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FORECASTING REGIME SHIFTS IN COMPLEX DYNAMICAL SYSTEMS

Abstract

by

Tua A. Tamba

Regime shifts refer to sudden changes in the structure and function of a sys-

tem due to forces from external disturbances. Such shifts occur because the system

has alternative stable states and external disturbances force the system’s operating

point to shifts from one stable state to another. Examples of regime shifts includes

the collapse of coastal fisheries as a result of human-induced nutrient enrichment

and the voltage collapse in power network due to variations in storm frequency or

user demand. Due to these undesired consequences of regime shifts, there is a great

challenge in finding methods to forecast their occurence. Our works address this

challenge using sums of squares (SOS) optimization techniques. We first identify

two scenarios in which regime shifts may occur and then formulate some real-valued

quantities that can be used as indicators of how close the system is to each type of

regime shifts. The first scenario of regime shifts will be called bifurcation-induced

regime shifts which occurs because the system undergoes a bifurcation due to varia-

tion on the parameters that exceeds a critical treshold. We use a quantity known as

”minimum distance-to-bifurcation” as a measure of how close the system is to this

type of regime shifts and formulate an SOS optimization problem to compute the

global minimum of this quantity. We show that by using techniques from algebraic

geometry and SOS relaxation method, the computation of this quantity in a class of

nonnegative system with kinetic realization can be simplified. The second scenario
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of regime shifts will be called noise-induced regime shifts which occurs because the

underlying system has multiple stable equilibria and external stochastic disturbances

drive the system’s state from the region of attraction (ROA) of one stable equilibrium

to the ROAs of alternative stable equilibria. We use probabilistic quantities called

mean first passage times and finite time stochastic reachability to characterize the

expected time and the likelihood for this type of regime shifts to occur. We formulate

an SOS optimization problem for searching a positive semidefinite function, called

Barrier certificate, that generates a supermartingale and provides an upper bound

for each of these quantities.
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CHAPTER 1

Introduction

1.1 Motivation

Regime shifts [99, 36, 57] refer to sudden changes in the structure or function of a

system due to the presence of forces from external disturbances. An important con-

cept in the study of regime shifts is the idea that systems may have alternative stable

states [79, 98, 74] such that the presence of external disturbances forces these systems’

operating point to shift from one stable states to another. In general, there are two

mechanisms in which regime shifts occur [97]. First, regime shifts may occur because

the system undergoes a bifurcation due to variation on system’s parameters that

exceeds a critical threshold [15, 99, 13]. We call this mechanism bifurcation-induced

regime shifts. Second, regime shifts may occur because the system has multiple sta-

ble equilibria and external stochastic disturbances drive the system state from the

region of attraction (ROA) of one stable equilibrium to the ROA of an alternative

stable equilibrium [11, 19, 30]. This mechanism will be called noise-induced regime

shifts. In either scenario, regime shifts can be catastrophic for users who have grown

accustomed to the quality of services provided by the system prior to the shift. Ex-

amples of regime shifts includes the bloom of algae in shallow lakes as a result of

human-induced nutrient enrichment [14, 96], the collapse of fisheries and coral reefs

do to extreme natural events and human exploitation [99], the regime changes and

crash of stock market prices [2], and the cascades of voltage collapse in electric power

grids [26, 25]. Each of these shifts has the potential to disrupt the services that

1



these systems provide to the society. Forecasting impeding regime shifts in these sys-

tems is therefore crucial for the purpose of managing their security and sustainability

[15, 1, 36].

This proposal presents computational methods to forecast the onset of regime

shifts. The main idea in our methods is the formulation of some real-valued quan-

tities which can be used as indicators of how close a system is to regime shifts.

In bifurcation-induced regime shifts, this quantity is known as minimum distance-

to-bifurcation γ ∈ R≥0 which measures the distance between a nominal parameter

and the value of the parameter at which a bifurcation occurs [26]. In noise-induced

regime shifts, these quantities are the mean first passage time (MFPT) and the fi-

nite time stochastic reachability [41, 72]. The MFPT is a random variable τ ∈ R≥0

which measures the average time required for regime shifts to occur whereas the finite

time stochastic reachability is a probability measures θ ∈ [0, 1] which indicates the

likelihood for regime shifts to occur within a finite time period. The key technical

approach in our method is on the use of sum of squares (SOS) relaxation techniques

[88] to recast the computation of each of these quantities as an SOS optimization

problem [89, 87]. The main advantage of this relaxation is that the formulated SOS

optimization problem can be solved using the available SOS programming softwares

[90, 75, 55].

1.2 Backgrounds and Prior Works

To better illustrate the two mechanisms in which regime shifts occur, let us con-

sider the following scaled lake eutrophication model from [15, 99].

ẋ = a− bx+
x2

1 + x2
. (1.1)
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(a) Bifurcation-induced regime shifts.
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(b) Noise-induced regime shifts.

Figure 1.1. Two scenarios of regime shifts.

In equation (1.1), the state variable x denotes the Phosphorus (P ) concentration in

lake water column whereas parameters a ≥ 0 and b ≥ 0 denote the rates of inflow

and outflow of P into and out of the lake, respectively. The last term in the model

denotes the the rate of P increase due to recycling from lake sediment.

1.2.1 Bifurcation-induced regime shifts

To investigate for possible bifurcations in system (1.1), one needs to analyze the

characteristic of its equilibria. The equilibria of (1.1) can be computed by setting its

right hand side terms to zero and are given by those values of x such that

a+
x2

1 + x2︸ ︷︷ ︸
f(x)

= bx︸︷︷︸
g(x)

.

Functions f(x) and g(x) in the above equality denote the rate of increase and decrease

of x, respectively, and so the equilibria are given by the values of x at the intersections

of these functions’ curves. The plots of these curves for fixed b and various a are

depicted in figure 1.1a and it show that the number of intersections between the
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curves (i.e. equilibria) change as the value of parameter a is varied. In particular,

for small inflow rate (a ≈ 0), there is a single oligotrophic equilibrium which is

characterized by pristine water lake with high oxygen level that supports species

biodiversity. For larger inflow rate (0.25 < a < 0.1), this equilibrium bifurcates

into two stable equilibria: an oligotrophic one and an eutrophic one (lake water

characterized by algal bloom with low oxygen level that does not support species

biodiversity). Finally, for even larger inflow rate (a ≥ 0.1), these two stable equilibria

coalesce to an eutrophic equilibrium through a saddle node bifurcation. These series

of bifurcations therefore induce a transition from a lake with clear water to a lake

with turbid water.

The preceeding example illustrates how variation on parameters which exceeds

a critical value may induce bifurcations of the system’s equilibria. In particular,

these bifurcations are followed by the flip or regime shifts of the system’s operating

point from one stable state to another [99]. It is therefore clear that the problem

of forecasting the onset of bifurcation-induced regime shifts is equivalent with the

problem of searching for the value of a critical parameter at which a bifurcation

occurs. This observation has motivated a large number of researchers to use numerical

bifurcation analysis as an approach to predict the onset of regime shifts [96, 98, 13, 57].

The main issue in this approach is that the currently available numerical bifurcation

software is limited to analysis of at most 3 parameters simultaneously. Moreover,

searching for all possible bifurcations that may occur in a system is generally difficult

especially when the dimension of the parameter space is high [73].

Another approach for predicting bifurcation-induced regime shifts is based on

searching for the closest parameter value at which a bifurcation occurs. In particular,

for dynamical systems

ẋ(t) = f(x(t), k), x(0) = x0, (1.2)

whose vector fields are parameterized by real-valued parameter k, one may define a
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quantity

γ = inf
k
|k∗ − k0|, (1.3)

which measures the distance between a nominal parameter k0 and the closest criti-

cal paramater k∗ at which a bifurcation occurs. The quantity γ is often called the

minimum distance-to-bifurcation [26, 25] and is an indicator of how close a system

is to a bifurcation. Prior works have proposed several methods for computing γ in

the context of robust stability analysis [69, 80, 84, 115] and voltage collapse prob-

lem in power systems [25, 26]. In general, these methods use numerical optimization

techniques to search for the minimum γ subject to the constraints that the critical

parameter k∗ satisfy the bifurcation conditions [48, 73, see also table 4.1]. These

methods, however, are computationally demanding since the search for the minimum

γ requires the computation of system’s equilibria x∗ at every iteration.

Approach and Contribution: Our proposed method uses SOS optimization [87,

88] to compute an upper bound of γ for a class of nonnegative dynamical systems

that have kinetic realization. The dynamical system in (1.2) is said to have a ki-

netic realization if there exists a matrix N and a vector of monomials v(x, k) with

variables x and parameters k such that f(x, k) = Nv(x, k). As shown in [43, 44]

(see also chapter 3), the special structure of these systems allows one to compute

an analytical parameterization of their equilibria in term of the system parameters.

This parameterization method was first proposed in the context of chemical reaction

network [42, 43] and is based on techniques from algebraic geometry [44, 20, 4]. As

will be discussed in chapter 4, the ability to compute this parameterization can help

simplifies the computation of γ.

Our first contribution is on identifying larger class of systems (other than chem-

ical reaction network models) for which the equilibrium parameterization method

proposed in [43, 44] can be applied. We call these systems nonnegative systems with
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kinetic realization and show through example how the equilibrium parameterization

method from [43, 44] can be applied to them. Our second contribution is on the use

of such parameterization to formulate an SOS optimization for computing an upper

bound for γ. We show that the use of such equilibrium parameterization helps sim-

plify the computation of γ in that the constraints of optimization can be expressed

only in term of system’s parameter rather than the system’s parameter and equilibria.

1.2.2 Noise-induced regime shifts

Consider again the lake model (1.1) and let us now choose parameters a = 0.06 and

b = 0.525 for which this system has two stable equilibria (oligotrophic and eutrophic)

separated by one unstable equilibrium. The ROA of each equilibrium is the area

below or above the dashed separatrix line depicted in figure 1.1b. In this case, any

trajectory that starts from the region below (above) the separatrix line will remains

within that region and eventually goes to the oligotrophic (eutrophic) equilibrium.

Now assume that the system is driven by additive Wiener process {w(t)} of constant

variance σ so that its model is given by the stochastic differential equation (SDE)

dx(t) = f(x)dt+ g(x)dw(t),

=

(
a− bx+

x2

1 + x2

)
dt+ σdw(t),

where f(x) and g(x) are the drift and diffusion, respectively. One realization of this

SDE for σ = 0.05 is depicted in figure 1.1b and it shows that the sample path that

starts inside the region below the separatrix (oligotrophic state) eventually shifts to

the region above the separatrix (oligotrophic state). This example illustrates the

noise-induced regime shifts mechanism where the presence of noise in systems with

multiple equilibria may forces the system’s sample path to shift from the ROA of one

equilibrium to the ROA of another equilibrium.
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The above example suggests that the task of forecasting the onset of noise-induced

regime shifts can be formulated either as an MFPT problem or as a stochastic reach-

ability problem formally defined as follows.

• MFPT problem: Let {x(t)} be a stochastic process whose state x(t) at time
t ≥ 0 taking values on a bounded open subsets X ⊆ Rn of the Euclidean
space with smooth boundary ∂X . Let X0 ⊂ X be an initial set such that
x(0) = x0 ∈ X0. The time at which the sample path of {x(t)} hits the set ∂X
is a random variable τ called the first passsage time and is defined as

τ ≡ inf
t
{t ≥ 0 |x(t) ∈ ∂X } . (1.4)

The MFPT problem therefore concerns with the computation of the expected
value E{τ} of τ .

• Stochastic reachability problem: Let {x(t)} be a stochastic process whose state
x(t) at time t ≥ 0 taking values on a bounded open subsets X ⊆ Rn of the
Euclidean space. Let X0 ⊂ X be an initial set such that x(0) = x0 ∈ X0 and
let Xu ⊂ X denotes an arbitrary set such that Xu ∩ X0 = ∅. The stochastic
reachability problem concerns with the computation of the probability that,
starting from the initial set X0, the sample paths of the process will reach the
set Xu in a finite time t ∈ [0, T ]. More formally, this problem seeks to compute
a constant β ∈ [0, 1] such that

P {x(t) ∈ Xu, for some 0 ≤ t ≤ T | x(0) ∈ X0} ≤ β. (1.5)

There are two standard approaches commonly used to compute (1.4)-(1.5). The first

approach computes (1.4)-(1.5) based on the solution of the Chapman-Kolmogorov

or Fokker-Planck equations which encode the evolution of the process’ probability

density function [40, 93]. This approach is suitable for low dimensional systems

[45, 86, 59] but is difficult to use for systems with dimensionality greater than one as

it involves solving a set of partial differential equations with appropriate boundary

conditions. The second approach is based on the Monte Carlo simulation method

[70] and is one of the most frequently used methods in the research of noise-induced

regime shifts forecasting [11, 97, 15, 14, 8, 100, 21]. This method, however, is com-

putationally expensive as it requires exhaustive simulations of the process’s sample
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paths to infer conclusions about the statistics of the process such as those in (1.4)-

(1.5).

Approach and Contribution: Our method for solving problems (1.4)-(1.5) is based

on the Lyapunov-like method commonly used in stochastic stability analysis [72].

This method essentially search for a ”stochastic” Lyapunov function, called barrier

certificates, from which upper bounds for (1.4)-(1.5) can be deduced. The main ad-

vantage of this method is that it do not depend on the solution of the Fokker-Planck

equation and do not require exhaustive simulations of the process’ sample paths.

Moreover, the search of the barrier certificates can be posed as an SOS optimiza-

tion problem which can be solved efficiently using the available SOS programming

softwares [90, 75, 55]. This method has been used recently to solve the reachability

problem (1.5) for systems driven by Wiener processes [91] and has been applied to

study regime shifts in cellular biology [32].

The main contribution of our work is the extension of the method in [91, 72] to

compute upper bounds for (1.4)-(1.5) in systems modeled as jump diffusion processes.

Our reason to use jump diffusion model (rather than pure diffusion) is motivated by

the observations that many noise-induced regime shifts are triggered by the jumps

or discontinous changes on the system’s states as a result of extreme or abnormal

events [12, 23, 30, 2]. These events are no longer suitable to be modeled by Wiener

process but are better characterized as stochastic renewal process in the framework

of jump diffusion processes. As in [91, 72], our method is also based on searching

for appropriate barrier certificates which provide upper bounds for (1.4)-(1.5). By

constructing a polynomial representation of the jump diffusion processes’ infinitesimal

generator, we show that the computation of these upper bounds can be formulated

as SOS optimization problems.
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1.3 Outline of proposal

The remainder of this proposal is structured as follows. Chapter 2 presents some

mathematical backgrounds on algebraic geometry and SOS optimization. The con-

cepts from algebraic geometry will be used in the discussion of equilibrium param-

eterization in chapter 3 as well as the method to forecast the bifurcation-induced

regime shifts in chapter 4. On the other hand, the concept of SOS optimization will

be used in chapters 4 and 5. In chapter 3, we describe the concept of kinetic real-

ization in chemical reaction network modeling and discuss the method proposed in

[43, 44] for computing an equilibrium parameterization of this realization. We show

that such kinetic realization exist in a large class of systems (other than chemical

reaction networks) and so the equilibrium parameterization method introduced in

[43, 44] can also be applied to these systems. Chapter 4 presents our method to fore-

cast the onset of bifurcation-induced regime shifts in a class of nonnegative systems

with kinetic realization. We formulate the prediction for this type of regime shifts as

a distance-to-bifurcation problem [26] and show that the solution to this problem for

nonnegative systems with kinetic realization can be simplified using the the equilib-

rium parameterization techniques described in chapter 3. We present some examples

to illustrate the effectiveness of the proposed method to predict regime shifts in dif-

ferent applications. Chapter 5 presents our proposed method to forecast the onset

of noise-induced regime shifts in systems modeled by jump diffusion processes. Our

approach to forecast this type of regime shifts is by formulating the prediction either

as an MFPT problem or as a stochastic reachability problem. The main result in this

chapter is the construction of a polynomial representation of the jump diffusion pro-

cesses’ infinitesimal generator thereby allows the use of SOS optimization methods

to compute upper bounds for (1.4)-(1.5). The last chapter in this proposal describes

an experimental test bed from ecology at which the effectiveness of the proposed

methods for regime shifts forecasting will be evaluated. The proposed experimen-
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tal design is motivated by recent studies on bifurcation phenomena in live microbial

predator-prey system [38, 116].

Some parts of this proposal have been or will be published as the following papers.

1. T.A. Tamba and M.D. Lemmon, ”Stochastic reachability of jump diffusion pro-
cesses using sum of squares optimization,” in preparation for journal submission.

2. T.A. Tamba and M.D. Lemmon, ”The distance-to-bifurcation problem in nonneg-
ative dynamical systems with kinetic realizations,” Proc. IEEE Conference on
Control and Automation, Taichung, Taiwan, June 2014.

3. T.A. Tamba and M.D. Lemmon, ”Forecasting the resilience of networked dynam-
ical systems under environmental perturbation,” Work in Progress session of the
3rd ACM Conference on High Confidence Networked System (HiCoNS), pp. 61-62,
Berlin, Germany, April 2014.

4. T.A. Tamba and M.D. Lemmon, ”Using first passage times to manage ecosystem
regime shifts,” Proc. 52nd IEEE Conference on Decisions and Control, pp. 2697-
2702, Trieste, Italy, 2013.

A summary of research tasks that are expected to be completed at the end of the

PhD project includes:

• development of software toolkit that implements regime shifts forecasting meth-
ods desribed in this proposal,

• performance comparison between the proposed method and the currently es-
tablished methods for regime shifts prediction,

• evaluation of the proposed method for predicting ecological regime shifts in an
experimental test bed of microbial predator and prey systems.
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CHAPTER 2

ALGEBRAIC GEOMETRY AND SUM OF SQUARES (SOS) OPTIMIZATION

This chapter presents basic notations and mathematical backgrounds that will be

used throughout the proposal. The materials covered in this chapter includes the

basic concepts and methods from algebraic geometry and SOS optimization. The

materials on algebraic geometry will be central for the discussion in chapters 3 and

4 whereas the materials on SOS optimization technique will be used in chapters

4 and 5. Several examples are provided throughout the text to illustrate the pre-

sented concepts. Most of the presented materials are drawn from existing literatures

[20, 5, 88, 87] and so we urge interested readers to refer to these references for ex-

tended expositions and detailed proofs.

Notational convention: Let R, C, Q and Z denote the set of real, complex, rational

and integer numbers, respectively. The set of nonnegative real, rational, and integer

numbers are denoted as R≥0,Q≥0 and Z≥0 , respectively, whereas the set of positive

real, rational, and integer numbers are denoted as R+,Q+ and Z+, respectively. We

denote the n-dimensional Euclidean vector space as Rn. Given a vector x ∈ Rn, we

let xi denote the ith component of x.

An n-dimensional multi-index α ∈ Zn≥0 is an n-tuple α ≡ (α1, α2, · · · , αn) of non-

negative integers with absolute value |α| =
∑n

i=1 αi. For two multi-indices α, β ∈ Zn≥0,

we say that α ≥ β if and only if αi ≥ βi for i = 1, 2, . . . , n. The sum/difference of

two multi-indices is the component wise sum/difference of the indices.

Given a vector x ∈ Rn and a multi-index α ∈ Zn≥0, a monomial in x with total
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degree |α| is a product of the form xα ≡ xα1
1 x

α2
2 · · ·xαnn . We use monomial ordering

to arrange a pair of monomials unambiguously in an ascending (or descending) order.

Let α, β ∈ Zn≥0 be multi-indices of vector x ∈ Rn. Let � denotes a total ordering

on Zn≥0 such that for α, β ∈ Zn≥0 at least one of the following conditions is true:

α > β, α < β, α = β. A monomial ordering on Zn≥0 is a total ordering if (i) given

multi-indices γ, α, β ∈ Zn≥0 with α > β, then α + γ > β + γ, (ii) � is a well-ordering

such that every nonempty subset of Zn≥0 has a smallest element. One of the most

frequently used monomial ordering is the lexicographic (lex) order denoted as �lex.

We say that α and β is in lex order, α �lex β, if the left-most nonzero entry of the

vector difference α − β is positive. Thus, xα �lex xβ holds if α �lex β. Another

commonly used monomial ordering is the graded reverse lexicographic (grlex) order

denoted as �grlex. We say that α and β is in grlex order, α �grlex β, if |α| > |β| or

|α| = |β| and the right-most nonzero entry of the vector difference α− β is negative.

The set of n × n real symmetric matrix is denoted as Sn. A matrix Q ∈ Sn

is positive semidefinite (psd) if xTQx ≥ 0 for all x ∈ Rn and is positive definite if

xTQx > 0 for all nonzero x ∈ Rn. The set of n×n psd matrix is denoted as Sn≥0 and

the set of n × n positive definite matrix is denoted as Sn+. We use the symbol ”�”

to denote the partial ordering induced by Sn≥0 such that if Q,R ∈ Sn≥0, then Q � R

if and only if Q−R is psd.

2.1 Algebraic Geometry

At the basic level, algebraic geometry concerns with the study of the solutions (or

zeros) of system of polynomial equations by focusing on the close relationship between

the geometric properties of these solutions and the algebraic structures associated

with them [20]. Some of the fundamental concepts in algebraic geometry includes

ideal, variety, and basis. This section presents a review of these concepts and discusses

the method of Gröbner basis for solving system of polynomial equations.
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2.1.1 Ideals, varieties, and Gröbner basis

A fundamental concept in algebra is field. Intuitively, a field consists of a set K

and binary operations addition (+) and multiplication (·) such that if a, b ∈ K then

their binary operations satisfy the associative, commutative, distributive, identitites,

additive inverse, and multiplicative properties [78]. Examples of field includes the

sets of real (R), complex (C) and rational (Q) numbers. The set of integer numbers

(Z) is not a field since the only elements of Z that have multiplicative inverses are 1

and -1 (e.g. the multiplicative inverse of 2 is 1/2 but 1/2 6∈ Z).

Let K be any field. A dth order polynomial in the unknown x ∈ Rn with coeffi-

cients k ∈ K is a finite linear combination of monomials of the form

f(x, k) =
∑
|α|≤d

kαx
α, with kα ∈ K.

The set of all such polynomials form a polynomial ring and is denoted as K[x]. We use

the symbol K(k)[x] to denotes polynomial ring with unknown coefficients k in field

K (see chapters 3-4). Unless stated otherwise, we often use the term ”polynomials

over K” to denote the set of polynomials fi(x, k) ∈ K[x] for i = 1, . . . ,m. We mostly

consider polynomials over R.

Given polynomial equation fi(x, k) = 0, (i = 1, . . . , n), we define its solution as

the set {x ∈ Kn : fi(x, k) = 0} of common zeros in Kn of the polynomials.

Let α ∈ Zn≥0 be a multi-index and assume a fixed monomial ordering. Given a

nonzero polynomial f(x, k) ∈ K[x], we define

• The multidegree of f as: multideg(f) = max(α ∈ Z≥0), kα 6= 0.

• The leading monomial of f as LM(f) = xmultideg(f).

• The leading coefficient of f as: LC(f) = kmultideg(f).

• The leading term of f as: LT(f) = LC(f).LM(f).
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Example 1. Consider polynomial f(x, k) = 2x21x
8
2−3x51x2x

4
3 +x1x2x

3
3−x1x42 in R[x]

where x = (x1, x2, x3) and k ∈ R. By choosing the lex order for its monomials, we

can rewrite polynomial f(x) with monomials in a decreasing order of the form f(x) =

−3x51x2x
4
3 + 2x21x

8
2 − x1x42 + x1x2x

3
3. We then have multideg(f) = (5, 1, 4), LM(f) =

x51x2x
4
3, LC(f) = −3, LT(f) = −3x51x2x

4
3.

The following definition defines an ideal in polynomial ring R[x].

Definition 1 ([20]). The set I ⊆ R[x] is an ideal if it satisfies: (i) 0 ∈ I, (ii)

∀a, b ∈ I ⇒ a+ b ∈ I, and (iii) ∀a ∈ I, b ∈ R[x]⇒ a · b ∈ I.

