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Distributed Switching Control to Achieve Almost
Sure Safety for Leader-Follower
Vehicular Networked Systems
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Abstract—Leader-follower formation control is a widely used
distributed control strategy that requires systems to exchange
their information over a wireless radio communication network
to attain and maintain formations. These wireless networks are
often subject to deep fades, where a severe drop in the quality
of the communication link occurs. Such deep fades inevitably
inject a great deal of stochastic uncertainties into the system,
which significantly impact the system’s performance and stability,
and cause unexpected safety problems in applications like smart
transportation systems. Assuming an exponentially bursty channel
that varies as a function of the vehicular states, this paper proposes
a distributed switching control scheme under which the local con-
troller is reconfigured in response to the changes of channel state,
to assure almost sure safety for a chain of leader-follower system.
Here almost sure safety means that the likelihood of vehicular
states entering a safe region asymptotically goes to one as time goes
to infinity. Sufficient conditions are provided for each local vehicle
to decide which controller is placed in the feedback loop to assure
almost sure safety in the presence of deep fades. Simulation results
of a chain of leader-follower formation are used to illustrate the
findings.

Index Terms—Cyber-physical systems (CPS), quality of service
(QoS), vehicular network (VN).

I. INTRODUCTION

V EHICULAR networks (VNs) are cyber-physical systems
(CPS) consisting of numerous autonomous vehicles that

coordinate with each other by sharing information over wireless
networks. VNs have recently received considerable attention
due to rapid advances in Vehicle to Vehicle (V2V) communi-
cation technology, which promises significant safety improve-
ment for applications like intelligent transportation systems
[10]. Building safe VNs, however, is extremely challenging in
two aspects. First, the mobile nature of VNs requires design
of control strategies that are distributed and scalable. Secondly,
V2V wireless networks in VNs are highly time varying due
to the motion of transmitters and receivers. As a result, the
V2V channel is inherently bursty and subject to deep fading,
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which causes a severe drop in the network’s quality of service
(QoS). These deep fades induce a great amount of stochastic
uncertainties into the system, thereby negatively impacting the
system’s performance and causing serious safety issues. The
objective of this paper is to design a distributed control strategy
that could assure a certain level of safety for VNs in the
presence of bursty deep fading channels.

Leader-follower scheme naturally serves as a distributed
strategy for VNs due to its simplicity, scalability and the fact
that communication is essential for assuring safe platooning in
automated highway system (AHS) [23]. This has been illus-
trated by work that is based on either experimental validation
[1], [3] or theoretical analysis [15], [38]. In leader-follower pla-
toon systems, the question of safety is often analyzed under the
concept of string stability [35]. This concept has been proven to
be effective in characterizing the propagation of disturbances
from the leader to downstream vehicles [32]. Recent results
[15] showed that string stability can be improved by increasing
the leader’s communication connectivity to its followers. Such
improvement, however, is compromised by reduced network
connectivity arising from the delayed or dropped packets [22],
[29]. This impact of unreliable network links on formation
control has motivated studies of robust networked controllers
under communication constraints, such as time varying but
bounded delays [13], [22], [28] and Bernoulli [37] or two-
state Markov chain dropouts [33]. So communication issues are
critical in the development of safe VNs.

The channel model that is used to characterize V2V fad-
ing network, however, must be carefully specified. Tradition-
ally, communication channels are modeled as an independent
and identical distributed (i.i.d) random process with either a
Rayleigh or Rician distribution [37] or a two-state Markov
chain [33]. These characterizations are inadequate for V2V
channel due to two reasons. First, fading channels are time
varying and possess memory that cannot be captured by i.i.d
models. Second, conventional two-state Markov chain ignores
the potential dependence of the channel state (e.g., bit error rate)
on the vehicle’s physical states (e.g., inter-vehicle distance and
bearing angle) [3], [7]. Such dependency in V2V communica-
tion systems has been extensively explored in communication
community, see [4], [7], [14], [31], [40]. However, obtaining
a V2V channel model is practically challenging due to its
significant dependency on the dynamics of the vehicles and
the surrounding environments [14]. Thus, most existing V2V
channel models are obtained for specific environments and have
limited use for control systems.

0018-9286 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

http://www.ieee.org/publications_standards/publications/rights/index.html


IE
EE

Pr
oo

f

2 IEEE TRANSACTIONS ON AUTOMATIC CONTROL

From control perspective, there are two fundamental proper-
ties in V2V communication channel that have essential impacts
on the system’s performance and stability. The first property
is the channel burstiness, which is characterized by a long
string of consecutive dropouts in the network. Recent work [21]
showed that system’s stability can be seriously compromised if
such burstiness is allowed with a sufficiently large probability.
The second property is the dependency of channel state on
the vehicular states. The knowledge of the correlation between
physical and communication systems is valuable in designing
control strategies for the safety of mobile vehicles. The vehicles
could be safe if they use the knowledge of channel state to
adaptively adjust their future actions so that the likelihood of
the V2V channel exhibiting deep fades becomes smaller and
smaller as time progresses.

Motivated by the observation of burstiness and state depen-
dency in V2V network, a more realistic channel model was
proposed in [16] for a single leader-follower pair, in which
the channel is exponentially bursty and is dependent on the
norm of the physical system’s states. Such channel model is
built upon the framework of exponentially bounded burstiness
(EBB) originally developed by [41] and explicitly incorporates
the state dependency. The EBB characterization discussd in this
paper is closely related to the notion of Outage Probability
[19], [39], which is a well studied performance metric for
fading channel. The advantages of the EBB model are that (1)
it directly characterizes the probability bound on the channel
burstiness which is proven to be essential for system’s stability;
(2) it captures the state dependency of V2V channel in a simple
but effective way that could be useful for control purpose; and
(3) it is general in the sense that it can model a wide range of
communication channels including i.i.d and two-state Markov
chains. This paper extends the prior work in [16] to a chain of
leader-follower system and shows that for any mobile channels
modeled by either i.i.d or two-state Markov chain, there always
exists an EBB characterization.

In the presence of V2V communication networks, the safety
issues for VNs must be examined in a stochastic setting by
discussing the likelihood of a system state entering a forbidden
or unsafe region. Traditionally, this has been done using mean
square concepts in which the variance of some important sys-
tem state, such as inter-vehicle distance, remains bounded. Such
a concept is also analogous to the notion of stochastic safety
in probability [30]. The common feature of the above work is
that they bound the likelihood of unsafe action occurring with a
nonzero value, which still allows a finite probability for the sys-
tem to be unsafe. This mean square safety or stochastic safety in
probability criterion is not appropriate for many safety-critical
systems such as smart transportation system where a small
probability of danger can incur catastrophic failure. This paper
suggests using a stronger notion of almost sure safety to assure
the system state asymptotically goes to a safe equilibrium or a
bounded safe set with probability one as time goes to infinity. In
particular, almost sure safety in this paper refers to two strong
notions of stochastic stability: almost sure asymptotic stability
and almost sure practical stability [18].

Because of the challenge in modeling V2V channels, to
the best of our knowledge, there is relatively little work that

discusses the almost sure safety for VNs in the presence of
realistic V2V channels. The most related work that assures
similar safety property for networked systems is [33]. In [33], a
H∞ controller was developed to assure second moment stability
which is a stronger notion than almost sure stability, for a
linear networked system with a two-state Markov chain channel
model. The approach used to guarantee safety in [33] relies
on the fact that the linear system with the channel model can
be formulated as a Markovian jump linear system (MJLS).
Other recent work using MJLS approach to prove mean square
stability includes [26], [27]. However, this MJLS approach
cannot be applied to the vehicular systems with V2V channels
for two reasons. First, the result based on MJLS framework
is limited to the system with a single centralized controller,
which is impractical for vehicular systems. Second, the state
dependency in V2V channels introduces extra nonlinearity into
vehicular systems that cannot be addressed in the framework
of MJLS.

By using the EBB model that is functionally dependent on
the vehicular state, this paper develops a distributed switching
control scheme to assure almost sure safety for a chain of
leader-follower systems. The leader-follower chain consists of
a collection of leader-follower pairs that require each follower
to manipulate its linear and angular velocity to achieve and
maintain a desired separation and relative bearing. The infor-
mation of the leader’s bearing angle is transmitted over an
exponentially bursty channel, which is accessed by a directional
antenna mounted on each leading vehicle in the chain [17].

The results in this paper add to the prior literature on bearing-
only leader-follower systems. Recent work in leader-follower
systems [11], [24], [34], [36] studied bearing-only systems
under the assumption of perfect or bounded measurements.
In [36], the safety of leader-follower formation systems were
examined by analyzing the disturbance amplification within
the formations under perfect information. The studies in [11],
[24] showed that bearing angles were important in addressing
the localization problem in multi-agent systems when perfect
information is available. This was extended in [34] to deal with
uncertain measurements in a known bounded set. The present
paper, on the other hand, considered the scenario that the
leader’s bearing angle was not perfectly known and the uncer-
tainty of the information stochastically changed over time. This
stochastic uncertainty results from deep fading in V2V commu-
nication and is prone to destabilizing a leader-follower chain.

This stochastic uncertainty prevents each leader-follower
subsystem from maintaining the formation safely. The cascaded
structure of the leader-follower chain amplifies such uncertainty
from upper system to the lower system, and therefore leads to
catastrophic failure for the entire system. This paper proposes
two switching rules to recover the safe-behavior of the leader-
follower chain by adaptively selecting local controller in re-
sponse to the changes of channel state, and by enforcing the
upper systems to constrain their control actions as a function
of the lower system’s states. Sufficient conditions are provided
for each vehicle to decide which controller is placed in the
feedback loop to assure almost sure asymptotic stability and
almost sure practical stability for the entire leader-follower
chain.
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The layout of this paper is as follows. Section II introduces
mathematical notations. Section III provides a system descrip-
tion and problem formulation. After that, Section IV discusses
the main results. Then, Section V presents the simulation
results of a leader-follower chain with four vehicles. Finally,
Section VI concludes the paper.

II. MATHEMATICAL PRELIMINARIES

Let Z and R denote the set of integers and real numbers,
respectively. Let Z+ and R+ denote the set of non-negative
integers and real numbers, respectively. Let R

n denote the
n-dimensional Euclidean vector space. The∞-norm on the vec-
tor x ∈ R

n is |x| = max |xi| : 1 ≤ i ≤ n, and the correspond-
ing induced matrix norm is ‖A‖ = max1≤i≤n

∑n
j=1 |Aij |. Let

f(t) ∈ R
n denote the value that function f takes at time t ∈ R.

Let {τk}∞k=0 denote a strictly monotonically increasing se-
quence with τk ∈ R+ for all k ∈ Z+ and τk < τk+1. Then,
f(τk) denotes the value of function f at time τk. For simplicity,
we let f(k) denote f(τk) if its meaning is clear in the context.
The left-hand limit at τk ∈ R+ of a function f(·) : R → R

n

is denoted by f(k−). Similarly, the right-hand limit of the
function f(k) is denoted by f(k+).

Consider a continuous-time random process {x(t) ∈ R
n :

t ∈ R+} whose sample paths are right-continuous and satisfy
the following differential equation:

ẋ(t) = f (x(t), u(t), w(t), d(t)) (1)

where u(·) : R+ → R
m is a control input, d(t) is an external

L∞ disturbance with |d(t)|L∞ = D and w(t) is a jump process

w(t) =
∞∑
�=1

w�δ(t− τ�) (2)

in which {w�, � ∈ Z+} is a Markov process describing the �th
jump’s size at jump instants {τ�}∞�=1. The expectation of this
stochastic process at time t will be denoted as E(x(t)).

Let x∗ be the equilibrium of system (1) with f(x∗, 0, 0, 0)=0.
The system in (1), (2) is said to be almost-surely asymptotically
stable with respect to x∗, if

lim
t→∞

Pr

{
sup
t

|x(t)| → x∗
}

= 1

Given a constant positive Δ∗ ∈ R+, let Ω(Δ∗) be a bounded
set defined as Ω(Δ∗) = {x ∈ R

n||x− x∗| ≤ Δ∗}. The system
in (1), (2) is said to be almost-surely practical stable with
respect to Ω(Δ∗), if there exists Δ > 0 with Δ∗ > Δ such that
if |x(0)− x∗| ≤ Δ, then

lim
t→∞

Pr

{
sup
t

|x(t)| ∈ Ω(Δ∗)

}
= 1

The system in (1), (2) is almost sure safe if it is almost surely
asymptotically stable with respect to equilibrium x∗ or almost
surely practical stable with respect to set Ω(Δ∗). x∗ is called
safe equilibrium, and the states in set Ω(Δ∗) are safe states.

Fig. 1. A cascaded formation of nonholonomic vehicular system.

Fig. 2. Exponential Bounded Burstiness (EBB) Model for directional wireless
channel.

III. SYSTEM DESCRIPTION

A. System Model

Fig. 1 shows a string formation of N mobile robots. For each
mobile robot, we consider the following kinematic model:

ẋi=vi cos(θi), ẏi=vi sin(θi), θ̇i=ωi, i=0, 1, . . . , N − 1
(3)

where (xi(t), yi(t)) denotes the vehicle i’s position at time t ∈
R+, θi(t) is the orientation of the vehicle relative to the x axis
at time t. vi and ωi are the vehicle’s speed and angular velocity
that represent the control input.

As shown in Fig. 1, the cascaded formation with N mobile
robots consists of N − 1 leader-follower pairs. In each leader-
follower pair j, we assume that the leader can directly measure
its relative bearing angle αj to the follower. Similarly, the
follower can measure its bearing angle φj to the leader. Both of
the vehicles are able to measure the relative distance Lj . What
is not directly known to the follower is the relative bearing angle
αj . In this paper, we consider the case when information about
leader’s bearing angle αj is transmitted over a wireless channel.
The channel is accessed through a directional antenna whose
radiation pattern is shown in Fig. 2.

The control objective of the cascaded formation is to have
the follower in each leader-follower pair regulate its speed and
angular velocity to achieve and maintain a desired distance
and bearing angle. Let Ldj

and αdj
denote the desired inter-

vehicle distance and relative bearing angle, respectively, in the
jth leader-follower pair. By using the similar technique in [12],
the time rate of change of the relative distance Lj and leader’s
relative bearing angle αj can be obtained as follows:

L̇j = vj−1 cosαj − vj cosφj − dωj sinφj

α̇j =
1

Lj
(−vj−1 sinαj − vj sinφj + dωj cosφj) + ωj−1

(4)
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where d is the distance from the vehicle’s center to its front.
Remark III.1: Note that d > 0 is a parameter for the vehicle

and the relative distance measurement always satisfies Lj ≥ d.
When d = 0 (or if Lj is a distance from leader’s center to
follower’s center), system (4) has a singular point at Lj = 0 and
the state feedback linearization method in (8) cannot be applied
due to [5].

B. Information Structure

As discussed in the previous section, the leader’s bearing
angle αj in each leader-follower pair must be transmitted to the
follower over a wireless channel. In this regard, the information
about αj that is available to the follower is limited by the
following two constraints,

• The state measurement αj(t) is only taken at a sequence
of time instants {τk}∞k=0 that satisfy τk < τk+1, k =
1, 2, . . . ,∞.

• The sampled data αj(τk) is quantized with a finite number
of bits Rj , and is transmitted over an unreliable wireless
channel with only first Rj(k) bits (Rj(k) ≤ R̄j) received
at the follower.

At the kth sampling time instant, the triple {α̂j(k
−), Uj(k),

cj(k)} characterizes the information structure of the leader’s
bearing angle αj(τk) at the leader side. Assume that the
measurement αj(τk) lies in an interval [−Uj(k) + α̂j(k

−),
Uj(k) + α̂j(k

−)] with α̂j(k
−) representing the “center” of

the interval and Uj(k) representing the length of the interval.

The codeword cj(k) = {bjl(k)}R̄j

l=1 consists of bits bjl(k) ∈
{−1, 1}, and is constructed by truncating the first Rj bits of
the following infinite length of bits:{
{bjl(k)}∞l=1 ∈ {−1, 1}∞|αj(τk)

= α̂j(k
−) + Uj(k)

∞∑
l=1

1

2j
bjl(k)

}
.

This corresponds to a uniform quantization of the sampled state
within the interval [−Uj(k) + α̂j(k

−), Uj(k) + α̂j(k
−)] with

Rj number of bits.
We assume that the follower only successfully receives the

first Rj(k) bits in the codeword cj(k). The information struc-
ture at the follower side is another triple {α̂j(k), Uj(k), ĉj(k)}
with ĉj(k)={bjl}Rj(k)

l=1 and α̂j(k) being constructed as follows:

α̂j(k) = α̂j(k
−) + Uj(k)

Rj(k)∑
l=1

1

2j
bjl(k) (5)

α̂j(k) is an estimate of the leader’s bearing angle αj(k) at time
instant τk.

In order to reconstruct the estimate α̂j(k), it is necessary
to synchronize the leader and follower in the sense that they
have the same information structure. We assume a noiseless
feedback channel, with each successfully received bit being
acknowledged to the leader. This allows one to ensure that the
information structures are synchronized between the leader and
follower. The follower then uses the estimated bearing angle

α̂j(k), and the measured inter-vehicle distance Lj , to select
its speed, vj , and angular velocity ωj to achieve the control
objective.

C. Wireless Channel

As shown in Fig. 2, the leading vehicle in each pair uses a
directional antenna to access the V2V wireless channel. We
assume the V2V channels are free of interference from other
leader-follower pairs, but the channel does exhibit deep fading.
Deep fades occur when the channel gain drops below a thresh-
old and stays below that threshold level for a random interval of
time. In mobile communication networks, the wireless channel
exhibits deep fades and has memory of its past channel states.
Such time varying channel will increase the likelihood of a
burst of packet dropouts. This fact has been recently found
to be a fundamental factor that destabilizes networked control
systems [21].

