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Abstract—Droop-controlled distributed generation (DG) units

are widely used in microgrids for rural electrification applica-

tions. In these microgrids, power quality is vulnerable to voltage

and frequency instabilities due to limited generation capacities

of DG units. More importantly, droop-controlled rotational and

electronic DG units have different frequency dynamics, making

a comprehensive stability analysis difficult. By introducing an

equivalence between rotational and electronic generators, voltage

stability and frequency synchronization conditions are derived

as inequality constraints on network parameters, load levels and

generator control commands. Satisfying these conditions ensures

asymptotic voltage stability and frequency synchronization in a

rural electrification microgrid. Moreover, these stability condi-

tions help to economically expand isolated microgrids to a power

distribution network that supplies reliable power services.

Index Terms—Voltage stability, frequency synchronization,

droop-controlled generator, rural electrification.

I. INTRODUCTION

In rural electrification projects, distributed generators are
usually organized in a microgrid to improve power quality and
reliability [1]. Power quality, which is measured in voltage
magnitudes and network frequencies, is vulnerable in these
weak microgrids due to DG units’ limited generation capac-
ities. In addition, because of coupled voltage and frequency
dynamics in weak networks, it is difficult to guarantee voltage
stability and frequency synchronization simultaneously. More
importantly, DG units based on rotational generators and
electronic inverters have different frequency dynamics, making
a comprehensive stability analysis even more challenging.

Stability analysis of power networks is a long-treated topic.
Lyapuove-based transient stability analysis has been studied
since the 1970s. In the work by Pai [2], a Lyapunov function
was constructed for a lossless single-machine system. More
general cases of lossless multi-machine power networks were
treated in [3][4]. To make transient stability analyses more
realistic, the lossless network assumption was relaxed in [5].
Moreover, voltage dynamics were included in the form of field
flux decays [6] and automatic voltage regulators [7]. These
early research efforts focused on finding the best Lyapunov
function and the critical energy associated to a particular
fault [8]. Nevertheless, transient stability analysis did not

The authors gratefully acknowledge the partial financial support of Notre
Dames Environmental Change Initiative and the National Science Foundation
(CNS-1239222).

provide explicit stability conditions for weak networks. To ana-
lyze weak power networks, prior research [9][10][11] checked
small-signal stability through eigenvalues of linearized net-
work models, but linearized analysis only applied to a small
neighborhood of the operating point and are difficult to use.

In addition, droop-controlled rotational and electronic gen-
erators have different frequency dynamics, making a compre-
hensive stability analysis complicated. Different from rotation-
al generators with significant inertia, electronic inverters have
fast dynamics [12]. Based on nonlinear oscillator synchroniza-
tion analysis in [13], an equivalence was pointed out in [14]
between a rotational generator and an electronic generator with
low-pass filters. However, all generators in [14] had identical
parameters, unrealistic in rural electrification microgrids.

A comprehensive stability analysis solves these problems by
deriving voltage and frequency stability conditions for weak
microgrids with both rotational and electronic generators.
Coupled dynamics in weak networks are taken into account,
together with different dynamics of rotational and electronic
generators. The derived conditions are inequality constraints
on network parameters, load levels, and generator control
commands. These stability conditions also guide economically
expanding isolated microgrids to a reliable power network.

The remainder of this paper is organized as follows. Section
II reviews background and notations used in this paper. Section
III introduces a weak network model and the equivalence be-
tween rotational and electronic generators. Section IV presents
sufficient conditions that ensure asymptotic voltage stabili-
ty and frequency synchronization. Section V demonstrates
simulation results showing that the stability conditions help
to economically expand isolated microgrids into a reliable
network. Section VI provides concluding remarks of weak
microgrid stability analysis.

II. BACKGROUND AND NOTATIONS

This section reviews the power flow relationship between
buses and a general load model. Three-phase balanced oper-
ation and per-unit (p.u.) normalization are basic assumptions
throughout this paper. Under these assumptions, admittance
matrix Y

n⇥n

of an n-bus network is defined as a symmetric
complex matrix [15]. The admittance matrix Y

n⇥n

is also
expressed as Y

n⇥n

= G
n⇥n

+ jB
n⇥n

, where G
n⇥n

is con-
ductance matrix and B

n⇥n

is susceptance matrix. Although
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balanced operation is assumed, unbalanced situations can be
analyzed by decomposing unbalanced vectors into three sets
of symmetrical components and treating each set respectively.

