β∗)−dβ∗(W?‖PW )

+ β∗(log
1− (α− 1)β∗

(α− 1)β∗
− log c1

1− (α− 1)β∗

(α− 1)β∗
)

=h(β∗)−dβ∗(W?‖PW )+β∗(logc2
1− β∗

β∗
−log

1− β∗

β∗
) (4.28)

=− log(1− β∗)+

(
∂dβ∗(W?‖PW )

∂β∗
−dβ∗(W?‖PW )

)
(4.29)

≥ 0, (4.30)

where: (·) in the first line is the left-side of (4.27), which is equal to zero; (4.28)
follows from (4.27); (4.29) follows from (3.14); and (4.30) follows from the fact
that − log(1 − β∗) is always positive for 0 ≤ β∗ ≤ 1 and ∂dβ∗(W?‖PW )/∂β∗ −
dβ∗(W?‖PW ) is also always positive, because the partial divergence dβ∗(W?‖PW )
is convex in β∗ according to Proposition 3.2 (f).

(c) Substituting α = 1 in (4.13), all the terms would be zero, because h(0) = 0 and
d0(P‖Q) = 0 according to Proposition 3.2 (a).

(d) Consider that the maximum in (4.13) occurs at β∗. According to part (a), 0 ≤
β∗ ≤ 1/α, and therefore, β∗ → 0 as α→∞. Using Proposition 3.2 (d) and (4.27),
we have αβ∗ → 1 as α→∞. Substitiuting α = 1/β∗ in (4.13), we obtain

lim
α→∞

f(P,W, α)

= lim
β∗→0

h(β∗)

β∗
+h(1)−d1(PW‖W?)−

dβ∗(W?‖PW )

β∗

= lim
β∗→0

h(β∗)

β∗
−D(PW‖W?)− d′0(P‖Q) (4.31)

= lim
β∗→0

h(β∗)

β∗
−D(PW‖W?) (4.32)

→∞, (4.33)

where: (4.31) follows from Proposition 3.2 (b); (4.32) follows from Proposition 3.2 (d);
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and (4.33) follows from the definition of the binary entropy function and the as-
sumption that D(PW‖W?) is finite.

(e) This part follows directly from the definition (4.13).

Note that part (b) in Proposition 4.1 indicates that increasing the intermittency

rate or the receive window increases the overhead cost, resulting in a smaller achiev-

able rate. Parts (c) and (d) show that the achievable rate is equal to the capacity of

the channel for α = 1 and approaches zero as α→∞.

Now consider a binary symmetric channel (BSC) for the DMC in Figure 4.1 with

the crossover probability 0 ≤ p ≤ 0.5, and the noise symbol ? = 0. Figure 4.2

shows the value of the achievable rates for different p, versus α. RInsertion denotes the

achievable rate obtained from Theorem 4.4 if the channel is noiseless (p = 0), and

can be proven to be equal to max0≤p0≤1{2h(p0) − max0≤β≤1{(α − 1)h(β) + h((α −

1)β) + (1− (α− 1)β)h(p0−(α−1)β
1−(α−1)β

)}}.

As we can see from the plot, the achievable rate in Theorem 4.4 (indicated by

“R2”) is always larger than the one in Theorem 4.3 (indicated by “R1”) since decod-

ing from pattern detection takes advantage of the fact that the choice of the k output

symbols might not be a good one. Specifically, the exponent obtained in Lemma 3.1

in terms of the partial divergence helps the decoder detect the right symbols, and

therefore, achieve a larger rate. The arrows in Figure 4.2 show this difference and

suggest that the benefit of using decoding from pattern detection is larger for in-

creasing α. Note that the larger α is, the smaller the achievable rate would be for a

fixed p. Not surprisingly, as α → 1, the capacity of the BSC is approached for both

of the achievable rates. In this example, we cannot achieve a positive rate if α ≥ 2,

even for the case of a noiseless channel (p = 0). However, this is not true in general,

because even the first achievable rate can be positive for a large α, if the capacity

of the channel CW is sufficiently large. The results suggest that, as communication
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Figure 4.2. Achievable rate region (R,α) for the BSC for different cross
over probability p’s.

becomes more intermittent and α becomes larger, the achievable rate is decreased

due to the additional uncertainty about the positions of the codeword symbols at the

decoder.

4.3 Upper Bounds

In this section, we focus on obtaining upper bounds on the capacity of a special

case of intermittent communication in which the DMC in Figure 4.1 is binary-input

binary-output noiseless with the noise symbol ? = 0. The achievable rate for this

case is denoted by RInsertion in Section 4.2.3, and is shown by the blue curve in

Figure 4.2. Similar to [18], upper bounds are obtained by providing the encoder

and the decoder with various amounts of side-information, and calculating or upper

bounding the capacity of this genie-aided system. After introducing a useful function
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g(a, b) in Section 4.3.1, we obtain upper bounds in Section 4.3.2. The techniques of

in this section can in principle be applied to non-binary and noisy channels as well;

however, the computational complexity for numerical evaluation of the genie-aided

system grows very rapidly in the size of the alphabets.

The results in this section suggest that the linear scaling of the receive window

with respect to the codeword length considered in the system model is relevant since

the upper bounds imply a tradeoff between the capacity of the channel and the

intermittency rate.

4.3.1 Auxiliary Channel: Uniform Insertion

Let a and b be two integer numbers such that 0 ≤ a ≤ b, and consider a discrete

memoryless channel for which at each channel use the input consists of a sequence

of a bits and the output consists of a sequence of b bits, i.e., the input and output

of this channel are A ∈ {0, 1}a and B ∈ {0, 1}b, respectively. For each channel

use, b − a zeroes are inserted randomly and uniformly among the input symbols.

The set of positions at which the insertions occur takes on each of the possible(
b

b−a

)
=
(
b
a

)
realizations with equal probability, and is unknown to the transmitter

and the receiver. As an example, the transition probability matrix of this channel

for the case of a = 2 and b = 3 is reported in Figure 4.3.

The capacity of the auxiliary channel is defined as

g(a, b) := max
P (A)

I(A; B), 0 ≤ a ≤ b, (4.34)

where P (A) is the input distribution. The exact value of the function g(a, b) for

finite a and b can be numerically computed by evaluating the transition probabilities

P (B|A) and using the Blahut-Arimoto algorithm [1] to maximize the mutual infor-

mation. The computational complexity of the Blahut-Arimoto algorithm increases
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A B 000 001 010 100 011 101 110 111

00 1 0 0 0 0 0 0 0
01 0 2/3 1/3 0 0 0 0 0
10 0 0 1/3 2/3 0 0 0 0
11 0 0 0 0 1/3 1/3 1/3 0

Figure 4.3. Transition probabilities P (B|A) for the auxiliary channel with
a = 2 and b = 3.

exponentially for large values of a and b since the transition probability matrix is of

size 2a × 2b. In order to partially overcome this issue, we recall the following lemma.

Lemma 4.1. ([7, Problem 7.28]): Consider a channel that is the union of i memory-

less channels (X1, P1(y1|x1),Y1), ..., (Xi, Pi(yi|xi),Yi) with capacities C1, ..., Ci, where

at each time one can send a symbol over exactly one of the channels. If the output

alphabets are distinct and do not intersect, then the capacity C of this channel can

be characterized in terms of C1, ..., Ci in bits per channel use as

2C = 2C1 + ...+ 2Ci .

Now, notice that the function g(a, b) can be evaluated by considering the union

of a + 1 memoryless channels with distinct input and output alphabets, where the

input of the ith channel is the set of binary sequences with length a and weight

i − 1, i = 1, ..., a + 1, and the output is binary sequences with length b obtained

from the input sequence by inserting b − a zeroes uniformly. The weight of the

sequences remains fixed after zero insertions, and therefore, the output alphabets are

also distinct and do not intersect. Assuming that the capacity of the ith channel is

gi(a, b) and applying Lemma 4.1, we have

2g(a,b) = 2g1(a,b) + ...+ 2ga+1(a,b). (4.35)
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It is easy to see that g1(a, b) = 0 and ga+1(a, b) = 0. For other values of i, the

capacity gi(a, b), i = 2, ..., a can be evaluated numerically using the Blahut-Arimoto

algorithm, where input and output alphabets have sizes
(
a
i−1

)
and

(
b
i−1

)
, respectively,

which are considerably less than those of the original alphabet sizes. This reduction

allows us to obtain the function g(a, b) for larger values of a and b, which will be

useful in Section 4.3.2. The largest value of b for which we are able to evaluate the

function g(a, b) for all values of a ≤ b is b = 17. Although we cannot obtain a closed-

form expression for the function g(a, b), we can find a closed-form upper bound by

expanding the mutual information in (4.34) and bounding some of its terms. As a

result, we can find upper bounds on the function g(a, b) for larger values of a and b.

First, we introduce some notation.

For a binary sequence xa ∈ {0, 1}a, let w(xa) denote the weight of the sequence,

i.e., the number of 1’s. Also, let the vector r0(xa) := (r0
1, ..., r

0
l0

) of length l0 denote

the length of consecutive 0’s in the sequence xa such that r0
1 = 0 if x1 = 1, i.e.,

the binary sequence starts with 1, and r0
l0

= 0 if xk = 1, i.e., the binary sequence

ends with 1, and all the other elements of the vector r0(xa) are positive integers.

In addition, let the vector r1(xa) := (r1
1, ..., r

1
l1

) of length l1 denote the length of

consecutive 1’s in the sequence xa with length larger than one, i.e., runs of 1’s with

length one not counted. Finally, let l(xa) := l0 + l1. If it is clear from the context,

we drop the argument xa from these functions. For example, if xa = 0010111000011,

then w = 6, r0 = (2, 1, 4, 0), r1 = (3, 2), and l = 4 + 2 = 6. As another example, if

xa = 10011101, then w = 5, r0 = (0, 2, 1, 0), r1 = (3), and l = 4 + 1 = 5. Now, we

define the following function, which will be used for expressing the upper bound,

F (xa) :=
∑

i1,...,il∈N∪{0}:
∑l
j=1 ij=b−a

pi1,...,il(r
0, r1)hi1,...,il(r

0), (4.36)
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where l, r0, and r1 are a function of xa as defined before, and we have

pi1,...,il(r
0, r1) :=

1(
b
a

) l0∏
j=1

(
r0
j + ij
ij

) l1∏
j=1

(
r1
j − 2 + ij+l0

ij+l0

)
, (4.37)

hi1,...,il(r
0) :=

l0∑
j=1

log

(
r0
j + ij
ij

)
. (4.38)

Proposition 4.2. The function g(a, b) in (4.34) satisfies

g(a, b) ≤ log
a∑
j=0

(
b

j

)
2maxxa:w(xa)=j F (xa) − log

(
b

a

)
(4.39)

where F (·) is defined in (4.36).

Proof. Let P b denote the random vector describing the positions of the insertions in

the output sequence Y b, such that Pi = 1 if and only if Yi is one of the b− a inserted

0’s. We have

I(Xa;Y b) = H(Xa)−H(Xa|Y b)

= H(Xa)−H(P b|Y b) +H(P b|Xa, Y b), (4.40)

where (4.40) follows by the general identity H(Xa|Y b)+H(P b|Xa, Y b) = H(P b|Y b)+

H(Xa|P b, Y b) and noticing that for this choice of P b, we have H(Xa|P b, Y b) = 0.

For the term H(P b|Xa, Y b) in (4.40), we have

H(P b|Xa,Y b)=
∑
xa

P (xa)
∑
yb

P (yb|xa)H(P b|Xa=xa,Y b=yb) (4.41)

=
∑
xa

P (xa)F (xa), (4.42)

where: F (·) is defined in (4.36); and (4.42) is because instead of the summation over

yb, we can sum over the possible 0 insertions in between the runs of a fixed input
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sequence xa such that there are total of b− a insertions. If we denote the number of

insertions in between the runs of zeros by i1, ..., il0 , and the number of insertions in

between the runs of ones by i1+l0 , ..., il1+l0 , then we have i1, ..., il ∈ Z≥0 :
∑l

j=1 ij =

b − a. Given these number of insertions, it is easy to see that P (yb|xa) in (4.41) is

equal to pi1,...,il(r
0, r1) in (4.37). Also, H(P b|Xa = xa, Y b = yb) is equal to hi1,...,il(r

0)

in (4.38), because given the input and output sequences, the only uncertainty about

the position sequence is where there is a run of zeros in the input sequence, i.e.,

for a run of ones, we know that all the zeros in between them are insertions. Also,

the uncertainty is uniformly distributed over all the possible choices. Note that

from (4.35), we have

g(a, b) = log
a∑
j=0

2maxP (xa) Ij(Xa;Y b), (4.43)

where Ij(Xa;Y b) denotes the mutual information if the input sequence, and therefore,

the output sequence has weight j, and the maximization is over the distribution of

all such input sequences. Using the chain rule, we have

H(P b|Y b) = H(Y b|P b) +H(P b)−H(Y b)

= H(Xa) + log

(
b

a

)
−H(Y b), (4.44)

where (4.44) is because the entropy of the output sequence given the insertion posi-

tions equals the entropy of the input sequence, and because the entropy of the posi-

tion sequence equals log
(
b
a

)
due to the uniform insertions. Combining (4.40), (4.42),

and (4.44), we have

Ij(Xa;Y b) = Hj(Y
b)− log

(
b

a

)
+

∑
xa:w(xa)=j

P (xa)F (xa)

≤ log

(
b

j

)
− log

(
b

a

)
+ max

xa:w(xa)=j
F (xa), (4.45)

70



where: Hj(Y
b) denotes the entropy of the output sequence if it has weight j; and (4.45)

follows from the fact that the uniform distribution maximizes the entropy and by max-

imizing F (xa) over all input sequences with weight j. Finally, by combining (4.43)

and (4.45), we get the upper bound (4.39).