Outage probability is a well studied performance metric
for wireless fading channel [19], [39]. In wireless networks,
outage probability is commonly defined as the probability of
the signal to noise ratio of a received signal being less than the
threshold for reliable reception. This metric is closely related
to the concept of EBB which was introduced in [41]. In [41],
the EBB model was used to bound the likelihood of a string
of consecutive dropouts for a single communication link. This
model has been further explored in [9], [20] to study the
burstiness of a communication network with multiple nodes.
Thus, this paper also adopts the EBB model to characterize
channel outages. The definition of the EBB model is

Definition III.2: Let Rj(k) denote a random variable that
characterizes the possible number of successfully decoded bits
over time interval [τk, τk+1), then random process {Rj(k)} is
EBB with continuous, positive and monotonically decreasing
functions (h(·, ·), γ(·, ·)), if the probability of successfully de-
coding Rj(k) bits at each sampling time τk satisfies

Pr {Rj(k) ≤ h (|αj(τk)| , |Lj(τk)|)− σ}

≤ e−γ(|αj(τk)|,|Lj(τk)|)σ (6)

for |αj(τk)| ≤ π/2 and σ ∈ [0, h(|αj(τk)|, |Lj(τk))|] with

Pr {Rj(k) = 0} = 1 (7)

for |αj(τk)| > π/2, ∀ k ∈ Z+.
The (6) and (7) characterize the fact that if the follower

vehicle is out of the antenna’s radiation scope, i.e., |αj(τk)| >
π/2, then the communication link between the vehicles is
broken. If the vehicle is within the scope, i.e., |αj(τk)| ≤ π/2,
the probability of having a string of dropouts is exponentially
bounded.

Fig. 2 shows a distribution of channel state Rj(k) at time
τk. The function h(|αj |, |Lj |) in the EBB model is a thresh-
old that partitions channel state space (horizontal axis in the
figure) into high bit rate region (right from h(|αj |, |Lj |)) and
low bit rate region (left to h(|αj |, |Lj |)). This threshold is
a decreasing function of the absolute value of the current
formation states Lj(τk) and αj(τk). It models the impact of
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the path loss on the data rate [39]. In the low bit rate region,
σ ∈ [0, h(|αj(τk)|, |Lj(τk))|] characterizes the dropout burst
length. The function γ(|αj |, |Lj |) is the exponent in the ex-
ponential bound and characterizes how fast the probability of
a bursty dropout decays as a function of dropout burst length
within the low bit rate region. This decay rate is also a decreas-
ing function of Lj(τk) and αj(τk). It models that fact that the
likelihood of having a bursty dropout in V2V channel increases
with inter-vehicle distance and relative bearing angle. Thus, the
EBB characterization explicitly models state dependency and
bursty dropouts for a realistic V2V channel.

The following lemma shows that the EBB characterization in
(6), (7) can be used to describe a wide range of channel models
that include traditional i.i.d models [39] as well as two-state
Markov chain models [42].

Lemma III.3: Consider a bit stream {bjl(k)}Rj

l=1 that is se-
quentially transmitted over the fading channel, define a corre-

sponding random process {Xjl(k)}Rj

l=1 with random variable
Xjl(k) ∈ {0, 1} taking value 1 when the corresponding bit
successfully decoded and 0 otherwise. For fading channels that
are modeled by either a i.i.d. process [39] or a two-state Markov

process [42], i.e., {Xjl(k)}Rj

l=1 is a i.i.d. process or a two-state
Markov process, there always exists a EBB characterization in

(6), (7) with Rj(k) =
∑Rj

l=1 Xjl(k).
Proof: The proof is provided in the Appendix. �

What should be apparent from the EBB model is that we
are explicitly accounting for the relationship between bursty
channel state (Rj(k)) and formation configuration. A major
goal of this paper is to exploit that relationship in deciding how
to switch between different controllers to assure almost sure
performance.

D. Distributed Switching Control

In this paper, the control objective is to steer the cascaded
vehicular system shown in Fig. 1 to a sequence of desired dis-
tances {Ldj

}N−1
j=1

and bearing angles {αdj
}N−1
j=1

in a distributed
fashion, and then maintain around those set-points.

At each time instant {τk}∞k=0, the follower of each leader-
follower pair switches among a group of controller gains
to regulate its velocity and angular velocity to achieve the
control objective. Let K(k) := {Kαj

(k),KLj
(k)} denote the

controller gain pair used for leader-follower pair j at time
instant τk. These controller gains are selected from one pair of
a collection of values Kj = {Kj1 ,Kj2 , . . . ,KjM }. Recall that
the dynamic of formation configuration is equation (4), we use
standard input to state feedback linearization to generate the
control input[

vj
ωj

]
=

[− cosφj −Lj sinφj

− sinφj

d
Lj

d cosφj

] [
KLj

(k)
(
Ldj

− Lj

)
Kαj

(k)
(
αdj

− α̂j

) ]
(8)

over the time interval [τk, τk+1). The variable α̂j(t) is a contin-
uous function over [τk, τk+1), and satisfies the following initial
value problem:

˙̂αj = Kαj
(k)
(
αdj

− α̂j

)
, α̂j(τk) = α̂j(k) (9)

where the estimate α̂j(k) is obtained from (5). With this con-
trol, the inter-vehicle distance Lj and bearing angle αj satisfy
the following differential equations over [τk, τk+1):[

L̇j

α̇j

]
=

[
cosαj 0
− sinαj

Lj
1

] [
vj−1

ωj−1

]
+

[
KLj

(k)
(
Ldj

− Lj

)
Kαj

(k)
(
αdj

− α̂j

) ]
(10)

for all k = 1, 2, . . . ,∞.
The (9), (10) represent the closed-loop system for the leader-

follower pair j and can be viewed as an example of a jump
nonlinear system given in (1), (2). The L∞ disturbance in the
jth leader-follower system is [vj−1, ωj−1]. The estimate of the
bearing angle α̂j forms a jump process with jumps occurring at
discrete time instants {τk}∞k=1. As shown in (5), the magnitude
of the jump at each time instant is stochastically governed by
the length of the uncertainty interval Uj(k) and the number of
received bits Rj(k). Such jump process significantly impacts
the formation performance of the cascaded system by pushing
the formation state away from the equilibrium, which in turn
leads to deep fades with a high probability. In the next section,
we will show how to reconfigure the local controller gain in
response to the changes of Uj(k) and Rj(k) such that almost
sure performance is assured.

It is apparent from Fig. 1 that vehicle j for j=1, 2, . . . , N−2
plays a leader in leader-follower pair j + 1 as well as a follower
in leader-follower pair j. In this regard, vehicle j could observe
the full state αj+1 of the leader-follower subsystem j + 1
because it serves the leadership in that system. By observ-
ing the behavior of the following vehicle, vehicle j for j =
1, 2, . . . , N − 1 can adjust its controller gain to overcome large
overshoots in the following system. Such cooperative control
strategy lessens the amplification on the disturbance from the
upper leader-follower systems to the lower systems.

IV. MAIN RESULTS

This paper’s main results consist of two parts regarding the
safe behavior of inter-vehicle distance Lj and bearing angle αj

for each leader-follower pair. Specifically, “safe” means that the
vehicle does not collide with each other and the bearing angle
is regulated to stay in a specified bounded set almost surely.
The first part of the results provides a sufficient condition under
which the inter-vehicle distance Lj for j = 1, 2, . . . , N − 1 is
almost surely convergent to a compact invariant set regardless
of the changes on channel state. Furthermore, we show that
the inter-vehicle distance is almost surely convergent to the
desired separation Ldj

, j = 1, 2, . . . , N − 1 if the bearing an-
gle αj , j = 1, 2, . . . , N − 1 is almost surely convergent. The
second part of the results derive sufficient conditions for the
almost sure asymptotic stability and practical stability for
the bearing angle αj , j = 1, 2, . . . , N − 1.

In the main results, we use the fact that the leader’s action
in each leader-follower pair can be constrained as a function
of the following system’s state to assure the stability for the
whole leader-follower system. Proposition IV.1 provides an
explicit characterization of the bound on the leader’s action,
as well as a distributed way to achieve that bound. Using the
results from Proposition IV.1, one can easily prove the first main
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result in this paper (Lemma IV.5), i.e., the convergence of inter-
vehicle distance since the distance is measurable to both leader
and follower. The more challenging and interesting part of the
results is to guarantee almost sure stability for the bearing angle
αj , which is presented in Section IV-B.

The following Proposition is provided to assure the control
input from upper leader-follower subsystem is bounded as a
function of state estimates of the bottom system. The proof is
provided in the Appendix.

Proposition IV.1: Consider the closed-loop system in (9),
(10), let d ≥ 1, if there exists a sequence of controller gains
{Kj(k)}∞k=0, Kj(k) = {KLj

(k),Kαj
(k)} ∈ Kj such that

for given monotonically increasing functions Wj(·) : R+ →
R+, j = 1, 2, . . . , N − 1, the following inequality holds for all
k = 0, 1, . . . ,∞:

max
{
L̃j,max,Kαj

(k) |α̃j(k)|
}
≤ Wj (|α̃j+1(k)|)(

1 +MLj
(k)
) (11)

where

L̃j,max =KLj
(k)
∣∣∣L̃j(k)

∣∣∣ eKLj
(k)Tk

+Wj−1 (|α̃j(k)|)
(
eKLj

(k)Tk − 1
)

MLj
(k) = max

{
Lj(τk), Lj(τk+1)

}
Lj(t) =

(
Ldj

+
Wj−1 (|α̃j(k)|)

KLj
(k)

)(
1− e−KLj

(k)(t−τk)
)

+ Lj(k)e
−KLj

(k)(t−τk)

α̃j(k) =αdj
− α̂j(k), L̃j(k) = Ldj

− Lj(k)

then

sup
t

∣∣∣∣
[
vj(t)
ωj(t)

]∣∣∣∣ ≤ Wj (|α̃j+1(k)|) , t ∈ [τk, τk+1). (12)

Because of inequality (12), each leader-follower subsystem
j in (10) can bound the external disturbance [vj−1, ωj−1] by
observing its local state estimate α̃j at each time instant τk.
Meanwhile, the subsystem j − 1 can select its controller gain
so that the control input [vj−1, ωj−1] satisfies the bound in
inequality (12) because the estimate of bearing angle α̃j is
always available to subsystem j − 1. Such property provides a
basis for designing a distributed and cooperative switching law
to assure the stability for the whole formation system.

Remark IV.2: Functions Wj(·) are upper bounds on the
control inputs of upper leader-follower system and the values
of Wj(·) at each time instant τk can also be seen as feedback
signals from the bottom system. Such feedback signals directly
constrain the magnitude of control input from upper system, so
that the disturbances are not amplified from upper system to
bottom system.

Remark IV.3: The inequality (11) could be viewed as a
switching rule for the leader-follower pair j to react to the
changes on system j + 1’s bearing angle. The switching rule
applied over each time interval [τk, τk+1) is feasible because it
is only based on the information that is available at time τk.

With the validity of Proposition IV.1, the following corollary
characterizes the propagated bound on the external inputs of
the leader-follower chain as a function of the bearing angle’s
estimate in each leader-follower pair.

Corollary IV.4: Suppose the hypothesis of Proposition IV.1
holds then

max {|v0(k)| , |ω0(k)|} ≤ W0 ◦ W̃1 ◦ · · · ◦ W̃j (|α̃j+1(k)|)
(13)

where v0(k) and ω0(k) are the speed and angular velocity of
the first vehicle in the chain, and

W̃j(·) :=
1(

1 +MLj
(k)
)
Kαj

(k)
Wj(·), j = 1, . . . , N − 2.

Proof: Consider the first leader-follower pair, the
Proposition IV.1 implies

max {|v0(k)| , |ω0(k)|} ≤ W0 (|α̃1(k)|) .

Since

(1 +ML1
(k))Kα1

(k) |α̃1(k)| ≤ W1 (|α̃2(k)|)

holds due to inequality (11), then

max {|v0(k)| , |ω0(k)|} ≤ W0 ◦ W̃1 (|α̃2(k)|) .

Repeating above procedure leads to the final conclusion (13). �

A. Almost Sure Convergence of Inter-Vehicle Distance Lj

In this section, we present the first main result of this paper
involving the almost sure convergence of inter-vehicle distance.
First, the following lemma provides a sufficient condition on
the controller gain KLj

, under which one can show Lj(t) con-
verges at an exponential rate to an invariant set Ωinv, j centered
at the desired inter-vehicle distance Ldj

, for j=1, 2, . . . , N−1
regardless of the change on channel state.

Lemma IV.5: Let the hypothesis of Proposition IV.1 hold,
consider the system in (9), (10) with the selected controller
gain {KLj

(k),Kαj
(k)} ∈ Kj . If KLj

(k) > (Wj(|α̃j(k)|)/
ρ(Ldj

− d)) and Lj(0)>d, then for any sample path, Lj(t)≥d

for all t ∈ R+ and there exists a finite time T > 0 such that
Lj(t) enters and remains in the set

Ωinv, j ≡
{
Lj ∈ R+

∣∣∣∣Lj − Ldj

∣∣ ≤ Wj (|α̃j(k)|)
ρKLj

(k)

}

for all t ≥ T and any ρ ∈ (0, 1].
Proof: Consider the function V (Lj) = (1/2)(Lj − Ldj

)2

and closed-loop state (10). Taking the directional derivative of
V over time interval [τk, τk+1) one obtains

V̇ (Lj) = −KLj

(
Lj − Ldj

)2
+
(
Lj − Ldj

)
· vj−1 cosαj

≤ −KLj
(1− ρ)

(
Lj − Ldj

)2 − ρ·KLj

(
Lj − Ldj

)2
+
∣∣Lj − Ldj

∣∣Wj (|α̃j(k)|)
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Fig. 3. Partition of formation state space.

for any ρ ∈ (0, 1]. The last inequality holds because of
Proposition IV.1. When |Lj − Ldj

| ≥ Wj(|α̃j(k)|)/ρKLj
, the

following dissipative inequality holds:

V̇ (Lj) ≤ −KLj
(1− ρ)

(
Lj − Ldj

)2
= − 2KLj

(1− ρ)V (Lj). (14)

This implies that V (Lj(t)) is exponentially decreasing when
the state Lj(t) is outside the set Ωinv, j. Since Lj(0) >
d, the feasible region outside the invariant set is Lj(t) ≥
(Wj(|α̃j(k)|)/ρKLj

(k)) + Ldj
> d. By inequality (14), it is

clear that Lj(t) converges to the set Ωinv, j in finite time and
Lj(t) > d for all time since for any Lj ∈ Ωinv, j, it satisfies

Lj ≥ −Wj (|α̃j(k)|)
ρKLj

+ Ldj
> d.

Since the time interval [τk, τk+1) is selected arbitrarily, the
conclusion holds for any k ∈ Z+. �

Remark IV.6: Note that d is the distance from the center of
the vehicle to the front of the vehicle. As shown in Fig. 1,
Lj(t) > d means that the two vehicles do not collide with each
other.

Corollary IV.7: Consider closed-loop system in (9), (10),
let the hypotheses of Proposition IV.1 and Lemma IV.5 hold.
If the bearing angle αj is almost surely convergent to αdj

with Wj−1(0) = 0, j = 1, 2, . . . , N − 1, then the separation
distance Lj almost surely converges to Ldj

.
Proof: From Lemma IV.5, one knows that the inter-

vehicle separation converges to a invariant set with size of
Wj(|α̃j(k)|)/ρKLj

(k). With Wj−1(0) = 0, j = 1, 2, . . . ,
N − 1, and limk→∞ Pr{αj(k) → αdj

} = 1, it is easy to show
that the event limk→∞(Wj(|α̃j(k)|)/ρKLj

(k)) = 0 occurs
with probability one as time goes infinity, i.e., the separation
Lj(t) almost surely converges to Ldj

. �

B. Almost Sure Asymptotic Stability and Practical Stability for
Bearing Angle αj

This section provides the second main result of this paper
that assures almost sure asymptotic stability and almost sure
practical stability for the bearing angle αj . Fig. 3 shows the
basic idea and results. Two types of sets are depicted in Fig. 3

with one enclosed by the blue solid curve, and the other one
enclosed by the red dashed curve. The set enclosed by the
blue solid curve represents the partition generated by inequality
G(|αj |, |Lj |) ≤ ηj with associated threshold ηj ∈ (0, 1), which
is shown in Lemma IV.9. The area enclosed by the red dashed
curve characterizes the target set where the system trajectory
will converge to almost surely. The size of the target set is
characterized by Δ∗

j . The almost sure asymptotic stability result
is interpreted as a special case when the target set contains only
origin.

The main result states that the bearing angle αj will almost
surely converge to the target set if the system trajectory enters
and remains in the set enclosed by the blue solid curve. To
assure the invariance of the set enclosed by the blue solid curve,
we adopt a switching control strategy to reconfigure the control
gain for each leader-follower pair. Fig. 3 shows one possible
evolution of the system trajectory αj and Lj with the switching
strategy. We use black dots to represent the estimates of the
bearing angle α̂j(τk) at each sampling time τk. A bar is used to
characterize the uncertainty interval with the estimate α̂j(τk) as
its center. The length of bar can be viewed as an upper bound
of the quantization error |αj(τk)− α̂j(τk)|, and increases as
the channel condition decreases. Therefore, the basic idea for
switching is that when the system trajectory approaches the
blue set’s boundary with an increasing uncertainty length, an
appropriate controller is re-selected to assure that the stochastic
variation on the uncertainty length satisfies a super-martingale
inequality, which guarantees the convergence of system states
to the target set with probability one.

To be more specific about the main result, first, a dynamic
quantization method is used to show that the quantization
error |αj(τk)− α̂j(τk)| can be bounded by a recursively con-
structed sequence (Lemma IV.8). Then, a sufficient condition
is presented to select controllers, under which the sequence
(Lemma IV.9) and bearing angle estimate (Lemma IV.11)
satisfy super-martingale like inequalities. Finally, the super-
martingale inequality condition leads to the proof of almost
sure asymptotic stability (Theorem IV.12) and practical stability
(Theorem IV.14) for the bearing angle αj .

Recall that {αj(k
−), Uj(k)}∞k=0 characterizes the quan-

tizer’s state at each time instance τk. The following lemma
gives a recursive construction for this sequence such that the
quantization error remains bounded by some function of Uj(k)
for all k ≥ 0. This bound is used to switch controllers to
assure almost sure performance. Note that the technique used
to prove the following lemma follows the pattern in dynamic
quantization [6].