Let f1, . . . , fm be polynomials in R[x] and set

I = {Σm
i=1hifi, with hi ∈ R[x]} = 〈f1, . . . , fm〉 ⊆ R[x].

One can show that I is an ideal generated by f1, . . . , fm. For ideal I = 〈f1, . . . , fm〉,

the set of polynomials f1, . . . , fm is called the generator of I. A set of all generators

of I is called the basis of I. One advantage inusing the concept of ideal is that it

allows for the use of different choices of generators. This is due to the fundamental

result of the Hilbert’s Basis Theorem [20] which states that every ideal I ⊆ K[x] is

finitely generated (hence it has a finite basis) and therefore can always be expressed

as I = 〈f1, . . . , fm〉. According to the definiton of an ideal, this theorem implies that

all polynomials of the form Σm
i=1hifi with hi ∈ K[x] are also ideals generated by fi’s.

Working with ideal therefore removes the dependency on particular generator and

allows one to choose any generator that is more suitable for a given problem.

Now let I = 〈f1, . . . , fm〉 ⊆ R[x] be an ideal. For all 1 ≤ i ≤ m, the set

V(I) = V(f1, . . . , fm) = {x ∈ Cn : fi(x) = 0},

is called an algebraic variety (or simply variety) of I generated by fi’s. One may
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observe that a variety V(I) is the set of common zeros in Cn (or complex solutions)

of polynomial equations defined by ideal I. Given a variety V = V(f1, . . . , fm) at

which polynomials f1, . . . , fm vanish, then by the definition of ideal, any polynomials

of the form Σm
i=1gifi with gi ∈ R[x] are also vanish on V . More specifically, if ideals

I1 = 〈f1, . . . , fm〉 and I2 = 〈g1, . . . , gk〉 are the same (i.e. they are generated from

the same basis), then I1 and I2 define the same variety, i.e. V(I1) = V(I2). This

illustrates that the variety of an ideal is not affected by the choice of the basis [20].

From the preceeding discussions, one may see that solving a system of polyno-

mial equations of the form fi(x, k) = 0, (i = 1, . . . , n) is essentially equivalent with

computing the variety V(I) of ideal I = 〈fi〉. In other words, the solutions of poly-

nomial equations fi = 0 are the variety of the basis polynomials that generate ideal

I = 〈fi〉. This implies that even if the original polynomial equations are too com-

plicated to be solved, the task of finding its solutions may often be simplified if the

basis of the ideal generated by these polynomials can be computed. This fact is one

of the basic approaches used in algebraic geometry for solving system of polynomial

equations. In particular, this approach can always be used since the Hilbert Basis

Theorem guarantees the existence of a finite basis of any ideal. A basis set that is

useful for this approach is the Gröbner basis which can be computed using the freely

available computer algebra softwares [22, 46]. Before we dwell on to the concept of

Gröbner basis, we will first discuss a fundamental method for checking the existence

or emptiness of algebraic varieties of an ideal.

2.1.2 Existence of algebraic varieties

One method for checking the existence (or emptiness) of algebraic variety of poly-

nomials over C is using the result from the Hilbert’s nullstellensatz stated below.

Theorem 2.1.1 (Nullstellensatz [20]). Let I ⊆ C[x] be an ideal generated by a finite

family of polynomials (fi)i=1,...,m in C[x]. The following statements are equivalent:
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1. The set
{x ∈ Cn | fi(x, k) = 0, i = 1, . . . ,m} (2.1)

is empty.

2. The polynomial 1 belongs to the ideal I, i.e., 1 ∈ I.

3. The ideal is equal to the whole polynomial ring: I = C(k)[x].

4. There exist polynomials gi(x, k) ∈ C[x] such that:

f1(x, k)g1(x, k) + · · ·+ fm(x, k)gm(x, k) = 1. (2.2)

The nullstellensatz essentially states that if for ideal I = 〈fi(x, k)〉 there exist polyno-

mials gi(x, k)’s such that (2.2) is satisfied, then the complex solutions of polynomial

equations fi(x, k) = 0 does not exists (i.e. the set (2.1) is empty). The existence

of polynomials gi(x, k)’s therefore certifies the infeasibility of the complex solutions.

The following example illustrates an application of the nullstellensatz.

Example 2. Let I = 〈f1, f2〉 ⊆ C[x] with x = (x1, x2), f1(x) = x21, f2(x) = 1− x1x2.

Note that V(f1, f2) = ∅ since there exist no x ∈ C2 that satisfies f1(x) = f2(x) = 0.

By the nullstellensatz, there exist g1(x), g2(x) ∈ C2[x] such that f1g1+f2g2 = 1. It can

be verified that one of such gi(x)’s are g1(x) = 1−x1x2+x22 and g2(x) = 1+x1x2−x21.

A generalization of the nullstellensatz for proving the existence of solutions over

the reals R is given by the positivstellensatz (p-satz) [103]. In particular, the p-

satz gives a sufficient condition for the infeasibility of real solutions to a system of

polynomial equalities and inequalities. In order to state the main result from the

psatz theorem, let’s first recall the definitions of monoid and cone [20, 78].

Consider polynomials fi(x, k) ∈ R[x] for i = 1, . . . ,m. The multiplicative monoid

M(fi) generated by fi is the set of finite products of the elements of fi (including

the identity and the empty product). A cone C of R[x] is a subset of R[x] such that

(i) a, b ∈ C ⇒ a+ b ∈ C, (ii) a, b ∈ C ⇒ a · b ∈ C, and (iii) a ∈ R[x]⇒ a2 ∈ C. Given

a set S ⊆ R[x], let C(S) be the smallest cone of R[x] that contains S. One may verify
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that C(∅) is the smallest cone in R[x] which can be expressed as a sum of squares.

The cone associated to a finite set S = {a1, . . . , am} ⊆ R[x] can be expressed as

C(S) = {f + Σr
i=1gibi | f, g1, . . . , gr ∈ C(∅), and b1, . . . , br ∈M(ai)} .

The following theorem is due to Stengle [103].

Theorem 2.1.2 (Positivstellensatz, [103]). Let {fi}i=(1,...,s), {gj}j=(1,...,t) and {h`}`=(1,...,u)

be finite families of polynomials in R[x]. Denote by C the cone generated by {fi}i=(1,...,s),

M the multiplicative monoid generated by {gj}j=(1,...,t), and I the ideal generated by

{h`}`=(1,...,u). Then, the following properties are equivalent.

• The set
{x ∈ Rn | fi(x, k) ≥ 0, gj(x, k) 6= 0, h`(x, k) = 0} (2.3)

is empty for i = (1, . . . , s), j = (1, . . . , t) and ` = (1, . . . , u).

• There exist f ∈ C, g ∈M, and h ∈ I such that f + g2 + h = 0.

The p-satz theorem essentially gives a sufficient condition for the non-existence of

solutions to a system of polynomial equalities/inequalities. Such non-existence (or

emptiness) of solutions is certified by the existence of positivstellensatz refutation in

term of polynomials f, g and h. The following example illustrates one example use

of the p-satz.

Example 3. Consider the ideal I = 〈x2 + x+ 1〉 ⊂ R[x]. Clearly V(I) always exists

in C and is given by (−1±
√
−3)/2. The p-satz can be used to verify that V(I) in R

indeed does not exist. By letting

f =
(√

4/3(x+ 1/2)
)2
, g = 1, h = −4

3
(x2 + x+ 1),

the condition f + g2 + h = 0 in p-satz theorem is satisfied, proving the emptiness of

V(I) in R.
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2.1.3 The method of Gröbner basis

In this section, we present a technique for solving system of polynomial equations

using the method of Gröbner basis. In particular, the discussion will be presented in

the context of the Buchberger algorithm [9] which is one of the early algorithms used

to compute the Gröbner basis.

2.1.3.1 The Buchberger algorithm

For a given ideal I ⊆ K[x] with a finite set of generators, the Buchberger algorithm

takes these generators as an input and return a Gröbner basis G of I as an output

in a finite steps. At the heart of the Buchberger algorithm is the division algorithm

which generalizes the concept of Euclidean division algorithm for canceling out a

polynomial’s high-order leading monomial to obtain another polynomial with lower

order leading monomial. To present the basic idea in the Buchberger algorithm, we

will first discuss the concepts of the division algorithm and the S−polynomial.

Consider a polynomial f(x) and let S = {s1(x), s2(x), . . . , sq(x)} be a list of

polynomial divisors. For a fixed monomial ordering �, a division algorithm is one

that finds polynomials λi(x) and a remainder term f(x)
S

which satisfy

f(x) =

q∑
i=1

λi(x)si(x) + f(x)
S
, (2.4)

and such that

• LT(f(x)
S
) is not divisible by any LT(si(x)),

• LT(f(x)
S
) < LT(f(x)),

• LT(λi(x)si(x)) < LT(f(x)).

Let α and β be multi-indices. The least common multiple (LCM) of monomials xα and

18



xβ is defined as

LCM(xα, xβ) = x
max(α1,β1)
1 x

max(α2,β2)
2 . . . xmax(αn,βn)

n .

The S−polynomial of a pair of polynomials f1 and f2 is defined as

S(f1, f2) =
xγ

LT(f1)
f1 −

xγ

LT(f2)
f2, (2.5)

where xγ = LCM(LM(f1), LM(f2)). Based on the definitions of division algorithm and

S−polynomial, a Gröbner basis of an ideal I is formally defined as follows [9].

Theorem 2.1.3. Let I ⊆ K[x] be an ideal with basis G = {g1, . . . , gq}. Then G is a

Gröbner basis for I if and only if the remainder on division of every S−polynomial

S(gi, gj), (i 6= j) by G is zero.

The definition of Gröbner basis in theorem 2.1.3 leads to the Buchberger algo-

rithm [9] for finding a Gröbner basis of an ideal with finite generators. This algorithm

essentially computes the S−polynomials of each generator pair and check whether

the reminders upon division of the generator by each of the S−polynomial are zero.

If there exist non-zero remainders, the original set of generator is extended by adding

those non-zero remainders and then the iteration is repeated over the extended gen-

erator. A Gröbner basis is given by those extended generators whose S−polynomials

divide the elements of the extended generator with zero remainder. As shown in [9],

the Buchberger algorithm always terminates in a finite steps and so a Gröbner basis

of an ideal can always be computed. In the following example, we illustrate the basic

idea of Buchberger algorithm for computing the algebraic variety of an ideal.

Example 4. Consider an ideal I = 〈f1, f2〉 generated by two polynomials f1 = 2x21−

4x1 + x22 − 4x2 + 3 and f2 = x21 − 2x+ 3x22 − 12x2 + 9. We will apply the Buchberger

algorithm to compute a Gröbner basis of I. To begin, we use the generator of I as
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the initial Gröbner basis G0 = {f1, f2} and consider the lex order x �lex y for the

monomials of I. One may verify that ideal I is characterized by γ = (2, 0), LM(f1) =

2x2 and LM(f2) = x2. The S−polynomial of f1, f2 is then given by

S(f1, f2) =
x21
2x21

f1 −
x21
x21
f2 = −5

2
x22 + 10x2 −

15

2
.

Upon division of S(f1, f2) by G0,it can be verified that the reminder r12 is simply

S(f1, f2) 6= 0. We now define f3 = S(f1, f2) and then extend the Gröbner basis G0 to

G1 = {f1, f2, f3}. We repeat the computation of S−polynomial for the pair (f1, f3)

and (f1, f3). Note that we don’t need to recompute S(f1, f2) as it does not change.

S(f1, f3) = 4x21x2 − 3x21 − 2x1x
2
2 +

1

2
x42 − 2x32 +

3

2
x22,

S(f2, f3) = 4x21x2 − 3x21 − 2x1x
2
2 + 3x42 − 12x32 + 9x22.

Dividing these S−polynomials by G1 gives

S(f1, f3)/G1 = (2x2 − 3/2)f1 + (4x1 − x22 + 4x2 − 3)f3/5,

S(f2, f3)/G1 = (2x2 − 3/2)f1 + (4x1 − 6x22 + 4x2 − 3)f3/5,

from which we have r13 = r23 = 0. Thus, a Gröbner basis of I is G = {f1, f2, f3}.

The Buchberger algorithm has been implemented in many computer algebra soft-

wares such as Singular [22] and Macaulay2 [46]. One issue with the implementation

of the Buchberger algorithm is that it has doubly exponential worst case complexity

in the number of unknown variables. As shown in [31], when polynomial f(x) in n

unknown variables has a total degree not exceeding d, then the degree of polynomials

in its Gröbner basis G is bounded by 2(d2/2 + d)2
n−1

. This bound is doubly expo-

nential with respect to n but only polynomial with respect to d. The computation

of Gröbner basis for high dimensional systems will therefore requires a large amount
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of computer memory. Nevertheless, the use of Buchberger algorithm for computing

Gröbner bases in many applications have shown that such worst case bound is not

frequently encountered .

We point out that the Gröbner basis of an ideal is not unique. For instance,

another Gröbner basis for ideal in example 4 is

G = {x22 − 4x2 + 3, x21 − 2x1 + 3x22 − 12x2 + 9}

which is obtained from Singular computer algebra [22] using the code snippet in

listing 2.1. In this listing, the command ring declares a polynomial ring ’R’ with

unknown variables ’x1,x2’ and real coefficients ’0’. The monomial ordering in R is

set to be the lex ordering ’lp’. The command poly defines polynomial functions

’f1,f2’ whereas the command ideal defines the ideal I. Finally, a Gröbner basis ’G’

of ideal ’I’ is computed using the command groebner(I).

Listing 2.1: Computing Gröbner basis of example 4 using Singular.

> r i ng R = 0 , ( x1 , x2 ) , lp ;

> poly f1 = 2∗x1ˆ2 − 4∗x1 + x2ˆ2 − 4∗x2 + 3 ;

> poly f2 = x1ˆ2 − 2∗x1 + 3∗x2ˆ2 − 12∗x2 + 9 ;

> i d e a l I = ( f1 , f 2 ) ;

> i d e a l G = groebner ( I ) ;

> G;

G[1]= x2ˆ2−4∗x2+3

G[2]= x1ˆ2−2∗x1+3∗x2ˆ2−12∗x2+9

2.1.3.2 Elimination and Extension Theorems

It is now intuitive to see how the Gröbner basis can be helpful to solve a system

of polynomial equations. As shown in example 4, one element of the Gröbner basis is
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given by f3 = −5x22/2 + 10x2− 15/2, in which variable x1 has been eliminated. Since

f3 is a univariate polynomial, it can be solved easily using the root-finding methods.

If the solution x2 is extended through substitution to f1 or f2, one can then recover

the whole solutions to fi = 0, i = (1, 2). This example therefpre illustrates that the

method of Gröbner basis involves two main steps namely the elimination and the

extension steps.

For given Gröbner basis of an ideal, the elimination step computes the rth elimi-

nation ideal of I defined as follows.

Definition 2. Given I = 〈f1, . . . , fq〉 ⊆ R[x1, . . . , xn], the rth elimination ideal Ir is

the ideal of R[xr+1, . . . , xn] defined by

Ir = I ∩ R[xr+1, . . . , xn].

One may see that the elimination ideal is obtained by eliminating subsets of unknown

variables in the original ideal. For a given Gröbner basis of ideal I with lex monomial

order, the Elimination Theorem can be used to compute a Gröbner basis for the rth

elimination ideal of I.

Theorem 2.1.4 (Elimination Theorem [20]). Let I ⊆ R[x1, . . . , xn] be an ideal and

let G be a Gröbner basis of I with respect to lexicographic order x1 �lex x2 �lex

· · · �lex xn. Then, for every 0 ≤ r ≤ n, the set

Gr = G ∩ R[xr+1, . . . , xn]

is a Gröbner basis of the rth elimination ideal Ir of I.

The variety V(Ir) of the rth elimination ideal Ir can be obtained by solving the zeros

of its Gröebner basis, Gr. The variety V(Ir), however, is only a subvariety of the

original ideal I (i.e. V(Ir) ⊂ V(I)) because it is only defined over variables that are

22



not eliminated from I. Thus it only serves as partial solution and should be extended

to the total solutions of the original ideal I. Such extension, however, is not always

guaranteed to be feasible. The Extension Theorem gives the conditions when such

extension is feasible.

Theorem 2.1.5 (Extension Theorem [20]). Let I = 〈f1, . . . , fm〉 ⊂ R[x] and let I1

be the first elimination ideal of I. For each 1 ≤ i ≤ m, write fi in the form

fi = gi(x2, . . . , xn)xNi1 + terms in which x1 has degree < Ni, (2.6)

where Ni > 0 and gi ∈ R[x] is nonzero. Assume we have a partial solution (x∗2, . . . , x
∗
n) ∈

V(I1). If (x∗2, . . . , x
∗
n) /∈ V(g1, . . . , gm), then there exists x∗1 ∈ C such that (x∗1, . . . , x

∗
n) ∈

V(I).

From the above discussion, one may see that the goal of the elimination step is

to iteratively reduces the original problem into problems with smaller number of

variables for which partial solutions can be computed. The extension step then back

substitutes these partial solutions to the original ideal to obtain the total solution.

The importance of Gröbner basis in these scheme is that it allows for a systematic

execution of the elimination step. The following example illustrates the concept of

Elimination and Extension Theorems for ideal in example 4.

Example 5. Consider the ideal and Gröbner basis in example 4. We will use this

example to show how the Gröbner basis, combined with elimination and extension

steps, helps the computation of an algebraic variety of ideal I = 〈f1, f2〉 ⊆ R[x1, x2].

Firs, we let I2 = 〈I∩R[x2]〉 which gives I2 = 0. This means that any value of x2 = c2

is a partial solution and c2 ∈ R. We now evaluate whether this partial solution

extends to the total solution x1 = c1, x2 = c2. Applying the Extension Theorem to

the case of R[x2] ⊂ R[x1, x2], one can verify that the partial solution x2 = c2 extends

to x1 = c1, x2 = c2 provided that the coefficient of the highest power of x1 in the
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Gröbner basis f1 or f2 is not zero at x2 = c2. The coefficients of the highest power

of x1 in f1 and f2 are given by 1 and 2, respectively, which are not zero regardless

of the value of x2. This implies that the solution x2 = c2 always extends to the total

solution x1 = c1, x2 = c2. Now using the Elimination Theorem, the Gröbner basis for

I2 is given by

G(I2) = G ∩ R[x2] = −5

2
x22 + 10x2 −

15

2
.

Since the variety of an ideal is equivalent to the variety of its basis, then the partial

solution x2 is given by the zeros of G(I2) which are x∗2 = 1 or x∗2 = 3. We have shown

previously that this partial solution extends to the total solution and so we can directly

substitutes it to either f1 or f2 and then solve for their corresponding zeros. Upon

the substitution, one may verify that the algebraic variety of I = 〈f1, f2〉 is given by

V(I) = {(x∗1, x∗2) : (0, 1), (0, 3), (2, 1), (2, 3)},

which are the four intersection points between ellipses f1 and f2 shown in figure 2.1.

2.1.4 Toric ideal

This section introduces a class of ideal called toric ideal that will be central in

the discussion of chapter 3.

Let A = (α1, α2, . . . , αn) ∈ Zm×n be a matrix whose ith column is denoted by the

vector αj for j = 1, 2, . . . , n. For x ∈ Rn, let ψj(x) =
∏m

i=1 x
αij
i , (j = 1, . . . , n) be a

mapping ψ : Cm → Cn. Suppose we are interested to find the solution of a sparse

polynomial equations of the form

cψ(x) = 0. (2.7)
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Figure 2.1. Algebraic variety of I = 〈f1, f2〉 in example 5.

Our objective is to find some other polynomials f1, . . . , fk ∈ C[z1, . . . , zn] that gener-

ate linear equations of the form

cz = 0, f1(z) = 0, f2(z) = 0, . . . , fk(z) = 0. (2.8)

Notice that if z in (2.8) is in the image of ψ in (2.7), then the solutions of z in (2.8)

will lead to the solutions of (2.7). If this condition is satisfied, then the following

relationships between equations (2.8) and (2.7) can be obtained.

fi(z) = 0 for all z ∈ im(ψ) ⇔ fi(ψ(x)) = 0 for all x ∈ Cm.

fi(ψ(x)) = 0 for all x ∈ Cn ⇔ fi(x
α1 , . . . , xαn) for all x ∈ Cm.

What is important to observe is that polynomial systems in (2.7) generate an ideal

in C[z1, . . . , zn].
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Lemma 2.1.6. Let A = (α1, . . . , αn) ∈ Zm×n. The set of polynomials

IA = {f ∈ C[z1, . . . , zn] | f(xα1 , . . . , xαn) = 0, for all x ∈ Cm} (2.9)

is an ideal in C[z1, . . . , zn].

Proof. The proof is based on the definition of ideal. First note that 0 ∈ IA. Now

for f, g ∈ IA we have f(xα1 , . . . , xαn) + g(xα1 , . . . , xαn) = 0 + 0 = 0 which implies

f + g ∈ IA. Finally, if f ∈ IA and g ∈ C[z] then f(xα1 , . . . , xαn) · g(xα1 , . . . , xαn) =

0 · g(xα1 , . . . , xαn) = 0 and so f · g ∈ IA. Thus IA satisfies all the properties of an

ideal and the statement is proved.

Ideal IA with properties stated in the above lemma is called toric ideal and its variety

is called toric variety [4, 106]. Toric ideal arise in many applications such as integer

programming [107] and chemical reaction network models [43]. One important prop-

erty of toric ideal is that there exist efficient algorithms to compute its Gröbner basis

with less computation complexity than the standard Buchberger algorithm [106]. One

of such algorithms will be discussed in more details in chapter 3.

Example 6. This example illustrates the concept of toric ideal described above. Sup-

pose we are interested in solving the following polynomial equation defined on C[x].

x− 2x2 + x3 = 0. (2.10)

Our goal is to solve this equation implicitly. Let Ψ(x) = [ψ1(x), ψ2(x), ψ3(x)]T with

ψ1(x) = x, ψ2(x) = x2, ψ3(x) = x3 and let c = [1, −2, 1] such that equation (2.10) can

be rewritten as cΨ(x) = 0. Now let’s introduce the variables z1 = x2, z2 = x2, z3 = x3

26



defined on C[z] with z = (z1, z2, z3) and consider the following set of equations

0 = z21 − z2

0 = z31 − z3

0 = z1z2 − z3.

(2.11)

The above ”binomial equations” are the toric ideal associated with polynomial equation

(2.10). Notice that if x∗ = {x |x−2x2 +x3 = 0} is a solution to equation (2.10) then

z∗ = Ψ(x∗) is also a solution to (2.11). For example, x = 1 is a solution of (2.10) and

one may verify that z = (ψ1(1), ψ2(1), ψ3(1)) = (1, 1, 1) is also a solution to (2.11).

This observation suggests that we can solve polynomial equation (2.10) indirectly in

the following steps: (i) compute the kernel of c which satisfies cΨ(x) = 0, (ii) compute

the solution of the binomial equations in (2.11), (iii) compute the intersection of the

solutions from steps (i) and (ii). For our example, it is straightforward to verify

that z∗ = (1, 1, 1) is a solution to the binomial system (2.11). On the other hand,

v∗ = (1, 1, 1) is a kernel of vector c (i.e. v∗ satisfies cv∗ = 0). Obviously, the

intersection between z∗ and v∗ is given by z∗∩v∗ = (1, 1, 1) which is satisfied for x = 1.

The key point in this approach is that there are algorithms (with less computational

complexity than the Buchberger algorithm) that can be used to compute the solution

(or the Gröbner basis) of toric ideal (2.11) (i.e. step (ii)) [106, see also chapter 3].

This approach would then provides more efficient computation methods for solving

general polynomial equations of the form (2.10).