Similarly, it is possible to obtain a lower bound on the function g(a, b). The lower

bound and a numerical comparison between the lower bound, the exact value, and

the upper bound on the function g(a, b) can be found in [29]. Although the results

of the lower bound are not used throughout the dissertation, we state the result for

completeness.

Proposition 4.3. The function g(a, b) in (4.34) satisfies

g(a, b) ≥ log
∑

xa∈{0,1}a

2F (xa)(
b−w(xa)
a−w(xa)

) (4.46)

where F (·) is defined in (4.36).

Proof. Consider the term H(P b|Y b) in (4.40), we have

H(P b|Y b) =
∑
yb

P (yb)H(P b|Y b = yb)

≤
∑
yb

P (yb) log

(
b− w(yb)

a− w(yb)

)
(4.47)

=
∑
yb

∑
xa

P (xa)P (yb|xa) log

(
b− w(yb)

a− w(yb)

)

=
∑
xa

P (xa) log

(
b− w(xa)

a− w(xa)

)
, (4.48)

where: (4.47) is because if yi = 1, then it is not an inserted symbol and pi = 0, and

therefore, given the output sequence yb, there are
(
b−w(yb)
a−w(yb)

)
possible choices for the

position vector P b, and we can upper bound it by assuming a uniform distribution;

and (4.48) is because the weights of the input xa and output yb are always the same.
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Now, we have

g(a, b)= max
P (xa)

I(Xa;Y b)

≥max
P (xa)

∑
xa

P (xa)

[
−logP (xa)−log

(
b−w(xa)

a−w(xa)

)
+F (xa)

]
(4.49)

= log
∑

xa∈{0,1}a

2F (xa)(
b−w(xa)
a−w(xa)

) , (4.50)

where: (4.49) follows by combining (4.40), (4.48), and (4.42); and (4.50) is the solution

to the optimization problem (4.49). Note that this is a convex optimization problem

where the optimal solution can be found to be P ∗(xa) = D2F (xa)/
(
b−w(xa)
a−w(xa)

)
by Karush-

Kuhn-Tucker (KKT) conditions [2], where the constant D is obtained such that∑
xa P

∗(xa) = 1, and (4.50) is obtained by substituting P ∗(xa). Therefore, the lower

bound (4.46) is proved.

A numerical comparison between the lower bound, the exact value, and the upper

bound on the function g(a, b) can be found in [29].

The following definition will be useful in expressing the upper bounds in Sec-

tion 4.3.2.

φ(a, b) := a− g(a, b), (4.51)

Note that the function φ(a, b) quantifies the loss in capacity due to the uncertainty

about the positions of the insertions, and cannot be negative. The following propo-

sition characterizes some of the properties of the functions g(a, b) and φ(a, b), which

will be used later.

Proposition 4.4. The functions g(a, b) and φ(a, b) have the following properties:

(a) g(a, b) ≤ a, φ(a, b) ≥ 0.

(b) g(a, a) = a, φ(a, a) = 0.

(c) g(1, b) = 1, φ(1, b) = 0.
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(d) g(a, b+ 1) ≤ g(a, b), φ(a, b+ 1) ≥ φ(a, b).

(e) g(a+ 1, b+ 1) ≤ 1 + g(a, b), φ(a+ 1, b+ 1) ≥ φ(a, b).

Proof. We prove the properties for the capacity function g(a, b). The corresponding

properties for the function φ(a, b) easily follows from (4.51).

(a) Since the cardinality of the input alphabet of this channel is 2a, the capacity of
this channel is at most a bits per channel use.

(b) There are no insertions. Therefore, it is a noiseless channel with input and output
alphabets of sizes 2a and capacity a bits per channel use.

(c) The input alphabet is {0, 1}, and the output consists of binary sequences with
length b and weight 0 or 1, because only 0’s can be inserted in the sequence.
Considering all the output sequences with weight 1 as a super-symbol, the channel
becomes binary noiseless with capacity 1 bits per channel use.

(d) The capacity g(a, b+1) cannot decrease if, at each channel use, the decoder knows
exactly one of the positions at which an insertion occurs, and the capacity of the
channel with this genie-aided encoder and decoder becomes g(a, b). Therefore,
g(a, b+ 1) ≤ g(a, b).

(e) The capacity g(a+ 1, b+ 1) cannot decrease if, at each channel use, the encoder
and decoder know exactly one of the positions at which an input bit remains
unchanged, so that it can be transmitted uncoded and the capacity of the channel
with this genie-aided encoder and decoder becomes 1 + g(a, b). Therefore, g(a+
1, b+ 1) ≤ 1 + g(a, b).

4.3.2 Genie-Aided System and Numerical Upper Bounds

In this section, we focus on upper bounds on the capacity of binary-input binary-

output noiseless intermittent communication. The procedure is similar to [18]. Specif-

ically, we obtain upper bounds by giving some kind of side-information to the encoder

and decoder, and calculating or upper bounding the capacity of this genie-aided chan-

nel.

Now we introduce one form of side-information. Assume that the position of

the [(s+ 1)i]th codeword symbol in the output sequence is given to the encoder and
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decoder for all i = 1, 2, ... and a fixed integer number s ≥ 1. We assume that the

codeword length is a multiple of s + 1, so that t = k/(s + 1) is an integer, and is

equal to the total number of positions that are provided as side-information. This

assumption does not impact the asymptotic behavior of the channel as k → ∞.

We define the random sequence {Zi}ti=1 as follows: Z1 is equal to the position of

the [s + 1]th codeword symbol in the output sequence, and for i ∈ {2, 3, ..., t}, Zi is

equal to the difference between the positions of the [(s+ 1)i]th codeword symbol and

[(s+ 1)(i− 1)]th codeword symbol in the output sequence.

Since we assumed iid insertions, the random sequence {Zi}ti=1 is iid as well with

negative binomial distribution:

P (Zi = b+ 1) =

(
b

s

)
(1− pt)b−sps+1

t , b ≥ s, (4.52)

with mean E [Zi] = (s+1)/pt. Also, note that as k →∞, by the law of large numbers,

we have

N

t

p−→ E [Zi] =
s+ 1

pt
. (4.53)

Let C1 denote the capacity of the channel if we provide the encoder and decoder

with side-information on the random sequence {Zi}ti=1, which is clearly an upper

bound on the capacity of the original channel. With this side-information, we essen-

tially partition the transmitted and received sequences into t contiguous blocks that

are independent from each other. In the ith block the place of the [s+ 1]th codeword

symbol is given, which can convey one bit of information. Other than that, the ith

block has s input bits and Zi − 1 output bits with uniform 0 insertions. Therefore,

the information that can be conveyed through the ith block equals g(s, Zi − 1) + 1.
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Thus, we have

C1 = lim
k→∞

1

k

t∑
i=1

g(s, Zi − 1) + 1

= lim
k→∞

N

k

t

N

1

t

t∑
i=1

g(s, Zi − 1) + 1

=
1

s+ 1
lim
t→∞

1

t

t∑
i=1

g(s, Zi − 1) + 1 (4.54)

=
1

s+ 1
E [g(s, Zi − 1) + 1] (4.55)

=
1

s+ 1

[
1 +

∞∑
b=s

(
b

s

)
(1− pt)b−sps+1

t g(s, b)

]
(4.56)

=1− 1

s+ 1

∞∑
b=s

(
b

s

)
(1− pt)b−sps+1

t φ(s, b), (4.57)

where: (4.54) follows from (4.53); (4.55) follows from the law of large numbers; (4.56)

follows from the distribution of Zi’s given in (4.52); and (4.57) follows from the defi-

nition (4.51). Note that the capacity C1 cannot be larger than 1, since the coefficients

φ(·, ·) cannot be negative. The negative term in (4.57) can be interpreted as a lower

bound on the communication overhead as the cost of intermittency in the context

of [32].

The expression in (4.57) gives an upper bound on the capacity of the original

channel with pt = 1/α. However, it is infeasible to numerically evaluate the coeffi-

cients φ(s, b) for large values of b. As we discussed before, the largest value of b for

which we are able to evaluate the function φ(s, b) is bmax = 17. The following upper

bound on C1 results by truncating the summation in (4.57) and using part (d) of

Proposition 4.4.

C1≤ 1− φ(s, bmax)

s+ 1
+

1

s+1

bmax∑
b=s

(
b

s

)
ps+1
t (1−pt)b−s(φ(s, bmax)−φ(s, b)), (4.58)

The expression (4.58), which we denote by C ′1, gives a nontrivial and computable
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Figure 4.4. Comparison between the best achievability result with different
upper bounds obtained from (4.58) for bmax = 17 and s = 2, 3, ..., 16, versus

the intermittency rate α.

upper bound for each value of s = 2, 3, ..., bmax − 1 on C1, and therefore, an upper

bound on the capacity of the original channel with pt = 1/α. Figure 4.4 shows the

upper bounds for bmax = 17 and s = 2, 3, ..., 16 versus the intermittency rate α, along

with the the achievability result.

Next, we introduce a second form of side-information. Assume that for consecutive

blocks of length s of the output sequence, the number of codeword symbols within

that block is given to the encoder and decoder as side-information, i.e., the number

of codeword symbols in the sequence (y(i−1)s+1, y(i−1)s+2, ..., yis), i = 1, 2, ... for a fixed

integer number s ≥ 2. Let C2 denote the capacity of the channel if we provide the
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encoder and decoder with this side-information. Using a similar procedure, we obtain

C2 = 1− 1

spt

s∑
a=0

(
s

a

)
pat (1− pt)s−aφ(a, s). (4.59)

Note that the summation in (4.59) is finite, and we do not need to upper bound C2 as

we did for C1. The value of C2 gives nontrivial and computable upper bounds on the

capacity of the original channel. Figure 4.5 shows the upper bounds for s = 3, 4, ..., 17

versus the intermittency rate α, along with the the achievability result. The upper

bound corresponding to s = 17 is tighter than others for all ranges of α, i.e., (4.59)

is decreasing in s. Intuitively, this is because by decreasing s, we provide the side-

information more frequently, and therefore, the capacity of the resulting genie-aided

system becomes larger.

It seems that (4.59) gives better upper bounds for the range of α shown in the

figures (1 < α ≤ 2). However, the other upper bound C ′1 can give better results for

the limiting values of α→∞ or pt → 0. We have

lim
α→∞

C ′1 = 1− φ(s, bmax)

s+ 1
, (4.60)

lim
α→∞

C2 = 1.

This is because of the fact that by increasing α, and thus decreasing pt, we have more

zero insertions and the first kind of genie-aided system provides side-information less

frequently leading to tighter upper bounds. The best upper bound for the limiting

case of α→∞ found by (4.60) is 0.6739 bits per channel use. In principle, we can use

the upper bound on g(a, b) in Proposition 4.2 to upper bound C1 and C2. By doing

so, we can find the bounds for larger values of s and bmax, because we can calculate

the upper bound (4.39) for larger arguments. It seems that this does not improve

the upper bounds significantly for the range of α shown in the figures. However, by
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Figure 4.5. Comparison between the best achievability result with different
upper bounds obtained from (4.59) for s = 3, 4, ..., 17, versus the

intermittency rate α.

upper bounding (4.60) via (4.39), we can tighten the upper bound for the limiting

case of α→∞ to 0.6307 bits per channel use.

Although the gap between the achievable rates and upper bounds is not partic-

ularly tight, especially for large values of intermittency rate α, the upper bounds

suggest that the linear scaling of the receive window with respect to the codeword

length considered in the system model is natural since there is a tradeoff between

the capacity of the channel and the intermittency rate. By contrast, in asynchronous

communication [52, 54], where the transmission of the codeword is contiguous, only

exponential scaling n = eαk induces a tradeoff between capacity and asynchronism.
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4.4 Bounds on Capacity Per Unit Cost

In this section, we obtain bounds on the capacity per unit cost of intermittent

communication. Let γ : X → [0,∞] be a cost function that assigns a non-negative

value to each channel input. We assume that the noise symbol has zero cost, i.e.,

γ(?) = 0. The cost of a codeword is defined as

Γ(ck(m)) =
k∑
i=1

γ(ci(m)).

A (k,M, P, ε) code consists of M codewords of length k, ck(m),m ∈ [1 : M ], each

having cost at most P with average probability of decoding error at most ε, where

the intermittent process is the same as in Section 4.1. Note that the cost of the

input and output sequences of the intermittent process shown in Figure 4.1 is the

same since the cost of the noise symbols is zero. We say rate R̂ bits per unit cost

is achievable if for every ε > 0 and large enough M there exists a (k,M, P, ε) code

with log(M)/P ≥ R̂. For intermittent communication (X ,Y ,W, ?, α), the capacity

per unit cost Ĉα is the supremum of achievable rates per unit cost.

It is shown in [58] that the capacity per unit cost of a general DMC is

max
x∈X\{?}

D(Wx‖W?)

γ(x)
,

where we assume that γ(?) = 0, and the optimization is over the input alphabet

instead of over the set of all input distributions. The asynchronous capacity per unit

cost for asynchronous communication with timing uncertainty per information bit β

has been shown to be [4]

1

1 + β
max

x∈X\{?}

D(Wx‖W?)

γ(x)
.
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Therefore, comparing to the capacity per unit cost of a DMC, the rate is penalized

by a factor of 1/(1 +β) due to asynchronism. For a channel with iid synchronization

errors with average number of duplications equal to µ concatenated with a DMC,

bounds on the capacity per unit cost, Ĉµ, have been obtained in [24] as

µ

2
max

x∈X\{?}

D(Wx‖W?)

γ(x)
≤ Ĉµ ≤ µ max

x∈X\{?}

D(Wx‖W?)

γ(x)
,

where the lower bound is obtained by using a type of pulse position modulation at

the encoder and searching for the position of the pulse at the decoder. Using similar

encoding and decoding schemes, we obtain a lower bound for the capacity per unit

cost of intermittent communication.