Lemma IV.8: Consider the closed-loop system in (9), (10),
given the transmission time sequence {τk}∞k=0, and controller
pairs {KLj

(k),Kαj
(k)}∞

k=0
. Let Tk = τk+1 − τk, let the hy-

pothesis of Proposition IV.1 and Lemma IV.5 hold, the quan-
tizer’s initial state {α̂j(0), Uj(0)} is known to both leader
and follower, and the initial state αj(0) ∈ [−Uj(0), Uj(0)],
Uj(0) ≤ π/2. If the sequence {αj(k

−), Uj(k)}∞k=0 is con-
structed by the following recursive equation:

Uj(k + 1) =Bj(k)Tk + 2−Rj(k)Uj(k) (15)

α̂j(k + 1−) =
(
α̂j(k

+)− αdj

)
e−Kαj

(k)Tk + αdj
(16)
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where

Bj(k) = max

{
1

min {Ljmin, Lj(k)}
, 1

}
Wj−1 (|α̃j(k)|)

Ljmin =

[
−L̃j(k) +

Wj−1 (|α̃j(k)|)
KLj

(k)

]
e−KLj

(k)Tk

+ Ldj
− Wj−1 (|α̃j(k)|)

KLj
(k)

L̃j(k) =Ldj
− Lj(k)

then the bearing angle αj(k) for all j = 1, 2, . . . , N − 1 gener-
ated by system (9), (10) can be bounded as∣∣αj(k)− α̂j(k

+)
∣∣ ≤ U j(k) (17)

where U j(k) = 2−Rj(k)Uj(k) and Rj(k) is the number of bits
received over the time interval [τk, τk+1).

Proof: Let ej(t) = αj(t)− α̂j(t) denote the estimation
error. By inequality d|ej |/dt ≤ |dej/dt|, the dynamic of ej(t)
over time interval [τk, τk+1) is bounded by

d|ej |
dt

≤
∣∣∣∣[− sinαj

Lj
1
] [ vj−1

ωj−1

]∣∣∣∣
≤
(

1

|Lj |
+ 1

) ∣∣∣∣
[
vj−1

ωj−1

]∣∣∣∣
≤
(

1

|Lj |
+ 1

)
Wj−1 (|α̃j(k)|) . (18)

The last inequality holds because of Proposition IV.1. Since L̇j ≥
KLj

(k)(Ldj
−Lj)−|vj−1|≥KLj

(k)(Ldj
−Lj)−Wj−1(|α̃j(k)|),

using Gronwall-Bellman inequality over [τk, τk+1) yields

Lj(t)≥
[
Lj(τk)−

(
Ldj

−Wj−1 (|α̃j(k)|)
KLj

(k)

)]
e−KLj

(k)(t−τk)

+Ldj
− Wj−1 (|α̃j(k)|)

KLj
(k)

)
.

Since Ldj
≥ (Wj−1(|α̃j(k)|)/KLj

(k)) and Lj(t) > d from
Lemma IV.5, we know infτk≤t<τk+1

Lj(t) is obtained at either
t = τk or t = τk+1

Lj(t) ≥ inf
τk≤t<τk+1

Lj(t) = min {Ljmin, Lj(τk)} (19)

whereLjmin=[−L̃j(k)+(Wj−1(|α̃j(k)|)/KLj
(k))]e−KLj

(k)Tk+
(Ldj

− (Wj−1(|α̃j(k)|)/KLj
(k))). By inequality (19), (18) is

rewritten as

d|ej |
dt

≤
(

1

min {Ljmin, Lj(τk)}
+ 1

)
Wj−1 (|α̃j(k)|) .

Solving above differential inequality, we have

|ej(t)|≤
(

1

min {Ljmin, Lj(τk)}
+1

)
Wj−1(|α̃j(k)|)︸ ︷︷ ︸

Bj(k)

×(t− τk)+ |ej(τk)| .

For t → τk+1, one can get |e(k + 1−)| ≤ Bj(k)Tk + |ej(k)|.
And assume that |ej(k)| ≤ U j(k), then |e(k + 1−)| ≤

Bj(k)Tk + U j(k). We know that∣∣e(k + 1+)
∣∣ ≤ 2−Rj(k+1)

∣∣e(k + 1−)
∣∣

≤ 2−Rj(k+1)
(
Bj(k)Tk + U j(k)

)
.

From (15) and U j(k + 1) = 2−Rj(k+1)Uj(k + 1), we have
|e(k + 1+)| ≤ U j(k + 1). The (16) holds by simply consider-
ing the solution to the ODE ˙̃αj = −Kαj

α̃j with initial value
α̃j = αdj

− α̂j(k
+). �

With Lemma IV.8, the following lemma provides a sufficient
condition on the selection of controller gains that assures a
super-martingale like property for the sequence {Uj(k)}+∞

k=0,
j = 1, 2, . . . , N − 1.

Lemma IV.9: Consider the closed-loop system in (9),
(10). Let

G (|αj |, |Lj |)

= e−h(|αj |,|Lj |)γ(|αj |,|Lj |) (1 + h (|αj |, |Lj |) γ (|αj |, |Lj |))

be a non-negative, monotonically increasing function with
respect to |αj | and |Lj | respectively. If there exists a
sequence of controller gains {KLj

(k),Kαj
(k)}∞

k=0
with

Kj(k) = {KLj
(k),Kαj

(k)} ∈ Kj for all k ∈ Z such that the
Proposition IV.1 and following inequality hold for any
ηj ∈ (0, 1)

G
(
αj(k + 1), Lj(k + 1)

)
≤ ηj

αj(k + 1)=
∣∣∣−α̃j(k)e

−Kαj
(k)Tk + αdj

∣∣∣+Bj(k)Tk + U j(k)

Lj(k + 1) = Ldj
+

Wj−1 (|α̃j(k)|)
KLj

(k)

−
[
L̃j(k) +

Wj−1 (|α̃j(k)|)
KLj

(k)

]
e−KLj

(k)Tk

(20)

then

E
[
U j(k+1)|U j(k)

]
≤ηjU j(k)+ηjBj(k)Tk, ∀ k ∈ Z+.

(21)

Proof: Consider the sequence {U j(k)}∞k=0 that
satisfies (15) in Lemma IV.8, using the argument in [16],
one has E[U j(k + 1)|U j(k)] ≤ G(|αj(k + 1)|, |Lj(k +
1)|)(Bj(k)Tk + U j(k)). Let G(|αj(k + 1)|, |Lj(k + 1)|) ≤
ηj , we have final conclusion (21) hold. In order to select
the controller gain {KLj

(k),Kαj
(k)} for the time interval

[τk, τk+1), the selection decision is made based only on the
information at time instant τk. Thus, we further bound the state
|αj(k + 1)| and |Lj(k + 1)| by considering |ej(k + 1−)| =
|αj(k+1−)− α̂j(k+1−)|≤Bj(k)Tk + U j(k). Since αj(k +
1) = αj(k + 1−), we have

|αj(k + 1)| ≤
∣∣α̂j(k + 1−)

∣∣+Bj(k)Tk + U j(k)

≤
∣∣∣αdj

−
(
αdj

− α̂j(k)
)
e−KLj

(k)Tk

∣∣∣
+Bj(k)Tj + U j(k)

Δ
=αj(k + 1).

Similarly, one also has |Lj(k + 1)| ≤ Lj(k + 1) = (Ldj
+

(Wj−1(|α̃j(k)|)/KLj
(k)))(1−e−KLj

(k)Tk)+Lj(k)e
−KLj

(k)Tk
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that is shown in Proposition IV.1. Since the function G(|αj(k +
1)|, |Lj(k + 1)|) is a monotonically increasing function w.r.t
|αj(k + 1)| and |Lj(k + 1)|, and then if G(αj(k + 1), Lj(k +
1)) ≤ ηj , we have G(|αj(k + 1)|, |Lj(k + 1)|) ≤ ηj , then the
final conclusion holds. �

Remark IV.10: Function G(αj , Lj) in condition (20) is di-
rectly related to the EBB model, and it generates a partition
of the formation state space as shown in Fig. 3. Each partition
associates with a threshold ηj that characterizes the convergent
rate for the uncertainty set. The aim of switching control
strategy is to guarantee that the condition (20) holds with a
selected ηj .

Similar to Lemma IV.9, the following lemma shows that
the sequence of the estimate of bearing angle {α̃j(k)}∞k=0 for
j = 1, 2, . . . , N − 1 satisfies a super-martingale like property
as sequence {U j(k)}∞k=0 does.

Lemma IV.11: Consider the system in (9), (10), given
a sequence of controller pair {KLi

(k),Kαi
(k)}∞k=0 with

each {KLi
(k),Kαi

(k)} selected at time instants {τk}∞k=0

and {KLi
(k),Kαi

(k)} ∈ Ki. Let K∗
αi

= min{Kαi
|Kαi

∈
Ki} and let Ik denote the information available at time instant
τk, then we have

E [|α̃i(k + 1)| |Ik] ≤ e−K∗
αi

Tk |α̃i(k)|

+
(
Bi(k)Tk + U i(k)

)
(1− 2−R̄i).

Proof: Consider the time interval [τk, τk+1), by (9), we
know that ˙̂αj=Kαj

(k)(αdj
−α̂j(t)) with initial value α̂j(τk).

Therefore, let α̃j(k) = αdj
− α̂j(k), we have α̃j(k + 1−) =

e−Kαj
(k)Tk α̃j(k). Let Ej(k + 1) = α̃j(k + 1)− α̃j(k + 1−),

then α̃j(k + 1) = e−Kαj
(k)Tk α̃j(k) + Ej(k + 1). Let K∗

αj
=

min{Kαj
|Kαj

∈ Kj}, then

|α̃j(k + 1)| ≤ e
−K∗

αj
Tk |α̃j(k)|+ |Ej(k + 1)| (22)

The term |Ej(k + 1)| can be bounded as |Ej(k + 1)| ≤
(Bj(k)Tk + U j(k))(1− 2−Rj(k+1)). Taking the conditional
expectation on both sides of inequality (22) with respect
to the information Ik available at time instant τk and us-
ing above bound on |E(k + 1)| yield E[|α̃j(k + 1)||Ik] ≤
e
−K∗

αj
Tk |α̃j(k)|+ (Bj(k)Tk + U j(k))(1− 2−Rj(k+1)). Since

Rj(k) ≤ Rj for all k ∈ Z+, the final conclusion holds. �
With Lemma IV.9 and IV.11, we proceed to state the main

theorem of almost sure asymptotic stability as follows,
Theorem IV.12: Consider closed-loop system in (9), (10).

Let the hypothesis of Lemma IV.9 hold, suppose there exists
a positive constant value εj such that

Bj(k) = max

{
1

min {Ljmin, Lj(k)}
, 1

}
Wj−1 (|α̃j(k)|)

≤ εj |α̃j(k)|

for all k ∈ Z+, if

max
{
ηj+1−2−R̄j , (ηj+1−2−R̄j )εjTk+e

−K∗
αj

Tk

}
≤δ

(23)
where δ ∈ (0, 1). Then the system state of bearing angle
αj almost surely asymptotically converges to αdj

for j =
1, 2, . . . , N − 1.

Proof: We prove the almost sure convergence of αi by
proving limk→∞ E[U i(k) + α̃i(k)] → 0. Since αi = α̂i + ei,
then |αi(k)− αdi

(k)|≤|α̂i(k)−αdi
|+U i(k). By Lemmas IV.9

and IV.11, one has E[U i(k + 1) + α̃i(k + 1)] ≤ δiE[U i(k) +
α̃i(k)] with δi ∈ (0, 1), if inequality (23) holds. Then, it is
clear that limk→∞ E[|αi(k)− αdi

(k)|] → 0. Using Markov in-
equality, we have |αi(k)− αdi

(k)| → 0 almost surely, i.e., the
bearing angle sequence {αi(k)} almost surely converges to αdi

.
Because the state trajectory has no finite escape within each
time interval [τk, τk+1), ∀ k ∈ Z+. Then, the system state of
bearing angle αi(t) is almost surely convergent to αdi

. �
Remark IV.13: The condition Bj(k) ≤ εj |α̃j(k)| is equiva-

lent toWj−1(α̃i(k))≤εi|α̃j(k)| sinceLj(t)>d>1 for t ∈ R+.
Almost sure practical stability is a weaker safety notion

than almost sure asymptotic stability, and it allows the bearing
angles to fluctuate within a reasonable safe set. Theorem IV.14
provides a sufficient condition to assure almost sure practical
stability for bearing angle αj(t), j = 1, 2, . . . , N − 1.

Theorem IV.14: Consider closed-loop system in (9), (10).
Let the hypothesis of Lemma IV.9 hold, for given positive
values Δ∗

j , j = 1, 2, . . . , N − 1, if there exists a controller pair
{KLj

(k),Kαj
(k)} with ηj(k) such that

Bj(k)≤
1− rj
Jj

min
{
Δ∗

j , |α̃j(k)|+U(k)
}
, j=1, 2, . . . , N−1

(24)
with rj < 1 where

rj = max
{
ηj + 1− 2−R̄j , e

−K∗
αj

Tk

}
(25)

Jj =(ηj + 1− 2−R̄j )Tk. (26)

Then the bearing angle αj of leader-follower pair i almost
surely converges to a compact set defined by Ωj = {αj(t) :
|αj(t)− αdj

| ≤ Δ∗
j}.

Proof: By Lemmas IV.9 and IV.11, one has

E
[
|α̃j(k + 1)|+ U j(k + 1)|Ik

]
≤ max

{
ηj + 1− 2−R̄j , e

−K∗
αj

Tk

}(
|α̃j(k)|+ U j(k)

)
+ (ηj + 1− 2−R̄j )TkBj(k). (27)

Let Vj(k) = |α̃j(k)|+ U j(k), and consider function Vj(k)
as a candidate Lyapunov function. It is clear that Vj(k) ≥ 0 for
any k ∈ Z+. Then, we can rewrite inequality (27) into E[Vj(k+
1)|Vj(k)]≤E[Vj(k+1)|Ij(k)]≤rjVj(k) + JjBj(k). Further-
more, if the controller gains {KLj

(k),Kαj
(k)} are selected

to assure rj < 1, we have E[Vj(k + 1)|Vj(k)] ≤ Vj(k)− [(1−
rj)Vj(k)− JjBj(k)]. By condition (24), one can obtain

E [Vj(k + 1)|Vj(k)] ≤Vj(k)+(1−rj)min
{
Δ∗

j−Vj(k), 0
}

=Vj(k)−(1−rj)max
{
Vj(k)−Δ∗

j , 0
}
.

(28)

From inequality (28), one can prove the bounded set Ω̂j =
{Vj(k) : Vj(k) ≤ Δ∗

j} is invariant with respect to system in (9)
and (10) almost surely by considering

1) when Vj(k)≤Δ∗
j , inequality (28) is reduced to E[Vj(k +

1)|Vj(k)] ≤ Vj(k), which implies that sequence {Vj(k)}
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is a super-martingale and remains in the set Ω̂j almost
surely.

2) when Vj(k)>Δ∗
j , ∃ε>0 such that E[Vj(k+1)|Vj(k)]≤

Vj(k)− ε. Clearly, the trajectory of Vj(k) will asymptot-
ically decrease until reaching the set Ω̂j almost surely.

This condition can be viewed as a stochastic version of the
LaSalle Theorem in discrete time system. With condition (28),
one can easily attain the almost sure convergence property for
Vj(k) with respect to set Ω̂j , i.e., limk→+∞ Pr{supk Vj(k) ≤
Δ∗

j} → 1. Since |αj(k)− αdj
| ≤ |α̃j(k)|+ U j(k) = Vj(k),

|αj(k)− αdj
| converges to set Ωj almost surely. Since the

state trajectories remains bounded within each transmission
time interval [τk, τk+1) for all k ∈ Z+. Therefore, we have
limt→+∞ Pr{supt |αj(t)− αdj

| ≤ Δ∗
j} → 1. �

Remark IV.15: Inequality (24) characterizes an upper bound
on the propagated disturbance Bj(k) under which the leader-
follower pair j is almost sure practically stable. This upper
bound is a increasing function of the size of target set Δ∗

j , the
worst-case of bearing angle |α̃j(k)|+ U(k), and a decreasing
function of the ratio ηj .

Remark IV.16: Inequality (24) can be viewed as a distributed
rule to select ηj(k) to assure almost sure practical stability
for each leader-follower pair. The selected ηj(k) is used in
Lemma IV.9 to switch controller.

The following corollary shows an explicit bound on the
bearing angle under which it is almost surely convergent to a
“safe” set Ωj(Δ

∗
j). Such bound is a function of ηj and Δ∗

j .
Corollary IV.17: In Theorem IV.14, suppose Wj(α̃j(k)) ≤

εj |α̃j(k)| holds with gj(ηj) := (1− rj)/εjJj ≥ 1 and rj < 1
where rj and Jj are defined in (25). If

|α̃j(k)|+ U j(k) ≤ gj(ηj)Δ
∗
j (29)

then the bearing angle αj almost surely converges to a bounded
set Ωj = {αj(t) : |αj(t)− αdj

| ≤ Δ∗
j}.

Proof: From Theorem IV.14, we know that the sufficient
condition to assure almost sure practical stability with set Ωj is
Bj(k) ≤ (1− rj/Jj)min{Δ∗

j , |α̃j(k)|+ U(k)}. By condition
Wj(α̃j(k)) ≤ εj |α̃j(k)|, the above sufficient condition holds, if

|α̃j(k)|+ U j(k) ≤
1− rj
εjJj

min
{
Δ∗

j , |α̃j(k)|+ U(k)
}

= gj(ηj)Δ
∗
j

holds. The equality holds because gj(ηj) := (1−rj)/εjJj ≥ 1.
Therefore, the conclusion holds. �

Remark IV.18: gj(ηj) is a monotonically decreasing func-
tion with respect to ηj , and it characterizes the size of the region
from which the state almost surely converges to the set Ωj with
size Δ∗

j . The inequality (29) may be viewed as a partition of
the physical state in the sense that small ηj gives rise to large
contraction set.

V. SIMULATION EXPERIMENTS

This section presents simulation experiments examining the
resilience of our proposed switched controller to deep fades,
and also demonstrates the benefits of using almost sure practical

stability as a safety measurement over the traditional mean
square stability.

A. Simulation Setup

In the simulation, we consider N = 4 vehicles that is cas-
caded in a string as shown in Fig. 1. Each leader-follower pair
uses a two-state Markov chain model to simulate the fading
channel between the leader and follower. The two-state Markov
chain has two states with one representing the good chan-
nel condition and the other one representing the bad channel
condition. Here, the “good channel state” simply means the
transmitted bit is successfully received, while the “bad channel
state” means the failure of receiving the bit.