2.2 SOS Optimization

A fundamental problem that arise in many applications is that of proving the

global nonnegativity of some functions in several variables. More specifically, given a

function f(x) in variables x = (x1, . . . , xn), one is often required to check the validity
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of the proposition f(x) ≥ 0 for all x. From a computational stand point, this prob-

lem is in general NP-hard (Non-deterministic Polynomial-time hard) which means

that the validity of the proposition cannot be decided in polynomial time. How-

ever, if function f(x) is a multivariates polynomial, a checkable condition for proving

the validity of such proposition is available through the use of SOS decomposition

technique [87, 88]. This section presents a brief introduction to SOS decomposition

techniques and its connection with semidefinite programming (SDP). In particular, a

fundamental result introduced in [87, 88] on the equivalence between SDP and SOS

optimization for proving the nonnegativity of multivariate polynomials is discussed.

The SOS optimization technique discussed in this section is the main computational

approach that will be used in our proposed methods to forecast the onset of regime

shifts (chapters 4 - 5).

The presented materials are mainly drawn from [87, 88] and so interested readers

are encouraged to consult these references for more detailed expositions and proofs.

2.2.1 SOS decomposition

Throughout this section, the polynomial f(x) is defined over the reals, R.

A polynomial f(x, k) is said to be nonnegative or positive semidefinite (psd) if

f(x, k) ≥ 0 for all x ∈ Rn. A necessary condition which guarantees a polynomial to

be psd is that its total degree is even. A class of polynomial systems for which this

condition is always satisfied is the SOS polynomials.

Definition 3. We say that the polynomial f(x) is SOS if it can be rewritten as

f(x) =
∑`

i=1 q
2
i (x) for some set ` of polynomials qi(x), i = 1, . . . , `.

Clearly, an SOS polynomial f(x) is also psd. We use the symbol P2d
n to denote the

set of SOS polynomials in n unknown variables with degree less than or equal to 2d.

Now consider polynomial f(x, k) =
∑
|α|≤2d kαx

α ∈ R(k)[x] where f ∈ P2d
n . One
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may verify that the number of coefficients of f(x, k) equals
(
n+2d
2d

)
. Let

[x]d
.
= [1, x1, . . . , xn, x

2
1, x1x2, . . . , x

d
n]T ,

be the vector of all
(
n+d
d

)
monomials in x of degree less than or equal to d. Let Q be

an
(
n+d
d

)
×
(
n+d
d

)
symmetric matrix and consider the equation

f(x, k) = [x]TdQ[x]d. (2.12)

The following theorem states that f(x, k) is SOS if it can be decomposed as in (2.12).

Theorem 2.2.1 ([87]). A polynomial f(x, k) =
∑
|α|≤2d kαx

α of degree 2d in n vari-

ables is SOS if and only if there exists Q ∈ S(n+dd )
≥0 satisfying (2.12).

The symmetric psd matrix Q is known as Gram matrix and it satisfies the decompo-

sition Q = V TV . This implies that the decomposition (2.12) can be written as

f(x, k) = [x]TdQ[x]d = [x]Td V
TV [x]d = (V [x]d)

T (V [x]d),

which satisfies the condition in definition 3. Thus, any polynomials that can be

decomposed as in (2.12) is always a psd function.

Now consider the decomposition in (2.12) and let’s index the elements of matrix

Q in this decomposition by the
(
n+d
d

)
monomials in [x]d. One may verify that the

following relationship between the coefficients of f(x, k) and the elements of Q holds.

kα =
∑
i+j=α

Qij, Q � 0. (2.13)

Equation (2.13) is a system of
(
n+2d
2d

)
linear equations relating the entries of matrix

Q and the coefficients kα of f(x, k). This relationship therefore suggests that the

problem of finding an SOS decomposition of a polynomial in (2.12) boils down to the
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problem of searching a psd matrix Q for which equality (2.13) holds. This is a well

established problem which can be solved using SDP.

2.3 SDP and SOS optimization

An SDP is an optimization problem of the form

min 〈c, x〉

subject to 〈Ai, x〉 = bi for i = 1, . . . ,m,

x � 0,

(2.14)

where x ∈ Sn≥0 is the decision variable, b ∈ Rm, c, Ai ∈ Sn≥0 are given symmetric

positive semidefinite matrices, and 〈X, Y 〉 .
= Tr(XTY ) =

∑
ij XijYij. The first

constraint in (2.14) defines an affine subspace whereas the second constraint defines

a positive semidefinite cone Sn≥0 of x. Both of these sets are convex and so their

intersection (i.e. the set of feasible solution x) is also a convex set. Since the objective

in (2.14) is a linear function, one may view an SDP as an optimization of a linear

functional over a convex set. Such convex property of SDP implies that the primal

formulation in (2.14) has a weak dual formulation of the form

max 〈b, y〉

subject to Σm
i=1yiAi for i = 1, . . . ,m,

(2.15)

where y ∈ Rm. One advantage of this duality is that any feasible solution of the dual

problem (2.15) gives a lower bound on the achievable value of the primal problem

(2.14). Conversely, any feasible solutions of the primal formulation (2.14) provide

upper bounds for the dual formulation in (2.15). Depending on the level of problem

complexities, one can therefore use either the primal or the dual formulations of

the SDP. In term of computational implementation, there exist efficient numerical
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softwares for solving SDPs (2.14)-(2.15) such as Sedumi [105], SDPT3 [113], etc.

Remark 2.3.1. Note that SDP can be viewed as a generalization of linear program-

ming (LP). Recall that the standard formulation of an LP problem is given by [6]

min c · x

s.t. ai · x = bi, i = 1, . . . ,m

x ∈ Rn
≥0

(2.16)

where x is a vector of n variables and Rn
≥0 ≡ {x ∈ Rn | x ≥ 0} is an n dimensional

nonnegative orthant. On the other hand, variables x in SDP formulation is a matrix

which can be viewed as ”vector” in the cone of symmetric positive semidefinite matrix

Sn≥0. This implies that if the condition x ∈ Rn
≥0 in the LP formulation states that

each element of vector x should be nonnegative, then the condition x ∈ Sn≥0 in the

SDP formulation can be viewed as stating that each of the eigenvalues of matrix x

should be nonnegative. An LP formulation can therefore be viewed as a special case

of an SDP formulation and so many computational properties of LP problem can be

extended to SDP problem. Some of the LP properties that do not extend to SDP

are mentioned below [60].

• A feasible solution of an LP problem always achieve its optima. On the other
hand, the solutions of SDP problem may or may not achieve their optima and
so there may be a finite/ infinite duality gap between the solutions of the primal
and the dual formulation.

• While there exist finite algorithms (such as simplex) for solving an LP problem,
there is no finite algorithm for solving an SDP problem. In other words, SDP
formulations do not have direct analog of the ”basic feasibility problem” [6]
found in LP.

The connection between the feasibility of SOS decomposition (2.12) and the SDP

formulation arise from the simultaneous requirements for matrix Q to satisfy both

the positive definiteness condition and the linear equalities in (2.13). One can readily

see that such requirement in fact is equivalent with the primal formulation (2.14) of
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an SDP. This observation then suggests that the search of an SOS decomposition of

a polynomial function can be formulated as an SDP. This is the fundamental result

proved in [87, 88].

Theorem 2.3.2 ([87]). The existence of SOS decomposition of a polynomial in n

variables of degree 2d can be decided by solving an SDP feasibility problem.

The result in theorem 2.3.2 is the basis for the formulation of SOS program or SOS

optimization. An SOS optimization is a convex optimization with SOS polynomials

constraints. In general, an SOS optimization takes the form

min cTa

subject to q0 +
∑`

i=1 aiqi(x) is SOS.
(2.17)

Using the SOS decomposition in (2.12) one may see that the SOS constraints in (2.17)

can be formulated as constraints in either the primal or the dual formulations of SDPs

(2.14)-(2.15). It is therefore clear that the SOS optimization (2.17) is equivalent with

the SDPs (2.14)-(2.15). There are various SOS programming tools that can be used

to solve the SOS optimization (2.17) including SOSTOOLS [90], GloptiPoly [55], and

YALMIP [75]. In general, these softwares are parser codes which transform the SOS

optimization (2.17) into SDP formulations (2.14)-(2.15) and then use the available

SDP solver codes such as Sedumi [105] and SDPT [113]to obtain the optimal solution.

The SOS optimization method therefore provides a means to simplify a non standard

optimization problem into a more solvable SDP problem.
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CHAPTER 3

EQUILIBRIUM PARAMETERIZATION OF NONNEGATIVE SYSTEMS WITH

KINETIC REALIZATION

This chapter discusses a method for computing a parameterization of system’s

equilibrium in a class of nonnegative systems with kinetic realization. A dynamical

system

ẋ(t) = f(x, k), x(0) = x0,

whose state x(t) depends on parameter k is said to be nonnegative if and only if

f(x, k) ≥ 0 for all x and t ≥ 0. This system is said to have a kinetic realization

if there exists a constant matrix N and a vector of monomials v(x, k) such that

f(x, k) = Nv(x, k). Dynamical systems with kinetic realization originate from dif-

ferential equation models of chemical reaction networks (CRN) [114, 17, 35]. One

important property of kinetic realization is that their special structure allows one to

compute a parameterization of the system’s equilibria as a rational function of the

system parameters and some convex parameters. This parameterization method was

first proposed in [43, 44] and is based on the concept of toric variety from algebraic

geometry [3, 4]. The main advantage of such parameterization is that it helps simplify

the analysis of the system’s properties (stability, bifurcation, etc.).

The first two sections of this chapter review the equilibrium parameterization

method proposed in [43, 44] using a CRN model. At the end of the chapter, we show

that this parameterization can also be applied to a larger class of systems other than

that arising from CRN. We denote this class of systems as nonnegative systems with
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kinetic realization and present an example application of computing their equilibrium

parameterization using a tritrophic foodweb model from ecology [54]. We point out

that the subject discussed in this chapter will be central for the discussion of our

proposed method to forecast the occurence of bifurcation-induced regime shifts in

chapter 4. More specifically, the equilibrium parameterization discussed here is the

stepping stone from which the simplification of the distance-to-bifurcation problem

is achieved. This chapter should therefore be viewed as an essential part of chapter

4.

The remainder of this chapter is structured as follows. Section 3.1 discusses back-

grounds on CRN models and the property of their kinetic realization. Section 3.2

describes the the method introduced in [43, 44] for computing equilibrium parameter-

ization of CRN’s kinetic realization. Section 3.3 presents the method for computing

an equilibrium parameterization of nonnegative systems with kinetic realization. Dis-

cussions and some remarks are given in section 3.4.

3.1 Kinetic Realization of Chemical Reaction Network

3.1.1 CRN model and kinetic realization

The dynamics of reactant and product species involved in a CRN are governed

by the law of mass action kinetic which states that the velocity/rate of each elemen-

tary reaction in the network is directly proportional to the product of the reactant

concentrations [35]. This law is the basis from which differential equation models of

CRN are derived.

Consider a set of r elementary reactions Ri (i = 1, . . . , r) between s ≥ 1 chemical

species X1, X2, . . . , Xs described in the following CRN

Ri :
s∑
j=1

aijXj
ki→

s∑
j=1

bijXj, i = 1, 2, . . . , r, (3.1)
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where for i = 1, 2, . . . , r, the quantity ki is the rate constant of the ith reaction be-

tween reactant species
∑s

j=1 aijXj and product species
∑s

j=1 bijXj. Let xj(t) denotes

the concentration of species Xj at time t and let x(t) = [x1(t), . . . , xs(t)]
T . We define

a complex as an object at the head or the tail of each reaction arrow in (3.1). The

complex at the tail of an arrow is called the reactant complex and is denoted by

CRj =
∑s

j=1 aijXj for i = 1, . . . , r, whereas the complex at the head of an arrow is

called the product complex and is denoted by Cj =
∑s

j=1 bijXj.

Let C = {C1, C2, . . . , Cm} denotes the union set of complexes appeared in heads

and tails of reaction arrows of CRN (3.1), i.e.

Ci =
s∑
j=1

cijXj, i = 1, . . . ,m,

where ci,j = ai,j ∪ bi,j. The association of all s species to m complexes define a

bipartite graph from Xi (i = 1, . . . , s) to Cj (j = 1, . . . ,m) whose weights are given by

the coefficients aij or bij. Corresponding to all complexes in C, we define an (s×m)

matrix Y with entries [Y ]ij = cji for i = 1, 2, . . . , s and j = 1, 2, . . . ,m. By denoting

the jth column of Y as Y (j), we also define a monomial vector ψ(x) such that

ψj(x) = xY (j). (3.2)

Then for i = 1, 2, . . . , r, and j, l = 1, 2, . . . ,m with j 6= l, the ith elementary reaction,

Ri, in CRN (3.1) may be rewritten as

Ri : Cj
ki→ Cl, (3.3)

where ki is the rate constant of the ith reaction Ri.

The representation of CRN (3.1) in term of complexes as given in (3.3) defines

a directed graph G(V,E) with a set of vertices V = C and a set of directed edges
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E = R. The weight of each edge in this graph is given by the rate constant ki that

corresponds to the ith reaction from Cj to Cl. Using this graph representation, we

may construct an (m × r) incidence matrix Ia such that for each (Cj, Cl) ∈ Ri in

(3.3), the ith column of Ia satisfies

Ia(i)
.
=


Ia(j, i) = −1,

Ia(l, i) = 1,

0, otherwise.

(3.4)

Corresponding to matrix Ia, we also construct an (r ×m) weighting matrix Ik such

that for each (Cj, Cl) ∈ Ri in (3.3), the ith row of matrix Ik is defined as

ITk (i)
.
=

 ITk (j, i) = ki,

0, otherwise.
(3.5)

Using matrices Y, Ia, Ik and vector ψ(x), define a constant matrix N = Y Ia and a

vector of monomials v(x, k) = Ikψ(x). The dynamics of CRN (3.1) is then governed

by the following differential equation.

ẋ = Y IaIkψ(x)

= Nv(x, k) (3.6)

= N diag(k)xZ

where N ∈ Zn×m is known as stoichiometric matrix and v(x, k) ∈ Rm
+ is called flux

vector which satisfies a decomposition v = diag(k)xZ where k is the set of reaction

constants and Z ∈ Zn×m≥0 is a matrix of nonnegative integers whose ith column denotes

the multi-index of the ith monomial vi(x, k). We call differential equation (3.6) the

kinetic realization of CRN (3.1). An example which illustrates the construction of

kinetic realization (3.6) from a CRN of the form (3.1) is given in example 3.1.
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3.1.2 Properties of kinetic realization

It is well known that the trajectories of kinetic realization (3.6) lie in an affine

subspace of the positive orthant [35, 43]. This can be verified by observing that

for differential equation ẋ(t) = Nv(x(t), k) in (3.6) and any time t1 < t2 ∈ [0, t],

the vector difference x(t2)− x(t1) is an element of im(N), where im(N) denotes the

image of N . By integrating this vector difference along the solution of x(t), we have

x(t2) = x(t1) +

∫ t2

t1

Nv(x(t), k)dt,

which implies

x(t2)− x(t1) = N

∫ t2

t1

diag(k)ψ(x(t))dt.

The above equation shows that the difference x(t2)− x(t1) is a linear combination of

the column of matrix N with coefficients ci = ki
∫ t2
t1
x(t)αidt and α is the multi-index

of the monomials ψ(x). Thus for any initial condition x0 ∈ Rn
≥0, the trajectory x(t)

at time t ≥ 0 will stay in an affine space S = (x0 + im(N)) ∩ Rn
≥0 known as the

stoichiometric compatibility class [35].

Let w = w1, . . . , wm be a basis vector of the orthogonal complement of im(Y Ia).

This means w is a basis for ker((Y Ia)
T ) with dimension d = dim(ker((Y Ia)

T )) =

m = rank(Y Ia). Let x(0) = x0 be an initial condition and define ci = wTi x0. We

then have

x0 + im(Y Ia) = {x ∈ Rn | wTi x− ci = 0 for i = 1, . . . , d}. (3.7)

Equation (3.7) is often called the conservation relation and it shows how mass or en-

ergy are conserved within the system. The kinetic realization (3.6) therefore generally
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takes the form

ẋ = Nv(x, k), x(0) = x0,

wTi x = ci, for i = 1, . . . , n− rank(Y Ia).
(3.8)

Given a differential equation as in (3.8), one is often interested in computing the

system’s equilibria, x∗, defined as

x∗ = {x ∈ Qn(k) : Nv(x, k) = 0}, (3.9)

such that x∗ is a vector in Rn for fixed k, and is a continuum otherwise. Computing

the analytical expression of equilibria (3.9) in high dimensional systems usually re-

quires the use of symbolic methods. One of such methods is based on the techniques

from algebraic geometry which uses the Gröbner basis of equations Nv(x, k) = 0 [20,

see also chapter 2]. This method originated from the fact that the zeros of polynomial

equations are equivalent with the zeros of its basis [20]. Gröbner bases of polyno-

mial equation can be computed using Buchberger algorithm [9, 20] which have been

implemented in many computer algebra softwares [22]. The standard Buchberger

algorithm, however, has a drawback in that (in the worst case) the degree of the

computed bases grow doubly exponential with respect to the number of unknown

variables [31, see also the discussion in chapter 2].

One alternative approach for computing equilibria (3.9) is by studying the solu-

tion of system (3.8) in a projective space [43]. By considering contionuous mapping

functions v : Rn → Rm and g : Rm → Rn, then the following statements for model

(3.8) are equivalent [42, 43].

∃x ∈ Rn with g(v(x, k)) = 0,

∃v ∈ Rm with v ∈ im(v(x, k)) and g(v) = 0.
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For the case of model (3.8), function v(·) is given by v(x, k) = diag(k)xZ and function

g(·) is given by matrix N . From the discussion in the previous section, we know that

v(x, k) ≥ 0 and so the above equivalence can be rewritten as

∃x ∈ Rm
≥0 with Nv(x, k) = 0.

∃v ∈ Rm
≥0 with v ∈ im(v(Rn

≥0)) and Nv = 0.
(3.10)

By the nonnegativity of v, the equilibrium fluxes v∗ = {v ∈ Rm | g(v) = 0} is then

given by

∃v∗ ∈ Rm with v∗ ∈ im(v(Rn
≥0)) and v∗ ∈ ker(N) ∩ Rm

≥0, (3.11)

where ker(N) denotes the null space of N . This observation suggests two important

consequences that will be useful for computing the parameterization of equilibrium

state x∗ (3.9).

First: it means that the equilibrium fluxes are non-negative vectors lying in the null

space of N . In particular, any equilibrium flux must lie in a convex polyhedral cone

[17, 67, 43]

v∗ ∈ Kv = ker(N) ∩ Rm
≥0 =

{
v ∈ Rm

≥0 : v = Σq
i=1λiEi

}
. (3.12)

The cone, Kv, in equation (3.12) is finitely generated by a set of extreme rays,

Ei ∈ Rm
≥0 for i = 1, 2, . . . , q. Such rays are routinely computed using tools such as

CellNetAnalyzer [67]. Every equilibrium flux in Kv can therefore be parameterized

with respect to these rays. In equation (3.12), the parameters λ = (λ1, λ2, . . . , λq)

are called convex parameters [17] and so any equilibrium flux can be written as v∗(λ)

a linear function of the convex parameters.
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Second: any flux, v, in the system must satisfy the equation

vi = kix
zi , i = 1, 2, . . . ,m. (3.13)

Equations (3.13) are binomials in R(k)[x, v] and this system’s zeros characterize both

the equilibrium fluxes, v∗, and the equilibrium state x∗. The ideal generated by these

binomials is a toric ideal [4, 43] for which efficient algorithms for computing a Gröbner

basis are available [106, 47]. One can therefore solve for the equilibria of the system

in terms of its equilibrium fluxes and system parameters.

The preceding two consequences of kinetic realization can be summarized as

(i) any equilibrium flux can be expressed as a function v∗(λ) in terms of convex
parameters (λ), and

(ii) any equilibrium state can be expressed as a rational function x∗(v∗, k) of the
equilibrium fluxes (v∗) and the system parameters (k).

Using the expression v∗(λ) of equilibrium flux in term of the convex parameters,

one can then parameterize the equilibrium state as x∗(λ, k) ∈ Qn(k, λ). Detailed

discussion on this equilibrium parameterization is given in the next section.

Another property of kinetic realization is that the system’s Jacobian matrix J

can be parameterized as [43, 44]

J(λ, k) = Ndiag(v∗(λ))ZTdiag(1/x∗(λ, k)). (3.14)

One can therefore use the Jacobian matrix (3.14) as an alternative to study the steady

state properties of the system (see chapter 4).

3.2 Equilibrium Parameterization of Kinetic Realization

This section presents detailed discussion of method for computing the equilib-

rium parameterization of kinetic realization (3.6). This parameterization essentially
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consists of two main steps. The first step aims to compute a Gröbner basis for the

toric ideal induced by the binomial system (3.13). In particular, this basis is defined

only with respect to the flux variable, v, and so its computation involves the elimi-

nation of unknown variables x from binomial system (3.13). The variety of this basis

therefore defines the equilibrium flux v∗. The second step aims to extend the ob-

tained equilibrium flux v∗ for solving the equilibrium state x∗ using the relationships

in (3.12)-(3.13). This extension will be established through a transformation using

Hermite normal form [108, chapter 3.2]. We point out that these two steps essentially

correspond to the elimination and extension steps for computing of the Gröbner basis

of binomial ideal (3.13).

3.2.1 Computation of equilibrium flux

Let R(k)[x] and R(k)[v] be polynomial rings in the unknowns x = (x1, . . . , xn)

and v = (v1, . . . , vm), respectively. The mapping v(x, k) from the state x ∈ Rn to the

flux v ∈ Rm in (3.6) satisfies

v(x, k) : Rn
≥0 7→ Rm

≥0, x 7→ v(x, k),

and the image of v(x, k) is given by

v1(x, k) = k1x
Z1 , v2(x, k) = k2x

Z2 , . . . , vm(x, k) = kmx
Zm .

From the above relation, one may see that an equilibrium flux v∗ ∈ Rm
≥0 will corre-

spond to an equilibrium state x∗ ∈ Rn
≥0 if and only if v∗ lies on the image the function

v(x∗, k), i.e. if

v∗ ∈ im(v(x∗, k)).
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The above condition can be enforced by requiring that

vi − vi(x, k) = 0, for i = 1, . . . ,m. (3.15)

The expression on the left hand side of (3.15) is binomial ideal over R(k)[x, v]. Since

v = diag(k)xZ and Z ∈ Zn×m≥0 , one may conclude that matrix Z induces a substitution

homomorphism on v(x, k) and that v ∈ R(k)[v] is a toric ideal associated with the

function v(x, k) [4]. This implies that the equilibrium flux v∗ lies on the affine toric

variety V (I) of the toric ideal I = 〈vi−vi(x, k)〉∩R(k)[v]. In particular, one may use

the Elimination Theorem to compute the Gröbner basis of I. This Gröbner basis will

be the defining ideal of the toric variety V(I) and therefore can be used to compute

the equilibrium flux v∗. In the following, we describe the procedure to compute the

equilibrium flux v∗.

First, we define ideal I ∈ R(k)[x, v] which corresponds to binomial system (3.15)

I = 〈v1 − k1xZ1 , . . . , vm − kmxZm〉 ⊆ R(k)[x, v]. (3.16)

The associated toric ideal I ⊆ R(k)[v] (note the difference of the ring) is given by

I = 〈v1 − k1xZ1 , . . . , vm − kmxZm〉 ∩ R(k)[v],

= I ∩ R(k)[v]. (3.17)

By the Hilbert’s Basis Theorem [20], we know I is generated by a finite number of

basis where one choice of such basis is the Gröbner basis [20]. Since I ∈ R(k)(x, v) is

a binomial ideal, its Gröbner basis will also be binomial ideal defined on R(k)(x, v)

[78].