Each bus connects a generator and a load: P
gen,i

and
Q

gen,i

are generated power; P
load,i

and Q
load,i

denote real
and reactive loads. At any bus i, E

i

is voltage magnitude
and �

i

is phase angle; P
i

and Q
i

are injected power. Injected
power flows at bus i are expressed as P

i

= P
gen,i

� P
load,i

and Q
i

= Q
gen,i

� Q
load,i

. A pure load bus j without any
generator has P

j

+ P
load,j

= 0 and Q
j

+Q
load,j

= 0.
Power flows between buses are expressed in power balance

relationships, where P
i

and Q
i

at bus i are expressed in
functions as follows,

P
i

=

nX

j=1

E
i

E
j

(G
ij

cos(�
i

� �
j

) +B
ij

sin(�
i

� �
j

)), (1)

Q
i

=

nX

j=1

E
i

E
j

(G
ij

sin(�
i

� �
j

)�B
ij

cos(�
i

� �
j

)). (2)

In equations (1) and (2), real and reactive power values are
coupled through sinusoidal functions.

Weak network scenarios [16] initially emerge from connect-
ing wind generators through long feeders and transferring large
power flows. Weak networks also exist in rural electrification
projects [17] where DG units are used to supply electricity
to remote villages. Weak networks are characterized based on
power flow stress in the sense of short-circuit ratio (SCR) [16].
SCR is the ratio between the short circuit power at a generator
bus and the maximum apparent power of this generator. A
typical power distribution network’s SCR is around 1000,
while a network with SCR around 150 is considered weak.

A rural electrification microgrid connects various types of
loads that are represented using a ZIP model [18]. The ZIP
model is a polynomial load model that combines constant-
impedance (Z), constant-current (I) and constant-power (P)
components. The real and reactive power loads at bus i are
defined as functions of voltage magnitude E

i

in p.u. as

P
load,i

= E2

i

P
load,a,i

+ E
i

P
load,b,i

+ P
load,c,i

,

Q
load,i

= E2

i

Q
load,a,i

+ E
i

Q
load,b,i

+Q
load,c,i

.

In the equations above, P
load,a,i

and Q
load,a,i

are nominal
constant-impedance loads, e.g. incandescent light bulbs and
resistance heaters; P

load,b,i

and Q
load,b,i

are nominal constant-
current loads, usually representing active motor controllers;
P
load,c,i

and Q
load,c,i

are nominal constant-power loads, gen-
erally as a result of power control mechanisms. This ZIP load
model approximates a variety of loads in a microgrid.

III. SYSTEM MODEL

To analyze a rural electrification microgrid with both rota-
tional and electronic generators, an equivalence was introduced
between the dynamics of a synchronous generator and a fast
inverter with low pass filters [14]. In this paper, an n-bus
microgrid is modeled with m electronic generator buses, g
rotational generator buses, and l pure load buses.

Electronic generators are managed by a droop controller,
such as the CERTS (Consortium for Electric Reliability
Technology Solutions) droop-control mechanism [1]. For m
electronic generator buses, phase angle and voltage dynamic
equations of the ith electronic generator are

˙�
i

= m
P,i

(P
ref,i

� Pm

gen,i

) + !
0

, (3)
˙E
i

= (E
ref,i

� E
i

)�m
Q,i

Qm

gen,i

, (4)

for all i 2 {1, 2, . . . ,m}, where m
P,i

is droop slope of the P-
frequency droop controller; !

0

is nominal angular frequency;
m

Q,i

is droop slope of the Q-E droop controller. In equa-
tions above, P

ref,i

and E
ref,i

denote real power and voltage
control commands. Pm

gen,i

and Qm

gen,i

are measured powers as
feedbacks to the droop controller. Slopes of droop controllers,
i.e. m

P,i

and m
Q,i

, also reflect the real or reactive power
capacities of the electronic generator at bus i.

For g rotational generator buses, phase angle dynamic
equation of the ith rotational generator is

M
i

¨�
i

+D
i

˙�
i

= P
ref,i

+D
i

!
0

� P
gen,i

, (5)

for all i 2 {m + 1, . . . ,m + g}, where M
i

is the machine’s
inertia and D

i

is the damping ratio at bus i. It is assumed
that rotational generators’ voltages are managed by excitation
systems that have the same droop controller as in equation (4).