Following the characterization of Makov chain model
in [42], one can find that the conditional probability for
good channel state is a monotonically decreasing function
of Lj(t)/ cosαj(t), while the conditional probability for
bad channel state is a monotonically decreasing function of
cosαj(t)/Lj(t). The explicit function form depends on the dis-
tribution of the channel gain. In this simulation, we use p11 =
e−3×10−3(Lj(t)/ cosαj(t))

2
to denote the conditional probability

for the good channel state and p22 = e−6×102(cosαj(t)/Lj(t))
2

to represent the conditional probability for the bad channel
condition. The corresponding transition probabilities between
these states are 1− p11 and 1− p22. Then, we use the EBB
model in (6) to characterize the low bit region generated by the
two-state Markov chain model. The corresponding functions in
EBB model (6) are h(αj , Lj) = R̄je

−3×10−4(Lj(t)/ cosαj(t))
2
,

γ(αj , Lj) = e−4.5×10−3(Lj(t)/ cosαj(t))
2

with R̄j = 2 repre-
senting two bits that are transmitted at each sampling period.

The 100 ms sampling time that is consistent with the trans-
mission frequency in V2V communication technology [10] is
widely used in mobile robot system, is selected for each leader-
follower pair (j = 1, 2, 3), i,e, Tk = 0.1 sec for all k ∈ Z+. The
functions Wj−1(·) in Proposition IV.1 are selected to be lin-
ear functions Wj−1(|α̃j(t)|) = aj |α̃j(t)|+ bj with parameters
being a1 = 0.1, b1 = 0.01; a2 = 0.8, b2 = 2; a3 = 1, b3 = 4.
The value of the parameter sets are chosen to be increasing
with respect to j to guarantee the feasibility of the controller
selection for each leader-follower system.

In this simulation, we consider an interesting and real-
istic scenario that the fourth vehicle from far distance in-
tends to join the other three closed-spaced vehicles. Hence,
the initial states for three leader-follower pairs (j = 1, 2, 3)
are α1(τ0) = π/3, α2(τ0) = π/4, α3(τ0) = π/6 and L1(τ0) =
7.1 m, L2(τ0) = 7.1 m, L3(τ0) = 99 m. The initial uncertain-
ties are Uj(τ0) = π/6. By switching controller pairs from sets
Kj = {(KLj

,Kαj
) : 0 < KLj

≤ 100, 0 < Kαj
≤ 100}, each

leader-follower pair is required to achieve and maintain desired
set-points αdj

= 0, Ldj
= 2 m, j = 1, 2, 3.

B. Simulation Results

A Monte Carlo method was used to verify that the system
has almost surely practical stability when Proposition IV.1 and
Theorem IV.14 hold. Each simulation example is run 100 times
over a time interval from 0 to 10 seconds.
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Fig. 4. The maximum and minimum value of separation Lj (m) and bearing
angle αj (rad) for leader-follower pair, j = 1, 2, 3.

Fig. 5. One sample of switching controller profile for leader-follower pair 1
(Top) and 2 (Bottom): KLj

and Kαj are controller gains for the distance and
bearing angle of leader-follower j, j = 1, 2.

In the first simulation, we select the controllers for each leader-
follower pair from Kj , j = 1, 2, 3 so that Proposition IV.1 and
Theorem IV.14 hold at each time instant τk. Fig. 4 shows the
maximum and minimum values of the system states Lj and
αj , j = 1, 2, 3 evaluated over all the 100 runs. The maximum
value is marked by red lines and the minimum value is marked
by blue lines. The two dashed lines in Fig. 4 represent the
upper and lower bound for the relative bearing α, i.e., |αj | ≤
π/2, which characterizes the safety region. We can see from
Fig. 4 that the maximum and minimum values of the system
states asymptotically converge to a bounded set containing the
desired set-points αdj

= 0 and Ldj
= 2 m. This is precisely

the behavior that one would expect if the system is almost sure
practically stable. These results, therefore, seem to confirm our
statement in Theorem IV.14.

Figs. 5 and 6 show one sample of switching controller profile
and channel state for each leader-follower pair. The top plot

Fig. 6. One sample of switching profile (Top) and channel state (Bottom) for
leader-follower pair 3: KL3

and Kα3 are controller gains and R3(k) is the
number of successfully received bits at each time interval [τk, τk+1).

in Fig. 5 shows the switching controller profile for the leader-
follower pair 1 with red line marked as controller gain Kα1

and blue line as controller gain KL1
. The bottom one is the

switching controller profile for leader-follower pair 2 with the
same marking rule. These plots show that the controller gains
stay low at the first two seconds to avoid large disturbance to
the bottom system, and then switch from low to high when
the systems approach the equilibrium and are confident that the
channel state will always stay good. The top plot in Fig. 6 is
the switching controller profile for the leader-follower system 3
with same marking rule, and the bottom plot is the channel state
R3(k) that characterizes the number of successfully received
bits at each time interval. We can clearly see from the plots that
the controller for system 3 starts with low gains to compensate
the effect caused by a short string of zero bits at the beginning,
and then switches from low gain to high gain when channel
condition stays good. These results demonstrate that channel
state indeed is used as a feedback signal to switch the controller.

In the second simulation, we studied the benefits of almost
sure practical stability as a safety measurement over the tradi-
tional mean square stability. Traditional mean square stability
requires the second moment of the system state converges to a
positive constant value, but it does not put any constraint on the
sample path which might potentially cause safety issues. For
a fair comparison, the same simulation setup and parameters
are applied in this simulation with the only difference being on
the controllers. One type of controller used in this simulation
is a mean square stabilizing controller, which is selected to
guarantee mean square stability for each leader-follower pair.
The other type of controller is the switching controller proposed
in this paper to guarantee almost sure practical stability for each
leader-follower pair. The switching control strategy uses the
mean square stabilizing controller as its initial controller.

Fig. 7 shows a comparison of the maximum and minimum
values of the bearing angle α3 for leader-follower pair 3 with
the switching controller case in the top plot and the mean
square controller K1 = (5, 0.5); K2 = (5, 0.5); K3 = (2, 50)
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Fig. 7. The maximum and minimum system trajectory for leader-follower pair
3 with switching controller (Top) and non-switching controller pair (Bottom)
KL3

= 2 and Kα3 = 50.

in the bottom plot. It is worth noting that (K1,K2,K3) is just
one of the many selections in our simulation. Because of the
space limitations, we only use (K1,K2,K3) as an example to
demonstrate the results. It is clear from Fig. 7 that the system’s
sample path goes unbounded as time increases by using a mean
square stabilizing controller, but it converges asymptotically to
a bounded set by using a switching controller. These results
suggest that the composition of mean square stable systems
does not guarantee mean square stability for the whole system,
while the composition of almost sure stable systems may still
guarantee almost sure stability for the whole system.

Fig. 8 shows the comparison of one sample run of
vehicles’ trajectories in Euclidean space that are generated by
the switching control strategy proposed in this paper and
the non-switching strategy with controller gain K1 = (5, 0.5);
K2 = (5, 0.5); K3 = (2, 50). The top plot of the figure is the
leadingvehicle’s trajectorygeneratedbyavelocityprofile (v1(t),
ω1(t)) which satisfies the condition in Corollary IV.4. The
middle plot shows the trajectories of four vehicles that adopt
the switching strategy where the red, black, blue and green
dots represent the trajectories of leading vehicle (Vehicle-1),
Vehicle-2, Vehicle-3 and Vehicle-4 respectively. It is clear from
the plot that the leader-follower system almost surely converges
to the specified formation. The bottom plot shows the result
for non-switching control strategy using the mean square
controller K1 = (5, 0.5); K2 = (5, 0.5); K3 = (2, 50) which
exhibits significantly unsafe oscillatory behavior in Vehicle-4.

VI. CONCLUSION

This paper studies the almost sure safety property for a chain
of leader-follower vehicular networked system in the presence
of a V2V channel that exhibits exponentially bounded bursti-
ness and varies as a function of vehicular state. The concept
of almost sure safety is examined in terms of almost sure
asymptotic stability and practical stability. Switching strategy is

Fig. 8. The comparison of one sample run (10 seconds) of vehicles’ trajec-
tories generated by a switching control strategy (Middle) and a non-switching
strategy (Bottom) with K1 = (5, 0.5); K2 = (5, 0.5); K3 = (2, 50). The top
plot is the trajectory of the leading vehicle (Vehicle-1).

adopted to assure almost sure safety by adaptively reconfiguring
local controller gains to the changes of channel state. Sufficient
conditions are provided to decide which controller is placed in
the feedback loop at each transmission time. As a result of the
correlation between channel state and physical vehicular state,
the sufficient conditions partition the vehicular state space into
a set of regions in which controllers are designed to achieve
almost sure safety. The simulation results of a four-vehicle
leader-follower formation control are provided to support our
theoretical analysis and illustrate the benefit of using almost
sure practical stability as a safety measurement over traditional
mean square stability.

It is important to note that this paper studies the effect
of a V2V communication channel on the safety of leader-
follower systems under the assumption that no measurement
noise is present in the system. This assumption turns out to
be a necessary and sufficient condition to assure almost sure
stability due to negative results in [25]. One can only hope for a
weaker notion of stochastic stability if state-independent noise
is present in the system. Addressing this issue is beyond the
scope of this paper and will be explored in our future work.

APPENDIX

Proof of Proposition IV.1: Consider the infinite norm of the
control input given in (8)∣∣∣∣
[
vj(t)
ωj(t)

]∣∣∣∣
≤
∥∥∥∥
[− cosφj −Lj sinφj

− sinφj

d
Lj

d cosφj

]∥∥∥∥
∣∣∣∣
[
KLj

(k)
(
Ldj

− Lj

)
Kαj

(k)
(
αdj

− α̂j

) ]∣∣∣∣
≤ (1 + |Lj(t)|)max

{
KLj

(k)
∣∣∣L̃j(t)

∣∣∣ ,Kαj
(k) |α̃j(t)|

}
(30)
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with L̃j(t) = Ldj
− Lj(t). The supreme of |Lj(t)| over time

interval [τk, τk+1) can be obtained by considering L̇j(t) ≤
KLj

(k)(Ldj
− Lj)(t) +Wj−1(|α̃j(k)|). Using Gronwall Bell-

man theorem to solve above inequality and yield

Lj(t) ≤Lj(k)e
−KLj

(k)(t−τk)

+

(
Ldj

+
Wj−1 (|αj(k)|)

KLj
(k)

)(
1−e−KLj

(k)(t−τk)
)

Δ
=Lj(t).

Assume Lj(t) > 0 (In Lemma IV.8, we prove that if controller
gain KLj

(k) is selected sufficiently large, Lj(t) > d > 0 holds
for all t ≥ 0), and because dLj/dt ≥ 0 or dLj/dt < 0 over
interval [τk, τk+1). In other words, Lj(t) is a monotonically
function over [τk, τk+1). Thus supτk≤t<τk+1

Lj(t) is obtained
when t = τk or t → τk+1, i.e.,

Lj(t) = max
{
Lj(τk), Lj(τk+1)

} Δ
= MLj

(k). (31)

Note that over time interval [τk, τk+1), one has d|L̃j(t)|/dt ≤
KLj

(k)|L̃j(t)|+Wj−1(α̃j(k)) thus

sup
τk≤t≤τk+1

KLj
(k)
∣∣∣L̃j(t)

∣∣∣ =KLj
(k)
∣∣∣L̃j(k)

∣∣∣ eKLj
(k)Tk

+Wj−1(|α̃j(k)|)
(
eKLj

(k)Tk−1
)

Δ
= L̃j,max(k). (32)

By inequalities (31), (32), (30) can be further bounded∣∣∣∣
[
vj(t)
ωj(t)

]∣∣∣∣
∞
≤
(
1+MLj

(k)
)
max

{
L̃j,max(k),Kαj

(k) |α̃j(t)|
}

(33)

with α̃j(t) = αdj
− α̂j(t) satisfying ˙̃αj = −Kαj

(k)α̃j , t ∈
[τk, τk+1) with initial value α̃j(τk). From the solution of the
above ODE, it is obvious that |α̃j(t)| < |α̃j(τk)|, then it is
straightforward to show that if the condition (11) is satisfied,
the inequality (12) holds. �

Proof of Lemma III.3: Consider the case that the collection
of random variables {Xjl(k)} is i.i.d. and the probability of
successfully decoding a packet is equal to the probability that
the signal to noise ratio (SNRjl) exceeds some fixed threshold
γ0 [39], i.e.,

Pr {Xjl(k) = 1} = Pr{SNRjl ≥ γ0}.

The selection of the threshold γ0 is often directly related to the
communication system (e.g. modulation scheme). We assume a
pre-selected γ0 for a fixed communication system. For Raleigh
fading, one can explicitly compute the successfully decoding
probability as

Pr{SNRjl ≥ γ0} = e
− γ0

γ(Lj,|αj |) Δ
= p(Lj , αj)

with γ(Lj , |αj |)=E(Prec(Lj , |αj |))/N0 where Prec(Lj , |αj |)
and N0 are powers of the receiving signal and noise respec-
tively. According to directional antenna gain theory [2], one

knows that Prec(Lj , |αj |) is a monotonically decreasing func-
tion with respect to Lj ∈ (0,+∞) and |αj | ∈ [0, π/2] and so
does p(Lj , |αj |). Since {Xjl(k)} is i.i.d., one has that Rj(k) =∑Rj

l=1 Xjl(k) follows a binomial distribution with mean value
E(Rj(k)) = Rjp(Lj , |αj |). Using Chernoff inequality, one has

Pr
{
Rj(k) ≤ (1− δ)Rjp (Lj , |αj |)

}
≤ e−

δ2

2 Rjp(Lj ,|αj |), δ ∈ (0, 1).

Let h(Lj , |αj |) = δdRjp(Lj , |αj |) for some δd ∈ (0, 1], then

Pr {Rj(k) ≤ (1− δ)h(Lj , |αj |)}
= Pr

{
Rj(k) ≤ (1− δ)δdRjp (Lj , |αj |)

}
= Pr

{
Rj(k) ≤ (1− (1− δd + δdδ))Rjp (Lj , |αj |)

}
≤ e

− (1−δd+δdδ)2

2δdδ δh(Lj ,|αj |) (34)

Let σ = δh(Lj , |αj |), γ̂(δ) = (1− δd + δdδ)
2/2δdδ, then wen

have

Pr {Rj(k) ≤ h (|Lj |, |αj |)− σ} ≤ e−γ̂(δ)σ

where σ ∈ [0, h(|Lj |, ‖αj‖)). The last inequality holds due to
Chernoff inequality. Taking the first derivative of γ̂(δ) w.r.t δ,
one has

dγ̂

dδ
=

>0︷ ︸︸ ︷
(1− δd + δdδ)(δdδ − 1 + δd)

2δdδ2
.

Clearly, given 0 < δd < 1, γ̂ has the minimum value at δ∗ =
(1/δd)− 1, and γ̂(δ∗) = 2(1− δd). One has a EBB characteri-
zation as follows:

Pr {Rj(k) ≤ h (|Lj |, |αj |)− σ} ≤ e−2(1−δd)σ.

Consider the case that the collection of random variables
{Xjl(k)} is a two-state Markov process and for Rayleigh
fading channels, the transition probability matrix M(k) for a
two-state Markov chain can be obtained by using the technique
in [42], as seen in (35), as shown at the top of the next
page, for l = 2, 3, . . . , N and c is the system parameter for
a selected V2V wireless system and is sufficiently small to
assure the transition probability is valid, i.e., within [0, 1].
Note that the function forms in (35) are particular for Rayleigh
fading channels. One may not have explicit function form for
other type of fading channel, but the fundamental relationship
between physical state Lj , αj and the fading function should
remain the same. Given the transition probability in (35), the
stationary distribution π1 and π0 can be obtained as(

π1

π0

)
=

(
e
− γ0

γ(Lj,|αj |)

1− e
− γ0

γ(Lj,|αj |)

)
.

Let λ2(M) denote the second largest eigenvalue of transition
matrix M , and it is easy to obtain λ2(M) as follows:

λ2(M) = 1− c

√
2πγ0

γ (Lj , |αj |)
− c

√
2πγ0

γ(Lj ,|αj |)

e
γ0

γ(Lj,|αj |) − 1
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M(k) =

(
Pr
{
Xjl(k) = 1|Xj(l−1)(k) = 1

}
Pr
{
Xjl(k) = 1|Xj(l−1)(k) = 0

}
Pr
{
Xjl(k) = 0|Xj(l−1)(k) = 1

}
Pr
{
Xjl(k) = 0|Xj(l−1)(k) = 0

})

=

⎛
⎜⎜⎜⎜⎜⎝

1− c
√

2πγ0

γ(Lj ,|αj |) c

√
2πγ0

γ(Lj,|αj |)

e

γ0
γ(Lj,|αj |) −1

c
√

2πγ0

γ(Lj ,|αj |) 1− c

√
2πγ0

γ(Lj,|αj |)

e

γ0
γ(Lj,|αj |) −1

⎞
⎟⎟⎟⎟⎟⎠ (35)

With results in [8], we know that there also exists Chernoff type
bound for finite Markov Chains. In particular, if the two-state
Markov chain starts with its stationary distribution π0 and π1,
then for 0 < δ < 1, we have

Pr
{
Rj(k) ≤ (1− δ)π1Rj

}
≤ e−(1−λ2(M))δ2π1Rj . (36)

The transformation used in inequality (34) can be applied to
probability inequality (36). Let h(Lj , αj) = δdRjπ1(Lj , αj)
for some selected δd ∈ (0, 1], then

Pr {Rj(k) ≤ (1− δ)h(Lj , αj)}

≤ e
−(1−λ2(M))

(1−δd+δdδ)2

δdδ δh(Lj ,αj)

≤ e−f(Lj ,|αj |)4(1−δd)δh(Lj ,αj)

where f(Lj ,|αj |)=c(
√

2π(γ0/γ(Lj ,|αj |))/(1−e−(γ0/γ(Lj ,|αj |)))
with c > 0. It is easy to check that func-
tion f(Lj , |αj |) is monotonically decreasing with respect to
Lj and |αj |. Hence, one can always find corresponding EBB
characterizations for both i.i.d and two-state Markov processes
with monotonically decreasing function pairs {δdRjp(Lj ,
αj), 2(1− δd)} and {δdRjπ1(Lj , αj), 4(1− δd)f(Lj , |αj |)},
respectively. �
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Distributed Switching Control to Achieve Almost
Sure Safety for Leader-Follower
Vehicular Networked Systems

Bin Hu, Student Member, IEEE, and Michael D. Lemmon, Senior Member, IEEE

Abstract—Leader-follower formation control is a widely used
distributed control strategy that requires systems to exchange
their information over a wireless radio communication network
to attain and maintain formations. These wireless networks are
often subject to deep fades, where a severe drop in the quality
of the communication link occurs. Such deep fades inevitably
inject a great deal of stochastic uncertainties into the system,
which significantly impact the system’s performance and stability,
and cause unexpected safety problems in applications like smart
transportation systems. Assuming an exponentially bursty channel
that varies as a function of the vehicular states, this paper proposes
a distributed switching control scheme under which the local con-
troller is reconfigured in response to the changes of channel state,
to assure almost sure safety for a chain of leader-follower system.
Here almost sure safety means that the likelihood of vehicular
states entering a safe region asymptotically goes to one as time goes
to infinity. Sufficient conditions are provided for each local vehicle
to decide which controller is placed in the feedback loop to assure
almost sure safety in the presence of deep fades. Simulation results
of a chain of leader-follower formation are used to illustrate the
findings.