Let G denotes the Gröbner basis of I with respect to elimination ordering (such

as lex order) that eliminates variable x. Now notice that the toric ideal I in (3.17),
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obtained from the intersection I ∩ R(k)[v], is the nth elimination ideal of I (as it

is obtained by eliminating n variables x from I) defined on the ring R(k)[v]. By

using the Gröbner basis G of ideal I, the Elimination Theorem discussed in chapter

2 implies that the basis

Gn(v) = G ∩ R(k)[v]

is a Gröbner basis for I ∩ R(k)[v] = I. This means that one of the Gröbner basis

for toric ideal I is those bases in G which contains only indeterminates v. Since the

variety of an ideal is equivalent to the variety of its basis [20], the toric variety V(I)

is then given by

V(I) = {v ∈ Qm(k) : Gn(v) = 0} ⊆ R(k)[v]. (3.18)

The equilibrium flux v∗ can then be obtained from the toric variety (3.18), i.e.

v∗(k) ∈ V(I). (3.19)

3.2.2 Computation of equilibrium state

By the Ideal-Variety Correspondence theorem [20], we know that any variety

V(I) ∈ R(k)[x, v] of binomial ideal (3.15) will vanish on toric variety V(I) (3.19).

Since v∗(k) ∈ V(I) ⊆ R(k)[v], then v∗(k) defines only a partial solution to V(I) and

we need to extend it to obtain the remaining solution x∗ ∈ R[x, v]. If such solution

x∗ exists, then both x∗ and v∗ will then define the total solution V(I) ⊆ R(k)[x, v]

for binomial system (3.15).

The Extension Theorem [20] can be used to show that the partial solution v∗(k)

can be extended to obtain x∗. In particular, let us rewrite the ideal in (3.13) as

v = diag(k)xZ . (3.20)
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Now note that for a given nonzero solution v∗(k), the above representation satisfies

the condition on Extension Theorem 2.6 for gi(·) = diag(k) (with the second term

on the right hand side in (2.6) equals to zero) and thereby guarantees the existence

of the extended solution x∗.

Now we show that x∗ can be computed using the Hermite normal form [44, 78].

Let’s introduce a coordinate transformation x∗ = ωU with ω ∈ Rn and U is a unimod-

ular matrix. Recall from linear algebr that the Hermite normal form H of a matrix

Z is given by H = UZ [108]. Evaluating (3.20) at (state and flux) equilibrium gives

v∗(k) = diag(k)(x∗)Z which implies

diag(k)(x∗)Z = diag(k)ωUZ = diag(k)ωH = v∗(k). (3.21)

For given v∗(k), solving the equation diag(k)ωH = v∗(k) for ω and then followed

by computing x∗ using the relation x∗ = ωU , the solution x∗(k) ∈ R(k)[x] can be

obtained. Both x∗(k) and v∗(k) then define the total solution to binomial ideal I in

(3.15).

Now recall from (3.12) that the equilibrium flux v∗ is defined on the convex cone

Kv and satisfies a parameterization of the form

v∗(λ) ∈ Kv. (3.22)

This implies that v∗ is given by the intersection of (3.19) and (3.22), i.e.

v∗(λ, k) = {v∗ ∈ V(I)} ∩ {v∗ ∈ Kv} ⊆ R(λ, k)[v]. (3.23)

By substitution of (3.23) to (3.21), then the equilibrium state x∗(v∗, k) from trans-

formation (3.21) can now be rewritten as x∗(λ, k) a parameterization of λ and k.

The complete algorithm to compute parameterizations of v∗(λ, k) and x∗(λ, k) is
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depicted in figure 3.1. The following example of the Brusselator dynamics will be

used to illustrate the equilibrium parameterization discussed in this section.

Example 7. Consider the dynamics of the Brusselator generated by species X, Y

with concentration [X], [Y ], respectively, according to the following CRN. [35]

2X + Y
k1−→ 3X

∅
k4
�
k3

X
k2−→ Y

We use x1, x2 to denote [X], [Y ], respectively. There are five complexes in this CRN

namely C = {x21x2, x31, x1, x2, 1}.

Matrix Y and vector ψ(x) which satisfy (3.2) are given by

Y =

 2 3 1 0 0

1 0 0 1 0

 , ψT (x) = [ x21x2, x31, x1, x2, 1, ].

Using the rules in equations (3.4) and (3.5), matrices Ia and Ik are then defined as

Ia =



−1 0 0 0

1 0 0 1

0 −1 −1 1

0 1 0 0

0 0 1 −1


, Ik =



k1 0 0 0 0

0 0 k2 0 0

0 0 k3 0 0

0 0 0 0 k4


.

The kinetic realization of the system is then given by

ẋ = Y IaIkψ(x) = Nv(x, k),

45



1: Input: kinetic realization, v(x, k) = (k1x
Z1 , . . . , kmx

Zm)T and matrix N
2: Output: equilibrium flux, v∗(λ, k), and equilibrium state x∗(λ, k)

3: Construct the binomial ideal I ⊆ R(k)[x, v] of (3.18).

I = 〈v1 − k1xZ1 , . . . , vm − kmxZm〉 ∈ R(k)[x, v]

4: Compute a Gröbner basis G of I ∈ R(k)[x, v] with respect to lex ordering that
eliminate indeterminates x, i.e.

x1 � · · · � xn � v1 · · · � vm

5: Use G and Elimination Theorem to compute the Gröbner basis Gn ∈ R(k)[v] for
the nth elimination ideal of I according to

Gn = G ∩ R(k)[v]

• The Gröbner basis Gn will be formed by those basis in G that contain only
the indeterminate v.

• The toric ideal (3.20) is then given by I〈Gn〉 ⊆ R(k)[v] and its variety is
given by V(I) = {v ∈ R(k)m : Gn = 0} ⊂ R(k)[v].

6: The equilibrium flux defined by toric variety is given by v∗(k) ∈ V(I).
7: Compute the convex parameterization of equilibrium flux v∗(λ) ∈ Kv.
8: The equilibrium flux is

v∗(λ, k) = {v∗ ∈ V(I)} ∩ {v∗ ∈ Kv}.

9: Use transformation (3.21) to obtain x∗(λ, k).

Figure 3.1. Algorithm for computing parameterization of equilibrium flux
and equilibrium state.
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where matrix N and vector v(x, k) are defined as

N =

 1 −1 −1 1

−1 1 0 0

 , v(x) = [ k1x
2
1x2, k2x1, k3x1, k4 ],

and matrices diag(k) and Z such that v(x, k) = diag(k)xZ are given by

diag(k) =



k1 0 0 0

0 k2 0 0

0 0 k3 0

0 0 0 k4


, Z =

 2 1 1 0

1 0 0 0

 .

The differential equation governing the Brusselator dynamics is then given by

ẋ1 = k1x
2
1x2 + k4 − k2x1 − k3x1,

ẋ2 = −k1x21x2 + k2x1.

(3.24)

Now we illustrate the parameterization of equilibrium flux and equilibrium state for

this system using the method described in section 3.2.

Step 1: We first compute the convex parameterization of equilibrium flux in (3.12).

For the Brusselator system (3.24), the extreme rays of ker(N)∩Rm
≥0 computed using

CellNetAnalyzer [67] is given by

E =

E1

E2


T

=

1 1 0 0

0 0 1 1


T

.

Thus, the parameterization of equilibrium flux (3.16) in term of the convex parameters

λ is given by
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v∗(λ) =
2∑
i=1

λiEi =



λ2

λ2

λ1

λ1


. (3.25)

Step 2: Next, we compute the equilibrium flux defined by toric variety I in (3.17).

The ideal I formed by the flux vector vi and each monomial in v(x, k) is given by

I = 〈v1 − k1x21x2, v2 − k2x1, v3 − k3x1, v4 − k4〉.

The Groebner basis of I computed using Singular [22] is given by

G(I) = {v4 − k4, k3v2 − k2v3, k1x2v23 − k23v1, k3x1 − v3}.

Using the Elimination Theory, the Gröbner basis of toric ideal I in (3.17) is given

by those elements of G which contain only indeterminate v, i.e.

Gn(I) = {v4 − k4, k3v2 − k2v3}.

The toric ideal, I, is therefore given by I = 〈Gn〉 and the toric variety is defined as

V(I) = {Gn(I) = 0}. The equilibrium flux obtained from V(I) then satisfy

v∗4 − k4 = 0, k3v
∗
2 − k2v∗3 = 0. (3.26)

Step 3: We now compute the intersection of v∗(k) and v∗(λ). From the parameteri-

zation of equilibrium flux v∗(λ) in (3.25), we have

v∗1 = v∗2 = λ2, and v∗3 = v∗4 = λ1.
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Substitution of (3.25) to (3.26) gives the following relation

λ1 − k4 = 0,

k3λ2 − k2λ1 = 0,

which implies that the equilibrium flux can be parameterized either in term of convex

parameters or the system parameters as follows.

v∗(λ, k) =



λ2

λ2

λ1

λ1


=



k2k4/k3

k2k4/k3

k4

k4


. (3.27)

Step 4: Finally we use the Hermite transformation (3.21) to compute the parameteri-

zation of equilibrium state x∗(λ, k) from v∗(λ, k) in (3.27). The unimodular matrix U

and Hermite normal form H that correspond to matrix Z in (3.21) such that UZ = H

are

UZ = H ⇔

 0 1

1 −2

Z =

 1 0 0 0

0 1 1 0

 .
Using the transformation (3.21), the relation diag(k)wH = v∗(λ, k) with v∗(λ, k) in

(3.27) becomes

diag(k)wH =



k1w2

k2w1

k3w1

w3


= v∗(λ, k).

Solving the above equation for w and then using the relation x∗ = wU in (3.21), the
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parameterization of the equilibrium state x∗(λ, k) is given by

x∗1 =
λ2
k3
, x∗2 =

k23λ1
k1λ22

. (3.28)

Notice that the above equilibrium is an explicit function of the system’s parameters

and so for given values of the system’s parameters, one may directly evaluate system’s

equilibria without having to solve the differential equations in the system’s model.

3.3 Kinetic Realization of Nonnegative Systems

As discussed in the previous sections, the special structure of kinetic realization

(3.6) allows one to compute a parameterization of the system’s equilibria as a rational

polynomial of the system parameters and some convex parameters. Notice that

this analytical expression of the system’s equilibrim is very useful for analyzing the

dynamical properties (e.q. stability, bifurcation, etc.) of the system. It is therefore

reasonable to ask whether the kinetic realization (3.6) can be constructed for larger

classes of systems other than that arise from CRN.

As described in [53], there are in fact many systems from which the kinetic real-

ization (3.6) can be constructed. In particular, the necessary and sufficient conditions

which guarantee the existence of a system’s kinetic realization (3.6) is given in the

following lemma from [53].

Lemma 3.3.1 ([53]). An m polynomial systems f1, . . . , fm in n variables x = (x1, . . . , xn)

is a mass action kinetic systems if and only if for i = 1, . . . , n, there exist real poly-

nomials gi(x), hi(x) with nonnegative coefficients such that fi = gi(x)− xihi(x).

Lemma 3.3.1 essentially states that a system modeled as differential equation ẋi =

fi(x, k) will have a kinetic realization if: (i) fi(x, k) is polynomial function and (ii)

fi(x, k) satisfies fi(x, k) = gi(x, k) − xihi(x, k) where g(·) and h(·) are polynomials

with nonnegative coefficients. The first condition which requires the system’s vector
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fields to be polynomial functions is not too restrictive since any differential equation

models can be approximated as polynomial systems using Taylor or higher order

polynomials approximation methods [104]. On the other hand, the second condition

which essentially requires the system to be nonnegative [52] is also not restrictive be-

cause many systems (such as biological, ecological, or compartmental system) satisfy

this property. These facts therefore suggest that there exist a large class of systems

(other than that arising from models of CRN) which satisfies the conditions in lemma

3.3.1. As a result, the kinetic realization (3.6) for these systems can be extracted and

that the equilibrium parameterization discussed in chapter 2 can also be applied to

them. In the rest of this proposal, we call this class of systems as nonnegative systems

with kinetic realization. An example computation of the kinetic realization (3.6) and

equilibrium parameterization x∗(λ, k) for this class of system will be presented in

example 8 using a tritrophic food web model from ecology [54].

Remark 3.3.2. Although would not be pursued here, we point out that there exist a

large literature in chemical reaction networks on the problem of computing optimal

elementary reactions of the form (3.1) from a given differential equation [53, 109–

111, 62, 61]. This problem is often called inverse or minimal realization problems.

In fact, lemma 3.3.1 is one of the important results in this problem. In particular,

lemma 3.3.1 can be used to realize a set of elementary reactions of the form (3.1) for

polynomial system

ẋi = fi(x, k), i = 1, . . . , n,

=

zi∑
j=1

kijx
[αij ],

(3.29)

where α is the multi-index associated to monomials xα and f(x) =
∑z

k=1 ckx
[αk] is a

representation of polynomial f(x) as linear combination of z monomials with coeffi-

cient k. The basic idea in this realization is to construct an equivalent elementary
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Algorithm 1 Realization of elementary reaction for given monomial

1: procedure ElementaryReaction(kxα)
2: if (kxα ∈ fi) and (sign(kxα) is positive) then

3: build reaction R:
∑n

i=1 αixi
k−→ (
∑n

i=1 αixi) + xi
4: else
5: if (kxα ∈ fi) and (sign(kxα) is negative) then

6: build reaction R:
∑n

i=1 αixi
k−→ (
∑n

i=1 αixi)− xi
7: end if
8: end if
9: Return R
10: end procedure

reaction to each monomial in fi(x) according to the sign of each monomial and in

which polynomial fi that monomial appear. These rules are summarized in Algo-

rithm 1 which outputs a set of elementary reactions of the form (3.1).Given polyno-

mial system (3.29) which consist of zi monomials, Algorithm 1 will produces at most

n(R) =
∑n

i=1 zi elementary reactions of the form (3.1). It is possible that the output

of agorithm 1 is not optimal in the sense that the number of constructed reactions

exceed a minimal number of reactions required to construct the corresponding differ-

ential equation. In this case, one may use, for example, the method in [110] to obtain

a minimal realization of the algorithm 1’s output. This combination would then pro-

vides an algorithmic method for constructing optimal set of elementary reactions for

given polynomial systems.

Example 8. This example illustrates the method for computing the kinetic realiza-

tion and equilibrium parameterization of nonnegative systems with kinetic realization

described in sections 3.2-3.3 using a tritrophic food web model from [54]. The scaled
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differential equation governing the dynamics of the system is given by

ẋ1 = x1 (1− x1)−
k1x1x2
k2 + x1

ẋ2 =
k3x1x2
k2 + x1

− k4x2x3 − k5x2

ẋ3 = k6x2x3 − k7x3

where x1, x2, x3 denote the biomasses of producers, consumers, and top predators,

respectively, and ki, (i = 1, . . . , 7) are some positive parameters. Notice that this

system does not satisfies the first condition in lemma 3.3.1 due to the rational poly-

nomials appear in the first and the second state equations. However, we can introduce

an augmented state x4 of the form

x4 = (k2 + x1)
−1 → ẋ4 = (∂x4/∂x1)ẋ1 = x1x

2
4(x1 − 1) + k1x1x2x

3
4,

so that the original differential equation can be rewritten as

ẋ1 = x1 (1− x1)− ax1x2x4

ẋ2 = k3x1x2x4 − k4x2x3 − k5x2

ẋ3 = k6x2x3 − k7x3

ẋ4 = x1x
2
4(x1 − 1) + k1x1x2x

3
4

(3.30)

which now satisfies the condition in lemma 3.3.1. One may verify that matrix N and

vector v(x, k) that correspond to kinetic realization ẋ = Nv(x, k) of system (3.30) are

N =



1 −1 1 0 0 0 0 0 0 0 0

0 0 0 1 −1 1 0 0 0 1 0

0 0 0 0 0 0 1 −1 0 0 0

0 0 0 0 0 0 0 0 1 −1 1


,
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v(k, x) = [x1, x
2
1, k1x1x2x4, k3x1x2x4, k4x2x3, k5x2, k6x2x3, k7x3, x

2
1x

2
4, x1x

2
4, k1x1x2x

3
4]
T ,

and matrix Z which satisfies v(x, k) = diag(k)xZ for k = ki, (i = 1, . . . , 7) is

Z =



1 2 1 1 0 0 0 0 2 1 1

0 0 1 1 1 1 1 0 0 0 1

0 0 0 0 1 0 1 1 0 0 0

0 0 1 1 0 0 0 0 2 2 3


.

Now we proceed with the computation of the equilibrium parameterization.

Step 1: First, we compute the convex parameterization of equilibirium flux. For sys-

tem (3.30), the following seven extreme rays (Ei, i = 1, . . . , 7) are identified using

CellNetAnalyzer[67].



E1

E2

E3

E4

E5

E6

E7



=



1 1 0 0 0 0 0 0 0 0 0

0 1 1 0 0 0 0 0 0 0 0

0 0 0 1 1 0 0 0 0 0 0

0 0 0 1 0 1 0 0 0 0 0

0 0 0 0 0 0 1 1 0 0 0

0 0 0 0 0 0 0 0 1 1 0

0 0 0 0 0 0 0 0 0 1 1



.

The convex parameterization (3.12) of equilibrium flux is then given by

v∗(λ) = [λ1, λ1 + λ2, λ2, λ3 + λ4, λ3, λ4, λ5, λ5, λ6, λ6 + λ7, λ7]
T . (3.31)

Step 2: Next we compute the equilibrium flux from the toric variety V(I) defined in
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(3.18). The ideal I formed by the flux vector vi and the monomials v(x, k) is

I = 〈 v1 − x1, v2 − x21, v3 − k1x1x2x4, v4 − k3x1x2x4, v5 − k4x2x3, v6 − k5x2,

v7 − k6x2x3, v8 − k7x3, v9 − x21x24, v10 − x1x24, v11 − k1x1x2x34 〉.

By computing the Groebner basis of I using Singular [22] and applying the Elimination

Theorem to eliminates variable x, the Gröbner basis for toric ideal I is given by

Gn(I) = { k6v7v8 − k5k7v7, k6v5 − k4v7, k25v24 − k23v26v9, k3v3 − k1v4,

k25v2 − v26, v1v11 − v3v10, v1v10 − v9 }.

The toric ideal is then defined as I = 〈Gn〉 and the toric variety is given by V(I) =

{Gn = 0}. The equilibrium flux obtained from V(I) then satisfy

v∗(k) = {v : Gn(I) = 0}. (3.32)

Step 3: By computing the intersection of v∗(k) in (3.32) and v∗(λ) in (3.31), one

may verify that the equilibrium flux is given by

v∗(λ, k) = [v∗1, v
∗
2, v
∗
3, λ3 + λ4, λ3, λ4, k6λ3/k4, k6λ3/k4, λ6,

λ6(1 + λ2/(λ1 − λ2)), λ2λ6/(λ1 − λ2)]T ,

where

v∗1 = (k7/k6)
2 − (k1/k6)(λ3 + k5k7/k6),

v∗2 = (k7/k6)
2 − (k1/k6 − k1/k3)(λ3 + k5k7/k6),

v∗3 = (k1/k3)(λ3 + k5k7/k6).

Note that we have used µ = (k1, k5, k6, λ3, λ4, λ5, λ6, λ7) to parameterize the equilib-

rium flux.

Step 4: Finally, we use Hermite transformation (3.25) to compute the equilibrium
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x∗(λ, k) from v∗(λ, k). The unimodular matrix U that satisfies (3.25) for the given

matrix Zof system (3.30) is

U =



1 0 0 −1

0 1 0 −1

0 0 0 1

0 0 1 0


.

Using the relation in (3.25), the parameterized equilibrium state x∗ is then given by

x∗1 =
λ6

λ6 + λ7
, x∗2 =

λ4
λ5
, x∗3 =

k5λ5
k6λ4

, x∗4 =
k5λ7

k1λ4(λ6 + λ7)
. (3.33)

3.4 Remarks and Proposed Research

This chapter presented method for computing equilibrium parameterization of

nonnegative systems with kinetic realization. As will be shown in the next chapter,

this equilibrium parameterization is useful to help simplify the minimum distance-

to-bifurcation problem.

Proposed research: We are currently developing a software toolkit that performs

all computations in the equilibrium parameterization method described in this chap-

ter. In particular, this toolkit will be integrated with another software toolkit that

implements the method for predicting bifurcation-induced regime shifts discussed in

chapter 4. Thus, one of the expected outputs of the proposed research is an integrated

software toolkit that can performs both equilibrium parameterization described in

this section and the method for predicting regime shifts described in chapter 4. We

plan to evaluate the performance of this toolkit in an experiment for predicting eco-

logical regime shifts which will be discussed in chapter 6.
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CHAPTER 4

FORECASTING BIFURCATION-INDUCED REGIME SHIFTS

4.1 Introduction

This chapter presents our proposed methods to forecast the bifurcation-induced

regime shifts. We recall that bifurcation-induced regime shifts occur because the

system undergoes a bifurcation as a result of variation on system’s parameters that

exceeds a critical threshold. We formulate the problem of predicting the onset of

bifurcation-induced regime shifts as a minimum distance-to-bifurcation problem [25]

and then propose a method to solve this problem in a class of nonnegative systems

with kinetic realization. Our proposed method consist of two main steps:

• First, we use the equilibrium parameterization discussed in chapter 3 to simplify
the optimization problem for computing the minimum distance-to-bifurcation.
In particular, the use of such parameterization allows us to express the con-
straints of optimization only in term of system’s parameters rather than the
system’s parameters and equilibria.

• Second, by rewriting the constraints of optimization as semialgebraic sets in
the parameter space, we show that the optimization problem for computing
the minimum distance-to-bifurcation can be recasted as an SOS optimization
problem. This SOS optimization can then be solved using the available SOS
programming softwares [90, 75, 55].

4.1.1 Backgrounds and prior works

To motivate the discussion, recall the lake eutrophication model in chapter 1

ẋ = a− bx+
x2

1 + x2
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(a) One-parameter bifurcation diagram. (b) Two-parameters bifurcation diagram.

Figure 4.1. Bifurcation diagrams of the lake model.

where the state x denotes the concentration of Phosporus (P ) in the lake water

column and a, b ≥ 0 are parameters denoting the rate of inflow and outflow of P into

and out of the lake, respectively. Recall from chapter 1 that the equilibria of this

system is given by those values of x at the intersections of the curves f(x) and g(x)

defined below

a+
x2

1 + x2︸ ︷︷ ︸
f(x)

= bx︸︷︷︸
g(x)

.

First, let us consider the characteristic of these equilibria when parameter b is held

fixed while parameter a is varied. The values of equilibria for different a can be

traced from the one-parameter bifurcation diagram in figure 4.1a which is obtained

using XPPAUT [33]. One may see that the number of equilibria changes as the value

of a increase and that these changes are followed by the change on the qualitative

dynamics (i.e. stability) of the system. When a increases from zero up to a critical

value a∗, then further increase on a will induces a regime shift in which the system’s

equilibria flip from low to high P levels. Once the system stays in the high P level

equilibrium, the return to a low P level requires a decrease on parameter a down

to the critical value a∗∗ due to hysteresis property of the bifurcation diagram. One
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may further analyze how the equilibria bifurcates when both parameters a and b are

simultaneously varied. The two-parameters bifurcation diagram in figure 4.1b [33]

clearly shows the partition of the parameter space into regions where the system may

have single (oligotrophic or eutrophic) or multiple equilibria (bistable). The curve

which encapsulates the bistable region in figure 4.1b is known as the bifurcation

manifold and it contains all critical parameter values k∗ at which transitions or

regime shifts between different dynamics of the system occur. Thus for any nominal

parameter k0, the minimum distance-to-bifurcation

γ = inf
k
|k∗ − k0| (4.1)

is defined as the shortest distance between k0 and the bifurcation manifold.

The computation of γ, however, is generally difficult since the bifurcation set

is usually not known. In particular, the standard numerical bifurcation methods

illustrated in the above example are limited to systems having at most two unknown

parameters. For dynamical system

ẋ(t) = f(x(t), k), x(t) = x0, (4.2)

whose vector fields depend on parameter k, the bifurcation manifold consists of those

critical parameters k∗ that satisfy the bifurcation conditions in Table 4.1 [73]. The

first row of the table shows necessary and sufficient conditions for a Hopf bifurcation.