Theorem 4.5. The capacity per unit cost Ĉα for intermittent communication (X ,Y ,W, ?, α)

satisfies

α

2
max

x∈X\{?}

D( 1
α
Wx + (1− 1

α
)W?‖W?)

γ(x)
≤ Ĉα ≤ max

x∈X\{?}

D(Wx‖W?)

γ(x)
(4.61)

Sketch of the Proof: The upper bound in (4.61) is the capacity per unit cost of

the DMC W , and follows by providing the decoder with side-information about the

positions of inserted noise symbols ?. The derivation of the lower bound is similar to

the one in [24, Theorem 3]. Essentially, the encoder uses pulse position modulation,

i.e., to transmit message m, it transmits a burst of symbols x of length

B :=
2 log(M)

αD( 1
α
Wx + (1− 1

α
)W?‖W?)

,

at a position corresponding to this message and transmits the zero-cost noise symbol

? at the other k−B positions before and after this burst, so that each codeword has

cost P = Bγ(x). In order to decode the message, we search for the location of the

pulse using a sliding window with an appropriate length looking for a subsequence
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that has a type equal to 1
α
Wx+(1− 1

α
)W?, because at the receiver, we expect to have

approximately B(α− 1) inserted noise symbols ? in between the B burst symbols x.

Similar to the analysis of [24, Theorem 3], it can be shown that the probability of

decoding error vanishes as M →∞, and the rate per unit cost is

R̂ =
log(M)

P
=
α

2

D( 1
α
Wx + (1− 1

α
)W?‖W?)

γ(x)
.

Finally, by choosing the optimum input symbol x, rate per unit cost equal to the

left-hand side of (4.61) can be achieved. 2

From the convexity of the Kullback-Leibler divergence, it can be seen that the

lower bound is always smaller than half of the upper bound. Consider the BSC

example with crossover probability p = 0.1 and input costs γ(? = 0) = 0 and

γ(1) = 1. The upper bound in (4.61) equals 2.536 bits per unit cost, and the lower

bound in (4.61) is plotted in Figure 4.6 versus the intermittency rate α. As we would

expect, the lower bound decreases as the intermittency increases.

4.5 Summary

In this chapter, we formulated a model for intermittent communication that can

capture bursty transmissions or a sporadically available channel by inserting a ran-

dom number of silent symbols between each codeword symbol so that the receiver

does not know a priori when the transmissions will occur. First, we specified two de-

coding structures in order to develop achievable rates. Interestingly, decoding from

pattern detection, which achieves a larger rate, is based on a generalization of the

method of types and properties of partial divergence. As the system becomes more

intermittent, the achievable rates decrease due to the additional uncertainty about

the positions of the codeword symbols at the decoder. We also showed that as long

as the intermittency rate α is finite and the capacity of the DMC is not zero, rate
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Figure 4.6. The lower bound on the capacity per unit cost of intermittent
communication versus the intermittency rate α.

R = 0 is achievable for intermittent communication. For the case of binary-input

binary-output noiseless channel, we obtained upper bounds on the capacity of in-

termittent communication by providing the encoder and the decoder with various

amounts of side-information, and calculating or upper bounding the capacity of this

genie-aided system. The results suggest that the linear scaling of the receive window

with respect to the codeword length considered in the system model is relevant since

the upper bounds imply a tradeoff between the capacity and the intermittency rate.

Finally, we derived bounds on the capacity per unit cost of intermittent communica-

tion. To obtain the lower bound, we used pulse-position modulation at the encoder,

and searched for the position of the pulse at the decoder.
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CHAPTER 5

MULTI-USER INTERMITTENT COMMUNICATION

This chapter can be viewed as another attempt to combine the information-

theoretic and network-oriented multi-access models, as discussed in Section 2.5, and

to characterize the performance of the system in terms of the achievable rate regions.

We formulate a model for intermittent multi-access communication for two users that

captures two network-oriented concepts. First, it models bursty transmission of the

codeword symbols for each user. Second, it takes into account the possible asynchro-

nism between the receiver and the transmitters as well as between the transmitters

themselves.

A basic system model is introduced in Section 5.1, which generalizes the intermit-

tent communication model introduced in Chapter 4. By making different assump-

tions for the intermittent process, we specialize the system to three models: random

access with no idle-times and no collisions, random access with idle-times and no

collisions, and random access with collisions and no idle-times in Sections 5.2, 5.3,

and 5.4, respectively. Random access that allows for both idle-times and collisions

can be handled similarly, but is removed in order to avoid further complexity. In

Section 5.5, we study a simple example, and in Section 5.6, we point out some con-

nections and differences between intermittent multi-access communication and the

other models in the literature we reviewed in Section 2.5.

For each model, we obtain achievable rate regions that depend on the concept of

partial divergence introduced in Chapter 3. The collisions are treated as interference,

and information can be extracted from the collided symbols. Because of the assump-
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tion that the receiver does not know a priori that an output symbol corresponds to

transmission by a given user, neither user, or both users, the decoder has to both

detect the positions and decode the messages.

5.1 System Model

We consider a 2-user discrete memoryless multiple access channel (DM-MAC)

with conditional probability mass functions W (y|x1, x2) over input alphabets X1 and

X2 and output alphabet Y . The two senders wish to communicate independent

messages m1 ∈ [1 : ekR1 = M1] and m2 ∈ [1 : ekR2 = M2] to a receiver. Let ? ∈ X1,X2

denote a special symbol, corresponding to the input of the channel when the sender

is silent. Let W·? := W (y|x1, x2 = ?) denote the probability transition matrix for the

point to point channel for user 1 if user 2 is silent, let W?· be defined analogously,

and let W?? := W (y|x1 = ?, x2 = ?) denote the output distribution if both users

are silent. Each user encodes its message into a codeword of length k: ck1(m1) and

ck2(m2) denote the codewords of user 1 and user 2, respectively. Assume that xn1 and

xn2 are the input sequences and yn is the output sequence of the channel, where n is

the length of the receive window at the decoder.

Figure 5.1 shows a block diagram for the system model in which the intermittent

process stores inputs ck1(m1) and ck2(m2) in two separate buffers, and generates outputs

xn1 and xn2 to capture the burstiness and the asynchronism of the users. The inter-

mittent process, in general, has memory, and can be described as a state-dependent

process with four possible states (s1, s2), s1, s2 ∈ {0, 1} in each time slot. If si = 0,

then user i is silent and transmits the symbol ?. If si = 1, which is only possible if

there are codeword symbols remaining in user i’s buffer, then user i transmits the

next codeword symbol. We assume that neither the encoders nor the decoder know

the states of the intermittent process. Note that the intermittent process together

with the DM-MAC can be collected into a state-dependent MAC with memory with
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Figure 5.1. System model for intermittent multi-access communication.

the states unknown to the encoders and the decoder. See [23, 51] and the references

therein for some treatment of memoryless state-dependent MAC.

Denoting the decoded messages by m̂1 and m̂2, which are functions of the random

sequence Y n, we say that the rate pair (R1, R2) is achievable if there exists two

sequences of length k codes of sizes M1 = ekR1 and M2 = ekR2 for the two encoders

with average probability of error 1
M1M2

∑M1

m1=1

∑M2

m2=1 P((m̂1, m̂2) 6= (m1,m2))→ 0 as

k →∞. We refer to this general scenario as intermittent multi-access communication,

and in Sections 5.2, 5.3, and 5.4, we consider several instances of the intermittent

process in Figure 5.1. We have introduced some of these models in [30].

5.2 Random Access: No Idle-Times and No Collisions

In this section, we consider an intermittent process in Figure 5.1 that models a

random access channel in which, at each time slot, exactly one of the users sends a

codeword symbol and the other remains silent by sending the special symbol ?, until

both users have finished sending their codewords. In this model, there are only two

possible states for the intermittent process (s1, s2) ∈ {(1, 0), (0, 1)}, and therefore,

the output pair (x1, x2) of the intermittent process at each time slot takes one of

the two following forms: (c1, ?) or (?, c2), where c1 and c2 denote the next codeword

symbol to be transmitted from the first and the second user, respectively. Note that
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if both input buffers of the intermittent process are empty, then the transmission

terminates, and if exactly one of them is empty, then only the state corresponding

to transmission of the codeword symbol from the user with the non-empty buffer

is allowed. As a result, the length of the receive window in this model is n = 2k.

The receiver observes the sequence yn, wishes to decode both messages, but does not

know a priori which output symbol corresponds to which user’s codeword.

A potential application of this model include a cognitive radio in which the pri-

mary user is bursty, i.e., sends codeword symbols in some time slots and remains silent

in the other time slots, and a secondary user also wants to communicate with the

same receiver and can sense the channel and transmit its codeword symbols whenever

the first user is silent.

In the following theorem, we obtain an achievable rate region for (R1, R2).

Theorem 5.1. For intermittent multi-access communication with no idle-times and

no collisions, rates (R1, R2) satisfying

R1 < I(X1;Y |X2 = ?)− f1(P1, P2,W ) (5.1)

R2 < I(X2;Y |X1 = ?)− f1(P1, P2,W ) (5.2)

are achievable for any (X1, X2) ∼ P1(x1)P2(x2), where

f1(P1, P2,W ) := max
0≤β≤1

{2h(β)− dβ(P1W·?‖P2W?·)− dβ(P2W?·‖P1W·?)}, (5.3)

and d·(·‖·) is the partial divergence introduced in Chapter 3.

Proof. Encoding: Fix two input distributions P1 and P2 for user 1 and user 2, respec-

tively. Randomly and independently generate ekR1 sequences ck1(m1), m1 ∈ [1 : ekR1 ]

each iid according to P1 for user 1, and ekR2 sequences ck2(m2), m2 ∈ [1 : ekR2 ] each

iid according to P2 for user 2. To send message m1, encoder 1 transmits ck1(m1), and
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to send message m2, encoder 2 transmits ck2(m2).

Decoding: Similar to decoding from pattern detection described in Chapter 4, the

decoder chooses k of the 2k output symbols y2k. Let ỹk1 denote the sequence of chosen

symbols, and ỹk2 denote the other k symbols. For each choice, there are two stages.

In the first stage, the decoder checks if ỹk1 is induced by user 1, i.e., if ỹk1 ∈ TP1W·? ,

and if ỹk2 is induced by user 2, i.e., if ỹk2 ∈ TP2W?· . If both of these conditions are

satisfied, then we proceed to the second stage; otherwise, we make another choice for

the k symbols and restart the two-stage decoding procedure. In the second stage, we

perform joint typicality decoding with a fixed typicality parameter µ > 0 for both

sequences ỹk1 and ỹk2 , i.e., if ỹk1 ∈ T[W·?]µ(ck1(m̂1)) and ỹk2 ∈ T[W?·]µ(ck2(m̂2)) for a unique

message pair (m̂1, m̂2), then we declare them as the transmitted messages; otherwise,

we make another choice for the k symbols and repeat the two-stage decoding pro-

cedure. If at the end of all
(

2k
k

)
choices the typicality decoding procedure has not

declared any message pair as being sent, then the decoder declares an error.

Analysis of the probability of error: For any ε > 0, we prove that if R1 =

I(X1;Y |X2 = ?)−f1(P1, P2,W )−2ε, and R2 = I(X2;Y |X1 = ?)−f1(P1, P2,W )−2ε,

then the average probability of error vanishes as k → ∞. Considering independent

uniform distributions on the messages and assuming that the message pair (1, 1) is

transmitted, we have

pavge ≤P((m̂1, m̂2) = e|(m1,m2) = (1, 1))

+ P(m̂1 ∈ {2, 3, ..., ekR1}|(m1,m2) = (1, 1))

+ P(m̂2 ∈ {2, 3, ..., ekR2}|(m1,m2) = (1, 1)), (5.4)

where (5.4) follows from the union bound in which the first term is the probability that

the decoder declares an error (does not find any message pair) at the end of all
(

2k
k

)
choices, which implies that even if we pick the correct output symbols corresponding
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to user 1 and user 2, the decoder either does not pass the first stage or does not

declare (m̂1, m̂2) = (1, 1) in the second stage. The probability of this event vanishes

as k →∞ according to Lemma 2.2.

The second term in (5.4) is the probability that for at least one choice of the

output symbols, the decoder passes the first stage, and then in the second stage, it

declares an incorrect message for user 1. We characterize the
(

2k
k

)
choices based on

the number of incorrectly chosen output symbols, which is denoted by k1, i.e., the

number of symbols in ỹk1 that are in fact output symbols corresponding to the second

user, which is equal to the number of symbols in ỹk2 that are in fact output symbols

corresponding to the first user. For any 0 ≤ k1 ≤ k, there are
(
k
k1

)(
k
k1

)
possible

choices. Using the union bound for all the choices and all the messages m̂1 6= 1, we

have

P(m̂1 ∈ {2, 3, ..., ekR1}|(m1,m2) = (1, 1))

≤ (ekR1 − 1)
k∑

k1=0

(
k

k1

)(
k

k1

)
Pk1(m̂1 =2|(m1,m2)=(1, 1)), (5.5)

where the index k1 in (5.5) denotes the condition that the number of incorrectly

chosen output symbols is k1. Note that message m̂1 = 2 is declared at the decoder

only if the choice of the output symbols passes the first stage, and then the condition

ỹk1 ∈ T[W·?]µ(ck1(2)) is satisfied. Therefore,

Pk1(m̂1 =2|(m1,m2)=(1, 1))

= Pk1
(
{Ỹ k

1 ∈ TP1W·?} ∩ {Ỹ k
2 ∈ TP2W?·} ∩ {Ỹ k

1 ∈ T[W·?]µ(ck1(2))}|(m1,m2)=(1, 1)

)
= Pk1(Ỹ k

1 ∈ TP1W·?) · Pk1(Ỹ k
2 ∈ TP2W?·) · P(Ỹ k

1 ∈ T[W·?]µ(ck1(2))|(m1,m2)=(1, 1))

(5.6)

≤ eo(k)e−kdk1/k(P1W·?‖P2W?·)e−kdk1/k(P2W?·‖P1W·?) · e−k(I(X1;Y |X2=?)−ε), (5.7)
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where: (5.6) follows from the independence of the events {Ỹ k
1 ∈ TP1W·?} and {Ỹ k

2 ∈

TP2W?·} conditioned on k1 (a fixed number of) incorrectly chosen output symbols;

and (5.7) follows from the results on the partial divergence in Chapter 3 for the first

two terms in (5.6) with mismatch ratios k1/k, and using Lemma 2.3 for the last

term in (5.6), because conditioned on message m1 = 1 being sent, Ck
1 (2) and Ỹ k

1 are

independent regardless of the number of incorrectly chosen output symbols.