Index Terms—Cyber-physical systems (CPS), quality of service
(QoS), vehicular network (VN).

I. INTRODUCTION

V EHICULAR networks (VNs) are cyber-physical systems
(CPS) consisting of numerous autonomous vehicles that

coordinate with each other by sharing information over wireless
networks. VNs have recently received considerable attention
due to rapid advances in Vehicle to Vehicle (V2V) communi-
cation technology, which promises significant safety improve-
ment for applications like intelligent transportation systems
[10]. Building safe VNs, however, is extremely challenging in
two aspects. First, the mobile nature of VNs requires design
of control strategies that are distributed and scalable. Secondly,
V2V wireless networks in VNs are highly time varying due
to the motion of transmitters and receivers. As a result, the
V2V channel is inherently bursty and subject to deep fading,
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which causes a severe drop in the network’s quality of service
(QoS). These deep fades induce a great amount of stochastic
uncertainties into the system, thereby negatively impacting the
system’s performance and causing serious safety issues. The
objective of this paper is to design a distributed control strategy
that could assure a certain level of safety for VNs in the
presence of bursty deep fading channels.

Leader-follower scheme naturally serves as a distributed
strategy for VNs due to its simplicity, scalability and the fact
that communication is essential for assuring safe platooning in
automated highway system (AHS) [23]. This has been illus-
trated by work that is based on either experimental validation
[1], [3] or theoretical analysis [15], [38]. In leader-follower pla-
toon systems, the question of safety is often analyzed under the
concept of string stability [35]. This concept has been proven to
be effective in characterizing the propagation of disturbances
from the leader to downstream vehicles [32]. Recent results
[15] showed that string stability can be improved by increasing
the leader’s communication connectivity to its followers. Such
improvement, however, is compromised by reduced network
connectivity arising from the delayed or dropped packets [22],
[29]. This impact of unreliable network links on formation
control has motivated studies of robust networked controllers
under communication constraints, such as time varying but
bounded delays [13], [22], [28] and Bernoulli [37] or two-
state Markov chain dropouts [33]. So communication issues are
critical in the development of safe VNs.

The channel model that is used to characterize V2V fad-
ing network, however, must be carefully specified. Tradition-
ally, communication channels are modeled as an independent
and identical distributed (i.i.d) random process with either a
Rayleigh or Rician distribution [37] or a two-state Markov
chain [33]. These characterizations are inadequate for V2V
channel due to two reasons. First, fading channels are time
varying and possess memory that cannot be captured by i.i.d
models. Second, conventional two-state Markov chain ignores
the potential dependence of the channel state (e.g., bit error rate)
on the vehicle’s physical states (e.g., inter-vehicle distance and
bearing angle) [3], [7]. Such dependency in V2V communica-
tion systems has been extensively explored in communication
community, see [4], [7], [14], [31], [40]. However, obtaining
a V2V channel model is practically challenging due to its
significant dependency on the dynamics of the vehicles and
the surrounding environments [14]. Thus, most existing V2V
channel models are obtained for specific environments and have
limited use for control systems.

0018-9286 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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From control perspective, there are two fundamental proper-
ties in V2V communication channel that have essential impacts
on the system’s performance and stability. The first property
is the channel burstiness, which is characterized by a long
string of consecutive dropouts in the network. Recent work [21]
showed that system’s stability can be seriously compromised if
such burstiness is allowed with a sufficiently large probability.
The second property is the dependency of channel state on
the vehicular states. The knowledge of the correlation between
physical and communication systems is valuable in designing
control strategies for the safety of mobile vehicles. The vehicles
could be safe if they use the knowledge of channel state to
adaptively adjust their future actions so that the likelihood of
the V2V channel exhibiting deep fades becomes smaller and
smaller as time progresses.

Motivated by the observation of burstiness and state depen-
dency in V2V network, a more realistic channel model was
proposed in [16] for a single leader-follower pair, in which
the channel is exponentially bursty and is dependent on the
norm of the physical system’s states. Such channel model is
built upon the framework of exponentially bounded burstiness
(EBB) originally developed by [41] and explicitly incorporates
the state dependency. The EBB characterization discussd in this
paper is closely related to the notion of Outage Probability
[19], [39], which is a well studied performance metric for
fading channel. The advantages of the EBB model are that (1)
it directly characterizes the probability bound on the channel
burstiness which is proven to be essential for system’s stability;
(2) it captures the state dependency of V2V channel in a simple
but effective way that could be useful for control purpose; and
(3) it is general in the sense that it can model a wide range of
communication channels including i.i.d and two-state Markov
chains. This paper extends the prior work in [16] to a chain of
leader-follower system and shows that for any mobile channels
modeled by either i.i.d or two-state Markov chain, there always
exists an EBB characterization.

In the presence of V2V communication networks, the safety
issues for VNs must be examined in a stochastic setting by
discussing the likelihood of a system state entering a forbidden
or unsafe region. Traditionally, this has been done using mean
square concepts in which the variance of some important sys-
tem state, such as inter-vehicle distance, remains bounded. Such
a concept is also analogous to the notion of stochastic safety
in probability [30]. The common feature of the above work is
that they bound the likelihood of unsafe action occurring with a
nonzero value, which still allows a finite probability for the sys-
tem to be unsafe. This mean square safety or stochastic safety in
probability criterion is not appropriate for many safety-critical
systems such as smart transportation system where a small
probability of danger can incur catastrophic failure. This paper
suggests using a stronger notion of almost sure safety to assure
the system state asymptotically goes to a safe equilibrium or a
bounded safe set with probability one as time goes to infinity. In
particular, almost sure safety in this paper refers to two strong
notions of stochastic stability: almost sure asymptotic stability
and almost sure practical stability [18].

Because of the challenge in modeling V2V channels, to
the best of our knowledge, there is relatively little work that

discusses the almost sure safety for VNs in the presence of
realistic V2V channels. The most related work that assures
similar safety property for networked systems is [33]. In [33], a
H∞ controller was developed to assure second moment stability
which is a stronger notion than almost sure stability, for a
linear networked system with a two-state Markov chain channel
model. The approach used to guarantee safety in [33] relies
on the fact that the linear system with the channel model can
be formulated as a Markovian jump linear system (MJLS).
Other recent work using MJLS approach to prove mean square
stability includes [26], [27]. However, this MJLS approach
cannot be applied to the vehicular systems with V2V channels
for two reasons. First, the result based on MJLS framework
is limited to the system with a single centralized controller,
which is impractical for vehicular systems. Second, the state
dependency in V2V channels introduces extra nonlinearity into
vehicular systems that cannot be addressed in the framework
of MJLS.

By using the EBB model that is functionally dependent on
the vehicular state, this paper develops a distributed switching
control scheme to assure almost sure safety for a chain of
leader-follower systems. The leader-follower chain consists of
a collection of leader-follower pairs that require each follower
to manipulate its linear and angular velocity to achieve and
maintain a desired separation and relative bearing. The infor-
mation of the leader’s bearing angle is transmitted over an
exponentially bursty channel, which is accessed by a directional
antenna mounted on each leading vehicle in the chain [17].

The results in this paper add to the prior literature on bearing-
only leader-follower systems. Recent work in leader-follower
systems [11], [24], [34], [36] studied bearing-only systems
under the assumption of perfect or bounded measurements.
In [36], the safety of leader-follower formation systems were
examined by analyzing the disturbance amplification within
the formations under perfect information. The studies in [11],
[24] showed that bearing angles were important in addressing
the localization problem in multi-agent systems when perfect
information is available. This was extended in [34] to deal with
uncertain measurements in a known bounded set. The present
paper, on the other hand, considered the scenario that the
leader’s bearing angle was not perfectly known and the uncer-
tainty of the information stochastically changed over time. This
stochastic uncertainty results from deep fading in V2V commu-
nication and is prone to destabilizing a leader-follower chain.

This stochastic uncertainty prevents each leader-follower
subsystem from maintaining the formation safely. The cascaded
structure of the leader-follower chain amplifies such uncertainty
from upper system to the lower system, and therefore leads to
catastrophic failure for the entire system. This paper proposes
two switching rules to recover the safe-behavior of the leader-
follower chain by adaptively selecting local controller in re-
sponse to the changes of channel state, and by enforcing the
upper systems to constrain their control actions as a function
of the lower system’s states. Sufficient conditions are provided
for each vehicle to decide which controller is placed in the
feedback loop to assure almost sure asymptotic stability and
almost sure practical stability for the entire leader-follower
chain.
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The layout of this paper is as follows. Section II introduces
mathematical notations. Section III provides a system descrip-
tion and problem formulation. After that, Section IV discusses
the main results. Then, Section V presents the simulation
results of a leader-follower chain with four vehicles. Finally,
Section VI concludes the paper.

II. MATHEMATICAL PRELIMINARIES

Let Z and R denote the set of integers and real numbers,
respectively. Let Z+ and R+ denote the set of non-negative
integers and real numbers, respectively. Let R

n denote the
n-dimensional Euclidean vector space. The∞-norm on the vec-
tor x ∈ R

n is |x| = max |xi| : 1 ≤ i ≤ n, and the correspond-
ing induced matrix norm is ‖A‖ = max1≤i≤n

∑n
j=1 |Aij |. Let

f(t) ∈ R
n denote the value that function f takes at time t ∈ R.

Let {τk}∞k=0 denote a strictly monotonically increasing se-
quence with τk ∈ R+ for all k ∈ Z+ and τk < τk+1. Then,
f(τk) denotes the value of function f at time τk. For simplicity,
we let f(k) denote f(τk) if its meaning is clear in the context.
The left-hand limit at τk ∈ R+ of a function f(·) : R → R

n

is denoted by f(k−). Similarly, the right-hand limit of the
function f(k) is denoted by f(k+).

Consider a continuous-time random process {x(t) ∈ R
n :

t ∈ R+} whose sample paths are right-continuous and satisfy
the following differential equation:

ẋ(t) = f (x(t), u(t), w(t), d(t)) (1)

where u(·) : R+ → R
m is a control input, d(t) is an external

L∞ disturbance with |d(t)|L∞ = D and w(t) is a jump process

w(t) =
∞∑
�=1

w�δ(t− τ�) (2)

in which {w�, � ∈ Z+} is a Markov process describing the �th
jump’s size at jump instants {τ�}∞�=1. The expectation of this
stochastic process at time t will be denoted as E(x(t)).

Let x∗ be the equilibrium of system (1) with f(x∗, 0, 0, 0)=0.
The system in (1), (2) is said to be almost-surely asymptotically
stable with respect to x∗, if

lim
t→∞

Pr

{
sup
t

|x(t)| → x∗
}

= 1

Given a constant positive Δ∗ ∈ R+, let Ω(Δ∗) be a bounded
set defined as Ω(Δ∗) = {x ∈ R

n||x− x∗| ≤ Δ∗}. The system
in (1), (2) is said to be almost-surely practical stable with
respect to Ω(Δ∗), if there exists Δ > 0 with Δ∗ > Δ such that
if |x(0)− x∗| ≤ Δ, then

lim
t→∞

Pr

{
sup
t

|x(t)| ∈ Ω(Δ∗)

}
= 1

The system in (1), (2) is almost sure safe if it is almost surely
asymptotically stable with respect to equilibrium x∗ or almost
surely practical stable with respect to set Ω(Δ∗). x∗ is called
safe equilibrium, and the states in set Ω(Δ∗) are safe states.

Fig. 1. A cascaded formation of nonholonomic vehicular system.

Fig. 2. Exponential Bounded Burstiness (EBB) Model for directional wireless
channel.

III. SYSTEM DESCRIPTION

A. System Model

Fig. 1 shows a string formation of N mobile robots. For each
mobile robot, we consider the following kinematic model:

ẋi=vi cos(θi), ẏi=vi sin(θi), θ̇i=ωi, i=0, 1, . . . , N − 1
(3)

where (xi(t), yi(t)) denotes the vehicle i’s position at time t ∈
R+, θi(t) is the orientation of the vehicle relative to the x axis
at time t. vi and ωi are the vehicle’s speed and angular velocity
that represent the control input.

As shown in Fig. 1, the cascaded formation with N mobile
robots consists of N − 1 leader-follower pairs. In each leader-
follower pair j, we assume that the leader can directly measure
its relative bearing angle αj to the follower. Similarly, the
follower can measure its bearing angle φj to the leader. Both of
the vehicles are able to measure the relative distance Lj . What
is not directly known to the follower is the relative bearing angle
αj . In this paper, we consider the case when information about
leader’s bearing angle αj is transmitted over a wireless channel.
The channel is accessed through a directional antenna whose
radiation pattern is shown in Fig. 2.

The control objective of the cascaded formation is to have
the follower in each leader-follower pair regulate its speed and
angular velocity to achieve and maintain a desired distance
and bearing angle. Let Ldj

and αdj
denote the desired inter-

vehicle distance and relative bearing angle, respectively, in the
jth leader-follower pair. By using the similar technique in [12],
the time rate of change of the relative distance Lj and leader’s
relative bearing angle αj can be obtained as follows:

L̇j = vj−1 cosαj − vj cosφj − dωj sinφj

α̇j =
1

Lj
(−vj−1 sinαj − vj sinφj + dωj cosφj) + ωj−1

(4)



IE
EE

Pr
oo

f

4 IEEE TRANSACTIONS ON AUTOMATIC CONTROL

where d is the distance from the vehicle’s center to its front.
Remark III.1: Note that d > 0 is a parameter for the vehicle

and the relative distance measurement always satisfies Lj ≥ d.
When d = 0 (or if Lj is a distance from leader’s center to
follower’s center), system (4) has a singular point at Lj = 0 and
the state feedback linearization method in (8) cannot be applied
due to [5].

B. Information Structure

As discussed in the previous section, the leader’s bearing
angle αj in each leader-follower pair must be transmitted to the
follower over a wireless channel. In this regard, the information
about αj that is available to the follower is limited by the
following two constraints,

• The state measurement αj(t) is only taken at a sequence
of time instants {τk}∞k=0 that satisfy τk < τk+1, k =
1, 2, . . . ,∞.

• The sampled data αj(τk) is quantized with a finite number
of bits Rj , and is transmitted over an unreliable wireless
channel with only first Rj(k) bits (Rj(k) ≤ R̄j) received
at the follower.

At the kth sampling time instant, the triple {α̂j(k
−), Uj(k),

cj(k)} characterizes the information structure of the leader’s
bearing angle αj(τk) at the leader side. Assume that the
measurement αj(τk) lies in an interval [−Uj(k) + α̂j(k

−),
Uj(k) + α̂j(k

−)] with α̂j(k
−) representing the “center” of

the interval and Uj(k) representing the length of the interval.

The codeword cj(k) = {bjl(k)}R̄j

l=1 consists of bits bjl(k) ∈
{−1, 1}, and is constructed by truncating the first Rj bits of
the following infinite length of bits:{
{bjl(k)}∞l=1 ∈ {−1, 1}∞|αj(τk)

= α̂j(k
−) + Uj(k)

∞∑
l=1

1

2j
bjl(k)

}
.

This corresponds to a uniform quantization of the sampled state
within the interval [−Uj(k) + α̂j(k

−), Uj(k) + α̂j(k
−)] with

Rj number of bits.
We assume that the follower only successfully receives the

first Rj(k) bits in the codeword cj(k). The information struc-
ture at the follower side is another triple {α̂j(k), Uj(k), ĉj(k)}
with ĉj(k)={bjl}Rj(k)

l=1 and α̂j(k) being constructed as follows:

α̂j(k) = α̂j(k
−) + Uj(k)

Rj(k)∑
l=1

1

2j
bjl(k) (5)

α̂j(k) is an estimate of the leader’s bearing angle αj(k) at time
instant τk.

In order to reconstruct the estimate α̂j(k), it is necessary
to synchronize the leader and follower in the sense that they
have the same information structure. We assume a noiseless
feedback channel, with each successfully received bit being
acknowledged to the leader. This allows one to ensure that the
information structures are synchronized between the leader and
follower. The follower then uses the estimated bearing angle

α̂j(k), and the measured inter-vehicle distance Lj , to select
its speed, vj , and angular velocity ωj to achieve the control
objective.

C. Wireless Channel

As shown in Fig. 2, the leading vehicle in each pair uses a
directional antenna to access the V2V wireless channel. We
assume the V2V channels are free of interference from other
leader-follower pairs, but the channel does exhibit deep fading.
Deep fades occur when the channel gain drops below a thresh-
old and stays below that threshold level for a random interval of
time. In mobile communication networks, the wireless channel
exhibits deep fades and has memory of its past channel states.
Such time varying channel will increase the likelihood of a
burst of packet dropouts. This fact has been recently found
to be a fundamental factor that destabilizes networked control
systems [21].