The transversality condition requires that the partial derivative (with respect to

parameter k) of the real part of the characteristic polynomial’s roots be not equal to

zero. The other transversality conditions in this table are conditions on the various

derivatives of the vector field in which w and v are the left and right eigenvectors,

respectively, associated with the zero eigenvalue of the Jacobian matrix (see [73]

for details). Each of these transversality conditions essentially describes an instance
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TABLE 4.1

Local bifurcation condition [73].

Type Jacobian Eigenvalue Transversality

Hopf simple 0 Dk{Re(s)} 6= 0

Saddle-node simple imaginary pair w
(
Dkf

∣∣
x∗,k∗

)
6= 0, w

(
D2
xf
∣∣
(v,v)

)
6= 0

Transcritical simple imaginary pair w
(
Dkf

∣∣
x∗,k∗

)
6= 0, w

(
D2
x,kf

∣∣
v,v

)
6= 0

Pitchfork simple imaginary pair w
(
Dkf

∣∣
x∗,k∗

)
6= 0, w

(
D3
xf
∣∣
x∗,k∗

)
6= 0

where the system undergoes change on its stability properties at the critical parameter

k∗. Prior works have proposed several methods for computing γ in the context

of robust stability analysis [69, 80, 84, 115] and voltage collapse problem in power

systems [26, 26]. In general, these methods use numerical optimization techniques

to search for the minimum γ subject to the constraints that the critical parameter

k∗ satisfy the condition in table 4.1. These methods, however, are computationally

demanding since the search for the minimum γ requires the computation of system’s

equilibrium x∗ numerically for each values of the parameter and at every iteration.

4.1.2 Approach and Contribution

This chapter presents the use of SOS optimization [87, 88] to bound the distance-

to-bifurcation, γ, in a class of nonnegative systems with kinetic realization. We recall

from chapter 3 that a polynomial systems in (4.2) is said to have a kinetic realization

if there exists a matrix N and a vector of monomials v(x, k) such that f(x, k) =

Nv(x, k). As discussed in chapter 3, the special structure of these systems allows

one to compute an analytical parameterization of their equilibria in terms of the
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system parameters. This equilibrium parameterization can therefore simplifies the

distance-to-bifurcation problem because the constraints that define the bifurcation

conditions can now be expressed only in terms of the system’s parameters, rather

than the system’s parameters and equilibria. By rewriting the bifurcation conditions

in table 4.1 as semialgebraic set description in the parameter space, we show that

the SOS relaxation techniques [87, 88] can be used to recast the computation of the

globally minimum distance-to-bifurcation as an SOS optimization problem.

The remainder of this chapter is structured as follows. Section 4.2 reviews some

backgrounds on local bifurcation theory. Section 4.3 describes the necessary bifurca-

tion conditions which will be used in section 4.4 to recast the distance-to-bifurcation

problem as an SOS optimization problem. Section 4.5 illustrates an application of

the proposed method to study the resilience of a tritrophic food chain from ecology.

Remarks and suggestion for future works are given in section 4.6.

4.2 Local Bifurcation and Distance-to-Bifurcation Problem

4.2.1 General systems

Consider dynamical system (4.2) and assume that the parameters are fixed real

numbers such that differential equation (4.2) can be rewritten as

ẋ = f(x), x(0) = x0. (4.3)

Let ϕ(t) : Rn 7→ Rn denotes an evolution operator which transforms the initial state

x0 ∈ Rn into some state x(t) ∈ Rn at time t ∈ [0, T ]

x(t) = ϕ(t)x0.
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The family of operators ϕ(t) for t ∈ [0, T ] is often called the flow of system (4.3) and it

characterize the evolution of the state x(t) of the system at any time t when initialized

at x0. For a dynamical system whose evolution is governed by the flow ϕ(t), two basic

geometric objects can be associated with it namely its orbits in the state space and

its phase portrait in the state space formed by these orbits. An orbit of a system that

starts at x0 is an ordered subset of the state space at which the evolution operator

ϕ(t)x0 is defined. Examples of orbits includes fixed points (equilibria), cycles, etc. On

the other hand, the phase portrait of a system is a partitioning of the state space into

orbits and thereby provides a topological description about the qualitative dynamics

of the system. Two dynamical systems are said to be topologically equivalent if their

phase portrait are qualitatively similar, namely if one phase portrait can be obtained

from another by continuous transformations [48, 73].

The dynamics of a system is usually studied locally in some bounded region

X ⊂ Rn of the state space. This is particularly helpful for topological classification

of the phase portrait near the equilibrium points because the local behaviors of a

system near its equilibrium points can be studied from its linearization. Let x∗ be an

equilibrium of (4.3) such that f(x∗) = 0 and let J = ∂f
∂x

∣∣
x∗

denotes its Jacobian matrix

evaluated at the equilibrium x∗. Let n−, n0, and n+ be the number of eigenvalues

of J with negative, zero, and positive real part, respectively. An equilibrium is

called hyperbolic if n0 = 0, that is, if there are no eigenvalues on the imaginary axis

[73]. In the neighborhood of a hyperbolic equilibriums x∗ of (4.3), the Grobman-

Hartman Theorem [73] states that the qualitative dynamic of nonlinear system (4.3)

is guaranteed to be locally topologically equivalent to its linearization ξ̇ = Jξ. One

can then study the local topological equivalence of dynamical systems by analyzing

the local phase portrait of its linearization around the equilibrium points.

Now let the vector fields of system (4.2) depend on its parameters k ∈ Rp and con-

sider the phase portrait of this system. If k vary in the parameter space Rp then the
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equilibrium x∗ and the phase portrait of the system will also vary in the state space

Rn. The phase portrait can either remain topologically equivalent to the original one

or it can change to something else. The appearance of a topologically nonequivalent

phase portrait under variation of the parameters is called a bifurcation and the value

of the parameters at which a bifurcation occurs is called the bifurcation (critical)

parameter [73]. Since the behavior of nonlinear systems with hyperbolic equilib-

rium is locally topologically equivalent with its linearization around the equilibrium,

one can then study the bifurcation using its linearization. In this case, topological

equivalence of the system under parameter variation can be studied by analyzing the

impact of such variation on the topology of the equilibrium. Let x∗ be a nominal

equilibrium of the systems and let y∗ be the equilibrium when the parameter vary.

The following theorem provides conditions under which the the linearized system is

locally topologically equivalent.

Theorem 4.2.1 ([73]). The phase portrait of a system near two hyperbolic equilibria,

x∗ and y∗ are locally topologically equivalent if and only if these equilibria have the

same number n− and n+ of eigenvalues with negative and positive real part, respec-

tively.

Theorem 4.2.1 is the basic result from which the necessary and sufficient bifurca-

tion conditions in table 4.1 is constructed [73]. Searching for the parameter set which

satisfy these conditions, however, is not a trivial task since their evaluation requires

the knowledge of system’s equilibria. In particular, the standard numerical softwares

[24, 33] used for bifurcation analysis is limited to study at most two parameters si-

multaneously. As a result, computing the minimum distance-to-bifurcation (4.1) for

more than two parameters is also become increasingly complex (see [26] for a review

of this method).
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4.2.2 Nonnegative systems with kinetic realization

The computation of minimum distance-to-bifurcation, however, can be simplified

for nonnegative polynomial systems that have kinetic realization. Note that system

(4.2) with polynomial vector fields f(x, k) ∈ Rn(k)[x] is said to be nonnegative if and

only if x(t) ∈ Rn
≥0 for all x0 ∈ Rn

≥0, t ≥ 0 [52]. A necessary and sufficient condition for

system (4.2) to be nonnegative is that fi(x, k) ≥ 0 for all x in which xi = 0 [52, 51].

We recall that system (4.2) has a kinetic realization if there exists an n×m integer

matrix, N , and an m× 1 vector of monomials, v(x, k) ∈ R(k)[x] such that

ẋ(t) = f(x, k) = Nv(x, k), x(0) = x0, (4.4)

where N is generally a sparse matrix and the flux vector v(x, k) satisfies a decompo-

sition of the form v(x, k) = diag(k)xZ , with Z ∈ Zn×m≥0 is a matrix whose ith column

denotes the multi-index of the ith monomial in v(x, k).

Nonnegative systems exist for a large number of real world systems including

compartmental, biological, and ecological systems [52, 51]. The restriction to poly-

nomial systems with kinetic realizations is not overly restrictive since 1) any smooth

function can be approximated arbitrarily closely with a polynomial [104], 2) systems

with rational vector fields can be transformed into polynomial systems [34], and 3)

there exist a number of methods for extracting kinetic realizations from polynomial

systems [53, 110, 111, 61–63].

As discussed in chapter 3, the special structure of nonnegative systems with kinetic

realization has two major consequences, namely

(i) any equilibrium flux can be expressed as a function v∗(λ) in terms of the convex
parameters (λ), and

(ii) any equilibrium state can be expressed as a rational function x∗(v∗, k) of the
equilibrium fluxes (v∗) and the system parameters (k).

Using the convex parameterization of equilibrium fluxes v∗, one can then parameterize
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the equilibrium state as x∗(k, λ) ∈ Qn(k, λ) a rational function of system’s parameters

and convex parameters. This algebraic equation characterizes all system equilibria

as a function of the system and convex parameters and it provides a critical start-

ing point for characterizing the bifurcation constraints in the distance-to-bifurcation

problem.

Another property of kinetic realization is that the system’s Jacobian matrix J

can be parameterized as [43, 44]

J(λ, k) = Ndiag(v∗(λ))ZTdiag(1/x∗(λ, k)). (4.5)

This implies that the bifurcation condition in table 4.1 can be evaluated directly in

term of the parameters (λ, k) without having to directly compute the equilibrium

x∗ for different k. Earlier work on the distance-to-bifurcation problem [25, 26, 10]

always required that one solve for the equilibrium as part of the optimization; this

increases the number of decision variables in the problem.

4.3 Necessary Bifurcation Conditions

Consider the Jacobian matrix in (4.5). Let p(s) = |sI − J | be the characteristic

polynomial of J defined as

p(s) = a0s
n + a1s

n−1 + · · ·+ an−1s+ an, (4.6)

where the coefficients ai(λ, k) are functions of the parameters (λ, k). For notational

convenience, we denote these parameters as µ = (λ, k). The eigenvalues of J are

given by the roots of p(s) and one says the matrix J is asymptotically stable if and

only if all its eigenvalues have negative real parts and it is unstable otherwise. For
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z = 1, . . . , n, the zth Hurwitz determinant, 4z, associated with p(s) is

4z =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a1 a3 a5 . . . a2z−1

a0 a2 a4 . . . a2z−2

0 a1 a3 . . . a2z−3
...

...
...

. . .
...

0 0 0 az−2 az

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
such that

41 = |a1|, 42 =

∣∣∣∣∣∣∣
a1 a3

a0 a2

∣∣∣∣∣∣∣ , 43 =

∣∣∣∣∣∣∣∣∣∣
a1 a3 a5

a0 a2 a4

0 a1 a3

∣∣∣∣∣∣∣∣∣∣
, . . . .

The following proposition gives the conditions for J to have simple zero eigenvalue.

Proposition 4.3.1. Consider matrix J in (4.5) with characteristic polynomial p(s)

in (4.6). If the coefficients of p(s) satisfies the conditions an = 0 and an−1 6= 0, then

matrix J will have zero eigenvalue with multiplicity not greater than one.

Proof. That an = 0 implies one of the roots of p(s) is zero is clear. Now notice that

p(s) will have zero eigenvalue with multiplicity not greater than one if ∂p(s)
∂s
|s=0 6= 0,

which will be satisfied when an−1 6= 0.

The following lemma from [18] gives the condition for J to have a simple pair of

imaginary eigenvalues. The proof is based on the Orlando formula [39].

Lemma 4.3.2 ([18]). Consider matrix J in (4.5) with characteristic polynomial p(s)

in (4.6). If the (n−1)th Hurwitz determinant of p(s) satisfies 4n−1 = 0, then matrix

J will have a pair of imaginary eigenvalues with multiplicity not greater than one.
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Now let us express the necessary conditions in table 4.1 in term of the coefficients

of p(s) in (4.6). Let q denotes the number of parameters in µ. Let ΩSN be the pa-

rameter set where a saddle-node (also pitchfork and transcritical) bifurcation occurs.

Using the conditions in proposition 4.3.1, one has

ΩSN =
{
µ ∈ Rq

≥0 | an(µ) = 0, an−1(µ) 6= 0
}
. (4.7)

In a similar way, lemma 4.3.2 can be used to describe the following parameter set ΩH

where Hopf bifurcation occurs.

ΩH =
{
µ ∈ Rq

≥0 | 4n−1(µ) = 0
}
. (4.8)

If a bifurcation occurs, then one may denote the parameter set Ω for which at least

one type of bifurcation occurs as

Ω = ΩSN ∪ ΩH . (4.9)

The sets in (4.7)-(4.9) are algebraic sets characterizing those parameters for which a

bifurcation may occur. Thus, system (4.4) will not have a bifurcation if the set Ω is

empty. A method for checking whether these sets are empty is discussed in the next

section.

Remark 4.3.3. Note that we only characterize the necessary conditions for the exis-

tence of Hopf and saddle-node bifurcations. This is because the necessary conditions

for the existence of pitchfork and transcritical bifurcations are the same with that

in the saddle-node bifurcation (see table 4.1). Moreover, we do not characterize the

semialgebraic descriptions of the transversality condition in table 4.1 because it will

not be used in the optimization formulation for computing the minimum distance-to-

bifurcation γ. Thus, the satisfaction of the transversality conditions will be checked
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after the critical parameter k∗ from the optimization is obtained.

4.4 Distance-to-Bifurcation Problem

From the previous section, it should be clear that the non-existence of a particular

bifurcation is equivalent to the emptiness of the corresponding bifurcation set. In

general, checking the emptiness of the set ΩSN , for example, can be difficult. In

recent years, however, it has proven fruitful to consider convex relaxations of this

problem in which one checks for the emptiness of the set Ω̃(γ) ∩ ΩSN , where Ω̃(γ) is

a semi-algebraic set defined by a psd certificate function V (µ).

In particular, let γ > 0 be a real-valued constant and let α(|µ− µ0|) be a class K

function in which µ is the parameter set with known initial parameter µ0. We define

the certificate set as

Ω̃(γ) = { µ ∈ Rq | α(|µ− µ0|) ≤ γ } . (4.10)

For given a specific γ > 0, if the intersection of the certificate set Ω̃(β) with the

bifurcation set ΩSN is empty, then the distance-to-bifurcation cannot be less than

α−1(γ). The key point in formulating the problem in this way is that the conditions

which specify whether the intersection set Ω̃(β)∩ΩSN is empty or not can be relaxed

into SOS condition [90, 75]. This fact is formally stated in the following proposition.

Proposition 4.4.1. For a constant γ > 0, let Ω̃(γ) be a certificate set in (4.10).

Consider the set ΩSN in (4.7). If there exist polynomials V (µ) and r(µ) such that

a2n−1(µ)(V (µ)− γ) + r(|µ|)an(µ) is SOS, (4.11)

then ΩSN ∩ Ω̃(γ) = ∅.

Proof. Verifying the condition ΩSN ∩ Ω̃SN = ∅ amounts to check the emptiness of
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the set

{ µ | an = 0, an−1 6= 0, V (µ)− γ 6= 0, −(V (µ)− γ) ≥ 0 } .

Using the positivstellensatz (p-satz) theorem [103, 5, see also chapter 2], this set is

empty if there exist SOS polynomials s0, s1 and polynomials V (µ), t(µ) such that

s0 − s1(V (µ)− γ) + a2mn−1 (V (µ)− γ)2m + t(µ)an = 0.

Letting s0 = 0, m = 1, and t(µ) = (V (µ)− γ)r(µ), the above equation becomes

s1(V (µ)− γ) = (V (µ)− γ)
(
a2n−1(V (µ)− γ) + r(µ)an

)
,

which implies the SOS condition in (4.11). Now consider any µ ∈ ΩSN for which

an(µ) = 0 holds. Upon substitution with the SOS condition in (4.11), we have

a2n−1(µ)(V (µ)− γ) ≥ 0.

Since a2n−1 > 0, we have V (µ)−γ ≥ 0 which implies that any µ ∈ ΩSN will lie outside

the level set defined by V (µ) ≤ γ.

In a similar way, an SOS condition for the non-existence of a Hopf bifurcation can

be stated in the following proposition.

Proposition 4.4.2. For a constant γ > 0, let Ω̃(γ) be a certificate set (4.10) and

consider ΩH in (4.8). If there exist polynomials V (µ), r(µ) such that

V (µ)− γ + r(µ)4n−1(µ) is SOS, (4.12)

then ΩH ∩ Ω̃(γ) = ∅.

Proof. Verifying the condition ΩH ∩ Ω̃(γ) = ∅ amounts to check the emptiness of the
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set

{ µ | 4n−1 = 0, V (µ)− γ 6= 0, −(V (µ)− γ) ≥ 0 } .

Using the p-satz theorem, this set is empty if there exist SOS polynomials s0, s1 and

polynomials V (µ), t(µ) such that

s0 − s1(V (µ)− γ) + (V (µ)− γ)2m + t(µ)4n−1 = 0.

Let s0 = 0, m = 1, t(µ) = (V (µ)− γ)r(µ), then

s1(V (µ)− γ) = (V (µ)− γ) [(V (µ)− γ) + r(µ)4n−1] ,

as given in the SOS condition (4.12). Now consider any µ ∈ ΩH for which 4n−1(µ) =

0 holds. Upon substitution with the SOS condition in (4.12) we have V (µ) > γ which

implies that any µ ∈ ΩH will lie outside the level set defined by V (µ) ≤ γ.

The results in Propositions 4.4.1 and 4.4.2 characterize those γ for which the

associated certificate set Ω̃(γ) is bifurcation free. Clearly, if one were to identify the

maximum value of γ for which, say, proposition 4.4.1 held, then this γ could be used to

bound the minimum distance-to-bifurcation. In particular, let µ0 be a known initial

parameter. Define the certificate function as V (µ) = α(|µ− µ0|) where α is class K,

and let γ denotes the largest real constant for which, say, Proposition 4.4.1 holds.

Then the distance-to-bifurcation, γ, can be bounded below as γ = |µ∗−µ0| ≥ α−1(γ).

One obvious choice for α is to let it be |µ−µ0|. This observation suggests that we can

formulate an SOS optimization to compute the minimum γ. This is formalized in the

following proposition which is stated for the saddle-node bifurcation in Proposition

4.4.1. Clearly a similar result would hold for the Hopf bifurcation using the SOS

condition given in equation (4.12).

Proposition 4.4.3. Consider system (4.4) and its Jacobian matrix in (4.5). Let µ0
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be the initial parameters and let µ∗ denotes the critical parameters at which a saddle-

node bifurcation occurs. If there exist a constant γ̄ > 0, polynomials V̄ = |µ∗ − µ0|

and r(µ) such that the following SOS optimization

max γ̄

s.t. a2n−1(µ)(V̄ (µ)− γ) + r(µ)an(µ) is SOS,

has a feasible solution, then the distance-to-bifurcation is defined as |µ∗ − µ0| ≥ γ.

Proof. From the proposition’s assumption, we know a saddle-node bifurcation exists

and therefore the set ΩSN is not empty. Since no bifurcation takes place at µ0, one

can take the infimum of this set, say inf(ΩSN). Note that the sets Ω̃(γ) are compact

sets, so there exists γ = inf(ΩSN) such that for any γ < γ we know from Proposition

4.4.1 that no saddle-node bifurcation occurs.

As discussed in chapter 3, an SOS program defined in proposition 4.4.3 can be

solved efficiently using the SOS programming tools [90, 75] combined with semidefi-

nite programming solver [105].

4.5 Examples

This section present example uses of the method discussed in the preceedings sec-

tions for computing the minimum distance-to-bifurcation in different applications.

The first two examples illustrate the computation of distance to Hopf bifurcation for

the brusselator and the tritrophic foodweb models analyzed in chapter 3. The last

example presents the computation of the minimum distance to saddle-node bifurca-

tion in an example from voltage collapse problem which was examined previously in

[10].
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4.5.1 The Brusselator model

The model of this system is given in (3.24) and its equilibrium parameterization

is given in (3.29). Note that this model has four parameters and so the standard

numerical bifurcation softwares would be difficult to use for bifurcation analysis.

The Jacobian matrix (4.5) for this system is given by

J(λ, h) = Ndiag(Eλ)ZTdiag(h),

=

 (λ1 − λ2)h1 λ1h2

−λ1h1 −λ1h2

 ,
with hi = (1/x∗i ) and x∗i (i = 1, 2) are given in (3.29). The characteristic polynomial

of J satisfies

p(s) = s2 + (λ1h2 + λ2h1 − λ1h1)s+ λ1λ2h1h2.

Using the equilibrioum parameterization in (3.29), one may verify that the above

characteristic polynomials can be rewritten in term of systems parameters below

p(s) = s2 + (k2 − k1 − k3)s+ k1k3.

It is easy to see that p(s) will have a simple pair of imaginary eigenvalues if k1k3 > 0

and k2 − k1 − k3 = 0. Since ki ≥ 0, (i = 1, . . . , 4), the condition for Hopf bifurcation

can be reduced to a single algebraic condition k2 − k1 − k3 = 0. By defining F (k) =

Σ4
i=1(k

∗
i − k0i )2 where k0i denotes the initial paramater values, the minimum distance-

to-bifurcation can be computed using the following SOS optimization.

max γ,

s.t. F (k)− γ − σ(k)(k2 − k1 − k3) is SOS.

Let’s consider an initial parameter k0i = 1 for i = (1, . . . , 4) and initial states x1(0) =
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Figure 4.2. Hopf bifurcation in the Brusselator model.

x2(0) = 1 for which the system has an asymptotically stable equilibrium at x∗1 = x∗2 =

1 (see figure 4.2a). We use SOSTOOLS [90] to solve the above SOS optimization

and found a minimum distance of γ = 0.33 which corresponds to parameter k =

[2/3, 4/3, 2/3, 1]. The trajectories of the states for this parameter k∗ are plotted in

figure 4.2b and confirm that a simple Hopf bifurcation occurs.

4.5.2 Tritrophic foodweb model

The model of this system is given in (3.31) and its equilibrium parameterization

is given in (3.33). The Jacobian matrix (4.5) is therefore given by

J(λ, h) = Ndiag(Eλ)ZTdiag(h)

=



−h1(λ1 + λ2) λ2h2 0 h4λ2

h1(λ3 + λ4) 0 −λ3h3 (λ3 + λ4)h4

0 λ5h2 0 0

λ6h1 λ7h2 0 λ7h4


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with hi = (1/x∗i ) and x∗i (i = 1, . . . , 4) is given in (3.33). The characteristic equation

of J is given by

p(s) = s4 + a3s
3 + a2s

2 + a1s+ a0,

where

a0 = 0, a2 = k6λ3λ4(λ6 + λ7)− k5,

a1 = k5k6λ3(λ6 + 2λ7)− k1k6λ4λ6λ7 − 2k1k5(λ3 + λ4)(λ6 + λ7)
2,

a3 = k5(λ6 + 2λ7)− k1λ4(λ6 + λ7)
2.

The Hurwitz determinant that corresponds to the above p(s) is given by

4 =

∣∣∣∣∣∣∣∣∣∣∣∣∣

a3 a1 0 0

1 a2 a0 0

0 a3 a1 0

0 1 a2 a0

∣∣∣∣∣∣∣∣∣∣∣∣∣
,

such that the first three hurwitz determinant are given by 41 = a3, 42 = a3a2 − a1,

and43 = a1(a2a3−a1)−a0a23. By the criterion in proposition 4.3.1, a Hopf bifurcation

will occur if the following conditions are satisfied

41 = a3 > 0, and 42 = a3a2 − a1 = 0.