As pointed out in [14], phase angle dynamics of a rotational
generator are equivalent to dynamics of an electronic generator
with low pass filters. These low pass filters are incorporated
into droop controllers of electronic generators through power
measurements dynamics

⌧
S,i

˙Pm

gen,i

(t) + Pm

gen,i

(t) = P
gen,i

(t), (6)

⌧
S,i

˙Qm

gen,i

(t) +Qm

gen,i

(t) = Q
gen,i

(t), (7)

where ⌧
S,i

is power measurement time costant at bus i, such
as 0.01 sec in a CERTS droop controller.

Low-pass filters affect both phase angle and voltage dynam-
ics. In phase angle dynamics, the low-pass filters transform
equation (3) to

d

dt
˙�
i

(t) = �m
P,i

⌧
S,i

(�Pm

gen,i

(t) + P
gen,i

(t)),

=

m
P,i

⌧
S,i

(P
ref,i

� 1

m
P,i

˙�
i

(t) +
1

m
P,i

!
0

� P
gen,i

(t)).

The second-order phase angle dynamic equation is rewritten
as ⌧

S,i

m

P,i

¨�
i

(t)+ 1

m

P,i

˙�
i

(t) = P
ref,i

+

1

m

P,i

!
0

�P
gen,i

(t), which
has the same form as equation (5). In the dynamic equation
of phase angle �

i

, reducing the time constant ⌧
S,i

to zero
results in changed dynamic behaviors, so that the second-
order term ¨�

i

is kept. Although different generators have the
same phase angle dynamics, parameters vary from machine
to machine. A rotational generator has large inertia M

i

but
small damping ratio D

i

, while an electronic generator has
small inertia ⌧

S,j

/m
P,j

and damping ratio 1/m
P,j

.
In voltage dynamics, including low-pass filters leads to

⌧
S,i

¨E
i

(t)+ (⌧
S,i

+1)

˙E
i

(t)+E
i

(t) = E
ref,i

�m
Q,i

Q
gen,i

(t).
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When time constants ⌧
S,i

are small, for instance 0.01 sec, the
second-order voltage dynamic equation simplifies to

˙E
i

(t) = (E
ref,i

� E
i

(t))�m
Q,i

Q
gen,i

(t). (8)

Equation (8) is similar to equation (4), but ignores the impact
of power measurement dynamics. Phase angle dynamics in
equation (5) and voltage dynamics in equation (8) are used for
a rural electrification microgrid with distributed generators.

In the n-bus power network, phase angles of the first (n�1)

buses are referred to bus n. With phase angle difference ✓
i

=

�
i

��
n

for all i 2 {1, 2, . . . , n�1} with ✓
n

= 0, a steady state
(P

ss

,Q
ss

,✓
ss

,E
ss

,!
ss

) is a zero point of dynamic equations
in equations (5) and (8). To define the power network model,
we introduce set point (P

set

,Q
set

,✓
set

,E
set

,!
set

), which is
a steady state. Assumption 1 is made for the set point:

Assumption 1: Set point (P
set

,Q
set

,✓
set

,E
set

,!
set

) is
assumed to be an isolated equilibrium point.

A microgrid manager usually determines set point
(P

set

,Q
set

,✓
set

,E
set

,!
set

) by solving an optimal power
flow (OPF) problem and designates control commands E

ref,i

and P
ref,i

to bus i

E
ref,i

= E
set,i

+m
Q,i

(Q
set,i

+Q
load,i

(E
set,i

)), (9)
P
ref,i

= P
set,i

+ P
load,i

(E
set,i

) +D
i

(!
set

� !
0

). (10)

With respect to the set point (P
set

,Q
set

,✓
set

,E
set

,!
set

),
a complete system model is used to analyze voltage stability
and frequency synchronization. In the n-bus network, for m
electronic generator buses and g rotational generator buses,
phase angle dynamics are

M
i

¨�
i

+D
i

˙�
i

= P
ref,i

+D
i

!
0

� P
load,i

� P
i

, (11)

= P
sync,i

�
nX

j=1

j 6=i

E
i

E
j

sin(�
i

� �
j

+ �
ij

),

for all i 2 {1, 2, . . . ,m + g}, where synchronization power
is P

sync,i

= P
ref,i

� P
load,i

(E
i

) � E2

i

G
ii

with �
ij

=

�
ji

= tan

�1

(G
ij

/B
ij

) 2 [�⇡

2

, 0]. For voltage stability
analysis, error states are defined with respect to the isolated
set point for phase angle ˜✓

i

= ✓
i

� ✓
set,i

, voltage magnitude
˜E
i

= E
i

� E
set,i

and reactive power ˜Q
i

= Q
set,i

� Q
i

. For
the n-bus network, voltage error dynamics model is:
˙

˜E
i

= (E
set,i

� E
i

) +m
Q,i

(Q
gen,set,i

�Q
gen,i

), (12)
= m

Q,i

˜Q
i

� ˜E
i

�m
Q,i

[Q
load,b,i

+ (E
i

+

˜E
i

)Q
load,a,i

]