Substituting (5.7) into the summation in (5.5), using Stirling’s approximation for

the terms
(
k
k1

)
, and finding the largest exponent of the terms in the summation, we

have

P(m̂1 ∈ {2, 3, ..., ekR1}|(m1,m2) = (1, 1))

≤ ekR1eo(k)ekf1(P1,P2,W )e−k(I(X1;Y |X2=?)−ε)

= eo(k)e−kε, (5.8)

where (5.8) is obtained by substituting R1 = I(X1;Y |X2 = ?) − f1(P1, P2,W ) − 2ε.

Therefore, the second term in (5.4) vanishes as k → ∞. Similarly, the third term

in (5.4) also vanishes as k →∞, which proves the theorem.

Remark 5.1. The result in Theorem 5.1 is valid for the intermittent process described

above with arbitrary probability distribution on the time slots that each user transmits.

Example 5.1. As a special case, we might think of an intermittent process in which

at each time slot P((S1, S2) = (1, 0)) = P((S1, S2) = (0, 1)) = 1/2 if both buffers are

non-empty; otherwise only the user with the non-empty buffer transmits. Note that

the length of the receive window remains 2k in any case, since each codeword has

length k and there is neither idle-times nor collisions.

The function f1(P1, P2,W ) can be interpreted as an overhead term due to the

system’s burstiness or intermittency. Note that the result in Theorem 5.1 implies that
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there is a tradeoff between the two terms in (5.1) and in (5.2) by choosing the input

distributions P1 and P2. In order to maximize the first terms we need to choose the

capacity achieving input distributions, but at the same time, it is desirable to choose

input distributions such that the two distributions P1W·? and P2W?· have the largest

distance to maximize the partial divergences dβ(P1W·?‖P2W?·) and dβ(P2W?·‖P1W·?)

so that we have a smaller overhead term f1(P1, P2,W ). Also, note that both rates

R1 and R2 have the same overhead cost for fixed input distributions P1 and P2. This

is no longer the case if we consider different codeword lengths for the two users.

5.3 Random Access: With Idle-Times and No Collisions

In this section, we consider an intermittent process in Figure 5.1 that models a

random access channel in which at each time slot either one of the users sends a

codeword symbol and the other one remains silent or both remain silent until both

users send their codewords. In this model, there are three possible states for the

intermittent process (s1, s2) ∈ {(1, 0), (0, 1), (0, 0)}, and therefore, the output pair

(x1, x2) of the intermittent process at each time slot takes one of the three following

forms: (c1, ?), (?, c2), or (?, ?). The length of the receive window in this model is

n ≥ 2k, and we assume that there are n− 2k idle-times (?, ?), where θ := (n− 2k)/k

shows the ratio of the idle-times to the codeword length. The receiver observes the

sequence yn, but does not know a priori that an output symbol corresponds to which

of the three possible input pairs, and wishes to decode both messages.

Practical examples include an ALOHA random access protocol with a collision-

avoidance mechanism in which at each time either only one of the users transmits or

the channel remains idle.

In the following theorem, we obtain an achievable rate region for (R1, R2).

Theorem 5.2. For intermittent multi-access communication with idle-times and no
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collisions rates (R1, R2) satisfying

R1 < I(X1;Y |X2 = ?)− f2(P1, P2,W, θ)

R2 < I(X2;Y |X1 = ?)− f2(P1, P2,W, θ)

are achievable for any (X1, X2) ∼ P1(x1)P2(x2), where

f2(P1, P2,W, θ) :=

max
0≤β1+β2≤1
0≤β′

1+β′
2≤1

{
h(β1, β2)+h(β′1, β

′
2)+θh(

β1+β2−β′1
θ

,
β′1+β′2−β1

θ
)

−dβ1,β2(P1W·?‖W??, P2W?·)−dβ′
1,β

′
2
(P2W?·‖W??, P1W·?)

−θd(β1+β2−β′
1)/θ,(β′

1+β
′
2−β1)/θ(W??‖P1W·?, P2W?·)

}
, (5.9)

where d·,·(·‖·, ·) is the generalized partial divergence function defined in Chapter 3.

Proof. Encoding is similar to the encoding in the proof of Theorem 5.1. The decoder

splits the output sequence yn into three subsequences of length k, k, and n − 2k,

and denotes them by ỹk1 , ỹk2 , and ŷn−2k, respectively. For each choice, there are two

stages. In the first stage, we check three conditions: ỹk1 ∈ TP1W·? , ỹ
k
2 ∈ TP2W?· , and

ŷn−2k ∈ TW?? . If all three conditions are satisfied, then we proceed to the second

stage; otherwise, we make another choice for the three output subsequences and

restart the two-stage decoding procedure. The second stage is similar to the one in

the proof of Theorem 5.1; if a unique message pair (m̂1, m̂2) passes the joint typicality

test, then we declare them as the transmitted messages; otherwise, we make another

choice and repeat the two-stage decoding procedure. If at the end of all
(

n
k,k,n−2k

)
choices the typicality decoding procedure has not declared any message pair as being

sent, then the decoder declares an error.

Analysis of the probability of error: Similar to the proof of Theorem 5.1, the first

term in (5.4) vanishes as k → ∞. The second term in (5.4) is the probability that

for at least one choice of the output subsequences, the decoder passes the first stage,
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Decoder’s choice From user 1 From user 2 From idle-times
ỹk1 k − k1 − k2 k1 k2

ỹk2 k′1 k − k′1 − k′2 k′2
ŷn−2k k1 + k2 − k′1 k′1 + k′2 − k1 n− 2k − k2 − k′2

Figure 5.2. Characterizing the number of symbols in ỹk1 , ỹk2 , and ŷn−2k from
the first user, the second user, and idle times.

and then in the second stage, it declares an incorrect message for user 1.

We characterize the
(

n
k,k,n−2k

)
choices based on the number of incorrectly chosen

output symbols, which is denoted by k1, k2, k′1, and k′2, where k1 and k2 are the

number of symbols in ỹk1 that are incorrectly chosen from the second user and the

idle-times, respectively (note that ỹk1 is supposed to contain symbols from the first

user only). Similarly, k′1 and k′2 are the number of symbols in ỹk2 that are incorrectly

chosen from the first user and the idle-times, respectively. Note that 0 ≤ k1 + k2 ≤ k

and 0 ≤ k′1 + k′2 ≤ k, and the number of symbols in ŷn−2k that are incorrectly

chosen from the first and the second users would be uniquely determined. Figure 5.2

summarizes this division.

Note that for any k1, k2, k′1, and k′2, there are

(
k

k1, k2, k−k1−k2

)(
k

k′1, k
′
2, k−k′1−k′2

)(
n− 2k

k1+k2−k′1, k′1+k′2−k1, n−2k−k2−k′2

)

possible choices. Using the union bound for all the choices and all the messages

m̂1 6= 1, we can bound P(m̂1 ∈ {2, 3, ..., ekR1}|(m1,m2) = (1, 1)) in a similar way

as we did in the proof of Theorem 5.1. Using Stirling’s approximation, generalized

partial divergence for three distributions introduced in Chapter 3, Lemma 2.3, and

following similar steps as in the proof of Theorem 5.1, we can see that the probability

of error vanishes as k →∞, which proves the theorem.

Remark 5.2. The result in Theorem 5.2 is valid for the intermittent process described
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above with arbitrary probability distribution on the time slots that each user transmits

as long as the number of idle-times n− 2k is fixed. Furthermore, the result remains

valid if the number of idle-times is a random variable denoted by E, such that the

ratio of the idle-times to the codeword length converges, i.e., E/k
p−→ θ as k →∞.

Example 5.2. As a special case, we might think of the following intermittent process:

If the length of the buffers are equal, then P((S1, S2) = (0, 0)) = θ/(θ + 1) and

P((S1, S2) = (1, 0)) = P((S1, S2) = (0, 1)) = 1/(2θ+ 2); otherwise the user with more

symbols in its buffer transmits. Note that in this example, the length of the receive

window is a random variable N = 2k + E, but E/k
p−→ θ as k →∞.

5.4 Random Access: With Collisions and No Idle-Times

In this section, we consider an intermittent process in Figure 5.1 that models

a random access channel with collisions. In principle, we can consider a random

access channel that allows for both idle-times and collisions using a similar approach.

However, we assume that there are no idle times in this section in order to avoid

overcomplicating the results. In this model, there are three possible states for the

intermittent process (s1, s2) ∈ {(1, 0), (0, 1), (1, 1)}, where the total number of states

representing a collision, i.e., (s1, s2) = (1, 1), is assumed to be d ≤ k. Therefore,

the output pair (x1, x2) of the intermittent process with length n = 2k − d consists

of k − d of the form (c1, ?), k − d of the form (?, c2), and d of the form (c1, c2). In

other words, user 1 and user 2 transmit k−d codeword symbols over a point to point

channel, W·,? and W?,·, respectively, and transmit d codeword symbols over the MAC

channel W , through which there is interference between the users, but the decoder

does not know a priori these positions. Let θ := d/k ≤ 1 denote the ratio of the

collided symbols of each user to the codeword length.

In the following theorem, we obtain an achievable rate region for (R1, R2).
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Theorem 5.3. For intermittent multi-access communication with collisions and no

idle-times, rates (R1, R2) satisfying

R1 <θ̄I(X1;Y |X2 =?)+θI(X1;Y |X2)−f3(P1, P2,W, θ)

R2 <θ̄I(X2;Y |X1 =?)+θI(X2;Y |X1)−f3(P1, P2,W, θ)

R1+R2 <θ̄I(X1;Y |X2 =?)+θ̄I(X2;Y |X1 =?) + θI(X1, X2;Y )−f3(P1, P2,W, θ)

are achievable for any (X1, X2) ∼ P1(x1)P2(x2), where

f3(P1, P2,W, θ) :=

max
0≤β1+β2≤1
0≤β′

1+β′
2≤1

{
θ̄h(β1, β2)+θ̄h(β′1, β

′
2)+θh(

θ̄(β1+β2−β′1)
θ

,
θ̄(β′1+β

′
2−β1)

θ
)

−θ̄dβ1,β2
(P1W·?‖P1P2W,P2W?·)−θ̄dβ′

1,β
′
2
(P2W?·‖P1P2W,P1W·?)

−θd(β1+β2−β′
1)θ̄/θ,(β′

1+β
′
2−β1)θ̄/θ(P1P2W‖P1W·?, P2W?·)

}
, (5.10)

and d·,·(·‖·, ·) is the generalized partial divergence function defined in Chapter 3.

Sketch of the Proof: Encoding is the same as in the proof of Theorem 5.1. We briefly

explain the decoding procedure. The analysis of the probability of error is lengthy,

but similar to the previous ones, and is omitted here.

Decoding: The decoder splits the output sequence y2k−d into three subsequences

of length k − d, k − d, and d, and denotes them by ỹk−d1 , ỹk−d2 , and ŷd, respectively.

For each choice, there are two stages. In the first stage, we check three conditions:

ỹk−d1 ∈ TP1W·? , ỹ
k−d
2 ∈ TP2W?· , and ŷd ∈ TP1P2W . If all three conditions are satisfied,

then we proceed to the second stage; otherwise, we make another choice for the three

output subsequences and restart the two-stage decoding procedure.

In the second stage, we perform simultaneous joint typicality decoding. We first

split all of the codewords as follows. Let c̃k−d1 (m1) and ĉd1(m1) be the subsequences

of ck1(m1) corresponding to the positions of the symbols of the chosen subsequences
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ỹk−d1 and ŷd, respectively. Similarly, let c̃k−d2 (m2) and ĉd2(m2) be the subsequences

of ck2(m2) corresponding to the positions of the symbols of the chosen subsequences

ỹk−d2 and ŷd, respectively. We declare the message pair (m̂1, m̂2) as being transmitted

if it is the unique message pair such that the following three conditions are satisfied

simultaneously: (c̃k−d1 (m̂1), ỹk−d1 ) is jointly typical, (c̃k−d2 (m̂2), ỹk−d2 ) is jointly typical,

and (ĉd1(m̂1), ĉd2(m̂2), ŷd) is jointly typical; otherwise, we make another choice for the

three output subsequences and repeat the two-stage decoding procedure. If at the

end of all
(

2k−d
k−d,k−d,d

)
choices the typicality decoding procedure has not declared any

message pair as being sent, then the decoder declares an error. 2

Remark 5.3. The result in Theorem 5.3 is valid for the intermittent process described

above with arbitrary probability distribution on the time slots that each user transmits

as long as the number of collided symbols d is fixed. Furthermore, the result remains

valid if the number of collided symbols is a random variable denoted by D, such that

the ratio of the collided symbols to the codeword length converges, i.e., D/k
p−→ θ as

k →∞.

Example 5.3. As a special case, we might think of the following intermittent process:

If the length of the buffers are equal, then P((S1, S2) = (1, 1)) = θ and P((S1, S2) =

(1, 0)) = P((S1, S2) = (0, 1)) = (1− θ)/2; otherwise only the user with more symbols

in its buffer transmits. Note that in this example, the length of the receive window is

a random variable N = 2k −D, but D/k
p−→ θ as k →∞.