One may verify that these conditions are equivalent with the requirement

a1 > 0, a2 > 0, a3 > 0, a3a2 − a1 = 0.
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Note that ai(i = 0, . . . , 3) contain only parameters (k1, k5, k6) and so the minimum

distance-to-bifurcation is defined by the following optimization problem

min (k∗1 − k01)2 + (k∗5 − k05)2 + (k∗6 − k06)2

s.t. a2a3 − a1 = 0, a1 > 0, a2 > 0, a3 > 0

The corresponding SOS optimization is then given by

max γ

s.t. F (k)− γ − σ(k)(a2a3 − a1)−
∑3

i=1 gi(k)ai is SOS

with F (k) = (k∗1 − k01)2 + (k∗5 − k05)2 + (k∗6 − k06)2. Let x0 = (0.7, 0.8, 1.4) be the initial

condition and k0 = (0.4, 0.4, 0.25, 0.1, 0.02, 0.25, 0.2) be the initial parameter. One

may verify that the pair (x0, k0) results in an asymptotically stable trajectory of the

system (see figure 4.3a).

For initial pair (x0, k0), we use the above SOS optimization problem to compute

the critical parameters k∗ = (k∗1, k
∗
5, k
∗
5) at which a Hopf bifurcation occurs. Us-

ing k0 and the equilibrium parameterization x∗ in (3.33), we have (λ3, λ4, λ6, λ7) =

(0.084, 0.016, 0.1, 0.4). Thus, the corresponding coefficients in the constraint of the

above SOS optimization are

a1 = −0.05k1k5 − 0.000672k1k6 + 0.0756k5k6,

a2 = −k5 + 0.000672k6,

a3 = −0.004k1 + 0.9k5.

Solving the above optimization problem, we get the minimum value γ = 0.1447 that

corresponds to parameter k∗ = (k∗1, k
∗
5, k
∗
6) = (0.0220, 0.0002, 0.2766). The trajectory

of the system for this k∗ is plotted in figure 4.3b which shows sustained oscillation

and verify the appearance of a Hopf bifurcation.
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(a) Stable trajectory for k0. (b) Oscillation for k∗.

Figure 4.3. Comparison of foodweb model trajectories for k0 and k∗.

As a comparison, we use XPPAUT [33] to search for the closest bifurcation pa-

rameters k∗ at which a Hopf bifurcation occurs when the initial parameters are set to

k0. We get a closest Hopf bifurcation in the one parameter case at k∗1 = 0.0184 which

corresponds to γ = 0.1456. A smaller γ obtained in our method (using three pa-

rameters) compared to that obtained using XPPAuto (one parameter) illustrates the

sensitivity of the system to correlated variations of the parameters. In other words,

considering only individual parameter variation in the standard numerical bifurcation

analysis may result in a conservative estimate about the minimum distance to bifurca-

tion. Our proposed method avoid such conservativeness by considering simultaneous

parameter variations when searching for the minimum distance-to-bifurcation.

4.5.3 Voltage collapse problem

This example considers a two-buses generator-line-load model of a power network

model which was previously used in [10] to study the voltage collapse problem. The
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Figure 4.4. A simple power network [10].

differential equation governing the system dynamics is given by

ω̇ =
1

M
[Pm − Pe1(δ, V )−DGω],

δ̇ = ω − 1

DL

[Pe2(δ, V )− Pd],

V̇ =
1

τ
[Qe(δ, V )−Qd],

(4.13)

where δ = δ1 − δ2 and

Pe1 = G− V (G cos δ −B sin δ), Pe2 = −V 2G+ V (G cos δ +B sin δ),

Qe = −V 2(B −Bc)− V (G sin δ −B cos δ),

G = R/[R2 + (XL −Xx)
2], B = (XL −Xx)/[R

2 + (XL −Xx)
2.

We will use the methods in previous section to determine the minimum distance

to saddle-node bifurcation (i.e. voltage collapse). We pose the problem in term of

parameters k = (Pd, Qd) (the load powers) and compute the minimum γ = |k∗ − k0|

such that the equilibrium and the bifurcation conditions are satisfied. Let’s assume

ω = 0, Xc = Bc = 0, R = 0.1, XL = 0.5 and define x = sin δ and y = cos δ. One can
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verify that the equilibria of (4.13) satisfy

0 = −V 2G+ V Gy + V Bx− Pd,

0 = −V 2B − V Gx+ V By −Qd,

0 = x2 + y2 − 1.

(4.14)

On the other hand, system (4.13) will have a saddle node bifurcation if its Jacobian

matrix is singular (i.e. has zero determinant) which in this case is defined as

0 = B2 +G2 − 2B2V y − 2G2V y. (4.15)

Note that equations (4.14)-(4.15) define a set of polynomial equation. If we directly

compute a Gröbner basis for this polynomial equation, it is interesting to find that

the following single Gröbner basis G in term of parameters Pd and Qd is obtained

G = B2
(
B(B − 4Qd) + 2(G2 − 2GPd − 2P 2

d )
)

+G2 (G(G− 4Pd)− 4Qd(B +Qd)) + 8BGPdQd.

The Gröbner basis G thus defines the bifurcation manifolds at which a saddle-node

bifurcation occurs and so the computation of the minimum distance to saddle-node

bifurcation can simply be defined as

maximize: γ

such that: (P ∗d − P 0
d )2 + (Q∗d −Q0

d)
2 − γ + r(µ)G is SOS.

We use SOSTOOLS [88] to solve the above SOS optimization and found a minimum

γ = 0.2404 which corresponds to k∗ = (0.0961, 0.4808). These are the same results

obtained in [10], but the underlying optimization problem is much simpler as it

only uses a single constraint. Figure 4.5 plots the bifurcation manifold of the power
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Figure 4.5. Bifurcation set and bifurcation certificate of system (4.13).

system (4.13) which is defined by the curve of the Gröbner basis G. The certificate

Ω̃(γ) plotted in this figures indicates that the obtained γ is the shortest distance from

the initial parameter to the point of intersection between curves G and Ω̃(γ).

4.6 Remarks and Proposed Research

This chapter proposed a method to predict the bifurcation-induced regime shifts

in the framework of minimum distance-to-bifurcation problem. We presented SOS op-

timization method to compute a lower bound on the minimum distance-to-bifurcation

in nonnegative systems with kinetic realizations. Applications of the proposed method

in several examples showed that the proposed approach was able to detect how corre-

lated variations in system rate constants could lead to smaller distance-to-bifurcations

than are usually found with the conventional one or two parameters bifurcation tools.

Proposed Research: We identify the following two research tasks that will be
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Figure 4.6. Block diagram of the software toolkit.

pursued to complete the results presented in this chapter.

• Development of software toolkit: This research task aims to develop a software
toolkit which implements the method presented in this chapter. In particular,
this toolkit will be integrated with the software toolkit that performs equilib-
rium parameterization method discussed in chapter 3. A block diagram of the
currently developed toolkit is shown in figure 4.6. The toolkit will combine sev-
eral freely available software codes to perform various computations discussed
in this chapter. We plan to evaluate the performance of this toolkit in an
experiment for predicting ecological regime shifts described in chapter 6.

• Performance comparison and evaluation: This research task aims to compare
the performance of the proposed method with the currently established regime
shifts methods such as those in [26, 10]. This comparison will be performed
using the model of predator-prey system cultured in the chemostat as described
in chapter 6. An alternative model that will be used for this evaluation is the
two-are power system model described in [68]. The expected output of this
research task is a clear evaluation about the strength and weakness of each
method.

Suggestion for future works:

• The current approach requires the analyzed systems to be nonnegative and
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have kinetic realization. Note that the role of nonnegativity requirement in the
current approach is that it helps reduce the space ker(N) ∩ Rn into a convex
cone ker(N)∩Rn

+ which can be characterized in term of the convex parameter
λ. It would be interesting to investigate efficient methods for computing the
intersection ker(N)∩Rn. If such computation method exist, then the nonneg-
ativity requirement can be dropped and the proposed method can be applied
to larger classes of systems.

• The proposed method is currently applied only for local bifurcations of co-
dimension 1. Further explorations may includes application of the proposed
methods to study global bifurcation or local bifurcation of co-dimension 2 [73].
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CHAPTER 5

FORECASTING NOISE-INDUCED REGIME SHIFTS

5.1 Introduction

This chapter discusses our proposed methods to forecast noise-induced regime

shifts. We recall that a noise-induced regime shift occurs because the underlying sys-

tem have multiple stable equilibria and the perturbation from external noises pushes

the system’s sample paths from the region of attraction (ROA) of one stable equilib-

rium to the ROA of alternative equilibrium. We present two probabilistic quantities

that can be used to predict the onset of such noise-induced regime shifts namely the

mean first passage time (MFPT), which quantify the average time required by the

process’ sample paths to cross the boundary of an ROA, and the reachability prob-

ability which quantifies the probability that, starting from the ROA of one stable

equilibrium, the process’ sample paths eventually reach the ROA of an alternative

equilibrium in finite time period.

5.1.1 Backgrounds and prior works

To motivate the discussion, let’s revisit the stochastically perturbed lake eutrophi-

cation model described in chapter 1. The model of the system is given by the following

stochastic differential equation (SDE)

dx(t) = f(x)dt+ g(x)dw(t),

=

(
a− bx+

x2

1 + x2

)
dt+ σdw(t),
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where f(x) and g(x) are the drift and diffusion, respectively, {w(t)} is a Wiener

process with constant variance σ. One may verify that this scalar SDE can be written

as a stochastic gradient system [40]

dx = −∇V (x)dt+ σdw(t),

where ∇V (x) = dV (x)
dx

and V (x) = −
∫
f(x)dx is a potential function governing the

dynamics of the deterministic part of the system. One may therefore view the state

x as a particle moving in a potential landscape defined by V (x). In our example, this

potential function is given by

V (x) = −
∫ (

a− bx+
x2

1 + x2

)
dx =

bx2

2
+ arctan(x)− (a+ 1)x.

Let us consider the parameters a = 0.06 and b = 0.525 for which the deterministic

part of the system have two stable equilibria separated by one unstable equilibrium.

The plot of V (x) for this parameter values depicted in figure 5.1a shows that it has

two local minima x∗L and x∗H which are separated by one local maxima x∗U . One

may verify that the points x∗L and x∗H correspond to the two stable equilibria of the

system whereas the point x∗U corresponds to the unstable equilibrium. In particular,

the potential V (x) also defines the ROAs ’Low ROA’ and ’High ROA’ of the stable

equilibria x∗L and x∗H , respectively. These ROAs are separated by a separatrix defined

by the unstable equilibrium point x∗U . Thus, any trajectory of the deterministic

system which starts inside one of the ROAs will be confined within that ROA and

eventually goes to the equilibrium point of that ROA.

In the presence of external noises {w(t)}, the sample paths of the system can

no longer be guaranteed to always stay within a particular ROA. The presence of

external noise, in particular, brings a consequence that there is a positive probability

for the sample paths of the process to eventually reach the separatrix of the competing
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Figure 5.1. Potential function and sample path of lake eutrophication
model.

ROAs in a finite time. Once the sample path gets closer to the separatrix, further

perturbation from external noise may forces the sample path to cross the separatrix

and then reach the ROA of an alternative equilibrium. Such noise-induced regime

shifts is illustrated in figure 5.1b when the variance of the noise is σ = 0.05. This

example illustrates that even small noise intensity may drives the process’ sample

paths to shift from the ROA of equilibrium x∗L to the ROA of alternative equilibrium

x∗L.

The statistics of process {x(t)} can be studied from its probability density func-

tion, ϕ(x, t), whose evolution satisfies the Chapman-Kolmogorov or Fokker-Planck

(FP) equations of the form [40]

∂ϕ(x, t)

∂t
= − ∂

∂x
(f(x)ϕ(x, t)) +

1

2

∂2

∂x2
(
σ2ϕ(x, t)

)
.

For a stochastic gradient system as in our example, the above FP equation can be

solved explicitly. One may then, for example, computes the average time τ required

by {x(t)} to reach the point x∗U when started from point x∗L (i.e. MFPT). For our
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example, this τ is given by [40]

τ(x∗L → x∗U) =
π

(|∇2V (x∗U)| ∇2V (x∗L))1/2
exp

{
V (x∗U)− V (x∗L)

σ2

}
.

The time τ would then indicates the expected time at which the system undergoes

regime shifts. One may also compute the probability that the sample paths of {x(t)}

which start in the ROA of equilibrium point x∗L will eventually reach the ROA of

equilibrium point x∗H in a finite time t ≤ τ(x∗L → x∗U). For the above lake model, this

probability is given by [40]

P{x(t) = x∗U |x(0) = x∗L} =

∫ x∗U
x∗L

ψ(x)dx∫ x∗U
0

ψ(x)dx
, where ψ(x) = exp

(∫ x∗L

0

−∇V (x)

σ2
dx

)
,

and it can be used to measure the likelihood of regime shifts occurence.

The above example suggests that the task of predicting the onset of regime shifts

can be formulated either as an MFPT or as a stochastic reachability problems which

are formally stated below.

• MFPT problem: Let {x(t)} be a stochastic process whose state x(t) at time
t ≥ 0 taking values on a bounded open subsets X ⊆ Rn of the Euclidean
space with smooth boundary ∂X . Let X0 ⊂ X be an initial set such that
x(0) = x0 ∈ X0. The time at which the sample paths of {x(t)} hits the set ∂X
is a random variable τ called the first passsage time and is defined as

τ ≡ inf
t
{t ≥ 0 |x(t) ∈ ∂X } . (5.1)

Thus, the MFPT problem concerns with the computation of the expected value
E{τ} of τ .

• Stochastic reachability problem: Let {x(t)} be a stochastic process whose state
x(t) at time t ≥ 0 taking values on a bounded open subsets X ⊆ Rn of the
Euclidean space. Let X0 ⊂ X be an initial set such that x(0) = x0 ∈ X0 and
let Xu ⊂ X denotes an arbitrary set such that Xu ∩ X0 = ∅. The stochastic
reachability problem concerns with the computation of the probability that,
starting from the initial set X0, the sample paths of the process will reach the
set Xu in a finite time t ∈ [0, T ]. More formally, this problem seeks to compute

85



a constant β ∈ [0, 1] such that

P {x(t) ∈ Xu, for some 0 ≤ t ≤ T | x(0) ∈ X0} ≤ β. (5.2)

One should notice that the approach described in the above example do not

scales up to systems with dimensionality greater than one due to its reliance on the

solution of the FP equation. It is widely acknowledged that solving the FP equation

for systems with dimensionality greater than one is generally difficult as it involve

the task of solving a set of partial differential equations with appropriate boundary

conditions [93, 37, 40]. Another approach commonly used to compute (5.1)-(5.2) is

based on the stochastic simulations using Monte Carlo methods [70]. This approach,

however, is computationally expensive as it requires exhaustive simulations of a large

number of the process’ sample paths.

5.1.2 Approach and Contribution

One alternative approach to compute (5.1)-(5.2) which do not rely on the solution

of FP equation and do not require exhaustive simulations of the process’ sample

paths is based on the Lyapunov-like method commonly used in stochastic stability

analysis [91, 72]. This method essentially search for a positive semidefinite function

V (x(t)), called barrier certificate, from which the upper bounds for (5.1)-(5.2) can be

deduced. In particular, if the drift and diffusion terms of the process are polynomial

functions then the computation of these bounds can be formulated and solved using

SOS optimization [91]. This SOS optimization approach is recently introduced in [91]

to solve the reachability problems in stochastic process driven by simple Brownian

motion.

One should realize that many cases of noise-induced regime shifts occur due to

the presence of jumps or discontinous changes on the system’s states as a result

of extreme or abnormal events. Examples of these include natural storm events
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that wash organisms out of the lakes or rivers [99], abnormal variations of the stock

market prices that leads to market crash [2], or the collapse of an ecosystem due

to natural disaster or human exploitation [99]. These events are no longer suitable

to be modeled by Wiener process but are better characterized as stochastic renewal

process. Forecasting regime shifts that are induced by these ’shock’ noises is also

important and so it is valuable to extend the basic approach in [72, 91] to systems

modeled as jump diffusion process.

This chapter presents an extension of the methods introduced in [72, 91] to com-

pute upper bounds of (5.1)-(5.2) for systems modeled as jump diffusion processes. As

in [72, 91], the proposed method is also based on searching for a barrier certificate,

V (x(t)), that generates a supermartingale from which the bounds can be deduced.

The main contribution in this chapter is a polynomial characterization of the jump

diffusion process’ infinitesimal generators which allows the use of SOS optimization

technique to search for the appropriate barrier certificate.

The remainder of this chapter is structured as follows. Section 5.2 gives back-

ground on jump diffusion process. Section 5.3 presents the characterization of upper

bounds for (5.1)-(5.2) in systems modeled as jump diffusion processes. Formulation

of the SOS optimization problem for computing these bounds are also discussed.

Section 5.4 illustrates an example use of the proposed method for managing fish pop-

ulation in freshwater ecosystem. Remarks and suggestions for future works are given

in section 5.5.

Notational Conventions: Let {x(t)} denotes a random process whose state x(t) ∈

X at time t ∈ R+ taking values in an open subset X ⊆ Rn of the Euclidean space.

The expected value of {x(t)} is denoted as E{x} and the probability of an event is

denoted as P{·}. If {x(t)} has distribution F (x), then its nth moment is denoted as

Mn
x =

∫∞
0
xndF (x).
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For given n-dimensional multi-indices α and β, their binomial coefficient is defined

as

(
α

β

)
=

(
α1

β1

)
· · ·
(
αn
βn

)
=

α!

β!(α− β)!
.

Given n-dimensional vectors x, y ∈ Rn and n-dimensional multi-indices α and β, the

multi-index binomial theorem states

(x+ y)[α] =
∑

0≤β≤α

(
α

β

)
x[α−β]y[β].

It can be shown that

∂[α]x[β] =


β!

(β−α)!x
[β−α], if α ≤ β,

0, otherwise.

Given a bounded real-valued function V (x) : Rn → R and an n-dimensional multi-

index α, the αth order partial derivative of V is defined as ∂[α]V = ∂α1V
∂x
α1
1

∂α2V
∂x
α2
2
. . . ∂αn

∂xαnn
.

5.2 Jump Diffusion Processes

Let {Ω,F ,P} be a complete probability space and let {Ft}t≥0 be a filtration over

{Ω,F ,P} which satisfies the conditions [112, 85]: (i) Ft contains the P−negligible

sets for all t, (ii) Ft is right continuous, i.e. Ft+ = Ft, for all t (i.e. the totality of

information are observable by time t). Consider a jump diffusion process (JDP)

dx(t) = f(x(t))dt+ σ(x(t))dw(t) + dJ(t), x(0) = x0, (5.3)

where f(·) : Rn → Rn and σ(·) : Rn → Rn are Lipschitz continuous functions, {x(t)}

is a stochastic process, {w(t)} is a Wiener process and {J(t)} is a shot noise process
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defined as

J(t) =

N(t)∑
`=1

y`e
−δ(t−τ`), ` ∈ Z+. (5.4)

In equation (5.4), N(t) is a Poisson process with intensity ρ, {τ`} are the event times of

Poisson jumps, {y`} is an i.i.d. random process with distribution F (y) describing the

`-th jump’s size, and δ is a real positive constant representing the rate of exponential

decay after a jump. The JDP in (5.3) is understood in Itô’s sense and processes

{w(t)} and {J(t)} are assumed to be independent from each other.

Let Y (τ`, y`) = y`e
δτ` , then J(t) in (5.4) may be written as

J(t) = e−δt
∫ t

0

∫
Rn
Y (τ, y)N(dτ, dy), (5.5)

where N(dτ, dy) is a Poisson random measure with E{N(dt, dy)} = ρdtF (dy). We

define the increment of J(t) as dJ(t) = J(t + dt)− J(t) where dt is an infinitesimal

time increment. Using equation (5.5) to expand out dJ(t) and retaining the first

order terms in dt, one finds the jump process increment can be written as

dJ(t) = −δJ(t)dt+

∫
Rn
yN(dt, dy), (5.6)

where the second term in (5.4) is known as the compound Poisson process. Using

the expression for the jump increment in (5.4), the JDP in (5.3) can be rewritten as

dx(t) = (f(x(t))− δJ(t)) dt+ σ(x(t))dw(t) +

∫
Rn
yN(dt, dy), x(0) = x0. (5.7)

Since {J(t)} in (5.6) and {w(t)} are Markov processes, one may conclude that the

solution of (5.7) is also a Markov process [92].

Now consider a Markov process {x(t)} with right continuous sample path and
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consider any function V (x(t)) : Rn → R that generate some statistics of {x(t)}.

The (infinitesimal) generator of {x(t)} is an operator, L, whose action on V (x(t)) is

defined by

LV (x(t)) = lim
h↓0+

E{V (x(h))|V (x0)} − V (x0)

h
(if the limit exists),

where ↓ means that the limit is taken from the right. For a diffusion process {x(t)}

that satisfies stochastic differential equation dx(t) = f(x(t))dt + σ(x(t))dw(t) and a

function V (x(t)) ∈ C2(Rn) that is twice continuously differentiable in x and bounded

for all x ∈ Rn (denote this class of functions as C2(Rn)), its generator, LDP , is given

by [94]

LDPV (x(t)) =
∂V (x(t))

∂x
f(x(t)) +

1

2
Tr

(
σT (x(t))

∂2V (x(t))

∂x2
σ(x(t))

)
. (5.8)

For the jump process {x(t)} in (5.7) and a function V (x(t)) ∈ C2(Rn), one can show

that its generator, LJP , is [112, 85]

LJPV (x(t)) = ρ

∫ ∞
0

(V (x+ y)− V (x)) dF (y)− ∂V (x(t))

∂x
δJ(x). (5.9)

Combining the above generators of diffusion and jump diffusion processes, one may

conclude that the generator, L, of JDP in (5.7) is given by

LV (x(t)) =
∂V (x(t))

∂x
(f(x(t))− δJ(t)) +

1

2
Tr

(
σT (x(t))

∂2V (x(t))

∂x2
σ(x(t))

)
+ρ

∫ ∞
0

(V (x+ y)− V (x))dF (y). (5.10)

The following Dynkin’s formula for the JDP in (5.7) with generator in (5.10) can now

be stated.

Lemma 5.2.1 (Dynkin’s formula, [85]). Consider the JDP in (5.5) defined on a
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bounded open set X ∈ Rn with smooth boundary X̄ . Let V (x(t)) ∈ C2(Rn) and

let τ < ∞ be a stopping time such that τ ≤ τX := inf{t : x(t) 6∈ X}. Suppose

E
{
|V (x(τ))|+

∫ τ
0
|LV (x(s))|ds

}
<∞. Then

V (x(τ)) = V (x0) +

∫ τ

0

LV (s, x(s))ds. (5.11)

Now recall [94] that a process {V (x(t))} is said to be a supermartingale with

respect to the filtration {Ft}t≥0 generated by the process {x(t)} if: (i) V (x(t)) is

Ft-measurable for all t ≥ 0, (ii) E{|V (x(t))|} <∞, and (iii) E{V (x(t2))|V (x(t1))} ≤

V (x(t1)) for all 0 ≤ t1 ≤ t2 ≤ τ . By the choice of V (x(t)) ∈ C2(Rn) in (5.10) and the

boundedness of x ∈ X , it is known [85] that V (x(t)) will always satisfies conditions

(i) and (ii), respectively. If V (x(t)) also satisfies LV (x(t)) ≤ 0, ∀x ∈ X , then the

Dynkin’s formula (5.11) implies that condition (iii) will also be satistied. One may

then conclude that a function V (x(t)) ∈ C2(Rn) with LV (x(t)) ≤ 0, for all x ∈ X is

a supermartingale with respect to {x(t)}. In this paper, we’ll consider nonnegative

supermartingale, i.e. V (x(t)) ≥ 0,∀x ∈ X , for which the following inequality from

[71] holds.

Lemma 5.2.2 ([71]). Let {V (x(t))} be a supermartingale with respect to the process

{x(t)} where x(t) ∈ X ⊆ Rn and 0 ≤ t ≤ τ := inf{t : x(t) 6∈ X}. Let V (x(t)) be

nonnegative in X . Then for a constant θ > 0 and any initial condition x0 ∈ X ,

P
{

sup
0≤t≤τ

V (x(t)) ≥ θ
∣∣∣x(0) = x0

}
≤ V (x0)

θ
. (5.12)

5.3 MFPT and Stochastic Reachability Analyses

Using the generator in (5.10), the Dynkin’s formula in (5.11), and the super-

martingale inequality in (5.12), we now present the method to compute upper bounds

of (5.1)-(5.2) for JDP in (5.7).
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5.3.1 Upper bound of MFPT

We first characterize an upper bound θ ≥ 0 for the MFPT of JDP (5.7).