˜E
i

,

i 2 {1, . . . ,m+ g}
˜Q
i

= Q
load,a,i

˜E2

i

+ (2Q
load,a,i

E
set,i

+Q
load,b,i

)

˜E
i

. (13)
i 2 {m+ g + 1, . . . ,m+ g + l}

Equation (13) is an algebraic relation between voltage magni-
tude error ˜E

i

and reactive power error ˜Q
i

at pure load buses,
hence voltage dynamics are governed by generator buses.

Based on the model in equations (11) and (12), definitions of
frequency synchronization and voltage stability are as follows.

Definition 1: A microgrid has asymptotic frequency stabili-
ty if there are two open subsets of ⌦E,1

,⌦✓,1 ⇢ Rn containing

the origin such that if any Ẽ(0) 2 ⌦E,1

and any ✓(0) 2 ⌦✓,1

then lim

t!1 ˙�
i

(t) = !
set

.
Definition 2: A microgrid has asymptotic voltage stability

if there are two open subsets of ⌦E,2

,⌦✓,2 ⇢ Rn containing
the origin such that if any Ẽ(0) 2 ⌦E,2

and any ✓(0) 2 ⌦✓,2

then lim

t!1 Ẽ(t) = 0.

IV. MAIN RESULT

This section derives sufficient conditions for voltage stabili-
ty and frequency synchronization in a weak rural electrification
microgrid with both rotational and electronic DG units. These
stability conditions are in the form of network parameters,
loads and generator control commands. As long as these
conditions are satisfied, the network states asymptotically
converge to the set point (P

set

,Q
set

,✓
set

,E
set

,!
set

). The
stability analysis decomposes into three steps: i) an invariant
set phase angle differences is identified in Lemma 1; ii)
asymptotic stabilities of both phase angle differences and
voltages are proven in Theorem 3 and 4; iii) a frequency
synchronization conclusion is obtained in Theorem 5. Voltage
control analysis is the same as an earlier paper [19], while
frequency synchronization analysis is presented in this section.
Frequency synchronization deals with both rotational and
electronic DG units, compared to only inverter-based sources
in [19]. Due to limited space, detailed proofs are not provided.

Existence of a voltage invariant set IE is established for
generator voltages in [19]. As voltages are bounded within IE ,
a condition is determined for a positive invariant set of phase
angles, such that phase angle differences are kept bounded.
Drawing upon techniques used in [13][20], the following
lemma characterizes a phase angle difference invariant set.

Lemma 1: Assume there exists a voltage invariant set IE

with E
min

and E
max

. Define A
1

= nE2

min

min

i 6=j

(|B
ij

|) and
A

2

= max

i 6=j

(|P
sync,i

� P
sync,j

|) � 2E2

min

|G
ii

|
min

with
nonzero B

ij

and P
sync,i

= P
ref,i

� P
load,i

(E)� E2

i

G
ii

, if

A
1

sin(✓) � A
2

, (14)

then there exists a non-empty set

I✓ = {✓ 2 Rm

: max

i,j

(|✓
i

� ✓
j

|)  ✓, ✓ 2 [0,⇡]},

which is positively invariant.
Building upon the two invariant sets IE and I✓ , asymptotic

convergence of phase angle differences requires a stricter
condition than Lemma 1. The following theorem establishes
sufficient conditions for phase angle differences convergence.

Theorem 3: Define A
1

= nE2

min

min

i 6=j

(|B
ij

|) and A
2

=

max

i 6=j

(|P
sync,i

� P
sync,j

|) � 2E2

min

|G
ii

|
min

, with nonzero
B

ij

and P
sync,i

= P
ref,i

� P
load,i

(E) � E2

i

G
ii

. Under
conditions in Lemma 1, if

A
1

sin(⇡/2� ↵
max

) � A
2

, (15)

where ↵
max

= max

i 6=j

(tan

�1

(

�G

ij

B

ij

)), then there is
lim

t!1 ✓
i

(t) = ✓
set,i

for each i 2 {1, 2, . . . , n}.
As long as the phase angle differences asymptotically

converge to set point ✓
set

, the following theorem establishes
asymptotic voltage stability.
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Theorem 4: Assume that conditions in Lemma 1 and The-

orem 3 hold, then phase angle difference ✓ converges to ✓
set

and voltage magnitudes are within invariant set IE . Define
B

1

= min

i

(

1+Q

load,b,i

m

Q,i

+ (E
equ,i

+ E
i

)Q
load,a,i

) and B
2

=

max{
p
� : � is an eigenvalue of (@Q/@E)