5.5 A Simple Example

Consider a DM-MAC with X1,X2 = {0, 1, 2, 3} and Y = {0, 1, ..., 6} such that

Y = X1 + X2, where + corresponds to real addition. The capacity region of this

channel is shown with the blue curve in Figure 5.3. The red dots correspond to

achievable rates (R1, R2) for intermittent MAC with no idle-times and no collisions
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obtained from Theorem 5.1 using different input distributions P1(x1) and P2(x2).

For simplicity, we only focus on the result of Theorem 5.1. Not surprisingly,

the plot suggests that the intermittency of the system and lack of knowledge about

the position of the symbols at the decoder come with a significant cost. We should

mention that achieving the rate pairs shown by points A and B in the figure is

surprisingly simple. In order to achieve point A, we use P1(x1) = [0, 1/3, 1/3, 1/3]

and P2(x2) = [1, 0, 0, 0], and to achieve point B, we use P1(x1) = [0, 0, 1/2, 1/2]

and P2(x2) = [1/2, 1/2, 0, 0]. In both cases, the overhead function f1(P1, P2,W )

in Theorem 5.1 evaluates to zero, since the distributions P1W·? and P2W?· become

disjoint and the partial divergence terms become infinite. It is also worth pointing

out that the achievable rate region for the intermittent MAC model does not have to

be convex, as can be seen from the figure, because time sharing is not possible due

to the intermittency and asynchronism of the system.

5.6 Connections to Related Works

In Section 2.5, we summarized the system models and results of some of the works

that give an information-theoretic model for multi-access communication focusing on

some of the network-oriented concepts, such as asynchronism, random access, and

collision. There are some similarities and differences between the models and results

reviewed in Section 2.5 and those of intermittent MAC, which we briefly discuss.

In the models for intermittent MAC, frame asynchronous MAC, and collision

channels, there are uncertainties about the positions of the codeword symbols at the

receiver, the transmitters do not know this information and can never learn it, and

the receiver does not know this information a priori. The transmission of the users’

codewords is contiguous in the frame asynchronous MAC model, whereas it can be

bursty in both intermittent MAC and the collision channel models. Furthermore, the

decoding is performed across all these bursty symbols/packets in both intermittent
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Figure 5.3. Comparing the capacity rate region of the DM-MAC with the
achievable rates for intermittent MAC with no idle-times and no collisions

obtained from Theorem 5.1.

MAC and the collision channel models. Also, in intermittent MAC, the receiver

differentiates the output symbols based on their empirical distributions, whereas in

the collision channel model, the receiver differentiates the output symbol based on

its knowledge on the protocol sequences and the positions relative to the idle symbol

Λ and the collision symbol ∆.

In the model for random access [40], the states of the users (active or inactive)

are similar to those of the model for intermittent MAC, but remain constant for the

entire communication block and are known to the receiver. As a result, unlike the

intermittent MAC, decoding is not performed across different states in this model

for random access, and there is no uncertainty about the states of the users at the
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receiver. In other words, in the intermittent MAC model, random accessing is con-

sidered in the symbol/packet level, whereas in the model of [40], random accessing

is considered in the block level. However, in both [40] and intermittent MAC with

collisions, some part of information is decoded in the absence of interference and

some part in the presence of interference.

Finally, similar to the capacity region in the models for frame asynchronous MAC,

random access in [34], and collision channels, the achievable rate region for intermit-

tent MAC can be non-convex, as we have seen in Section 5.5. This is because of the

impossibility of time sharing and coordination in the time domain in these models.

Furthermore, similar to the capacity rate region of the frame asynchronous MAC with

memory in [57], the achievable rate region of intermittent MAC is drastically reduced

due to the lack of coordination in the time domain, as we have seen in Section 5.5.

5.7 Summary

In this chapter, we formulated a model for intermittent multi-access communica-

tion for two users that captures the bursty transmission of the codeword symbols for

each user and the possible asynchronism between the receiver and the transmitters

as well as between the transmitters themselves. By making different assumptions for

the intermittent process, we specialized the system to a random access system with or

without idle-times and collisions. For each model, we characterized the performance

of the system in terms of achievable rate regions. In our achievable schemes, the in-

termittency of the system comes with a significant cost, i.e., it reduces the size of the

achievable rate regions, which can be interpreted as communication overhead [15].

Note that as opposed to [15], where the constraint is the lack of coordination be-

tween the users in multi-access communication, the constraint in our problem is the

intermittency of the system.
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CHAPTER 6

OTHER EXTENSIONS

In this chapter, we study three relevant extensions. First, inspired by network

applications, we extend the model to packet-level intermittent communication in

which codeword and noise symbols are grouped into packets. Next, we use some of

the insights and tools developed in this dissertation to obtain some new results on the

capacity of deletion channels and a random access that drops the collided symbols.

Finally, inspired by the problem of file synchronization, we obtain some results on

compressing a source sequence with the presence of decoder side-information that is

related to the source via an intermittent process.

6.1 Packet-Level Intermittent Communication

In this section, we introduce a system model for packet-level intermittent com-

munication in which codeword and noise symbols are grouped into packets of length

l, noise packets are inserted in the input sequence of the channel, and the receiver

does not know a priori the positions of the codeword packets. Depending on the

scaling behavior of the packet length relative to the codeword length, we identify

some interesting scenarios for the scaling behavior of the receive window relative to

the codeword length, and find achievable rates using different decoding structures.

The system model in this chapter recovers intermittent communication introduced

in Chapter 4 if the packets correspond to a single symbol, i.e., l = 1, and recovers

asynchronous communication reviewed in Section 2.3 if the packet corresponds to the

codeword, i.e., contiguous transmission of codeword symbols.
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Packet-level intermittent communication may arise in network applications in

which the data is packetized, and each packet goes through a network with inter-

mittent connectivity and / or random delay. The receiver’s task is to identify the

packets in order to reconstruct the original data. The intermittency of the system

and the size of the packet might allow for individual packet detection at the receiver,

in which case the communication problem simplifies to individual packet detection

and message decoding. However, if the intermittency of the system increases or the

packet length decreases, then we may not reliably detect all the data packets individ-

ually, and encoding and decoding across packets could be a better solution. In this

section, we refer to the former case as large-packet intermittent communication, and

to the latter case as small- or medium-packet intermittent communication.

After introducing a general system model in Section 6.1.1, we will specialize it to

small-packet, medium-packet, and large-packet intermittent communication in Sec-

tions 6.1.2, 6.1.3, and 6.1.4, respectively. For small-packet and medium-packet inter-

mittent communication, we use similar decoding structures as in Chapter 4, namely,

decoding from exhaustive search and decoding from pattern detection, whereas for

large-packet intermittent communication, we introduce a new decoding structure,

which is called decoding from packet detection.

6.1.1 System Model

As before, a transmitter communicates a single message m ∈ [1 : ekR = M ] to

a receiver over a DMC with probability transition matrix W and input and output

alphabets X and Y , with the noise symbol denoted ? ∈ X . Also, let CW be the

capacity of this DMC. The transmitter encodes the message as a codeword ck(m) of

length k. The intermittent process takes ck(m) as an input sequence and outputs

xn. Assume that xn and yn are the input and output sequences of the channel W ,

respectively, where n ≥ k is the length of the receive window at the decoder. Note
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Figure 6.1. Illustration of the input and output of the intermittent process
for the packet-level intermittent communication.

that unlike to the model in Chapter 4 with the random length of the receive window,

we assume that the length of the receive window is fixed in this section in order to

be able to unify the model for different scaling behavior we consider for packet-level

intermittent communication.

The intermittent process operates at the packet level, which is illustrated in Fig-

ure 6.1 and can be described as follows: First, the codeword symbols ck(m) are

grouped into packets of length l, resulting in a total of k/l codeword packets. Then,

(n−k)/l noise packets, i.e., sequences of noise symbols ? of length l, are inserted arbi-

trarily between the codeword packets, i.e., the output of the intermittent process, xn,

contains a total of n/l packets consisting of the k/l codeword packets and (n− k)/l

noise packets, and packets are received in the right order. Analogous to symbol-level

intermittent communication, we assume that the transmitter cannot decide on the

locations of the codeword packets, so it cannot encode any timing information, and

the receiver does not know a priori the positions of the codeword packets.

Generally, increasing the packet length makes the transmission of the codeword

symbols more contiguous, and decreases the uncertainty about their locations at the

receiver. This observation suggests that the scaling behavior of the receive window
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relative to the codeword length should be determined based on the scaling behavior

of the packet length relative to the codeword length in order to identify the regimes of

interest. In this section, we consider three different scaling behaviors for the packet

length l relative to the codeword length k, identify the corresponding regimes of

interest for the scaling behavior for the receive window n relative to k, and define the

associated communication scenarios.

Definition 6.1. (Small-packet intermittent communication) If the packet length l

is finite and the receive window scales linearly relative to the codeword length with

factor α ≥ 1, i.e., n = αk, then the scenario is called small-packet intermittent

communication.

Definition 6.2. (Medium-packet intermittent communication) If the packet length

scales logarithmically relative to the codeword length, i.e., l = λ log k, λ > 0, and the

receive window relative to the codeword length follows a power law with power α ≥ 1,

i.e., n = lkα, then the scenario is called medium-packet intermittent communication.

Definition 6.3. (Large-packet intermittent communication) If the packet length rela-

tive to the codeword length follows a power law, i.e., l = kλ,0 < λ ≤ 1, and the receive

window scales exponentially relative to the packet length l with exponent α > 0, i.e.,

n = leαl, then the scenario is called large-packet intermittent communication.

For all intermittent communication scenarios defined above, rate region (R,α)

is said to be achievable if the rate R is achievable for the corresponding scenario

with a given α. The reason that α is assumed to be larger than or equal to one in

Definitions 6.1 and 6.2 is the necessary condition that n ≥ k. Note that in all of

the communication scenarios defined above, α determines the scaling of the receive

window relative to the codeword length (or the packet length), even though the

scaling behavior itself depends on the scenario. In all three cases, the larger the value

of α, the larger the receive window, and therefore, the more intermittent the system
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becomes. Hence, α is called the intermittency rate as in Chapter 4. As we will see,

increasing α generally reduces the achievable rate R for each of the three considered

scenarios, because it makes the receive window larger, and therefore, increases the

uncertainty about the positions of the codeword packets at the receiver, making the

decoder’s task more involved.

The special case of l = 1 for small-packet intermittent communication recovers

the model and results in Chapter 4, and the special case of λ = 1 (or l = k) for

large-packet intermittent communication recovers the model and results for slotted

asynchronous communication [60]. In the former case, as we saw in Chapter 4, the

interesting scenario arises if the receive window scales linearly with the codeword

length, whereas in the later case, the exponential scaling of the receive window with

the codeword length is desirable.

To motivate the different scaling behaviors for the receive window n in the defi-

nitions, note that increasing the packet length l adds more structure to the output

sequence and decreases the uncertainty about the positions of the the codeword sym-

bols at the receiver. As a result, some scalings of the receive window length do not

lead to interesting tradeoffs. For example, if the receive window n scales linearly

relative to the codeword length k, and the packet length l scales logarithmically with

k, then the capacity of the channel can be achieved, and the intermittency does not

impact the communication rate.

Next, we develop achievable rates for the three scenarios defined above. For small-

and medium-packet intermittent communication, we utilize both decoding from ex-

haustive search and decoding from pattern detection introduced in Chapter 4 in

order to obtain achievable rates. However, for large-packet intermittent communica-

tion, a new decoding structure, decoding from packet detection, is introduced and an

achievable rate is obtained.

The encoding structure is as before: Given an input distribution P , the codebook
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is randomly and independently generated, i.e., all Ci(m), i ∈ [1 : k],m ∈ [1 : M ]

are iid according to P . For ease of presentation, let s := k/l denote the number of

codeword packets, and b := n/l denote the total number of packets at the receiver,

so that the number of inserted noise packets is equal to b− s.

6.1.2 Small-Packet Intermittent Communication

In this section, we obtain two achievable rates for small-packet intermittent com-

munication. For obtaining the first achievable rate, we utilize decoding from exhaus-

tive search, which is the same as described in Section 4.2.2, but instead of choosing

the k symbols out of the n symbols from the output sequence at each step, we choose

s packets out of the b output packets, so that the total number of choices becomes(
b
s

)
. We have the following achievability result.

Theorem 6.1. For small-packet intermittent communication with parameters l and

α, rates less than (CW − αh(1/α)/l)+ are achievable.

Proof. The proof is similar to the proof of Theorem 4.3, but instead of (4.10), we

have

P(m̂ ∈ {2, 3, ...,M}|m = 1) ≤
(
b

s

)
(M − 1)P(Ỹ k ∈ T[W ]µ(Ck(2))|m = 1),

and instead of (4.11), we have

(
b

s

)
≤ e

1
12

√
2π

√
b

s(b− s)
ebh(s/b) .= ekαh(1/α)/l, as k →∞, (6.1)

where (6.1) is obtained by substituting s = k/l, b = n/l, and n/k = α.

As before, we can interpret the term αh(1/α)/l as the overhead cost due to the

intermittency. Note that the overhead cost is increasing in the intermittency rate α,

is equal to zero at α = 1, and approaches infinity as α → ∞. These observations
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suggest that increasing the receive window makes the decoder’s task more difficult.

Also, note that the overhead cost and the packet length l are inversely proportional,

which indicates that if the packet length is sufficiently large, then the achievable rate

approaches the capacity of the channel. This is because increasing the packet length

decreases the uncertainty about the positions of the codeword packets at the decoder

yielding a better achievability result.