Outage probability is a well studied performance metric
for wireless fading channel [19], [39]. In wireless networks,
outage probability is commonly defined as the probability of
the signal to noise ratio of a received signal being less than the
threshold for reliable reception. This metric is closely related
to the concept of EBB which was introduced in [41]. In [41],
the EBB model was used to bound the likelihood of a string
of consecutive dropouts for a single communication link. This
model has been further explored in [9], [20] to study the
burstiness of a communication network with multiple nodes.
Thus, this paper also adopts the EBB model to characterize
channel outages. The definition of the EBB model is

Definition III.2: Let Rj(k) denote a random variable that
characterizes the possible number of successfully decoded bits
over time interval [τk, τk+1), then random process {Rj(k)} is
EBB with continuous, positive and monotonically decreasing
functions (h(·, ·), γ(·, ·)), if the probability of successfully de-
coding Rj(k) bits at each sampling time τk satisfies

Pr {Rj(k) ≤ h (|αj(τk)| , |Lj(τk)|)− σ}

≤ e−γ(|αj(τk)|,|Lj(τk)|)σ (6)

for |αj(τk)| ≤ π/2 and σ ∈ [0, h(|αj(τk)|, |Lj(τk))|] with

Pr {Rj(k) = 0} = 1 (7)

for |αj(τk)| > π/2, ∀ k ∈ Z+.
The (6) and (7) characterize the fact that if the follower

vehicle is out of the antenna’s radiation scope, i.e., |αj(τk)| >
π/2, then the communication link between the vehicles is
broken. If the vehicle is within the scope, i.e., |αj(τk)| ≤ π/2,
the probability of having a string of dropouts is exponentially
bounded.

Fig. 2 shows a distribution of channel state Rj(k) at time
τk. The function h(|αj |, |Lj |) in the EBB model is a thresh-
old that partitions channel state space (horizontal axis in the
figure) into high bit rate region (right from h(|αj |, |Lj |)) and
low bit rate region (left to h(|αj |, |Lj |)). This threshold is
a decreasing function of the absolute value of the current
formation states Lj(τk) and αj(τk). It models the impact of
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the path loss on the data rate [39]. In the low bit rate region,
σ ∈ [0, h(|αj(τk)|, |Lj(τk))|] characterizes the dropout burst
length. The function γ(|αj |, |Lj |) is the exponent in the ex-
ponential bound and characterizes how fast the probability of
a bursty dropout decays as a function of dropout burst length
within the low bit rate region. This decay rate is also a decreas-
ing function of Lj(τk) and αj(τk). It models that fact that the
likelihood of having a bursty dropout in V2V channel increases
with inter-vehicle distance and relative bearing angle. Thus, the
EBB characterization explicitly models state dependency and
bursty dropouts for a realistic V2V channel.

The following lemma shows that the EBB characterization in
(6), (7) can be used to describe a wide range of channel models
that include traditional i.i.d models [39] as well as two-state
Markov chain models [42].

Lemma III.3: Consider a bit stream {bjl(k)}Rj

l=1 that is se-
quentially transmitted over the fading channel, define a corre-

sponding random process {Xjl(k)}Rj

l=1 with random variable
Xjl(k) ∈ {0, 1} taking value 1 when the corresponding bit
successfully decoded and 0 otherwise. For fading channels that
are modeled by either a i.i.d. process [39] or a two-state Markov

process [42], i.e., {Xjl(k)}Rj

l=1 is a i.i.d. process or a two-state
Markov process, there always exists a EBB characterization in

(6), (7) with Rj(k) =
∑Rj

l=1 Xjl(k).
Proof: The proof is provided in the Appendix. �

What should be apparent from the EBB model is that we
are explicitly accounting for the relationship between bursty
channel state (Rj(k)) and formation configuration. A major
goal of this paper is to exploit that relationship in deciding how
to switch between different controllers to assure almost sure
performance.

D. Distributed Switching Control

In this paper, the control objective is to steer the cascaded
vehicular system shown in Fig. 1 to a sequence of desired dis-
tances {Ldj

}N−1
j=1

and bearing angles {αdj
}N−1
j=1

in a distributed
fashion, and then maintain around those set-points.

At each time instant {τk}∞k=0, the follower of each leader-
follower pair switches among a group of controller gains
to regulate its velocity and angular velocity to achieve the
control objective. Let K(k) := {Kαj

(k),KLj
(k)} denote the

controller gain pair used for leader-follower pair j at time
instant τk. These controller gains are selected from one pair of
a collection of values Kj = {Kj1 ,Kj2 , . . . ,KjM }. Recall that
the dynamic of formation configuration is equation (4), we use
standard input to state feedback linearization to generate the
control input[

vj
ωj

]
=

[− cosφj −Lj sinφj

− sinφj

d
Lj

d cosφj

] [
KLj

(k)
(
Ldj

− Lj

)
Kαj

(k)
(
αdj

− α̂j

) ]
(8)

over the time interval [τk, τk+1). The variable α̂j(t) is a contin-
uous function over [τk, τk+1), and satisfies the following initial
value problem:

˙̂αj = Kαj
(k)
(
αdj

− α̂j

)
, α̂j(τk) = α̂j(k) (9)

where the estimate α̂j(k) is obtained from (5). With this con-
trol, the inter-vehicle distance Lj and bearing angle αj satisfy
the following differential equations over [τk, τk+1):[

L̇j

α̇j

]
=

[
cosαj 0
− sinαj

Lj
1

] [
vj−1

ωj−1

]
+

[
KLj

(k)
(
Ldj

− Lj

)
Kαj

(k)
(
αdj

− α̂j

) ]
(10)

for all k = 1, 2, . . . ,∞.
The (9), (10) represent the closed-loop system for the leader-

follower pair j and can be viewed as an example of a jump
nonlinear system given in (1), (2). The L∞ disturbance in the
jth leader-follower system is [vj−1, ωj−1]. The estimate of the
bearing angle α̂j forms a jump process with jumps occurring at
discrete time instants {τk}∞k=1. As shown in (5), the magnitude
of the jump at each time instant is stochastically governed by
the length of the uncertainty interval Uj(k) and the number of
received bits Rj(k). Such jump process significantly impacts
the formation performance of the cascaded system by pushing
the formation state away from the equilibrium, which in turn
leads to deep fades with a high probability. In the next section,
we will show how to reconfigure the local controller gain in
response to the changes of Uj(k) and Rj(k) such that almost
sure performance is assured.

It is apparent from Fig. 1 that vehicle j for j=1, 2, . . . , N−2
plays a leader in leader-follower pair j + 1 as well as a follower
in leader-follower pair j. In this regard, vehicle j could observe
the full state αj+1 of the leader-follower subsystem j + 1
because it serves the leadership in that system. By observ-
ing the behavior of the following vehicle, vehicle j for j =
1, 2, . . . , N − 1 can adjust its controller gain to overcome large
overshoots in the following system. Such cooperative control
strategy lessens the amplification on the disturbance from the
upper leader-follower systems to the lower systems.

IV. MAIN RESULTS

This paper’s main results consist of two parts regarding the
safe behavior of inter-vehicle distance Lj and bearing angle αj

for each leader-follower pair. Specifically, “safe” means that the
vehicle does not collide with each other and the bearing angle
is regulated to stay in a specified bounded set almost surely.
The first part of the results provides a sufficient condition under
which the inter-vehicle distance Lj for j = 1, 2, . . . , N − 1 is
almost surely convergent to a compact invariant set regardless
of the changes on channel state. Furthermore, we show that
the inter-vehicle distance is almost surely convergent to the
desired separation Ldj

, j = 1, 2, . . . , N − 1 if the bearing an-
gle αj , j = 1, 2, . . . , N − 1 is almost surely convergent. The
second part of the results derive sufficient conditions for the
almost sure asymptotic stability and practical stability for
the bearing angle αj , j = 1, 2, . . . , N − 1.

In the main results, we use the fact that the leader’s action
in each leader-follower pair can be constrained as a function
of the following system’s state to assure the stability for the
whole leader-follower system. Proposition IV.1 provides an
explicit characterization of the bound on the leader’s action,
as well as a distributed way to achieve that bound. Using the
results from Proposition IV.1, one can easily prove the first main
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result in this paper (Lemma IV.5), i.e., the convergence of inter-
vehicle distance since the distance is measurable to both leader
and follower. The more challenging and interesting part of the
results is to guarantee almost sure stability for the bearing angle
αj , which is presented in Section IV-B.

The following Proposition is provided to assure the control
input from upper leader-follower subsystem is bounded as a
function of state estimates of the bottom system. The proof is
provided in the Appendix.

Proposition IV.1: Consider the closed-loop system in (9),
(10), let d ≥ 1, if there exists a sequence of controller gains
{Kj(k)}∞k=0, Kj(k) = {KLj

(k),Kαj
(k)} ∈ Kj such that

for given monotonically increasing functions Wj(·) : R+ →
R+, j = 1, 2, . . . , N − 1, the following inequality holds for all
k = 0, 1, . . . ,∞:

max
{
L̃j,max,Kαj

(k) |α̃j(k)|
}
≤ Wj (|α̃j+1(k)|)(

1 +MLj
(k)
) (11)

where

L̃j,max =KLj
(k)
∣∣∣L̃j(k)

∣∣∣ eKLj
(k)Tk

+Wj−1 (|α̃j(k)|)
(
eKLj

(k)Tk − 1
)

MLj
(k) = max

{
Lj(τk), Lj(τk+1)

}
Lj(t) =

(
Ldj

+
Wj−1 (|α̃j(k)|)

KLj
(k)

)(
1− e−KLj

(k)(t−τk)
)

+ Lj(k)e
−KLj

(k)(t−τk)

α̃j(k) =αdj
− α̂j(k), L̃j(k) = Ldj

− Lj(k)

then

sup
t

∣∣∣∣
[
vj(t)
ωj(t)

]∣∣∣∣ ≤ Wj (|α̃j+1(k)|) , t ∈ [τk, τk+1). (12)

Because of inequality (12), each leader-follower subsystem
j in (10) can bound the external disturbance [vj−1, ωj−1] by
observing its local state estimate α̃j at each time instant τk.
Meanwhile, the subsystem j − 1 can select its controller gain
so that the control input [vj−1, ωj−1] satisfies the bound in
inequality (12) because the estimate of bearing angle α̃j is
always available to subsystem j − 1. Such property provides a
basis for designing a distributed and cooperative switching law
to assure the stability for the whole formation system.

Remark IV.2: Functions Wj(·) are upper bounds on the
control inputs of upper leader-follower system and the values
of Wj(·) at each time instant τk can also be seen as feedback
signals from the bottom system. Such feedback signals directly
constrain the magnitude of control input from upper system, so
that the disturbances are not amplified from upper system to
bottom system.

Remark IV.3: The inequality (11) could be viewed as a
switching rule for the leader-follower pair j to react to the
changes on system j + 1’s bearing angle. The switching rule
applied over each time interval [τk, τk+1) is feasible because it
is only based on the information that is available at time τk.

With the validity of Proposition IV.1, the following corollary
characterizes the propagated bound on the external inputs of
the leader-follower chain as a function of the bearing angle’s
estimate in each leader-follower pair.

Corollary IV.4: Suppose the hypothesis of Proposition IV.1
holds then

max {|v0(k)| , |ω0(k)|} ≤ W0 ◦ W̃1 ◦ · · · ◦ W̃j (|α̃j+1(k)|)
(13)

where v0(k) and ω0(k) are the speed and angular velocity of
the first vehicle in the chain, and

W̃j(·) :=
1(

1 +MLj
(k)
)
Kαj

(k)
Wj(·), j = 1, . . . , N − 2.

Proof: Consider the first leader-follower pair, the
Proposition IV.1 implies

max {|v0(k)| , |ω0(k)|} ≤ W0 (|α̃1(k)|) .

Since

(1 +ML1
(k))Kα1

(k) |α̃1(k)| ≤ W1 (|α̃2(k)|)

holds due to inequality (11), then

max {|v0(k)| , |ω0(k)|} ≤ W0 ◦ W̃1 (|α̃2(k)|) .

Repeating above procedure leads to the final conclusion (13). �

A. Almost Sure Convergence of Inter-Vehicle Distance Lj

In this section, we present the first main result of this paper
involving the almost sure convergence of inter-vehicle distance.
First, the following lemma provides a sufficient condition on
the controller gain KLj

, under which one can show Lj(t) con-
verges at an exponential rate to an invariant set Ωinv, j centered
at the desired inter-vehicle distance Ldj

, for j=1, 2, . . . , N−1
regardless of the change on channel state.

Lemma IV.5: Let the hypothesis of Proposition IV.1 hold,
consider the system in (9), (10) with the selected controller
gain {KLj

(k),Kαj
(k)} ∈ Kj . If KLj

(k) > (Wj(|α̃j(k)|)/
ρ(Ldj

− d)) and Lj(0)>d, then for any sample path, Lj(t)≥d

for all t ∈ R+ and there exists a finite time T > 0 such that
Lj(t) enters and remains in the set

Ωinv, j ≡
{
Lj ∈ R+

∣∣∣∣Lj − Ldj

∣∣ ≤ Wj (|α̃j(k)|)
ρKLj

(k)

}

for all t ≥ T and any ρ ∈ (0, 1].
Proof: Consider the function V (Lj) = (1/2)(Lj − Ldj

)2

and closed-loop state (10). Taking the directional derivative of
V over time interval [τk, τk+1) one obtains

V̇ (Lj) = −KLj

(
Lj − Ldj

)2
+
(
Lj − Ldj

)
· vj−1 cosαj

≤ −KLj
(1− ρ)

(
Lj − Ldj

)2 − ρ·KLj

(
Lj − Ldj

)2
+
∣∣Lj − Ldj

∣∣Wj (|α̃j(k)|)
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Fig. 3. Partition of formation state space.

for any ρ ∈ (0, 1]. The last inequality holds because of
Proposition IV.1. When |Lj − Ldj

| ≥ Wj(|α̃j(k)|)/ρKLj
, the

following dissipative inequality holds:

V̇ (Lj) ≤ −KLj
(1− ρ)

(
Lj − Ldj

)2
= − 2KLj

(1− ρ)V (Lj). (14)

This implies that V (Lj(t)) is exponentially decreasing when
the state Lj(t) is outside the set Ωinv, j. Since Lj(0) >
d, the feasible region outside the invariant set is Lj(t) ≥
(Wj(|α̃j(k)|)/ρKLj

(k)) + Ldj
> d. By inequality (14), it is

clear that Lj(t) converges to the set Ωinv, j in finite time and
Lj(t) > d for all time since for any Lj ∈ Ωinv, j, it satisfies

Lj ≥ −Wj (|α̃j(k)|)
ρKLj

+ Ldj
> d.

Since the time interval [τk, τk+1) is selected arbitrarily, the
conclusion holds for any k ∈ Z+. �

Remark IV.6: Note that d is the distance from the center of
the vehicle to the front of the vehicle. As shown in Fig. 1,
Lj(t) > d means that the two vehicles do not collide with each
other.

Corollary IV.7: Consider closed-loop system in (9), (10),
let the hypotheses of Proposition IV.1 and Lemma IV.5 hold.
If the bearing angle αj is almost surely convergent to αdj

with Wj−1(0) = 0, j = 1, 2, . . . , N − 1, then the separation
distance Lj almost surely converges to Ldj

.
Proof: From Lemma IV.5, one knows that the inter-

vehicle separation converges to a invariant set with size of
Wj(|α̃j(k)|)/ρKLj

(k). With Wj−1(0) = 0, j = 1, 2, . . . ,
N − 1, and limk→∞ Pr{αj(k) → αdj

} = 1, it is easy to show
that the event limk→∞(Wj(|α̃j(k)|)/ρKLj

(k)) = 0 occurs
with probability one as time goes infinity, i.e., the separation
Lj(t) almost surely converges to Ldj

. �

B. Almost Sure Asymptotic Stability and Practical Stability for
Bearing Angle αj

This section provides the second main result of this paper
that assures almost sure asymptotic stability and almost sure
practical stability for the bearing angle αj . Fig. 3 shows the
basic idea and results. Two types of sets are depicted in Fig. 3

with one enclosed by the blue solid curve, and the other one
enclosed by the red dashed curve. The set enclosed by the
blue solid curve represents the partition generated by inequality
G(|αj |, |Lj |) ≤ ηj with associated threshold ηj ∈ (0, 1), which
is shown in Lemma IV.9. The area enclosed by the red dashed
curve characterizes the target set where the system trajectory
will converge to almost surely. The size of the target set is
characterized by Δ∗

j . The almost sure asymptotic stability result
is interpreted as a special case when the target set contains only
origin.

The main result states that the bearing angle αj will almost
surely converge to the target set if the system trajectory enters
and remains in the set enclosed by the blue solid curve. To
assure the invariance of the set enclosed by the blue solid curve,
we adopt a switching control strategy to reconfigure the control
gain for each leader-follower pair. Fig. 3 shows one possible
evolution of the system trajectory αj and Lj with the switching
strategy. We use black dots to represent the estimates of the
bearing angle α̂j(τk) at each sampling time τk. A bar is used to
characterize the uncertainty interval with the estimate α̂j(τk) as
its center. The length of bar can be viewed as an upper bound
of the quantization error |αj(τk)− α̂j(τk)|, and increases as
the channel condition decreases. Therefore, the basic idea for
switching is that when the system trajectory approaches the
blue set’s boundary with an increasing uncertainty length, an
appropriate controller is re-selected to assure that the stochastic
variation on the uncertainty length satisfies a super-martingale
inequality, which guarantees the convergence of system states
to the target set with probability one.

To be more specific about the main result, first, a dynamic
quantization method is used to show that the quantization
error |αj(τk)− α̂j(τk)| can be bounded by a recursively con-
structed sequence (Lemma IV.8). Then, a sufficient condition
is presented to select controllers, under which the sequence
(Lemma IV.9) and bearing angle estimate (Lemma IV.11)
satisfy super-martingale like inequalities. Finally, the super-
martingale inequality condition leads to the proof of almost
sure asymptotic stability (Theorem IV.12) and practical stability
(Theorem IV.14) for the bearing angle αj .

Recall that {αj(k
−), Uj(k)}∞k=0 characterizes the quan-

tizer’s state at each time instance τk. The following lemma
gives a recursive construction for this sequence such that the
quantization error remains bounded by some function of Uj(k)
for all k ≥ 0. This bound is used to switch controllers to
assure almost sure performance. Note that the technique used
to prove the following lemma follows the pattern in dynamic
quantization [6].