Proposition 5.3.1. Consider the JDP in (5.7) defined on a bounded open subset

X ⊂ Rn with smooth boundary ∂X . Let the initial condition x(0) = x0 be a random

variable taking values in X0 ⊂ X . If there exists a real-valued function V (x(t)) ∈

C2(Rn) and a constant θ ≥ 0 such that

V (x(t)) ≥ 0, ∀x ∈ X ,

V (x(t)) ≤ 0, ∀x ∈ ∂X ,

V (x(t)) ≤ θ, ∀x ∈ X0,

∂V (x(t))

∂t
+ LV (x(t)) ≤ −1, ∀x ∈ X ,

where LV (x(t)) is defined in (5.10), then E{τ} ≤ θ with τ = inft{t ≥ 0 : x(t) ∈ ∂X}.

Proof. The technique of the proof is similar to that in [91]. Itô’s lemma provides a

stochastic differential equation for V (x(t))

dV (x(t)) =

(
∂V (x(t))

∂t
+ LV (x(t))

)
dt+

m∑
k=1

(
n∑
i=1

∂V (x(t))

∂xi
σik

)
dwk(t).

Let τ ≡ inf{t ≥ 0 : x(t) ∈ ∂X} and define τ ∧ t = min{τ, t}. Integrating dV (x(t))

over the time interval [0, τ ∧ t] and taking the expectation yields

E {V (x(τ ∧ t))} = V (x(0)) + E
{∫ τ∧t

0

(
∂V (x(s))

∂s
+ LV (x(s))

)
ds

}
.

Taking the limit of the above equation as t→∞ and using the last condition in the

proposition’s statement, one finds

E[V (x(τ))] ≤ V (x0)− E
[∫ τ

0

ds

]
= V (x0)− E[τ ].

92



τ is the first time the state trajectory hits the boundary set ∂X and so the above

equation implies that the MFPT satisfies

E{τ} ≤ V (x0)− E[V (x(τ))].

Boundary points of X are limit points of X and since V (x(t)) ≥ 0 on X , this means

V (x(t)) = 0 on ∂X . One may therefore conclude that E{V (x(τ))} = 0 which implies

E{τ} ≤ V (x0). By the third condition in the proposition, we know that V (x0) ≤ θ

on X0 which implies E{τ} ≤ θ.

Remark 5.3.2. From the proof of this proposition, we see that E{V (x(t))|V (x0)} ≤

V (x0) for 0 ≤ t ≤ τ . Since X is a bounded set, this implies E{V (x(t))} < ∞ which

along with the requirement that V (x(t)) ≥ 0 for all x implies the stochastic process

generated by V (x(t)) is a supermartingale.

As stated below, the result in proposition 5.3.1 can be used to characterize an

upper bound for the MFPT of diffusion process. The proof of this proposition is

similar to that in proposition 5.3.1 except that we use the generator LDPV (x(t)) in

(5.8).

Proposition 5.3.3. Consider a diffusion process dx(t) = f(x(t))dt + σ(x(t))dw(t)

defined on a bounded open subset X ⊂ Rn with smooth boundary ∂X . Assume the

initial condition satisfies x(0) = x0 ∈ X0 ⊂ X . If there exists a function V (x(t)) ∈

C2(Rn) and a constant θ > 0 such that

V (x(t)) ≥ 0, ∀x ∈ X ,

V (x(t)) ≤ 0, ∀x ∈ ∂X ,

V (x(t)) ≤ θ, ∀x ∈ X0,

∂V (x(t))

∂t
+ LDPV (x(t)) ≤ −1, ∀x ∈ X ,
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where LDPV (x(t)) is given in (5.8), then E{τ} ≤ θ with τ = inft{t ≥ 0 : x(t) ∈ ∂X}.

5.3.2 Upper bound of finite time stochastic reachability

We now present the method to compute an upper bound for the probability (5.2).

Proposition 5.3.4. Consider the JDP in (5.7) with x0 ∈ X0. Let τ < ∞ be a

stopping time such that T ≤ τ := inf{t : x(t) 6∈ X}, and consider the stopped process

x(t) for 0 ≤ t ≤ T . Assume the sets X ⊂ Rn, X0 ⊆ X , and Xu ⊆ X be given.

Let φ(t) be a function of t such that Φ(T ) =
∫ T
0
φ(t)dt < ∞ and define a function

W̃ (x(t)) = V (x(t)) +
∫ t
0
φ(t)dt with V (x(t)) ∈ C2(Rn). If there exists a function

W̃ (x(t)) and positive constants β, β1, β2 with β = β1 + β2 such that

W̃ (x(t)) ≥ 0, ∀x ∈ X , t ∈ [0, T ]

W̃ (x(t)) ≤ β1, ∀x ∈ X0∫ T

0

φ(t)dt ≤ β2, ∀t ∈ [0, T ]

W̃ (x(t)) ≥ 1, ∀x ∈ Xu, t = T

LW̃ (x(t)) ≤ φ(t), ∀x ∈ X , t ∈ [0, T ],

where LW̃ (x(t)) = LV (x(t))− ∂
∂t

∫ T
0
φ(t)dt, then the probability bound (5.2) holds.

Proof. Applying the Dynkin’s formula to function W̃ (x(t)) gives

E{W̃ (x(T ∧ τ))} = V (x(0)) + E
{∫ T∧τ

0

LW̃ (x(s))ds

}
≤ V (x0) + E

{∫ T

0

φ(s)ds

}
= V (x0) + Φ(T ),

where the inequality is obtained using the last condition in the proposition. Using
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the fourth condition in the proposition, the following inequality can be obtained

P{x(t) ∈ Xu for 0 ≤ t ≤ T | x(0) ∈ X0} = P{ sup
0≤t≤T

W (x(t)) ≥ 1 | x0 ∈ X0}

≤ V (x0) + Φ(T ),

≤ β1 + β2 = β,

where we have applied the supermartingale inequality in (5.12) to function W̃ (x(t))

and use the second and the third conditions in the proposition to obtain the last

inequality.

5.3.3 SOS Optimization

As discussed in section 5.1, provided that the drift, diffusion and the jump terms

in (5.7) are polynomial functions and the sets X , ∂X ,X0,Xu in (5.1)-(5.2) are semi-

algebraic, then the search for a barrier certificate, V (x(t)), can be formulated as an

SOS optimization. In this SOS optimization, V (x(t)) is a polynomial function whose

coefficients are the decision variables that will be determined in the optimization task.

Thus, our goal is to formulate polynomial representations for the conditions (given in

the previous section) that guarantee the process {V (x(t))} to be a supermartingale.

One issue in formulating such a representation comes from the integral term in the

JDP’s generator in (5.10). The following proposition shows how to address this issue.

Proposition 5.3.5. Let y ∈ Rn be an n-dimensional independent random variable

with distribution F (y). Let V (x) =
∑
|α|≤p cαx

[α] be a multi-index representation of

polynomial function V (x). Then

∫
(V (x+ y)− V (x)) dF (y) =

∑
1≤|β|≤p

1

β!
∂[β] [V (x)]M|β|, (5.13)
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and the generator in (5.10) can be rewritten as

L∗V (x(t)) =
∂V (x(t))

∂x
(f(x(t))− δJ(t)) +

1

2
Tr

(
σT (x(t))

∂2V (x(t))

∂x2
σ(x(t))

)
+
∑

1≤|β|≤p

1

β!
∂[β] [V (x)]M|β|. (5.14)

Proof. We only need to show that equation (5.13) holds since its substitution to the

integral term in equation (5.10) gives the generator in equation (5.14). Let’s write

V (x+ y) =
∑
|α|≤p

cα(x+ y)[α] =
∑
|α|≤p

cα
∑

0≤|β|,β≤α

(
α

β

)
x[α−β]y[β],

=
∑
|α|≤p

cα

x[α] +
∑

1≤|β|,β≤α

(
α

β

)
x[α−β]y[β]

 .
For notational convenience, let us denote the difference V (x+y)−V (x) as ∆V (x, y).

Using the above sum, one can write this difference as

∆V (x, y) =
∑
|α|≤p

cα
∑

1≤|β|,β≤α

(
α

β

)
x[α−β]y[β],

and since

∂[β]
[
x[α]
]

=


α!

(α−β)!x
[α−β] if β ≤ α,

0 otherwise,

the expression for ∆V (x, y) can be rewritten as

∆V (x, y) =
∑
|α|≤p

cα
∑

1≤|β|,β≤α

1

β!
∂[β]

[
x[α]
]
y[β].

96



Expand out the first summation to obtain

∆V (x, y) =
∑
|α|=1

cα
∑
|β|=1

1

β!
∂[β]

[
x[α]
]
y[β] +

∑
|α|=2

cα
∑

1≤|β|≤2

1

β!
∂[β]

[
x[α]
]
y[β] + · · ·

+
∑
|α|=p

cα
∑

1≤|β|≤p

1

β!
∂[β]

[
x[α]
]
y[β].

The order of the summations can now be interchanged since α and β are no longer

directly coupled to yield

∆V (x, y) =
∑
|β|=1

1

β!

∑
|α|=1

cα∂
[β]
[
x[α]
] y[β] +

∑
1≤|β|≤2

1

β!

∑
|α|=2

cα∂
[β]
[
x[α]
] y[β] + · · ·

+
∑

1≤|β|≤p

1

β!

∑
|α|=p

cα∂
[β]
[
x[α]
] y[β].

Reordering the terms in the first summation yields,

∆V (x, y) =
∑
|β|=1

1

β!

 ∑
1≤|α|≤p

cα∂
[β]
[
x[α]
] y[β] +

∑
|β|=2

1

β!

 ∑
2≤|α|≤p

cα∂
[β]
[
x[α]
] y[β] + · · ·

+
∑
|β|=p

1

β!

∑
|α|=p

cα∂
[β]
[
x[α]
] y[β].

Because ∂[β]
[
x[α]
]

= 0 when α ≤ β, the summation limits of the inner sums can be

extended from 1 to p thereby yielding

∆V (x, y) =
∑
|β|=1

1

β!

 ∑
1≤|α|≤p

cα∂
[β]
[
x[α]
] y[β] +

∑
|β|=2

1

β!

 ∑
1≤|α|≤p

cα∂
[β]
[
x[α]
] y[β] + · · ·

+
∑
|β|=p

1

β!

 ∑
1≤|α|≤p

cα∂
[β]
[
x[α]
] y[β].
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Now note that

∂[β]V (x) = ∂[β]

∑
|α|≤p

cαx
[α]

 =
∑

1≤|α|≤p

cα∂
[β]
[
x[α]
]
,

which is simply the inner sum in (5.15) and so the difference becomes

∆V (x, y) =
∑

1≤|β|≤p

1

β!
∂[β] [V (x)] y[β].

Integrating both sides with respect to F (y), and since each component of y is inde-

pendent, gives

∫
∆V (x, y)dF (y) =

∑
1≤|β|≤p

1

β!
∂[β] [V (x)]

∫
y|β|dF (y),=

∑
1≤|β|≤p

1

β!
∂[β] [V (x)]M|β|,

where we have noticed that the integral
∫
y|β|dF (y) = M|β| is the |β|-th moment of y.

Substitution of the above expression with the integral term in (5.10) gives the JDP

generator in (5.14).

Using the polynomial representation of the JDP’s generator in (5.14), we now for-

mulate the SOS optimizations for computing the upper bounds stated in propositions

5.3.1 - 5.3.4. The statement in proposition 5.3.6 below is an SOS optimization prob-

lem for searching a barrier certificate V (x(t)) which satisfies the conditions stated

in proposition 5.3.1. Clearly, this SOS optimization can also be used for proposition

5.3.3 using an appropriate generator.

Proposition 5.3.6. Consider the JDP in (5.7) with initial condition x0 ∈ X0. Let

the sets X , X0, ∂X be described by X = {x ∈ Rn : gX (x) ≥ 0},X0 = {x ∈ Rn :

gX0(x) ≥ 0}, ∂X = {x ∈ Rn : g∂X (x) = 0}, respectively, where the g’s are polynomial

functions. Consider the polynomial parameterization V ∈ C2(Rn) of V (x(t)), and

define τ ≡ inf{t ≥ 0 : x(t) ∈ ∂X}. If there exist a function V (x(t)) ∈ V, constants
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θ, ε > 0, and SOS polynomials σX (x), σX0(x), σ∂X (x) such that the SOS optimization

min θ

s.t. V (x(t))− σX (x)gX (x)− ε is SOS,

−V (x(t))− σ∂X (x)g∂X (x) is SOS,

−V (x(t)) + γ − σX0(x)gX0(x) is SOS,

−∂V (x(t))
∂t

− L∗V (x(t))− σX (x)gX (x)− 1 is SOS,

has a feasible solution, then E{τ} ≤ θ.

Proof. The conditions for V (x(t)) in the above SOS program is the SOS relaxation

of the inequalities in Proposition 5.3.1. Such relaxation is accommodated using SOS

multipliers σ(·)(x). Also, θ (0th order SOS polynomial) is chosen as the objective

function to be minimized since its minimum value obtained in the optimization will

serve as the tightest upper bound for a given SOS polynomial parameterization.

In a similar way, we can also formulate the following SOS optimization problem for

searching a barrier certificate V (x(t)) that satisfies the conditions stated in proposi-

tion 5.3.4.

Proposition 5.3.7. Consider the JDP in (5.7) with initial condition x0 ∈ X0. Let

X ,X0,Xu,XT be sets described be X = {x ∈ Rn : g(x) ≥ 0}, X0 = {x ∈ Rn : g0(x) ≥

0},Xu = {x ∈ Rn : gu(x) ≥ 0},XT = {t ∈ R+ : gT (t) ≥ 0}, respectively, where the g′s

are polynomial functions. Let the parameterizations of polynomials V (x(t)), φ(t) and

SOS polynomials σ(x), σ0(x), σu(x), σt(t) be given. If there exist polynomials V (x(t))
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and φ(t) and positive constants β1, β2 such that the SOS optimization

min β = β1 + β2

s.t. V (x(t)) +
∫ t
0
φ(s)ds− σX (x)gX (x)− σt(t)gT (t) is SOS,

β1 − V (x(t))− σ0(x)g0(x) is SOS, (5.15)

β2 −
∫ t
0
φ(s)ds− σt(t)gT (t) is SOS,

V (x(t)) +
∫ T
0
φ(t)dt− σX (x)gX (x)− 1 is SOS,

φ(t)− L∗V (x(t))− σX (x)gX (x)− σt(t)gT (t) is SOS,

has a feasible solution, then the probability bound (5.2) holds.

As discussed in chapter 3, each of the above SOS optimization can be solved using

the SOS programming softwares.

5.4 Example

This section illustrates the use of MFPT and stochastic reachability analyses

discussed in the previous sections for ecosystems management. In particular, we

consider the problem of choosing a harvesting strategy to manage the bass-crayfish

population in freshwater lakes. Bass-crayfish interaction is an intraguild predation

system in which both species compete for the same resource while also predate one

another. The model presented in this section has two equilibria; one in which the bass

dominate the ecosystem and the other in which the crayfish dominate the ecosystem.

An outbreak of crayfish is undesirable as it can suppress the bass population. If such

an outbreak occurs, management strategies are needed to shift the crayfish-dominated

equilibrium point to the bass-dominated equilibrium point. One method to achieve

this management objective is to permit the harvesting of crayfish by anglers. In

general, this harvesting process can be modeled as a jump process in which the size
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and the intensity of harvesting events are variables that the ecosystem manager needs

to set.

This example is drawn from a paper [30] that used MFPT as a basis for manage-

ment decisions. The underlying nondimensionalized model is given by the following

state equations,

ẋ1(t) = x1(k1 − k11x1 − k12x2)−
k∗12x2x

2
1

K2
1 + x21

−
Nt∑
i=1

yiδ(t− τi),

ẋ2(t) = r21x2(k2 − k22x2 − k21x1) + η
k∗12x2x

2
1

K2
1 + x21

,

(5.16)

where the biomass of the crayfish and bass are denoted as x1 and x2, respectively, ki

and kii are the intrinsic growth rate and the strength of density dependence of the ith

species, respectively, kij is the competition rate on resource between species i and j,

k∗ij is the attack rates of species j on i, Ki is the carrying capacity, η is the conversion

efficiency, and rij is the ratio of growth rate between species i and j. The parameter

values are ki = kii = 1, k12 = 0.7, k21 = 0.9, k∗12 = 0.075, r21 = 1.5, η = 0.01, K1 = 0.1.

The last term in the first equation of (5.16) models crayfish harvesting as a compound

Poisson process in which the harvest size {yi}Nti=1 and the harvest times, {τi}Nti=1 are

i.i.d with exponential distribution of intensity µ and λ, respectively, and Nt is the

number of harvest events in the interval [0, t].

Figure 5.2 plots the isoclines for equation (5.16), identifies the two stable equilibria

and their regions of attraction (ROA), and marks the separatrix between the two

ROAs. From the sample path of this system under a given harvesting policy, one

sees that each harvesting event causes a step decrease in the crayfish population,

after which the system begins relaxing back to the crayfish-dominated equilibrium.

There is a finite probability that repeated harvesting events will drive the system

state across the separatrix, whereupon the system’s equilibrium state shifts to the

bass-dominated equilibrium. Assuming the system’s current state lies in the ROA
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Figure 5.2. ROA in Bass-Crayfish Eco-system [29].

dominated by the crayfish, we’re interested in specifying those harvesting parameters

µ and λ that maximize the probability of a regime shift to the bass-dominated ROA in

a specified time-interval subject to a constraint that limits the probability of driving

the crayfish population to extinction.

To compute an upper bound for the MFPT using SOS program in proposition

5.3.6, we define the following sets.

X =
{
x ∈ R2

+, t ∈ R+

∣∣ x1(1− x1) ≥ 0, x2(1− x2) ≥ 0, t(T − t) > 0
}
,

X0 =

{
x ∈ R2

+

∣∣ (x1 − 0.72)2 + (x2 − 0.36)2 ≤ 10−4
}
,

∂X = {x ∈ R2
+

∣∣0.27x1 − x21 ≥ 0,

x2 − x22 ≥ 0, x2 − 0.14x31 − 9.5x21 − 1.1x1 + 3.10−4 = 0}.

Region X characterizes a unit square in R2
+ over the time interval [0, T ]. The initial

region X0 is a disk of radius 0.01, centered at the crayfish-dominated equilibrium.

The boundary region ∂X is the separatrix shown in Figure 5.2. figure 5.3a shows the

MFPT approximation (circle) for µ = 0.1 and λ ∈ [0, 6] obtained using SOSTOOLS.
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(a) MFPT comparison for various λ. (b) MFPT as a function of µ and λ..

Figure 5.3. Result of MFPT approximation.

This plot also shows the MFPT obtained using a Monte Carlo (MC) simulation with

a 95% confidence interval and estimates (plus) obtained in [29]. The estimates in [29]

were based on a linearization and were only valid for small mean harvest sizes (µ).

As a result, the estimates from [29] under approximate the actual MFPT seen in MC

simulations, whereas our results provide reasonable upper bounds on the MFPT.

A more complete surface plot showing our MFPT approximations for a range of µ

and λ is shown in Figure 5.3b. Clearly, one can maximize the likelihood of a regime

shift by simply increasing the intensity of harvesting. In general, one would want to

limit such harvesting intensity since large harvesting intensity may drive the crayfish

population to extinction. While crayfish may be considered to be a ”nuisance”, the

extinction of a species in the eco-system reduces overall bio-diversity and often makes

such systems more prone to collapse from extreme events [58]. A reasonable choice

on harvesting strategy involves limiting the harvesting rates λ and µ to minimize the

likelihood of crayfish extinction while still achieving a regime shift over a specified

time interval.

We use SOS programming to bound two probabilities. The first one is the prob-

ability of reaching a controlled region (i.e. ∂X ) which we denote as PR. The second

one is the probability of reaching a small neighborhood of x1 = 0 (crayfish near ex-
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Figure 5.4. PR and PE for µ = 0.075.

tinction) which we denote as PE. We use the same initial set, X0, and the domain

set, X , as before. For an upper bound βR of PR, we define the target set

XR
F =

{
x ∈ R2

+

∣∣0.27x1 − x21 ≥ 0, x2 − x22 ≥ 0, x2 − 0.14x31 − 9.5x21 − 1.1x1 + 3.10−4 = 0
}
,

whereas for an upper bound βE of PE, the target set is

XE
F =

{
x ∈ R2

+ | x1(0.01− x1) ≥ 0, x2(1− x2) ≥ 0
}
.

A plot of the SOS programming result is shown in Figure 5.4 for µ = 0.075, λ ∈ [0, 4],

and time interval T = 5 unit.

One possible management strategy would be to determine those (µ, λ) pairs which

minimize the probability of crayfish extinction (PE) subject to a constraint requiring

the regime shift’s MFPT to be less than a specified deadline, T . Let us set, for

example, T = 5 unit as the deadline for regime shift’s MFPT and search for that

(µ, λ) that give the smallest upper bound, βE, for PE. Using the surface plot in Fig.

5.3b, we first find all (µ, λ) pairs for which E[τ ] ≤ 5. Among these pairs, we then

choose one that gives the smallest βE. We find that the pair (µ = 0.075, λ = 1) gives

E[τ ] ≤ 4.31 and PE ≤ βE = 0.277 (triangle in Figure 5.4). Using this pair in an MC
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simulation, we find MFPT = 4.6896± 0.083 and PE = 0.243± 0.104. This confirms

that our management approach minimizes the likelihood of an extinction event while

assuring the regime shift’s MFPT is less than the specified deadline of T = 5. One

may also compare our proposed management framework with the method in [29] that

uses a linearization of (5.16). Since [29] does not provide a way to compute PE for

a given (µ, λ), we ran an MC simulation to compute PE for all possible parameter

pairs and then singled out a pair that gives the smallest PE. The minimizing pair

was (µ = 0.055, λ = 1) with MFPT = 6.4008± 0.083 and PE = 0.174, which clearly

violates the specified MFPT deadline.

5.5 Remarks and Future Works

This chapter presented a computational framework to predict the occurence of

noise-induced regime shifts for system perturbed by jump/shock processes. Such

predictions are formulated either as mean first passage time problem or as stochastic

reachability problem whose solution can be obtained using SOS optimization. We

illustrate an example use of the presented method in ecosystem regime shifts man-

agement.

Future works: One possible extension of the method discussed in this chapter is

its application to predict large scale regime shifts or phase transitions in networks

of interconnecting stochastic processes. The method presented in this chapter, how-

ever, cannot be applied directly to this large scale problem due to the limitation of

the SOS optimization method which only capable of solving small to medium scale

problems. A method to address this issue is by using the devide-and-conquer method

to decompose the network into smaller subsystems. If an appropriate decomposition

of the network can be obtained, the method presented in this chapter can then be

used to analyze each subsystem.

To illustrate this approach, let us consider a hypothetical networked systems in
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figure 5.5. This system is inspired by the lake eutrophication model discussed in

section 5.1 in which the dynamic of each subsystem or site is governed by the SDE

of the lake eutrophication model described in section 5.1. Thus, one may view this

networked system as a spatial model for the Phosporus (P ) concentration in three

connected sites of a lake. The influx (u) of P from the environment enters the lake in

site 1 and then distributed to other sites through inter-site fluxes of intensity α. The

Wiener process wi(t), (i = 1, . . . , 3) in the model of each site illustrates stochasticity

that occurs due to small variation in the amount of input or inter-site fluxes that enter

each site. We assume that the deterministic model of each site is bistable and that

the intensity σ of the Wiener process in each site is relatively small such that each

stable equilibria of the site is stochastically stable with probability 1. Moreover, the

network is assumed to be weakly coupled so that the assumption that each subsystem

is stochastically stable guarantees that the network system also stochastically stable

[82, 83].