Using decoding from pattern detection introduced in Chapter 4, with the mod-

ification that instead of choosing symbols we choose packets, for the small-packet

intermittent communication model and the results on partial divergence developed

in Chapter 3, we obtain the following achievability result.

Theorem 6.2. For small-packet intermittent communication with parameters l and

α, rates less than maxP{
(
I(P,W )− fSPl (P,W, α)

)+} are achievable, where

fSPl (P,W, α):= max
0≤β≤1

{
(α−1)h(β)+h((α−1)β)

l
−d(α−1)β(PW‖W?)−(α−1)dβ(W?‖PW )

}
.

(6.2)

Proof. The proof is similar to the proof of Theorem 4.4, but instead of (4.17), we

have

P(m̂ ∈ {2, 3, ...,M}|m = 1) ≤ (ekR − 1)
b−s∑
k1=0

(
s

k1

)(
b− s
k1

)
Pk1(m̂ = 2|m = 1),

where the index k1 denotes the condition that the number of wrongly chosen output

packets is equal to k1, 0 ≤ k1 ≤ b − s. Using the same steps as in the proof

of Theorem 4.4, substituting s = k/l, b = n/l, and n/k = α, applying Stirling’s

approximation, and invoking Lemma 3.1, the result follows.

The achievable rate in Theorem 6.2 is larger than the one in Theorem 6.1, be-

cause decoding from pattern detection utilizes the fact that the choice of the codeword
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packets at the receiver might not be a good one, and therefore, restricts the typi-

cality decoding only to the typical patterns and decreases the search domain. In

Theorem 6.2, the overhead cost for a fixed input distribution is fSPl (P,W, α), and

the next proposition states some of its properties.

Proposition 6.1. The overhead cost fSPl (P,W, α) in (6.2) has the same properties

as in Proposition 4.1. In addition, fSPl (P,W, α) ≤ fSP1 (P,W, α)/l for all integers

l ≥ 1, and the overhead cost is decreasing in l.

The proof is similar to the proof of Proposition 4.1. From Proposition 6.1, we

can make the same conclusions for the achievable rate in Theorem 6.2 as we made

before for the achievable rate in Theorem 4.4. In addition, Proposition 6.1 implies

that increasing the packet length l increases the achievable rate, and if the packet

length is sufficiently large, then the achievable rate approaches the capacity of the

channel.

As a different example than the one considered in Chapter 4 for the channel W , we

consider a DMC with a symmetric transition matrix with input and output alphabets

of size 4 as is depicted in Figure 6.2, in which all the crossover probabilities are equal

to p/3 and the direct probabilities are equal to 1 − p. The reason that we consider

a channel with 4-ary input and output is that the benefit of using the concept of

partial divergence and the results in Chapter 3 is more apparent for a channel with

larger alphabet size.

The boundary of the achievable rate region (R,α) characterizes the tradeoff be-

tween the achievable rates and the intermittency rate α. Figure 6.3 illustrates the

achievable rate region (R,α) for small-packet intermittent communication over the

channel depicted in Figure 6.2 with p = 0.1, for which the capacity is approximately

1.37 bits per channel use. The achievable rate regions correspond to the results in

Theorems 6.1 and 6.2, indicated by R1 and R2, respectively, for two values of the

packet length: l = 1 and l = 2. The achievable rates are decreasing in the inter-
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Figure 6.2. Graphical description of the transition matrix for the DMC we
consider in this section.

mittency rate α, which is because increasing α increases size of the receive window

and therefore the uncertainty about the positions of the codeword packets at the re-

ceiver. All the achievable rates approach the capacity of the channel as α→ 1. Also,

note that the achievable rate region is larger for longer packets, because increasing l

adds more structure to the output sequence and reduces the uncertainty about the

positions of the codeword symbols at the receiver.

The arrows in Figure 6.3 highlight the differences between R2 and R1, i.e., how

much decoding from pattern detection outperforms decoding from exhaustive search.

As can be seen from the figure, decoding from pattern detection increases the achiev-

able rate as well as substantially increases the range of intermittency rates for which

the achievable rate is non-zero. The reason is that as the receive window becomes

larger, the search domain increases exponentially, and the need for restricting the

search domain by decoding the codeword only from typical patterns becomes more

critical.

6.1.3 Medium-Packet Intermittent Communication

Using decoding from exhaustive search introduced in Chapter 4 for medium-packet

intermittent communication, we obtain the following achievability result.
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Figure 6.3. Achievable rate region (R,α) for small-packet intermittent
communication over the channel depicted in Figure 6.2 with p = 0.1.

Theorem 6.3. For medium-packet intermittent communication with parameters λ

and α, rates less than (CW − (α− 1)/λ)+ are achievable.

Proof. The proof is similar to the proof of Theorem 6.1, except that instead of (6.1),

we have (
b

s

)
≤̇ek(α−1)/λ, as k →∞,
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because by substituting s = k/l = k/(λ log k) and b = n/l = kα, we have

lim
k→∞

1

k
log

(
b

s

)
= lim

k→∞

1

k
log

(
kα

k/(λ log k)

)
= lim

k→∞
kα−1h(

1

λkα−1 log k
) (6.3)

= lim
k→∞

log(λkα−1 log k)

λ log k
(6.4)

=
α− 1

λ
,

where (6.3) follows from (4.11), and (6.4) follows from expanding the binary entropy

function and using the fact that log(1− x) ∼ −x as x→ 0.

Here, the overhead cost is (α−1)/λ, which is increasing in the intermittency rate

α and decreasing in λ, and similar conclusions as in Section 6.1.2 can be drawn.

Using decoding from pattern detection introduced in Chapter 4 for medium-packet

intermittent communication and the results on partial divergence developed in Chap-

ter 3, we obtain the following achievability result.

Theorem 6.4. For medium-packet intermittent communication with parameters λ

and α, rates less than maxP{
(
I(P,W )− fMP

λ (P,W, α)
)+} are achievable, where

fMP
λ (P,W, α) := max

0≤β≤1

{
β
α− 1

λ
− dβ(PW‖W?)

}
. (6.5)

Proof. The proof is similar to the proof of Theorem 6.2, except that the summation

on k1 is from 0 to s instead of b−s. Note that in general, for the number of incorrectly

chosen output packets, k1, we have 0 ≤ k1 ≤ min{s, b − s}, but for medium-packet

intermittent communication 0 ≤ k1 ≤ s. Therefore, we have a similar expression

to (4.24) except that the maximization is over k1 = 0, 1, ..., s. We proceed by letting

β := k1/s (0 ≤ β ≤ 1), substituting s = k/(λ log k) and b = kα, and calculating the
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four terms in the maximization:

lim
k→∞

1

k
sh(β) = lim

k→∞

1

λ log k
h(β) = 0 (6.6)

lim
k→∞

1

k
(b− s)h(

βs

b− s
)

= lim
k→∞

λkα−1 log k − 1

λ log k
h(

β

λkα−1 log k − 1
)

= β
α− 1

λ
(6.7)

lim
k→∞

1

k
kdβsl

k
(PW‖W?) = dβ(PW‖W?) (6.8)

lim
k→∞

1

k
(n− k)d βsl

n−k
(W?‖PW )= lim

ρ→0

1

ρ
dβρ(W?‖PW ) (6.9)

= βd′0(W?‖PW ) = 0, (6.10)

where : (6.7) follows from expanding the binary entropy function and using the fact

that log(1−x) ∼ −x as x→ 0; (6.9) follows by substituting ρ := k
n−k → 0 as k →∞;

and (6.10) follows from Proposition 3.2 (d).

Now, by substituting (6.6), (6.7), (6.8), and (6.10) in the maximization, we have

lim
k→∞

1

k
log

s∑
k1=0

(
s

k1

)(
b− s
k1

)
e−kdk1l/k(PW‖W?)−(n−k)dk1l/(n−k)(W?‖PW )

= max
0≤β≤1

{βα− 1

λ
− dβ(PW‖W?)}

= fMP
λ (P,W, α),

and the rest of the proof is the same as the proof of Theorem 4.4.

For the same reason as in Section 6.1.2, the achievable rate in Theorem 6.4 is

larger than the one in Theorem 6.3. The overhead cost in Theorem 6.4 is equal to

fMP
λ (P,W, α), which is increasing in the intermittency rate α, equals zero at α = 1,

approaches infinity as α → ∞, and is decreasing in λ as can be seen from (6.5).

Similar conclusions as in Section 6.1.2 can be drawn.
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Figure 6.4. Achievable rate region (R,α) for medium-packet intermittent
communication over the channel depicted in Figure 6.2 with p = 0.1.

Figure 6.4 illustrates the achievable rate region (R,α) for medium-packet inter-

mittent communication model over the channel depicted in Figure 6.2 with p = 0.1.

The achievable rate regions corresponds to the results in Theorems 6.3 and 6.4, in-

dicated by R1 and R2, respectively, for two values of λ: λ = 1 and λ = 2. Similar

observations and conclusions can be made as those for Figure 6.3.

6.1.4 Large-Packet Intermittent Communication

In order to obtain tight achievable rates for large-packet intermittent communi-

cation, we introduce the following decoding structure.

Decoding from packet detection: This structure consists of two separate

stages. In the first stage, the decoder completely locates the s codeword packets by
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checking if the ith packet of the output sequence denoted by yil(i−1)l+1 is a codeword

packet, i.e., if yil(i−1)l+1 ∈ TPW , i = 1, 2, ..., b. The decoder declares an error if after the

first stage there are not exactly s detected codeword packets. In the second stage,

the decoder forms a sequence consisting of all the detected codeword symbols in the

first stage, and decodes the message with a conventional channel decoding procedure.

The complexity of this structure is significantly less than decoding from exhaustive

search and decoding from pattern detection, because decoding from packet detection

requires b typicality tests for locations, whereas the two other structures require
(
b
s

)
typicality tests. However, this structure requires the packet length l to be sufficiently

large in order to locate the individual codeword packets correctly. Obviously, this

structure does not lead to an achievability result if the packet length is finite as in

small-packet intermittent communication. As we will see in Remark 6.1, it also turns

out that this structure does not work for medium-packet intermittent communica-

tion. Therefore, decoding from packet detection is considered only for large-packet

intermittent communication.

Using decoding from packet detection for large-packet intermittent communica-

tion, we obtain the following achievability result.

Theorem 6.5. For large-packet intermittent communication with parameters λ and

α, rates not exceeding maxP{
(
I(P,W )− fLP (P,W, α)

)+} are achievable, where

fLP (P,W, α) := (α−D(PW‖W?))
+ . (6.11)

Proof. It is equivalent to prove that rates not exceeding maxP :D(PW‖W?)≥α I(X;Y )
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are achievable, because

max
P
{I(X;Y )− fLP (P,W, α)}

= max

{
max

P :D(PW‖W?)>α
I(X;Y ), max

P :D(PW‖W?)≤α
{I(X;Y ) +D(PW‖W?)− α}

}
(6.12)

= max

{
max

P :D(PW‖W?)>α
I(X;Y ), max

P :D(PW‖W?)=α
I(X;Y )

}
(6.13)

= max
P :D(PW‖W?)≥α

I(X;Y ),

where (6.13) follows from the fact that I(X;Y ) + D(PW‖W?) − α is linear in P

and {P : D(PW‖W?) ≤ α} is a convex set, and therefore, the second maximization

in (6.12) is achieved at the boundary D(PW‖W?) = α.

Now we prove that for any ε > 0 and a fixed input distribution P such that

D(PW‖W?) ≥ α+ ε, if R = I(X;Y )− ε, then the average probability of error using

decoding from packet detection introduced earlier vanishes as k →∞. To that end,

let E1 denote the union of all events in which at least one noise packet is detected

as a codeword packet in the first stage of the decoding structure, and E2 denote the

union of all events in which at least one codeword packet is not detected. Applying

the union bound, we have

pavge ≤P(E1)+P(E2)+P(m̂ 6=1|m=1, EC1 , EC2 ). (6.14)

The last term in (6.14) is the probability that the decoder does not find the right

message in the second stage of the decoding structure after it correctly detects the s

codeword packets in the first stage, which vanishes as k →∞ for all R < I(X;Y ) by
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the conventional coding theorem. As for the first term in (6.14), we have

P(E1) ≤ (b− s)P(Y l
? ∈ T[PW ]µ) (6.15)

≤ be−lD(PW‖W?) (6.16)

≤ e−lε → 0 as k →∞, (6.17)

where : (6.15) follows from the union bound and the fact that there are b − s noise

packets; (6.16) follows from Lemma 2.1; and (6.17) is obtained by b = eαl and

D(PW‖W?) ≥ α + ε.

Finally, the second term in (6.14) also vanishes because

P(E2) ≤ sP(Y l /∈ T[PW ]µ) (6.18)

≤ s2|Y|e−2lµ2 (6.19)

= l1/λ−12|Y|e−2lµ2 (6.20)

→ 0 as l→∞(or as k →∞), (6.21)

where : (6.18) follows from the union bound and the fact that there are s code-

word packets, where Y l denotes the output of the channel if the input is a codeword

packet; (6.19) follows from Lemma 2.2 and Remark 2.1; (6.20) is obtained by substi-

tuting s = k/l = l1/λ−1; and (6.21) is obtained by choosing the appropriate typicality

parameter µ, e.g., lµ4 →∞ as l→∞ and µ→ 0.

Now, combining (6.14), (6.17), (6.21), and the fact that the last term in (6.14) is

also vanishing, we have pavge → 0 as k →∞, which proves the theorem.

Remark 6.1. Decoding from packet detection cannot be used for small-packet inter-

mittent communication in which the packet length l is finite. Decoding from packet

detection cannot be used for medium-packet intermittent communication model ei-

ther, because there are too many smaller packets compared to the large-packet sce-
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nario. Specifically, in medium-packet intermittent communication, instead of (6.20),

we have (1/l) · el/λ · 2|Y|e−2lµ2, which is not vanishing as l→∞ and µ→ 0.