Lemma IV.8: Consider the closed-loop system in (9), (10),
given the transmission time sequence {τk}∞k=0, and controller
pairs {KLj

(k),Kαj
(k)}∞

k=0
. Let Tk = τk+1 − τk, let the hy-

pothesis of Proposition IV.1 and Lemma IV.5 hold, the quan-
tizer’s initial state {α̂j(0), Uj(0)} is known to both leader
and follower, and the initial state αj(0) ∈ [−Uj(0), Uj(0)],
Uj(0) ≤ π/2. If the sequence {αj(k

−), Uj(k)}∞k=0 is con-
structed by the following recursive equation:

Uj(k + 1) =Bj(k)Tk + 2−Rj(k)Uj(k) (15)

α̂j(k + 1−) =
(
α̂j(k

+)− αdj

)
e−Kαj

(k)Tk + αdj
(16)
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where

Bj(k) = max

{
1

min {Ljmin, Lj(k)}
, 1

}
Wj−1 (|α̃j(k)|)

Ljmin =

[
−L̃j(k) +

Wj−1 (|α̃j(k)|)
KLj

(k)

]
e−KLj

(k)Tk

+ Ldj
− Wj−1 (|α̃j(k)|)

KLj
(k)

L̃j(k) =Ldj
− Lj(k)

then the bearing angle αj(k) for all j = 1, 2, . . . , N − 1 gener-
ated by system (9), (10) can be bounded as∣∣αj(k)− α̂j(k

+)
∣∣ ≤ U j(k) (17)

where U j(k) = 2−Rj(k)Uj(k) and Rj(k) is the number of bits
received over the time interval [τk, τk+1).

Proof: Let ej(t) = αj(t)− α̂j(t) denote the estimation
error. By inequality d|ej |/dt ≤ |dej/dt|, the dynamic of ej(t)
over time interval [τk, τk+1) is bounded by

d|ej |
dt

≤
∣∣∣∣[− sinαj

Lj
1
] [ vj−1

ωj−1

]∣∣∣∣
≤
(

1

|Lj |
+ 1

) ∣∣∣∣
[
vj−1

ωj−1

]∣∣∣∣
≤
(

1

|Lj |
+ 1

)
Wj−1 (|α̃j(k)|) . (18)

The last inequality holds because of Proposition IV.1. Since L̇j ≥
KLj

(k)(Ldj
−Lj)−|vj−1|≥KLj

(k)(Ldj
−Lj)−Wj−1(|α̃j(k)|),

using Gronwall-Bellman inequality over [τk, τk+1) yields

Lj(t)≥
[
Lj(τk)−

(
Ldj

−Wj−1 (|α̃j(k)|)
KLj

(k)

)]
e−KLj

(k)(t−τk)

+Ldj
− Wj−1 (|α̃j(k)|)

KLj
(k)

)
.

Since Ldj
≥ (Wj−1(|α̃j(k)|)/KLj

(k)) and Lj(t) > d from
Lemma IV.5, we know infτk≤t<τk+1

Lj(t) is obtained at either
t = τk or t = τk+1

Lj(t) ≥ inf
τk≤t<τk+1

Lj(t) = min {Ljmin, Lj(τk)} (19)

whereLjmin=[−L̃j(k)+(Wj−1(|α̃j(k)|)/KLj
(k))]e−KLj

(k)Tk+
(Ldj

− (Wj−1(|α̃j(k)|)/KLj
(k))). By inequality (19), (18) is

rewritten as

d|ej |
dt

≤
(

1

min {Ljmin, Lj(τk)}
+ 1

)
Wj−1 (|α̃j(k)|) .

Solving above differential inequality, we have

|ej(t)|≤
(

1

min {Ljmin, Lj(τk)}
+1

)
Wj−1(|α̃j(k)|)︸ ︷︷ ︸

Bj(k)

×(t− τk)+ |ej(τk)| .

For t → τk+1, one can get |e(k + 1−)| ≤ Bj(k)Tk + |ej(k)|.
And assume that |ej(k)| ≤ U j(k), then |e(k + 1−)| ≤

Bj(k)Tk + U j(k). We know that∣∣e(k + 1+)
∣∣ ≤ 2−Rj(k+1)

∣∣e(k + 1−)
∣∣

≤ 2−Rj(k+1)
(
Bj(k)Tk + U j(k)

)
.

From (15) and U j(k + 1) = 2−Rj(k+1)Uj(k + 1), we have
|e(k + 1+)| ≤ U j(k + 1). The (16) holds by simply consider-
ing the solution to the ODE ˙̃αj = −Kαj

α̃j with initial value
α̃j = αdj

− α̂j(k
+). �

With Lemma IV.8, the following lemma provides a sufficient
condition on the selection of controller gains that assures a
super-martingale like property for the sequence {Uj(k)}+∞

k=0,
j = 1, 2, . . . , N − 1.

Lemma IV.9: Consider the closed-loop system in (9),
(10). Let

G (|αj |, |Lj |)

= e−h(|αj |,|Lj |)γ(|αj |,|Lj |) (1 + h (|αj |, |Lj |) γ (|αj |, |Lj |))

be a non-negative, monotonically increasing function with
respect to |αj | and |Lj | respectively. If there exists a
sequence of controller gains {KLj

(k),Kαj
(k)}∞

k=0
with

Kj(k) = {KLj
(k),Kαj

(k)} ∈ Kj for all k ∈ Z such that the
Proposition IV.1 and following inequality hold for any
ηj ∈ (0, 1)

G
(
αj(k + 1), Lj(k + 1)

)
≤ ηj

αj(k + 1)=
∣∣∣−α̃j(k)e

−Kαj
(k)Tk + αdj

∣∣∣+Bj(k)Tk + U j(k)

Lj(k + 1) = Ldj
+

Wj−1 (|α̃j(k)|)
KLj

(k)

−
[
L̃j(k) +

Wj−1 (|α̃j(k)|)
KLj

(k)

]
e−KLj

(k)Tk

(20)

then

E
[
U j(k+1)|U j(k)

]
≤ηjU j(k)+ηjBj(k)Tk, ∀ k ∈ Z+.

(21)

Proof: Consider the sequence {U j(k)}∞k=0 that
satisfies (15) in Lemma IV.8, using the argument in [16],
one has E[U j(k + 1)|U j(k)] ≤ G(|αj(k + 1)|, |Lj(k +
1)|)(Bj(k)Tk + U j(k)). Let G(|αj(k + 1)|, |Lj(k + 1)|) ≤
ηj , we have final conclusion (21) hold. In order to select
the controller gain {KLj

(k),Kαj
(k)} for the time interval

[τk, τk+1), the selection decision is made based only on the
information at time instant τk. Thus, we further bound the state
|αj(k + 1)| and |Lj(k + 1)| by considering |ej(k + 1−)| =
|αj(k+1−)− α̂j(k+1−)|≤Bj(k)Tk + U j(k). Since αj(k +
1) = αj(k + 1−), we have

|αj(k + 1)| ≤
∣∣α̂j(k + 1−)

∣∣+Bj(k)Tk + U j(k)

≤
∣∣∣αdj

−
(
αdj

− α̂j(k)
)
e−KLj

(k)Tk

∣∣∣
+Bj(k)Tj + U j(k)

Δ
=αj(k + 1).

Similarly, one also has |Lj(k + 1)| ≤ Lj(k + 1) = (Ldj
+

(Wj−1(|α̃j(k)|)/KLj
(k)))(1−e−KLj

(k)Tk)+Lj(k)e
−KLj

(k)Tk



IE
EE

Pr
oo

f

HU AND LEMMON: DISTRIBUTED SWITCHING CONTROL TO ACHIEVE ALMOST SURE SAFETY FOR LEADER-FOLLOWER VN SYSTEMS 9

that is shown in Proposition IV.1. Since the function G(|αj(k +
1)|, |Lj(k + 1)|) is a monotonically increasing function w.r.t
|αj(k + 1)| and |Lj(k + 1)|, and then if G(αj(k + 1), Lj(k +
1)) ≤ ηj , we have G(|αj(k + 1)|, |Lj(k + 1)|) ≤ ηj , then the
final conclusion holds. �

Remark IV.10: Function G(αj , Lj) in condition (20) is di-
rectly related to the EBB model, and it generates a partition
of the formation state space as shown in Fig. 3. Each partition
associates with a threshold ηj that characterizes the convergent
rate for the uncertainty set. The aim of switching control
strategy is to guarantee that the condition (20) holds with a
selected ηj .

Similar to Lemma IV.9, the following lemma shows that
the sequence of the estimate of bearing angle {α̃j(k)}∞k=0 for
j = 1, 2, . . . , N − 1 satisfies a super-martingale like property
as sequence {U j(k)}∞k=0 does.

Lemma IV.11: Consider the system in (9), (10), given
a sequence of controller pair {KLi

(k),Kαi
(k)}∞k=0 with

each {KLi
(k),Kαi

(k)} selected at time instants {τk}∞k=0

and {KLi
(k),Kαi

(k)} ∈ Ki. Let K∗
αi

= min{Kαi
|Kαi

∈
Ki} and let Ik denote the information available at time instant
τk, then we have

E [|α̃i(k + 1)| |Ik] ≤ e−K∗
αi

Tk |α̃i(k)|

+
(
Bi(k)Tk + U i(k)

)
(1− 2−R̄i).

Proof: Consider the time interval [τk, τk+1), by (9), we
know that ˙̂αj=Kαj

(k)(αdj
−α̂j(t)) with initial value α̂j(τk).

Therefore, let α̃j(k) = αdj
− α̂j(k), we have α̃j(k + 1−) =

e−Kαj
(k)Tk α̃j(k). Let Ej(k + 1) = α̃j(k + 1)− α̃j(k + 1−),

then α̃j(k + 1) = e−Kαj
(k)Tk α̃j(k) + Ej(k + 1). Let K∗

αj
=

min{Kαj
|Kαj

∈ Kj}, then

|α̃j(k + 1)| ≤ e
−K∗

αj
Tk |α̃j(k)|+ |Ej(k + 1)| (22)

The term |Ej(k + 1)| can be bounded as |Ej(k + 1)| ≤
(Bj(k)Tk + U j(k))(1− 2−Rj(k+1)). Taking the conditional
expectation on both sides of inequality (22) with respect
to the information Ik available at time instant τk and us-
ing above bound on |E(k + 1)| yield E[|α̃j(k + 1)||Ik] ≤
e
−K∗

αj
Tk |α̃j(k)|+ (Bj(k)Tk + U j(k))(1− 2−Rj(k+1)). Since

Rj(k) ≤ Rj for all k ∈ Z+, the final conclusion holds. �
With Lemma IV.9 and IV.11, we proceed to state the main

theorem of almost sure asymptotic stability as follows,
Theorem IV.12: Consider closed-loop system in (9), (10).

Let the hypothesis of Lemma IV.9 hold, suppose there exists
a positive constant value εj such that

Bj(k) = max

{
1

min {Ljmin, Lj(k)}
, 1

}
Wj−1 (|α̃j(k)|)

≤ εj |α̃j(k)|

for all k ∈ Z+, if

max
{
ηj+1−2−R̄j , (ηj+1−2−R̄j )εjTk+e

−K∗
αj

Tk

}
≤δ

(23)
where δ ∈ (0, 1). Then the system state of bearing angle
αj almost surely asymptotically converges to αdj

for j =
1, 2, . . . , N − 1.

Proof: We prove the almost sure convergence of αi by
proving limk→∞ E[U i(k) + α̃i(k)] → 0. Since αi = α̂i + ei,
then |αi(k)− αdi

(k)|≤|α̂i(k)−αdi
|+U i(k). By Lemmas IV.9

and IV.11, one has E[U i(k + 1) + α̃i(k + 1)] ≤ δiE[U i(k) +
α̃i(k)] with δi ∈ (0, 1), if inequality (23) holds. Then, it is
clear that limk→∞ E[|αi(k)− αdi

(k)|] → 0. Using Markov in-
equality, we have |αi(k)− αdi

(k)| → 0 almost surely, i.e., the
bearing angle sequence {αi(k)} almost surely converges to αdi

.
Because the state trajectory has no finite escape within each
time interval [τk, τk+1), ∀ k ∈ Z+. Then, the system state of
bearing angle αi(t) is almost surely convergent to αdi

. �
Remark IV.13: The condition Bj(k) ≤ εj |α̃j(k)| is equiva-

lent toWj−1(α̃i(k))≤εi|α̃j(k)| sinceLj(t)>d>1 for t ∈ R+.
Almost sure practical stability is a weaker safety notion

than almost sure asymptotic stability, and it allows the bearing
angles to fluctuate within a reasonable safe set. Theorem IV.14
provides a sufficient condition to assure almost sure practical
stability for bearing angle αj(t), j = 1, 2, . . . , N − 1.

Theorem IV.14: Consider closed-loop system in (9), (10).
Let the hypothesis of Lemma IV.9 hold, for given positive
values Δ∗

j , j = 1, 2, . . . , N − 1, if there exists a controller pair
{KLj

(k),Kαj
(k)} with ηj(k) such that

Bj(k)≤
1− rj
Jj

min
{
Δ∗

j , |α̃j(k)|+U(k)
}
, j=1, 2, . . . , N−1

(24)
with rj < 1 where

rj = max
{
ηj + 1− 2−R̄j , e

−K∗
αj

Tk

}
(25)

Jj =(ηj + 1− 2−R̄j )Tk. (26)

Then the bearing angle αj of leader-follower pair i almost
surely converges to a compact set defined by Ωj = {αj(t) :
|αj(t)− αdj

| ≤ Δ∗
j}.

Proof: By Lemmas IV.9 and IV.11, one has

E
[
|α̃j(k + 1)|+ U j(k + 1)|Ik

]
≤ max

{
ηj + 1− 2−R̄j , e

−K∗
αj

Tk

}(
|α̃j(k)|+ U j(k)

)
+ (ηj + 1− 2−R̄j )TkBj(k). (27)

Let Vj(k) = |α̃j(k)|+ U j(k), and consider function Vj(k)
as a candidate Lyapunov function. It is clear that Vj(k) ≥ 0 for
any k ∈ Z+. Then, we can rewrite inequality (27) into E[Vj(k+
1)|Vj(k)]≤E[Vj(k+1)|Ij(k)]≤rjVj(k) + JjBj(k). Further-
more, if the controller gains {KLj

(k),Kαj
(k)} are selected

to assure rj < 1, we have E[Vj(k + 1)|Vj(k)] ≤ Vj(k)− [(1−
rj)Vj(k)− JjBj(k)]. By condition (24), one can obtain

E [Vj(k + 1)|Vj(k)] ≤Vj(k)+(1−rj)min
{
Δ∗

j−Vj(k), 0
}

=Vj(k)−(1−rj)max
{
Vj(k)−Δ∗

j , 0
}
.

(28)

From inequality (28), one can prove the bounded set Ω̂j =
{Vj(k) : Vj(k) ≤ Δ∗

j} is invariant with respect to system in (9)
and (10) almost surely by considering

1) when Vj(k)≤Δ∗
j , inequality (28) is reduced to E[Vj(k +

1)|Vj(k)] ≤ Vj(k), which implies that sequence {Vj(k)}
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is a super-martingale and remains in the set Ω̂j almost
surely.

2) when Vj(k)>Δ∗
j , ∃ε>0 such that E[Vj(k+1)|Vj(k)]≤

Vj(k)− ε. Clearly, the trajectory of Vj(k) will asymptot-
ically decrease until reaching the set Ω̂j almost surely.

This condition can be viewed as a stochastic version of the
LaSalle Theorem in discrete time system. With condition (28),
one can easily attain the almost sure convergence property for
Vj(k) with respect to set Ω̂j , i.e., limk→+∞ Pr{supk Vj(k) ≤
Δ∗

j} → 1. Since |αj(k)− αdj
| ≤ |α̃j(k)|+ U j(k) = Vj(k),

|αj(k)− αdj
| converges to set Ωj almost surely. Since the

state trajectories remains bounded within each transmission
time interval [τk, τk+1) for all k ∈ Z+. Therefore, we have
limt→+∞ Pr{supt |αj(t)− αdj

| ≤ Δ∗
j} → 1. �

Remark IV.15: Inequality (24) characterizes an upper bound
on the propagated disturbance Bj(k) under which the leader-
follower pair j is almost sure practically stable. This upper
bound is a increasing function of the size of target set Δ∗

j , the
worst-case of bearing angle |α̃j(k)|+ U(k), and a decreasing
function of the ratio ηj .

Remark IV.16: Inequality (24) can be viewed as a distributed
rule to select ηj(k) to assure almost sure practical stability
for each leader-follower pair. The selected ηj(k) is used in
Lemma IV.9 to switch controller.

The following corollary shows an explicit bound on the
bearing angle under which it is almost surely convergent to a
“safe” set Ωj(Δ

∗
j). Such bound is a function of ηj and Δ∗

j .
Corollary IV.17: In Theorem IV.14, suppose Wj(α̃j(k)) ≤

εj |α̃j(k)| holds with gj(ηj) := (1− rj)/εjJj ≥ 1 and rj < 1
where rj and Jj are defined in (25). If

|α̃j(k)|+ U j(k) ≤ gj(ηj)Δ
∗
j (29)

then the bearing angle αj almost surely converges to a bounded
set Ωj = {αj(t) : |αj(t)− αdj

| ≤ Δ∗
j}.

Proof: From Theorem IV.14, we know that the sufficient
condition to assure almost sure practical stability with set Ωj is
Bj(k) ≤ (1− rj/Jj)min{Δ∗

j , |α̃j(k)|+ U(k)}. By condition
Wj(α̃j(k)) ≤ εj |α̃j(k)|, the above sufficient condition holds, if

|α̃j(k)|+ U j(k) ≤
1− rj
εjJj

min
{
Δ∗

j , |α̃j(k)|+ U(k)
}

= gj(ηj)Δ
∗
j

holds. The equality holds because gj(ηj) := (1−rj)/εjJj ≥ 1.
Therefore, the conclusion holds. �

Remark IV.18: gj(ηj) is a monotonically decreasing func-
tion with respect to ηj , and it characterizes the size of the region
from which the state almost surely converges to the set Ωj with
size Δ∗

j . The inequality (29) may be viewed as a partition of
the physical state in the sense that small ηj gives rise to large
contraction set.

V. SIMULATION EXPERIMENTS

This section presents simulation experiments examining the
resilience of our proposed switched controller to deep fades,
and also demonstrates the benefits of using almost sure practical

stability as a safety measurement over the traditional mean
square stability.

A. Simulation Setup

In the simulation, we consider N = 4 vehicles that is cas-
caded in a string as shown in Fig. 1. Each leader-follower pair
uses a two-state Markov chain model to simulate the fading
channel between the leader and follower. The two-state Markov
chain has two states with one representing the good chan-
nel condition and the other one representing the bad channel
condition. Here, the “good channel state” simply means the
transmitted bit is successfully received, while the “bad channel
state” means the failure of receiving the bit.