⇤
(@Q/@E)}. If

B
1

> B
2

, (16)

then vector {E
i

} asymptotically converges to {E
set,i

}.
Since conditions in Lemma 1, as well as Theorem 3 and 4

are all satisfied, phase angle differences ✓ converges to ✓
set

and voltage magnitudes E converges to E
set

. Frequency syn-
chronization to !

set

is established in the following theorem.
Theorem 5: Assume that conditions in Lemma 1, Theorem

3 and Theorem 4 hold, then the network frequency asymp-
totically converges to the set point !

set

, i.e. lim
t!1 ˙�

1

(t) =
. . . = lim

t!1 ˙�
n

(t) = !
set

.

V. SIMULATION EXPERIMENTS

Stability conditions ensure asymptotic voltage stability and
frequency synchronization for microgrids in our rural electri-
fication project in Africa [17]. These conditions also help to
economically expand isolated microgrids into a reliable small-
scale distribution network by choosing appropriate cables.
System responses are simulated as load increases, which are
common events in these microgrids. When generators can
barely supply the total load, the stability conditions derived in
Section IV predict voltage and frequency instabilities. To en-
sure power service reliability, one should choose thick cables
that satisfy all stability conditions. The decisions, however, are
also sensitive to construction costs of long cables. Simulation
shows that, using the stability conditions, an economical cable
choice is made that guarantees power service reliability.

To provide reliable electricity to schools, hybrid microgrids
have been installed with diesel generators and solar panels,
as shown in plot (a) of Figure 1. These single-phase micro-
grids operate at 230V and 50Hz. DG units include a 6.5kW
diesel genset, a 28.8kWh battery, and a 1250W solar panel.
Three load buses include an office (550W), an activity center
(570W), and several dorms (240W). All buses are connected
using No.6 AWG cables. As shown in Table I, No.6 AWG
cables have a power flow limit of 12.65kVA so that are
sufficient to supply a total load of 1.36kW. Another hybrid
microgrid has the same generators but a total load of 2.12kW.

Diesel
Genset
6.5 kW

230V
50Hz

Battery
28.8 kWh Solar Panel

1250 W

Office
550 W

Activity
Center
570 W

Dorms
240 W

External
Connection

(a) (b)

1

2

17

7

SG2

6

18 DG2

8
15

4

SG1

3

16

DG1

5

9 10 11

12 13 14

19 20

DG3
SG3

μG1

μG2

μG3

Fig. 1. (a) Hybrid microgrid in the African rural electrification project; (b)
simulation model of the expanded rural electrification network.

In the near future, these microgrids are expected to provide
power services to more customers. Load levels in simulations
are assumed to double the current values and isolated micro-
grids are connected together. As a result of the interconnection,
power generation and consumption within a local microgrid
can be balanced by other microgrids with extra capacities. A
fundamental problem is whether the expansion has an adverse
impact on network stability.

Microgrid interconnection is shown in plot (b) of Figure 1.
Each microgrid connects to bus 2 through a one-mile feeder,
using four types of cables, i.e. No.6, No.4, No.2, and No.00
AWG wires. These cables are sufficient to handle power flows
in the expanded network so that cable choice is made based on
stability and cost. For instance, No.00 AWG cables are thick
to ensure stability yet cost eight times of No.6 AWG cables.

TABLE I
CABLE PARAMETERS AND ESTIMATED COSTS

AWG Z (R+ jX) Diameter Power Limit Cost
Cable (⌦/mile) (inch) (kVA) ($/mile)
No.00 0.4751 + j0.2973 0.3648 33.35 21, 000
No.2 0.7982 + j0.4463 0.2576 21.85 10, 500
No.4 1.2936 + j0.6713 0.2043 16.10 5, 800
No.6 2.0952 + j0.7758 0.1620 12.65 2, 500

Set points used in simulation tests are obtained by solving
an optimal power flow (OPF) problem. Since the total load is
well below local generators’ capacity within a microgrid, the
optimal strategy is to supply all loads by local generators to
minimize power loss along the long feeders. The equilibrium
point has a frequency of 50 Hz, and voltage magnitudes are
between 0.97 p.u. and 1.03 p.u.. The simulation process begins
at 1.0 p.u. voltage magnitudes with zero power exchanges and
converges to the set point within five seconds. After states
converge, a step load increase happens in µG1 at t = 25s and
the voltage responses vary by cable types. In this situation,
the load increases from 2.72kW to 13.6kW due to unexpected
loads that are brought online for a short time, such as water
pumps and air conditioners. These additional loads place a
large burden on feeders connecting the microgrids and result
in voltage collapses when thin cables are used.