Remark 6.2. For large-packet intermittent communication, we can use decoding

from exhaustive search and decoding from pattern detection. However, it turns out

that the resulting achievable rates are strictly smaller than the one in Theorem 6.5.

This achievability result is identical to the capacity of asynchronous communica-

tion reviewed in Section 2.3. Note that the overhead cost fLP (P,W, α) is independent

of the value of λ. Intuitively, this happens because, as λ increases in large-packet in-

termittent communication, the scaling behavior of the receive window relative to the

codeword length changes (the receive window is exponentially scaled with the packet

length l) in a way that compensates for this increase in the packet length, and there-

fore, the achievable rate does not change. As before, the overhead cost fLP (P,W, α)

is increasing in the intermittency rate α, which indicates that increasing the receive

window results in a smaller achievable rate.

Figure 6.5 illustrates the achievable rate region (R,α) in Theorem 6.5 for large-

packet intermittent communication over the channel depicted in Figure 6.2 with

p = 0.1. As before, increasing the intermittency rate α reduces the achievable rate

since it increases the uncertainty about the codeword packets at the receiver, and if

α is small enough, then the capacity of the DMC can be achieved, which is similar

to the observation in [47].

6.2 Deletion Channels

In this section, we use some of the insights and tools developed in this disserta-

tion to obtain some new results on the capacity of deletion channels and a random

access model that drops the collided symbols. Specifically, we first use a similar de-

coding structure as in decoding from exhaustive search introduced in Chapter 4 in
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Figure 6.5. Achievable rate region (R,α) for large-packet intermittent
communication over the channel depicted in Figure 6.2 with p = 0.1.

conjunction with a lemma on the longest common subsequence of random sequences

to prove a side result to lower bound the capacity of deletion channels. Then, we

obtain achievability results on a model for random access that drops / deletes collided

symbols using a similar decoding structure as the decoding from pattern detection

introduced in Chapter 4.

6.2.1 A Side Result on Deletion Channels

As we have discussed in Section 2.4, there is considerable work concentrating on

achievability results for the deletion channel [11, 14, 31]. In [11], in addition to iid

codewords with uniform distribution over the alphabet, codewords from first order

Markov chains are used to improve the achievability results for deletion channels.
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However, we require iid codewords in order to simplify the analysis of the probability

of error for the decoding algorithm used in Section 6.2.2.

We first introduce a different model for the noisy deletion channel for which the

number of deleted symbols is assumed to be fixed, and then give an achievability

result, which is similar to the one in [11], but allows for arbitrary input distribution

rather than the uniform one, and is valid for a general discrete memoryless channel

(DMC) rather than the symmetric one. Note that our result is also valid for the iid

deletion channel.

Consider the cascade of a deletion channel with a DMC, where the deletion chan-

nel deletes d symbols of its input sequence of length k ≥ d arbitrarily at random

so that the output of the deletion channel and the DMC has length k − d, where

θ := d/k ≤ 1 is the ratio of the deleted symbols to the codeword length. Let X ,

Y , W , and CW denote the input alphabet, output alphabet, probability transition

matrix, and the capacity of the DMC, respectively. After stating the following lemma

from [5], we state the achievability result.

Lemma 6.1. [5] For a given |Y|-ary sequence yk−d of length k − d, the number of

|Y|-ary sequences of length k that contain sequence yk−d as a subsequence is given by

d∑
j=k−d

(
k

j

)
(|Y| − 1)d−j ≤ k

(
k

k − d

)
(|Y| − 1)d

Theorem 6.6. For the noisy deletion channel described above, rates not exceeding

Cs − h(θ)− θ log(|Y| − 1) are achievable.

Proof. Encoding: Fix an input distribution P . Randomly and independently gener-

ate ekR sequences ck(m), m ∈ [1 : ekR] each iid according to P . To send message m,

the encoder transmits ck(m).

Decoding: The decoder observes the output sequence yk−d and constructs all

possible ỹk that contain sequence yk−d as a subsequence. Then it checks if any of these
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sequences are jointly typical with any of the codewords, i.e., if ỹk ∈ T[Ws]µ(ck(m̂)),

then we declare that message as being sent. If this condition is not satisfied for any

of the sequences ỹk and any of the messages, then the decoder declares an error.

Analysis of the probability of error: For any ε > 0, we prove that if R = I(X;Y )−

h(θ)− θ log(|Y| − 1)− 2ε, then the average probability of error vanishes as k →∞.

Considering the uniform distribution on the messages and assuming that the message

m = 1 is transmitted, we have

pavge ≤P(m̂=e|m=1)+P(m̂ ∈ {2, 3, ..., ekR}|m=1), (6.22)

where (6.22) follows from the union bound in which the first term is the probability

that the decoder declares an error, i.e., does not find any codeword being jointly

typical with any of the possible sequences ỹk, that contain sequence yk−d as a sub-

sequence. This implies that even if the correct deletion pattern is considered and

all possible choices for the deleted symbols are evaluated, none of them are jointly

typical with ck(1). The probability of this event vanishes as k → ∞ according to

Lemma 2.2.

Applying Lemma 6.1 and the union bound for all possible ỹk’s and all the messages

m̂ 6= 1, we have

P(m̂ ∈ {2, 3, ..., ekR}|m = 1)

≤ k

(
k

k−d

)
(|Y|−1)d(ekR−1)P(Ỹ k∈T[Ws]µ(ck(2))|m=1)

≤ eo(k)ek(h(θ)+θ log(|Y|−1))ekRe−k(I(X;Y )−ε) (6.23)

= eo(k)e−kε, (6.24)

where: (6.23) results from Stirling’s approximation and Lemma 2.3 since conditioned

on message m = 1 being sent, Ck(2) and Ỹ k are independent; and (6.24) follows
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by substituting R = I(X;Y ) − h(θ) − θ log(|Y| − 1) − 2ε. Therefore, the second

term in (6.22) also vanishes as k →∞, and the lemma is proved by considering the

capacity achieving input distribution for the DMC.

6.2.2 Random Access That Drops the Collided Symbols

In this section, we consider the intermittent MAC introduced in Chapter 5 and al-

lows for collisions, but considers them as deletions. Specifically, we consider the same

model for random access with collisions and no idle-times introduced in Section 5.4

with three possible states for the intermittent process (s1, s2) ∈ {(1, 0), (0, 1), (1, 1)},

where the total number of states representing a collision, i.e., (s1, s2) = (1, 1), is

assumed to be d ≤ k.

We assume that if a collision occurs, then it will be dropped from the output

sequence. Therefore, collisions are considered as deletions in this section. We assume

that the output of the intermittent process with length n = 2(k−d) consists of k−d

of the pair (c1, ?), k − d of the pair (?, c2), and d collided symbols that are deleted

from the output sequence. The encoders and the decoder do not know the positions.

In the following theorem, we obtain an achievable rate region for (R1, R2).

Theorem 6.7. For intermittent multi-access communication with the intermittent

process described above, rates (R1, R2) satisfying

R1 < I(X1;Y |X2 = ?)− fdeletion(P1, P2,W, θ)

R2 < I(X2;Y |X1 = ?)− fdeletion(P1, P2,W, θ)

are achievable for any (X1, X2) ∼ P1(x1)P2(x2), where

fdeletion(P1, P2,W, θ) :=(1− θ)f1(P1, P2,W ) + h(θ) + θ log(|Y| − 1), (6.25)
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where f1(P1, P2,W ) is given in (5.3).

The decoding scheme and the techniques for the analysis of the probability of

error are a combination of those in the proofs of Theorem 6.6 and Theorem 5.1.

6.3 Lossless Source Coding with Intermittent Side-Information

Inspired by the problem of file synchronization [35, 36] in which we compress a

source sequence with the benefit of decoder side-information that is related to the

source via insertions, deletions, and substitutions, we study a similar problem in

which the side-information at the decoder is related to the source via an intermittent

process. Focusing on achievability, we introduce encoding and decoding structures in

order to compress the source at the encoder and reconstruct it reliably at the decoder.

We now summarize the system model.

Consider a discrete memoryless source (DMS) Sk, which is iid with distribution P ,

to be described losslessly via an index set M ∈ [1 : ekR] with small rate R to a decoder

with side-information Y N over a noiseless communication link. The side-information

Y N is related to the source sequence Sk via the cascade of an intermittent process

and a DMC W as shown in Figure 6.6.

The intermittent process is the same was described in Chapter 4: After the ith

symbol from the source sequence Sk, Ni noise symbols ? are inserted, where the

Ni’s are iid geometric random variables with mean α − 1, with α ≥ 1 being the

intermittency rate. The side-information Y N of length N , where N is a random

variable having a negative binomial distribution, is available to the decoder.

The decoder wishes to reconstruct the source sequence as Ŝk through a function

of the index message M and side-information Y N . The probability of decoding error

is defined as P
(k)
e := P(Ŝk 6= Sk). We refer to this compression setup as source

coding with intermittent side-information. As a practical example for this problem,

we can consider the compression of genomic sequences if a genomic sequence of the
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Figure 6.6. System model for source coding with intermittent
side-information.

same species, which is different from the original one in terms of insertions and

substitutions, is given as side-information [35, 36].

We say that rate R is achievable for the source coding with intermittent side-

information if there exists a sequence of encoding and decoding schemes with message

size ekR such that P
(k)
e → 0 as k → ∞, i.e., the decoding is asymptotically lossless.

The optimal lossless compression rate R∗ is the infimum of all achievable rates. The

following theorem provides an achievability result.

Theorem 6.8. Assume that (S, Y ) ∼ P (s)W (y|s). For the source coding problem

with intermittent side-information described above with the DMS having distribution

P , the DMC having transition probability matrix W , and the intermittency rate being

α, we have

R∗ ≥ H(S|Y ) + f(P,W, α), (6.26)

where H(·|·) is the conditional entropy and the function f(·, ·, ·) is the same as

in (4.13).
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Proof. For the encoding we use the idea of random binning: randomly and indepen-

dently assign an index m(sk) ∈ [1 : ekR] to each sequence sk ∈ Sk uniformly over

[1 : ekR]. This results in ekR bins denoted by B(m),m ∈ [1 : ekR]. Assume that the

encoder and the decoder both know the chosen bin assignments. Upon observing

sk ∈ B(m) , the encoder sends the bin index m.

Note that the length of the side-information sequence at the decoder, N , is a

random variable. However, using the same procedure as in the proof of Theorem 4.2,

we can focus on the case that |N/k−α| < ε, and essentially assume that the length of

the side-information is of length n = αk, which makes the analysis of the probability

of error for the decoding algorithms more concise.

The decoding structure is similar to the decoding from pattern detection described

in Chapter 4: choose k symbols out of the n symbols of yn, denote them by ỹk and

denote the other symbols by ŷn−k. In the first stage, check if ỹk ∈ TPW and if

ŷn−k ∈ TW? . If both of these conditions are satisfied, then continue to the second

stage; otherwise make another choice for the k symbols. In the second stage, upon

receiving the index m, the decoder declares sk as the estimated source sequence if

it is the unique sequence in B(m) that satisfies sk ∈ T[W−1]µ(ỹk) for a small enough

typicality parameter µ; otherwise the decoder makes another choice for the k symbols

and repeats the procedure. If by the end of all
(
n
k

)
possible choices the decoder does

not the estimated source sequence, then it declares an error.

The analysis of the probability of error is a combination of the techniques used in

Theorem 4.4 and [23, Theorem 10.1].

6.4 Summary

In this chapter, we first studied packet-level intermittent communication in which

codeword and noise symbols are grouped into packets. Depending on the scaling

behavior of the packet length relative to the codeword length, we identified three sce-
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narios: small-packet, medium-packet, and large-packet intermittent communication.

For small- and medium-packet intermittent communication, we utilized both decod-

ing from exhaustive search and decoding from pattern detection in order to obtain

achievable rates, whereas, for large-packet intermittent communication, we utilized

decoding from packet detection in order to obtain achievable rates. Increasing the in-

termittency rate generally reduces the achievable rate for each of the three scenarios,

because it makes the receive window larger, and therefore, increases the uncertainty

about the positions of the codeword packets at the receiver, making the decoder’s

task more involved.

Next, we used a similar decoding structure to decoding from exhaustive search in

conjunction with a lemma on the longest common subsequence of random sequences

to prove a side result on lower bounding the capacity of the deletion channels. We also

obtained achievability results for a random access model that drops / deletes collided

symbols using a similar decoding structure to decoding from pattern detection.

Finally, inspired by the problem of file synchronization in which we compress a

source sequence with the benefit of decoder side-information that is related to the

source via insertions, deletions, and substitutions, we studied a similar problem in

which the side-information at the decoder is related to the source via an intermittent

process. Focusing on achievability, we introduced encoding and decoding structures

in order to compress the source at the encoder and reconstruct it reliably at the

decoder.
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CHAPTER 7

CONCLUSIONS AND FUTURE WORK

In this final chapter, we conclude the dissertation and introduce some directions

for future research.