Following the characterization of Makov chain model
in [42], one can find that the conditional probability for
good channel state is a monotonically decreasing function
of Lj(t)/ cosαj(t), while the conditional probability for
bad channel state is a monotonically decreasing function of
cosαj(t)/Lj(t). The explicit function form depends on the dis-
tribution of the channel gain. In this simulation, we use p11 =
e−3×10−3(Lj(t)/ cosαj(t))

2
to denote the conditional probability

for the good channel state and p22 = e−6×102(cosαj(t)/Lj(t))
2

to represent the conditional probability for the bad channel
condition. The corresponding transition probabilities between
these states are 1− p11 and 1− p22. Then, we use the EBB
model in (6) to characterize the low bit region generated by the
two-state Markov chain model. The corresponding functions in
EBB model (6) are h(αj , Lj) = R̄je

−3×10−4(Lj(t)/ cosαj(t))
2
,

γ(αj , Lj) = e−4.5×10−3(Lj(t)/ cosαj(t))
2

with R̄j = 2 repre-
senting two bits that are transmitted at each sampling period.

The 100 ms sampling time that is consistent with the trans-
mission frequency in V2V communication technology [10] is
widely used in mobile robot system, is selected for each leader-
follower pair (j = 1, 2, 3), i,e, Tk = 0.1 sec for all k ∈ Z+. The
functions Wj−1(·) in Proposition IV.1 are selected to be lin-
ear functions Wj−1(|α̃j(t)|) = aj |α̃j(t)|+ bj with parameters
being a1 = 0.1, b1 = 0.01; a2 = 0.8, b2 = 2; a3 = 1, b3 = 4.
The value of the parameter sets are chosen to be increasing
with respect to j to guarantee the feasibility of the controller
selection for each leader-follower system.

In this simulation, we consider an interesting and real-
istic scenario that the fourth vehicle from far distance in-
tends to join the other three closed-spaced vehicles. Hence,
the initial states for three leader-follower pairs (j = 1, 2, 3)
are α1(τ0) = π/3, α2(τ0) = π/4, α3(τ0) = π/6 and L1(τ0) =
7.1 m, L2(τ0) = 7.1 m, L3(τ0) = 99 m. The initial uncertain-
ties are Uj(τ0) = π/6. By switching controller pairs from sets
Kj = {(KLj

,Kαj
) : 0 < KLj

≤ 100, 0 < Kαj
≤ 100}, each

leader-follower pair is required to achieve and maintain desired
set-points αdj

= 0, Ldj
= 2 m, j = 1, 2, 3.

B. Simulation Results

A Monte Carlo method was used to verify that the system
has almost surely practical stability when Proposition IV.1 and
Theorem IV.14 hold. Each simulation example is run 100 times
over a time interval from 0 to 10 seconds.
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Fig. 4. The maximum and minimum value of separation Lj (m) and bearing
angle αj (rad) for leader-follower pair, j = 1, 2, 3.

Fig. 5. One sample of switching controller profile for leader-follower pair 1
(Top) and 2 (Bottom): KLj

and Kαj are controller gains for the distance and
bearing angle of leader-follower j, j = 1, 2.

In the first simulation, we select the controllers for each leader-
follower pair from Kj , j = 1, 2, 3 so that Proposition IV.1 and
Theorem IV.14 hold at each time instant τk. Fig. 4 shows the
maximum and minimum values of the system states Lj and
αj , j = 1, 2, 3 evaluated over all the 100 runs. The maximum
value is marked by red lines and the minimum value is marked
by blue lines. The two dashed lines in Fig. 4 represent the
upper and lower bound for the relative bearing α, i.e., |αj | ≤
π/2, which characterizes the safety region. We can see from
Fig. 4 that the maximum and minimum values of the system
states asymptotically converge to a bounded set containing the
desired set-points αdj

= 0 and Ldj
= 2 m. This is precisely

the behavior that one would expect if the system is almost sure
practically stable. These results, therefore, seem to confirm our
statement in Theorem IV.14.

Figs. 5 and 6 show one sample of switching controller profile
and channel state for each leader-follower pair. The top plot

Fig. 6. One sample of switching profile (Top) and channel state (Bottom) for
leader-follower pair 3: KL3

and Kα3 are controller gains and R3(k) is the
number of successfully received bits at each time interval [τk, τk+1).

in Fig. 5 shows the switching controller profile for the leader-
follower pair 1 with red line marked as controller gain Kα1

and blue line as controller gain KL1
. The bottom one is the

switching controller profile for leader-follower pair 2 with the
same marking rule. These plots show that the controller gains
stay low at the first two seconds to avoid large disturbance to
the bottom system, and then switch from low to high when
the systems approach the equilibrium and are confident that the
channel state will always stay good. The top plot in Fig. 6 is
the switching controller profile for the leader-follower system 3
with same marking rule, and the bottom plot is the channel state
R3(k) that characterizes the number of successfully received
bits at each time interval. We can clearly see from the plots that
the controller for system 3 starts with low gains to compensate
the effect caused by a short string of zero bits at the beginning,
and then switches from low gain to high gain when channel
condition stays good. These results demonstrate that channel
state indeed is used as a feedback signal to switch the controller.

In the second simulation, we studied the benefits of almost
sure practical stability as a safety measurement over the tradi-
tional mean square stability. Traditional mean square stability
requires the second moment of the system state converges to a
positive constant value, but it does not put any constraint on the
sample path which might potentially cause safety issues. For
a fair comparison, the same simulation setup and parameters
are applied in this simulation with the only difference being on
the controllers. One type of controller used in this simulation
is a mean square stabilizing controller, which is selected to
guarantee mean square stability for each leader-follower pair.
The other type of controller is the switching controller proposed
in this paper to guarantee almost sure practical stability for each
leader-follower pair. The switching control strategy uses the
mean square stabilizing controller as its initial controller.

Fig. 7 shows a comparison of the maximum and minimum
values of the bearing angle α3 for leader-follower pair 3 with
the switching controller case in the top plot and the mean
square controller K1 = (5, 0.5); K2 = (5, 0.5); K3 = (2, 50)
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Fig. 7. The maximum and minimum system trajectory for leader-follower pair
3 with switching controller (Top) and non-switching controller pair (Bottom)
KL3

= 2 and Kα3 = 50.

in the bottom plot. It is worth noting that (K1,K2,K3) is just
one of the many selections in our simulation. Because of the
space limitations, we only use (K1,K2,K3) as an example to
demonstrate the results. It is clear from Fig. 7 that the system’s
sample path goes unbounded as time increases by using a mean
square stabilizing controller, but it converges asymptotically to
a bounded set by using a switching controller. These results
suggest that the composition of mean square stable systems
does not guarantee mean square stability for the whole system,
while the composition of almost sure stable systems may still
guarantee almost sure stability for the whole system.

Fig. 8 shows the comparison of one sample run of
vehicles’ trajectories in Euclidean space that are generated by
the switching control strategy proposed in this paper and
the non-switching strategy with controller gain K1 = (5, 0.5);
K2 = (5, 0.5); K3 = (2, 50). The top plot of the figure is the
leadingvehicle’s trajectorygeneratedbyavelocityprofile (v1(t),
ω1(t)) which satisfies the condition in Corollary IV.4. The
middle plot shows the trajectories of four vehicles that adopt
the switching strategy where the red, black, blue and green
dots represent the trajectories of leading vehicle (Vehicle-1),
Vehicle-2, Vehicle-3 and Vehicle-4 respectively. It is clear from
the plot that the leader-follower system almost surely converges
to the specified formation. The bottom plot shows the result
for non-switching control strategy using the mean square
controller K1 = (5, 0.5); K2 = (5, 0.5); K3 = (2, 50) which
exhibits significantly unsafe oscillatory behavior in Vehicle-4.

VI. CONCLUSION

This paper studies the almost sure safety property for a chain
of leader-follower vehicular networked system in the presence
of a V2V channel that exhibits exponentially bounded bursti-
ness and varies as a function of vehicular state. The concept
of almost sure safety is examined in terms of almost sure
asymptotic stability and practical stability. Switching strategy is

Fig. 8. The comparison of one sample run (10 seconds) of vehicles’ trajec-
tories generated by a switching control strategy (Middle) and a non-switching
strategy (Bottom) with K1 = (5, 0.5); K2 = (5, 0.5); K3 = (2, 50). The top
plot is the trajectory of the leading vehicle (Vehicle-1).

adopted to assure almost sure safety by adaptively reconfiguring
local controller gains to the changes of channel state. Sufficient
conditions are provided to decide which controller is placed in
the feedback loop at each transmission time. As a result of the
correlation between channel state and physical vehicular state,
the sufficient conditions partition the vehicular state space into
a set of regions in which controllers are designed to achieve
almost sure safety. The simulation results of a four-vehicle
leader-follower formation control are provided to support our
theoretical analysis and illustrate the benefit of using almost
sure practical stability as a safety measurement over traditional
mean square stability.

It is important to note that this paper studies the effect
of a V2V communication channel on the safety of leader-
follower systems under the assumption that no measurement
noise is present in the system. This assumption turns out to
be a necessary and sufficient condition to assure almost sure
stability due to negative results in [25]. One can only hope for a
weaker notion of stochastic stability if state-independent noise
is present in the system. Addressing this issue is beyond the
scope of this paper and will be explored in our future work.

APPENDIX

Proof of Proposition IV.1: Consider the infinite norm of the
control input given in (8)∣∣∣∣
[
vj(t)
ωj(t)

]∣∣∣∣
≤
∥∥∥∥
[− cosφj −Lj sinφj

− sinφj

d
Lj

d cosφj

]∥∥∥∥
∣∣∣∣
[
KLj

(k)
(
Ldj

− Lj

)
Kαj

(k)
(
αdj

− α̂j

) ]∣∣∣∣
≤ (1 + |Lj(t)|)max

{
KLj

(k)
∣∣∣L̃j(t)

∣∣∣ ,Kαj
(k) |α̃j(t)|

}
(30)
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with L̃j(t) = Ldj
− Lj(t). The supreme of |Lj(t)| over time

interval [τk, τk+1) can be obtained by considering L̇j(t) ≤
KLj

(k)(Ldj
− Lj)(t) +Wj−1(|α̃j(k)|). Using Gronwall Bell-

man theorem to solve above inequality and yield

Lj(t) ≤Lj(k)e
−KLj

(k)(t−τk)

+

(
Ldj

+
Wj−1 (|αj(k)|)

KLj
(k)

)(
1−e−KLj

(k)(t−τk)
)

Δ
=Lj(t).

Assume Lj(t) > 0 (In Lemma IV.8, we prove that if controller
gain KLj

(k) is selected sufficiently large, Lj(t) > d > 0 holds
for all t ≥ 0), and because dLj/dt ≥ 0 or dLj/dt < 0 over
interval [τk, τk+1). In other words, Lj(t) is a monotonically
function over [τk, τk+1). Thus supτk≤t<τk+1

Lj(t) is obtained
when t = τk or t → τk+1, i.e.,

Lj(t) = max
{
Lj(τk), Lj(τk+1)

} Δ
= MLj

(k). (31)

Note that over time interval [τk, τk+1), one has d|L̃j(t)|/dt ≤
KLj

(k)|L̃j(t)|+Wj−1(α̃j(k)) thus

sup
τk≤t≤τk+1

KLj
(k)
∣∣∣L̃j(t)

∣∣∣ =KLj
(k)
∣∣∣L̃j(k)

∣∣∣ eKLj
(k)Tk

+Wj−1(|α̃j(k)|)
(
eKLj

(k)Tk−1
)

Δ
= L̃j,max(k). (32)

By inequalities (31), (32), (30) can be further bounded∣∣∣∣
[
vj(t)
ωj(t)

]∣∣∣∣
∞
≤
(
1+MLj

(k)
)
max

{
L̃j,max(k),Kαj

(k) |α̃j(t)|
}

(33)

with α̃j(t) = αdj
− α̂j(t) satisfying ˙̃αj = −Kαj

(k)α̃j , t ∈
[τk, τk+1) with initial value α̃j(τk). From the solution of the
above ODE, it is obvious that |α̃j(t)| < |α̃j(τk)|, then it is
straightforward to show that if the condition (11) is satisfied,
the inequality (12) holds. �

Proof of Lemma III.3: Consider the case that the collection
of random variables {Xjl(k)} is i.i.d. and the probability of
successfully decoding a packet is equal to the probability that
the signal to noise ratio (SNRjl) exceeds some fixed threshold
γ0 [39], i.e.,

Pr {Xjl(k) = 1} = Pr{SNRjl ≥ γ0}.

The selection of the threshold γ0 is often directly related to the
communication system (e.g. modulation scheme). We assume a
pre-selected γ0 for a fixed communication system. For Raleigh
fading, one can explicitly compute the successfully decoding
probability as

Pr{SNRjl ≥ γ0} = e
− γ0

γ(Lj,|αj |) Δ
= p(Lj , αj)

with γ(Lj , |αj |)=E(Prec(Lj , |αj |))/N0 where Prec(Lj , |αj |)
and N0 are powers of the receiving signal and noise respec-
tively. According to directional antenna gain theory [2], one

knows that Prec(Lj , |αj |) is a monotonically decreasing func-
tion with respect to Lj ∈ (0,+∞) and |αj | ∈ [0, π/2] and so
does p(Lj , |αj |). Since {Xjl(k)} is i.i.d., one has that Rj(k) =∑Rj

l=1 Xjl(k) follows a binomial distribution with mean value
E(Rj(k)) = Rjp(Lj , |αj |). Using Chernoff inequality, one has

Pr
{
Rj(k) ≤ (1− δ)Rjp (Lj , |αj |)

}
≤ e−

δ2

2 Rjp(Lj ,|αj |), δ ∈ (0, 1).

Let h(Lj , |αj |) = δdRjp(Lj , |αj |) for some δd ∈ (0, 1], then

Pr {Rj(k) ≤ (1− δ)h(Lj , |αj |)}
= Pr

{
Rj(k) ≤ (1− δ)δdRjp (Lj , |αj |)

}
= Pr

{
Rj(k) ≤ (1− (1− δd + δdδ))Rjp (Lj , |αj |)

}
≤ e

− (1−δd+δdδ)2

2δdδ δh(Lj ,|αj |) (34)

Let σ = δh(Lj , |αj |), γ̂(δ) = (1− δd + δdδ)
2/2δdδ, then wen

have

Pr {Rj(k) ≤ h (|Lj |, |αj |)− σ} ≤ e−γ̂(δ)σ

where σ ∈ [0, h(|Lj |, ‖αj‖)). The last inequality holds due to
Chernoff inequality. Taking the first derivative of γ̂(δ) w.r.t δ,
one has

dγ̂

dδ
=

>0︷ ︸︸ ︷
(1− δd + δdδ)(δdδ − 1 + δd)

2δdδ2
.

Clearly, given 0 < δd < 1, γ̂ has the minimum value at δ∗ =
(1/δd)− 1, and γ̂(δ∗) = 2(1− δd). One has a EBB characteri-
zation as follows:

Pr {Rj(k) ≤ h (|Lj |, |αj |)− σ} ≤ e−2(1−δd)σ.

Consider the case that the collection of random variables
{Xjl(k)} is a two-state Markov process and for Rayleigh
fading channels, the transition probability matrix M(k) for a
two-state Markov chain can be obtained by using the technique
in [42], as seen in (35), as shown at the top of the next
page, for l = 2, 3, . . . , N and c is the system parameter for
a selected V2V wireless system and is sufficiently small to
assure the transition probability is valid, i.e., within [0, 1].
Note that the function forms in (35) are particular for Rayleigh
fading channels. One may not have explicit function form for
other type of fading channel, but the fundamental relationship
between physical state Lj , αj and the fading function should
remain the same. Given the transition probability in (35), the
stationary distribution π1 and π0 can be obtained as(

π1

π0

)
=

(
e
− γ0

γ(Lj,|αj |)

1− e
− γ0

γ(Lj,|αj |)

)
.

Let λ2(M) denote the second largest eigenvalue of transition
matrix M , and it is easy to obtain λ2(M) as follows:

λ2(M) = 1− c

√
2πγ0

γ (Lj , |αj |)
− c

√
2πγ0

γ(Lj ,|αj |)

e
γ0

γ(Lj,|αj |) − 1
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M(k) =

(
Pr
{
Xjl(k) = 1|Xj(l−1)(k) = 1

}
Pr
{
Xjl(k) = 1|Xj(l−1)(k) = 0

}
Pr
{
Xjl(k) = 0|Xj(l−1)(k) = 1

}
Pr
{
Xjl(k) = 0|Xj(l−1)(k) = 0

})

=

⎛
⎜⎜⎜⎜⎜⎝

1− c
√

2πγ0

γ(Lj ,|αj |) c

√
2πγ0

γ(Lj,|αj |)

e

γ0
γ(Lj,|αj |) −1

c
√

2πγ0

γ(Lj ,|αj |) 1− c

√
2πγ0

γ(Lj,|αj |)

e

γ0
γ(Lj,|αj |) −1

⎞
⎟⎟⎟⎟⎟⎠ (35)

With results in [8], we know that there also exists Chernoff type
bound for finite Markov Chains. In particular, if the two-state
Markov chain starts with its stationary distribution π0 and π1,
then for 0 < δ < 1, we have

Pr
{
Rj(k) ≤ (1− δ)π1Rj

}
≤ e−(1−λ2(M))δ2π1Rj . (36)

The transformation used in inequality (34) can be applied to
probability inequality (36). Let h(Lj , αj) = δdRjπ1(Lj , αj)
for some selected δd ∈ (0, 1], then

Pr {Rj(k) ≤ (1− δ)h(Lj , αj)}

≤ e
−(1−λ2(M))

(1−δd+δdδ)2

δdδ δh(Lj ,αj)

≤ e−f(Lj ,|αj |)4(1−δd)δh(Lj ,αj)

where f(Lj ,|αj |)=c(
√

2π(γ0/γ(Lj ,|αj |))/(1−e−(γ0/γ(Lj ,|αj |)))
with c > 0. It is easy to check that func-
tion f(Lj , |αj |) is monotonically decreasing with respect to
Lj and |αj |. Hence, one can always find corresponding EBB
characterizations for both i.i.d and two-state Markov processes
with monotonically decreasing function pairs {δdRjp(Lj ,
αj), 2(1− δd)} and {δdRjπ1(Lj , αj), 4(1− δd)f(Lj , |αj |)},
respectively. �
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