To ensure network stability under step load increases, the
condition in Lemma 1 is examined for all four types of cables.
The condition A

1

sin ✓ � A
2

must be satisfied to ensure the
existence of a phase angle invariant set I✓ . Network expansion
with No.00 AWG cables leads to (A

1

, A
2

) = (955.8, 432.18),
the condition in equation (14) is satisfied. (A

1

, A
2

) in the case
with No.6 AWG cables is (157.32, 431.72), which violates the
stability condition. It is then reasonable to use cables with
the smallest A

1

that satisfies A
1

� A
2

. Possible choices
are No.2 and No.4 AWG cables, whose values of (A

1

, A
2

)

are (539.53, 432.43) and (319.77, 432.07), respectively. The

expanded network connected with No.2 AWG cables should

be stable, while the one with No.4 AWG cables may expe-

rience voltage and frequency instability. As demonstrated in
simulations, the occurrence of instability matches predictions
made by the stability condition in Lemma 1.
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Simulation examines frequency and voltage responses to the
step load increases using No.2 and No.4 AWG cables.

0 5 10 15 20 25 30 35 40 45 50

49.9996

49.9998

50
Network Frequency during Simulation Tests

No. 4 AWG

Cable

No. 2 AWG

Cable

(Hz)

(time

/sec)

Fig. 2. Frequency responses showing stability with No.2 AWG cables and
instability with No.4 AWG cables.

As shown in Figure 2, frequency converges to nominal 50Hz
within five seconds of simulation for both cable types. After
step load increases, frequency continues to drop in the network
with No.4 AWG cables, but stabilizes with No.2 AWG cables
in about ten seconds. Similarly, voltage magnitudes in µG1

are compared in Figure 3.

(time/sec)

p.u.

Step Load
Increases
within μG1

0 5 10 15 20 25 30 35 40 45 50
0.85

0.9

0.95

1

1.05 Voltage Magnitudes
bus 2
bus 3 load
bus 4 load
bus 5 load

Reg. Limit 1.05 p.u.

Reg. Limit 0.95 p.u.

(time/sec)

p.u.

Step Load
Increases
within μG1

Voltage
Collapse

0 5 10 15 20 25 30 35 40 45 50
0.85

0.9

0.95

1

1.05 Voltage Magnitudes
bus 2
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Fig. 3. Voltage responses to load step increases in µG1 with (Left) No.2
AWG cables and (Right) No.4 AWG cables.

The left plot of Figure 3 shows voltage convergence within
five seconds after the step load increase, showing stability with
No.2 AWG cables. Voltage magnitudes at bus 2 and 3 stay
above 0.96 p.u., satisfying voltage regulation rules. Bus 4 and
5, at the end of µG1’s feeder line, have their voltages around
0.92 p.u., but the power quality is still acceptable. The right
plot of Figure 3 shows voltage collapse in the network with
No.4 AWG cables, as predicted by the stability conditions.
The voltage at bus 2 continues to drop and that might trigger
protection mechanisms and cause power service disruption.
As a result, the No.2 AWG cables are our choices to reduce
construction cost while ensuring stability under step load
increases. Compared with No.00 AWG cables, No.2 AWG
cables have a similar performance, yet reduce the cost by half.

Satisfying stability conditions ensures asymptotic voltage
stability and frequency synchronization of weak rural electri-
fication microgrids coupled with both rotational and electronic
DG units. The stability conditions help to expand isolated
microgrids into a reliable power network. In conclusion, thick
cables should be used to ensure stability, even though their
power ratings are higher than microgrid generation capacity.

VI. SUMMARY

Asymptotic stability conditions are derived for weak rural
electrification microgrids with both rotational and electronic

DG units. Used as constraints in OPF problems, these con-
ditions ensure network states asymptotically converge to a
set point. Furthermore, these stability conditions provide a
guidance in connecting multiple isolated microgrids in our
rural electrification project in Africa. Simulation demonstrates
that the stability conditions help make an economical cable
choice to expand microgrids to a reliable network.
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