To analyze the system in figure 5.5, we view the network as an interconnection of

isolated subsystems that are coupled through the inter-site fluxes. In this case, the

dynamic of each site is governed by SDE of the form

dxi(t) = [fi(xi(t)) + g(x−i(t))]dt+ σdwi(t), (i = 1, 2, 3),

in which the subscript −i ∈ Ni denotes the ith site’s nearest neighbors Ni. This

Figure 5.5. Network of lake systems.
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modeling approach results in the following SDE model of system.

dx1(t) =

(
u− (1 + α)x1 +

x31
θ3 + x31

+ αx2

)
dt+ σdw1(t),

dx2(t) =

(
−(1 + 2α)x2 +

x32
θ3 + x32

+ α(x1 + x3)

)
dt+ σdw2(t),

dx3(t) =

(
−(1 + α)x3 +

x33
θ3 + x33

+ αx2

)
dt+ σdw3(t).

(5.17)

Notice in model (5.17) that the last term in the drift part of the ith site’s is only a

function of its nearest neighbors’ states. This suggests that networked system (5.17)

can be viewed as a random process evolving on a graph and the dynamics of the

network can be studied using Markov Random Field (MRF) formalism [66, 7].

Let G = (S,E) be an undirected graph of networked system in figure (5.5) which

consists of a finite number of sites S whose edges E ⊂ S × S characterize the sites

that are adjacent to each other. Consider a random process evolving on the graph

G and let wi be random variable describing the configuration of the ith site. In

our case, the set of configurations are the two possible stable states that the system

may have (i.e. oligotrophic and eutrophic states). Assume the probability of site ith

configuration wi taking some value can be specified as a conditional probability (or

local specification) of the form

P(wi|wj, j ∈ S) = P(wi|w−i,−i ∈ Ni) (5.18)

The above relation suggests that the probability of site i taking a particular configu-

ration wi depends only on the configuration of its neighboring sites. In other words,

the probability of the ith site’s state to switch between the two possible configuration

(i.e. from oligotrophic to eutrophic and vice versa) depends only on the size of the

inter-site fluxes with its neighboring sites. This exactly the stochastic reachability

problem discussed in the previous section and so the local specification in (5.18) can
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be evaluated using the SOS optimization techniques discussed in section 5.3.

Figure 5.6 shows a preliminary result supporting the idea of using MRF abstrac-

tion to study the regime shifts in coupled SDEs. The sample trajectories of the

coupled SDEs (5.17) generated using direct integration method is plotted in figure

5.6a. This figure is generated using an input flux u = 0.1 which is large enough

to trigger regime shifts between the stable states of site 1. One may see from this

figure that the shift from low to high P levels in site 1 is followed by the sma shifts

in sites 2 and 3, causing a phase transition of the network from low to high P lev-

els. Figure 5.6b plots the monte carlo (MC) simulation of the MRF model discussed

previously. The transition probability (5.18) used in the MC simulation of the MRF

is constructed based on the solution of the stochastic reachability problem discussed

in section 5.3. One may see that the result from the MRF abstraction is capable of

capturing the qualitative properties of the network’s transition from low to high P

level. The main advantage in using the MRF abstraction is that its required compu-

tation effort is less than that required by direct integration method (i.e. simulation

time of the MRF abstraction is 1/100 th of the simulation time required by the direct

integration method). The MRF abstraction method therefore provides a means to

(a) Direct integration. (b) MRF abstraction.

Figure 5.6. Simulation comparison of the coupled SDEs (5.17).
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reduce the computation cost required in analyzing a large scale interconnected SDEs.

Future research directions that could be pursued includes the development of

theoretical framework for explaining the large scale regime shifts phenomena in in-

terconnected systems as well as the construction of efficient algorithm that connects

the SOS optimization method and the sampling methods in MC simulation of MRF.
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CHAPTER 6

FORECASTING REGIME SHIFTS IN MICROBIAL PREDATOR-PREYS

SYSTEM

This chapter describes an experimental test bed which will be used to evaluate the

methods described in the previous chapters to forecast ecological regime shifts. The

proposed test bed is a microbial predator-prey system cultured in a chemostat which

have been shown recently in [38, 116] to exhibits different alternative dynamics in-

cluding population extinction, stable coexistence, sustained oscillation, and possibly

chaos. Such diverse alternative dynamics and the ease of constructing its labora-

tory scale prototype are among the main motivations for choosing this system as a

platform for evaluating our proposed method on forecasting ecological regime shifts.

This chapter is structured as follows. Section 6.1 presents the basic concepts of

microbial dynamics cultured in the chemostat. Section 6.2 describes the materials

and methods used for the experiments. Section 6.3 presents some hypothesis on

microbial predator-prey dynamics that will be tested during experiments.

6.1 Modeling Microbial Growth in Chemostat

A chemostat is a well-mixed, continuous culture device which is often used in

experiments to study the dynamics of nutrient-limited microorganisms or bacteria

[56, 102]. In particular, it is a useful platform that can be used for hypothesis testing

because many environmental factors which affect the microbial growth inside the

chemostat can be controlled systematically during the experiments. This section
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Figure 6.1. Basic schematic of a chemostat.

provides some backgrounds on the chemostat and the models of microbial growth

cultured inside it.

6.1.1 Chemostat

Figure 6.1 illustrates the basic set up of a chemostat. It generally consists of three

connected vessels namely the feed, culture and collection. The feed vessel contains

all nutrients that are required for the growth of the bacteria. All of such nutrients

are available in excess except one which is referred to as the limiting nutrient. The

goal of the chemostat experiment is therefore to study how variation on the limiting

nutrient affects the growth of the bacteria. The culture vessel is the media where

bacteria grows with the supply of nutrients from the feed and other environmental

factors such as light, air, or other minerals. The media in the culture is assumed to

be well mixed in the sense that the content from the feed, the light illumination, and

the air supply are uniformly dispersed throughout the media. The collection vessel is

where the products of the culture are collected for measurement or other purposes.

The content of the feed is pumped into the culture at a steady state flow rate

F and the content of the culture emerges from it at the same rate. The residence

time of a particle in the culture is therefore determined by the dilution rate δ = F/V
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which is defined as the number of complete volume-changes/hour. This implies that

the mean residence time of any particle in the culture is equal to 1/δ. Therefore if

the concentration of organism in the culture is denoted by x then its wash-out rate

from the vessel is defined as dx/dt = −δx.

6.1.2 Modeling microbial predator-prey system

Consider a single bacteria growing in a chemostat with constant inflowing me-

dia which contain one limiting nutrient N at concentration Nin. Assume all other

minerals required for the growth of the bacteria are available in excess and that the

chemostat is well aerated and sufficiently illuminated. Assume further that the ex-

perimenter can only controls the nutrient concentration of the feed and the dilution

rate of the media into (out of) the culture. Using the law of mass conservation, the

net rate of increase of the bacteria concentration in the culture satisfies

increase rate = growth - outflow

dx

dt
= µx− δx,

(6.1)

which implies that the growth rate of bacteria at steady state is determined by the

dilution rate, δ, and the density of bacteria can be determined based on the nutrient

concentration in the feed. On the other hand, the limiting nutrient is consumed by

the bacteria in the culture according to the relation

dN

dt
= −Y dx

dt
, (6.2)

where Y is known as the yield constant defined as

Y =
weight of the formed bacteria

weight of the used substrate
.
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Using the law of mass conservation, the net rate of change of the nutrient concentra-

tion satisfies

nutrient rate of change = input - output− growth

yield constant
dN

dt
= δ(Nin −N)− µx

Y
.

(6.3)

Combining equations (6.1)-(6.3), the dynamics of the nutrient and bacteria concen-

trations are then governed by the following differential equation [56, 102].

dN

dt
= δ(Nin −N)− µmx

Y

(
N

Kx +N

)
,

dx

dt
= x

(
µmN

Kx +N
− δ
)
.

(6.4)

The single bacteria model (6.4) can be extended to model the dynamics of micro-

bial predator-prey system. One example of such systems is the Brachionus-Chlorella

interaction whose dynamics is given in the following model [38].

dN

dt
= δ(Nin −N)− FC(N)C,

dC

dt
= FC(N)C − 1

ε
FB(C)B − δC,

dB

dt
= FB(C)B − δC,

(6.5)

where N, C and B denote the concentrations of limiting nutrient, Chlorella and

Brachionus, respectively and

FC(N) =
bCN

KC +N
and FB(C) =

bBC

KB + C

denote the Monod type response functions of Chlorella and Brachionus, respectively.

The parameters bC (bB) and KC (KB) denote the maximum birth rate and half

saturation constant of the Chlorella (Brachionus), respectively, whereas parameter ε
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denotes the conversion efficiency of Chlorella on nutrient N .

6.2 Materials and Methods

The proposed experiment aims to (i) construct a laboratory scale chemostat that

cultures microbial predator-prey system of the form (6.5), (ii) develop and validate

the model of this system and (iii) use the developed model as a basis for predict-

ing possible regime shifts of the system. The predator-prey system investigated in

this experiment is formed by the Brachionus-Chlorella interaction previously studied

in [38, 116]. The works in [38, 116] have shown that this system may exhibits dif-

ferent qualitative dynamics (population coexistence, oscillation or extinction) under

different values of parameters δ and Nin. It is therefore reasonable to expect that

this system is a suitable platform at which the proposed method for regime shifts

prediction can be evaluated experimentally. This section describes the materials and

methods used in the experiments.

6.2.1 Materials

Figure 6.2 shows the schematic of a laboratory scale chemostat that has been

developed for the experiment. The set up consist of one feed vessel that pumps

media containing limiting nutrients (i.e. nitrogen) into six 400-ml plastic cultures.

A twelve hours light-dark cycle illumination and inflow of sterile air are provided to

each culture to prevent light or CO2 limitations on microbial growth. The dilution

rate from the feed to each culture vessel is adjusted using peristaltic pumps. During

the experiments, the concentration of limiting nutrients and the dilution rates to

three (C1 - C3) of the six cultures will be varied to observe microbial responses to

variations on these parameters. The remaining cultures (C4 - C6) will be used as

references.

Two microorganisms namely green algae Chlorella vulgaris and rotifer Brachionus
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Figure 6.2. Schematic of the constructed chemostat.

calyciflorus will be cultured in the chemostat. Chlorella vulgaris is a unicellular

green algae which grows and multiply through photosynthesis with the help of carbon

dioxide, water, light, and some minerals. The rotifer Brachionus, on the other hand, is

a freshwater zooplankton whose growth rate depends on the available concentration

of primary producers such as Chlorella. Culturing Chlorella and Brachionus in a

chemostat therefore sets a predator-prey system in which the growth of the producer

(Chlorella) is limited by the available limiting nutrient whereas the growth of the

predator (Brachionus) is limited by the available producer concentration.

6.2.2 Methods

6.2.2.1 Experiments and data measurement

Experiments will be conducted by adding Brachionus to the culture of Chlorella

in the chemostat. According to the experiments in [38], the Brachionus-Chlorellay

population interaction may last between 16-120 days. We expect to collect the data

by sampling the outflow of the chemostat. In particular, the culture media is assumed

to be well mixed such that the collected data is taken from a uniformly distributed
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microbial density. For each sample, the number of rotifer cells will be counted using

dissecting microscope whereas the chlorella population will be preserved on lugol’s

solution and then counted using compound microscope or particle counter. The

obtained measurement would then indicate the temporal variation of the microbial

densities and serve as a basis for model selection and parameter estimation.

6.2.2.2 Model selection

A basic model which can be used to describe the Brachionus-Chlorella system is

the model in equation (6.5). Prior work in [38, 101], however, show that equation

(6.5) is not adequate to model this system. In particular, they noted the follow-

ing discrepencies between the prediction of model (6.5) and the observation on the

experiments.

• Simulations of model (6.5) show that a low dilution rate δ produces higher
oscillation amplitudes of bacteria densities. In contrast, the experiments show
that low dilution rates result in a stable equilibrium fo the bacteria densities.
This indicates that model (6.5) fails to predict the transitions between different
qualitative behaviors of the system.

• The cycle periods of oscillation observed in experiments are longer than that
predicted in simulations. In particular, the cycles observed in the experiments
are almost out of phase (i.e. the maxima of Chlorella and the minima of Bra-
chionus during the cycle occur almost at the same time).

To address these discrepencies, the following modification of model (6.5) is proposed

in [101, 38].
dN

dt
= δ(Nin −N)− FC(N)C,

dC

dt
= FC(N)C − FB(C)

B

ε
− δC,

dR

dt
= FB(C)R− (δ + µ+m)R,

dB

dt
= FB(C)R− (δ +m)B,

(6.6)

The main difference between these two models is that model (6.6) distinguishes the

rotifer population into those that can reproduce (R) and those that cannot B. Such
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classification is motivated by the experimental observations which suggest that the

rotifers does not only suffer from the wash out but also from loss of fecundity while

senescence. These additional loss effects are described in model (6.6) through param-

eters m and λ which denote the instantaneous mortality and senescence rate of the

rotifers, respectively.

Although model (6.6) resolves the first discrepencies mentioned above, it still fails

to capture the correct period and the phase of the population cycle. Further analyses

of the experimental data indicate that such discrepencies are the result of Chlorella

evolution in response to grazing pressure from the rotifers [116]. In particular, the

Chlorella evolves to reproduce as a low-food quality clones as a defense mechanism

against the grazing by the rotifers. Once the rotifers population crashed due to food

shortage, the Chlorella density then increases; this increase, however, is not followed

immediately by the increase on the rotifer population. Such delay in rotifer’s response

to return to higher population density is argued as the driving mechanism for the

discrepencies in both period and phase between the Chlorella and the Brachionus

population cycles [101]. By incoorporating this evolutionary effect to model (6.6),

the following modified model proposed in [116] is shown to resolved the discrepencies

found on the period and phase of the population cycles.

dN

dt
= δ(V Nin −N)−

k∑
i=1

FC,i(N/V )Ci,

dCi
dt

= ηCFC,i(N/V )Ci − FB,i(C/V )B − δCi,

dR

dt
= ηBFB(Ci/V )R− (δ +m+ λ)R,

dB

dt
= ηBFB(Ci/V )R− (δ +m)B,

(6.7)

The main difference of model (6.7) from model (6.6) is that the Chlorella population

is now classified into k number of clones. Each of these clones is characterized by a

parameter p ∈ [0, 1] which indicates its relative food values to the rotifers. Clones
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with low p are less prone to predation by the rotifers but are also less competitive

(i.e. have higher carrying capacity) than clones with higher p in term of nutrient

utilization. This characteristic threfore suggest a trade off between food value and

competitive ability among clones in Chlorella population.

The proposed research experiment aims at using models (6.6) and (6.7) as candi-

dates for the designed chemostat. The choice of model that is most suitable to our

system will depends on the result from parameter estimation scheme explained in the

next section. We point out that, depending on how well models (6.6) and (6.7) fit to

our measurement data, further modification of these models are also possible.

6.2.2.3 Parameter estimation

For given candidate models (6.6) and (6.7), the values of all parameters need

to be estimated based on the measurement data. Due to measurement errors that

may occur in the experiments, we expect that the collected data will contain some

uncertainties. To deal with these uncertainties, we choose the Bayesian Monte Carlo

method as the framework for parameter estimation. In particular, our approach will

be based on the Markov Chain Monte Carlo (MCMC) method.

Consider the problem of inferring a set of parameters, θ, from observation data, y.

Bayesian inference provides a framework for recursively updating prior beliefs about

the parameter distribution with information in the observation data. From the Bayes

theorem, one knows that

p(θ|y) =
p(y|θ)p(θ)
p(y)

,

where p(θ|y) is the posterior probability distribution (belief function) about the pa-

rameters θ, conditioned on the observation data y. This formula has formed the basis

of countless estimation and identification algorithms in which the underlying distri-

butions are Gaussian. When one deviates from the Gaussian assumptions, however, a
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major issue in the use of Bayesian inference lies in the computation of the probability

p(y) because it is usually an integral formed from the prior belief functions.

Markov Chain Monte Carlo methods bypass the issue associated with computing

p(y) by constructing a Markov chain whose stationary distribution is the posterior

distribution p(θ|y). Construction of this chain, for instance using the Metropolis

sampling [81], only requires the computation of the ratio of the target distribution

in such a way that the normalizing constant p(y) cancels out. If the constructed

chain satisfies a suitable detailed-balance condition [65], then it is reversible with a

stationary distribution equal to the posterior belief function p(θ|y). The main value

of this Markov chain is that it can now be used to generate samples of the posterior

distribution in a manner that allows one to estimate process parameters when the

underlying prior distribution, p(θ|y), is no longer Gaussian.

The advantages provided by the Bayesian Monte Carlo methods have motivated

its large applications for model calibration and data assimilation in ecological studies

[16, 95, 76]. An MCMC method with adaptive Metropolis and delayed rejection

samping techniques described in [77] is used to estimate 64 unknown parameters

in a lake model of algae bloom. A Sequential Monte Carlo (SMC) method have

recently used joint parameter and state estimation of a phytoplankton-zooplankton-

nutrient-detritus (PZND) model [27, 28], and its extension to for moment (mean

and variance) estimation of the parameter is described in [64]. Bayesian Monte Carlo

methods, therefore, provide one of the only scalable methods for parameter estimation

of nonlinear and high-dimensional systems. Our method to estimate the parameters

of models (6.6)-(6.7) would be based on the MCMC method with combined delayed

rejection and adaptive metropolis samplings introduced in [50, 77]. This method have

been used previously to estimate models with highh number of parameters [? 77, 49]

and we believe that it would perform well when applied to models (6.6)-(6.7).
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6.3 Research & Experimental Plans

The main objective of this experiment with regard to regime shifts prediction is

to characterize the impact of Chlorella evolution on the distance to hopf bifurca-

tion of the Chlorella-Brachionus population. Early work in [38] have identified the

hopf bifurcation diagram for model (6.6) in which the evolution of Chlorella was not

included. This bifurcation diagram, however, has not been further investigated for

model (6.7) in which the evolutionary mechanism of the Chlorella is included. The

proposed experiment aims to investigate how the bifurcation diagram of model (6.6)

changes with respect to the number of clones (i.e. genetic diversity) and the size of

individuals in each clone of the Chlorella population. We hypothesize that both the

number of clones and the size of individuals per clones will have significant impacts in

modifying the bifurcation diagram of model (6.6) presented in [38]. What change in

this bifurcation diagram actually take place is a question we wish to answer through

this experiment.

Evaluation Method:

• Model valiadation: Evaluation of the developed model will be carried out by
comparing computer simulations of models (6.6)-(6.7) and the data from exper-
iments. In particular, computer simulation will be carried out using parameter
values estimated from measurement data.

• Regime shifts forecasting method: We will evaluate the performance of the meth-
ods described in the previous chapters by directly comparing its prediction with
the data from experiments. More specifically, the first evaluation will be car-
ried out with regard to predicting the minimum dilution rate and nutrient
concentration that are required to generate an oscillation (i.e.hopf bifurcation)
in Chlorella-Brachionus populations when initialized from stable equilibrium
population.
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2001.

5. J. Bochnak, M. Coste, M.-F. Roy, et al. Real algebraic geometry, volume 95.
Springer Berlin, 1998.

6. S. P. Boyd and L. Vandenberghe. Convex optimization. Cambridge university
press, 2004.

7. P. Bremaud. Markov chains: Gibbs fields, Monte Carlo simulation, and queues,
volume 31. springer, 1999.

8. W. A. Brock and S. R. Carpenter. Early warnings of regime shift when the
ecosystem structure is unknown. PloS one, 7(9):e45586, 2012.

9. B. Buchberger. Bruno buchberger’s phd thesis 1965: An algorithm for finding
the basis elements of the residue class ring of a zero dimensional polynomial
ideal. Journal of symbolic computation, 41(3):475–511, 2006.

10. C. A. Canizares. Calculating optimal system parameters to maximize the dis-
tance to saddle-node bifurcations. Circuits and Systems I: Fundamental Theory
and Applications, IEEE Transactions on, 45(3):225–237, 1998.

11. S. Carpenter and W. Brock. Rising variance: a leading indicator of ecological
transition. Ecology letters, 9(3):311–318, 2006.

12. S. Carpenter and W. Brock. Early warnings of unknown nonlinear shifts: a
nonparametric approach. Ecology, 92(12):2196–2201, 2011.

121



13. S. R. Carpenter. Eutrophication of aquatic ecosystems: bistability and soil
phosphorus. Proceedings of the National Academy of Sciences of the United
States of America, 102(29):10002–10005, 2005.

14. S. R. Carpenter, N. F. Caraco, D. L. Correll, R. W. Howarth, A. N. Sharpley,
and V. H. Smith. Nonpoint pollution of surface waters with phosphorus and
nitrogen. Ecological applications, 8(3):559–568, 1998.

15. S. R. Carpenter, D. Ludwig, and W. A. Brock. Management of eutrophication
for lakes subject to potentially irreversible change. Ecological applications, 9(3):
751–771, 1999.

16. J. S. Clark. Why environmental scientists are becoming bayesians. Ecology
letters, 8(1):2–14, 2005.

17. B. L. Clarke. Stability of complex reaction networks. Wiley Online Library,
1980.

18. B. L. Clarke and W. Jiang. Method for deriving hopf and saddle-node bifur-
cation hypersurfaces and application to a model of the belousov–zhabotinskii
system. The Journal of chemical physics, 99:4464, 1993.

19. R. Contamin and A. M. Ellison. Indicators of regime shifts in ecological sys-
tems: what do we need to know and when do we need to know it. Ecological
Applications, 19(3):799–816, 2009.

20. D. A. Cox, J. Little, and D. O’Shea. Ideals, varieties, and algorithms: an
introduction to computational algebraic geometry and commutative algebra, vol-
ume 10. Springer Verlag, 2007.

21. V. Dakos and A. Hastings. Editorial: special issue on regime shifts and tipping
points in ecology. Theoretical Ecology, 6(3):253–254, 2013.

22. W. Decker, G.-M. Greuel, G. Pfister, and H. Schönemann. Singular 3-
1-6 — A computer algebra system for polynomial computations. 2012.
http://www.singular.uni-kl.de.

23. P. Demenocal, J. Ortiz, T. Guilderson, J. Adkins, M. Sarnthein, L. Baker, and
M. Yarusinsky. Abrupt onset and termination of the african humid period::
rapid climate responses to gradual insolation forcing. Quaternary science re-
views, 19(1):347–361, 2000.

24. A. Dhooge, W. Govaerts, and Y. A. Kuznetsov. Matcont: a matlab package
for numerical bifurcation analysis of odes. ACM Transactions on Mathematical
Software (TOMS), 29(2):141–164, 2003.

25. I. Dobson. Computing a closest bifurcation instability in multidimensional pa-
rameter space. Journal of nonlinear science, 3(1):307–327, 1993.

122



26. I. Dobson. Distance to bifurcation in multidimensional parameter space: Mar-
gin sensitivity and closest bifurcations. In Bifurcation control, pages 49–66.
Springer, 2003.

27. M. Dowd. A sequential monte carlo approach for marine ecological prediction.
Environmetrics, 17(5):435–455, 2006.

28. M. Dowd. Estimating parameters for a stochastic dynamic marine ecological
system. Environmetrics, 22(4):501–515, 2011.

29. K. L. Drury and D. M. Lodge. Using mean first passage times to quantify
equilibrium resilience in perturbed intraguild predation systems. Theoretical
Ecology, 2(1):41–51, 2009.

30. K. L. Drury and D. M. Lodge. Using mean first passage times to quantify
equilibrium resilience in perturbed intraguild predation systems. Theoretical
Ecology, 2(1):41–51, 2009.
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107. B. Sturmfels. Gröbner bases and convex polytopes, volume 8. AMS Bookstore,
1996.

108. B. Sturmfels. Solving systems of polynomial equations, volume 97. American
Mathematical Soc., 2002.

109. G. Szederkényi. Computing sparse and dense realizations of reaction kinetic
systems. Journal of Mathematical Chemistry, 47(2):551–568, 2010.
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