7.1 Conclusions

We formulated a model for intermittent communication that can capture bursty

transmissions or a sporadically available channel by inserting a random number of

silent symbols between each codeword symbol so that the receiver does not know a

priori when the transmissions will occur. We specified two decoding structures in or-

der to develop achievable rates. Interestingly, decoding from pattern detection, which

achieves a larger rate, is based on a generalization of the method of types and prop-

erties of partial divergence. As the system becomes more intermittent, the achievable

rates decrease due to the additional uncertainty about the positions of the codeword

symbols at the decoder. For the case of binary-input binary-output noiseless channel,

we obtained upper bounds on the capacity of intermittent communication by pro-

viding the encoder and the decoder with various amounts of side-information, and

calculating or upper bounding the capacity of this genie-aided system. Despite of

the large gap between the lower bounds and the upper bounds, the results suggest

that the linear scaling of the receive window with respect to the codeword length

considered in the system model is relevant since the upper bounds imply a tradeoff

between the capacity and the intermittency rate, even if the receive window scales

linearly with the codeword length.
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We extended the model to intermittent multi-access communication for two users

that captures the bursty transmission of the codeword symbols for each user and the

possible asynchronism between the receiver and the transmitters as well as between

the transmitters themselves. This model can be viewed as an attempt to combine

information-theoretic and network-oriented multi-access models. We characterized

the performance of the system in terms of achievable rate regions. In our achievable

schemes, the intermittency of the system comes with a significant cost. Inspired by

network applications, we extended the model to packet-level intermittent communi-

cation in which codeword and noise symbols are grouped into packets. Depending on

the scaling behavior of the packet length relative to the codeword length, we identified

some interesting scenarios, and characterize the performance of the system in terms

of the achievable rates for each model. Furthermore, we used some of the insights

and tools developed in this dissertation to obtain some new results on the capacity

of deletion channels and a random access model that drops the collided symbols, and

on the problem of source coding with the presence of intermittent side-information.

The results of the dissertation suggest that intermittency / lack of synchronization

is quite costly. Therefore, the transmitters should continuously send the symbols /

packets whenever possible.

7.2 Future Work

In this section, we introduce some directions for future research. First, we in-

troduce other types of decoding structures that might lead to tighter lower bounds

on the capacity of intermittent communication as well as error exponents for in-

termittent communication. Next, we evaluate possible approaches that can lead to

stronger upper bounds for intermittent communication. As another future direction,

we introduce the problem of finding the fountain capacity of intermittent commu-

nication. Finally, we suggest designing explicit code constructions for intermittent
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communication.

7.2.1 Error Exponent for Intermittent Communication

As we have seen in Chapter 4, there is a relatively large gap between the lower

and upper bounds for the capacity of intermittent communication. Although we

have no strong evidence whether the lower bounds, upper bounds, or both need to

be improved in order to tighten this gap, one way to improve the lower bounds is

to consider other decoding algorithms. Regardless of its tractability in our problem

setup, maximum likelihood (ML) decoding is optimal. The ML decoder achieves the

error exponents of memoryless channels [21]. Error exponents determine the rate

at which the probability of error vanishes exponentially with respect to the block

length. In addition, it is an interesting problem to see how the intermittency of the

communication system can affect the performance for finite codeword length k. For

these reasons, one future direction worth exploring is ML decoding algorithms and

analysis for intermittent communication.

Denoting the codeword associated with the message m by x(m), and the channel

output vector by y, ML decoding selects message m̂ if

P(y|x(m̂)) ≥ P(y|x(m)), for all m 6= m̂.

Gallager in [21] proves a general coding theorem that for a given number M ≥ 2 of

codewords, where each codeword is chosen independently with probability measure

PX, the average probability of error under ML decoding over this ensemble of codes

given that message m is sent, denoted by P̄e,m, by

P̄e,m ≤ (M − 1)ρ
∑
y

[∑
x

PX(x)P(y|x)1/(1+ρ)

]1+ρ

, for any 0 ≤ ρ ≤ 1. (7.1)
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This bound is surprisingly general and powerful, and applies to both memoryless

channels and channels with memory [21]. For memoryless channels, the bound (7.1)

leads to single-letter expressions for error exponents. Consider a DMC with with

probability transition matrix W and input and output alphabets X and Y , respec-

tively. The bound (7.1) can be specialize to the following explicit error exponent

if using k channel uses of the DMC and each symbol of the codeword is selected

independently with the probability assignment P (x):

P̄e,m ≤ e−k(E0(ρ,W )−ρR), (7.2)

where

E0(ρ,W ) = − log
∑
y∈Y

[∑
x∈X

P (x)W (y|x)1/(1+ρ)

]1+ρ

.

However, there is inherent memory in the model for intermittent communication,

which makes it difficult to obtain closed form error exponents for this model. Specifi-

cally, the input and output vectors x and y in (7.1) have length k and N , respectively.

Let vector T k+1 := (N0, N1, ..., Nk) denote the number of noise insertions in between

the codeword symbols, where the Ni’s are iid geometric random variables with prob-

ability mass function PN as described in Chapter (4), and let tk+1 = (n0, n1, ..., nk)

denote its realization. Then, the term P(y|x) in (7.1) can be expressed as

P(y|x) =
∑
tk+1

PN(n0)

n0∏
l=1

W?(yl)
k∏
i=1

[
PN(ni)W (yi+∑i−1

j=0 nj
|xi)

ni∏
l=1

W?(yl+i+∑i−1
j=0 nj

)

]
.

This is a complicated mixture distribution over all the possible realizations of the

intermittent process tk+1. Therefore, using the same techniques as in [21], it is not

clear how to obtain an explicit error exponent analogous to (7.2). It is, however,

possible in principle to compute the related quantities numerically for finite codeword

length k.

127



We note that problem exists even for asynchronous communication described in

Section 2.3, for which the term P(y|x) in (7.1) can be expressed as

P(y|x) =
∑
ν∈[1:n]

ν−1∏
i=1

W?(yi)
ν+k−1∏
i=ν

W (yi|xi−ν+1)
n∏

i=ν+k

W?(yi),

which is again a mixture distribution over all the possible realizations of ν ∈ [1 : n].

The memoryless technique in [21] cannot be used to derive an explicit error exponent

as in (7.2). It is worth mentioning that error exponents have been obtained for

slotted asynchronous communication in [39, 60, 61]. However, in slotted asynchronous

communication, it is assumed that a given sequence is either codeword or noise,

and therefore, the problem of handling a mixture distribution, which results from

sequences partially from codeword symbols and partially from noise symbols, does

not arise.

Another decoding structure that can achieve the error exponents for the proba-

bility of error is the maximum mutual information (MMI) decoder. In [10], the same

error exponents as in [21], but in a seemingly different form, are obtained using a

general packing lemma and MMI decoding. The techniques used in [10] to analyze

the performance of the MMI decoder are suited for memoryless channels. Gener-

alizing these techniques to channels with memory may lead to error exponents for

intermittent communication using the MMI decoder.

In summary, an important future direction is to consider other types of decoding

structures that might help improving the lower bounds on the capacity of intermittent

communication as well as characterizing the rate at which the probability of error

decays for intermittent communication.
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7.2.2 Stronger Upper Bounds for Intermittent Communication

As we have seen in Section 4.3, the gap between the achievable rates and upper

bounds is not tight, especially for large values of intermittency rate α. As a future di-

rection, we propose to decrease this gap. We believe we can tighten the upper bounds

by providing the encoder and decoder with side-information less frequently, but this

would exponentially increase the computational complexity of our calculations, and

improvements might be marginal.

One possible solution for improving the upper bounds is to focus on other kinds

of side-information than explored in Section 4.3 to get less complex and tighter outer

bounds. Another possibility is to explore other approaches to upper bounds on

the capacity not only for the binary noiseless insertion channel, but also for the

general class of intermittent communication. Ideally, this general approach could

lead to outer bounds for the capacity region of different kinds of intermittent MACs

introduced in Chapter 5.

Also, it is worth exploring upper bounds for packet-level intermittent commu-

nication introduced in Section 6.1. For a special case of small-packet intermittent

communication with l = 1, namely the noiseless binary-input binary-output channel,

we have found upper bounds in Section 4.3, but these are not extendable to more

general cases due to their computational complexity. Also, large-packet intermittent

communication with λ = 1 recovers asynchronous communication for which the ca-

pacity is known and is given in Theorem 2.1, and therefore, the converse exists for

this special case [4, 47]. In [47], the meta-converse principle, initially introduced

in [46, 48], is used to prove a strong converse for the capacity of asynchronous com-

munication. We suggest utilizing or extending the concept of meta-converse in order

to obtain upper bounds on the capacity of packet-level intermittent communication

models.

Specifically, consider large-packet intermittent communication, for which an achiev-
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ability result is obtained in Theorem 6.5, and consider the following requirement: the

decoder in addition to decoding the message m, it should detect the exact positions

of all the codeword packets denoted by n1, n2, ..., ns, where s = k/l = l1/λ−1 is the

number of codeword packets. Denoting the decoded message by m̂ and detected

positions by n̂1, n̂2, ..., n̂s, the average probability of error is defined as

pavge = 1− P (m̂ = m, (n1, n2, ..., ns) = (n̂1, n̂2, ..., n̂s)) .

Under these conditions, it can be easily verified that the rate in Theorem 6.5 can

still be achieved. Furthermore, using [47, Lemma 8] and the same meta-converse

techniques, a converse with the rate in Theorem 6.5 can be proved. This means

that, under this additional requirement, the capacity of large-packet intermittent

communication is maxP{
(
I(P,W )− fLP (P,W, α)

)+}, where fLP (P,W, α) is given

in (6.11).

Although this additional requirement for the decoder to detect all the codeword

packets is helpful in order to find the capacity of large-packet intermittent communi-

cation, we would face some difficulties in obtaining an achievability result for small-

and medium-packet intermittent communication with this additional requirement. It

is clear that for small-packet intermittent communication, it is not possible to detect

all the codeword packets with vanishing probability of error since the packet length

is finite.

7.2.3 Intermittent Receiver: Fountain Capacity of Intermittent Communication

The notion of fountain capacity for arbitrary channels is introduced in [50] in

which the definition of rate penalizes the reception of symbols by the receiver rather

than their transmission. In this communication model, a message m ∈ [1 : M ] is

encoded into a sequence of infinite length. Figure 7.1 shows the basic fountain setup
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Figure 7.1. Concatenation of noisy and erasure channel [50].

in which the receiver, but not the transmitter, is aware of the schedule of times at

which the switch is on [50].

A scheduler determines the times at which the receiver is allowed to observe

the channel outputs, which is modeled by the switch in Figure 7.1. The schedule is

denoted by N with cardinality |N|, and the receiver is only allowed to see the channel

outputs {yi, i ∈ N}. The schedule is unknown to the encoder, and is adversely chosen

without the knowledge of either the message, codebook, or the channel output. The

rate is essentially defined with respect to the cardinality of the schedule |N| rather

than the number of encoded symbols or channel uses.

We can think of this setup as an intermittent receiver, which is able to observe the

channel output at only some time slots with a given maximum number of these time

slots, where the definition of the rate is “pay-per-view” rather than “pay-per-use”.

The worst case scenario for the schedule in [50] can be interpreted as a worst case

intermittency at the receiver. If both the transmitter and receiver are intermittent,

where the intermittency of the transmitter is defined in the sense of bursty transmis-

sion of the codeword symbols as described in this dissertation, and the intermittency

of the receiver is defined with respect to the schedule N as described above, then a

relevant metric for characterizing the performance of this system is fountain capacity
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of intermittent communication. Note that in Chapter 4, we focused on the Shannon

capacity of intermittent communication and derived some lower and upper bounds.

It is proven in [50] that the fountain capacity equals the Shannon capacity for

a stationary memoryless channel, and the fountain capacity is upper bounded by

the Shannon capacity for a general channel. Furthermore, it is mentioned in [50]

that a general formula for the fountain capacity of channels with memory is an

open problem, as the least favorable schedule is heavily dependent on the channel.

However, the fountain capacity of some channels with memory has been obtained

in [50]. As intermittent communication is an example of channels with memory, its

fountain capacity is a non-trivial problem, and could provide some insights on the

additional overhead cost caused by the intermittency of the receiver.

7.2.4 Code Construction for Intermittent Communication

As a future direction, we suggest designing explicit (non-random) code construc-

tions for intermittent communication. In Section 4.2, we described some encoding

and decoding structures to find achievable rates. However, these structures are based

on a random coding argument, can achieve the rates asymptotically as k →∞, and

are computationally complex. Specifically, the decoding structures include as many

as
(
n
k

)
ekR typicality tests, which is not feasible in practical systems.

In [6], heavy weight codes are investigated, which are described as good codes for

asynchronous communication reviewed in Section 2.3. The authors study B(n, d, w),

defined as the maximum number of length n binary sequences with minimum dis-

tance d, and such that each sequence has weight at least w, and investigate the

exponential growth rate of this function with respect to the sequence length n. In

asynchronous communication, it is proved that combined synchronization and infor-

mation transmission can lead to a significant reduction in error probability compared

to a separation architecture, where the problem of synchronization is handled with a
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Figure 7.2. Binary symmetric channel with external noise symbol [6].

common preamble at the beginning of each codeword [54]. To understand how heavy

weight codes can carry information while also acting as information flags, consider

the following asynchronous channel model introduced in [52] and shown in Figure 7.2.

In order to increase the message isolation, we need to increase the minimum

distance of a code. Note that with the channel model depicted in Figure 7.2, a

typical noise sequence contains equal number of 0’s and 1’s, because a noise symbol ?

produces 0 or 1 with equal probability. In order to increase the message detection, we

need to bias the codewords with a common flag, which here is the weight distribution,

i.e., we focus on heavy weight codes so that they are easily distinguishable from the

noise sequence.

In intermittent communication, the task of code construction is much more diffi-

cult since the codewords should be immune to insertions in addition to the noisy chan-

nel. Even for the simple case of binary error-free channel (BSC with zero crossover

probability) with the noise symbol ? = 0, it is not clear how to construct codewords

such that they are distinguishable after some number of 0’s are inserted in between

the codewords’ symbols. Note that in this example, the number of 1’s remains fixed

at the decoder, but there might be additional 0’s between them. As a naive code

construction, we might consider k + 1 codewords with different number of 1’s, and

133



the decoder can detect the codeword symbols with probability one for any codeword

length k. However, in order to construct a code with positive rate, we need an

exponential number of codewords.
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57. S. Verdú. Multiple-Access Channels with Memory with and without Frame Syn-
chronism. IEEE Transactions on Information Theory, 35(3):605–619, 1989.
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