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Abstract: A regime shift occurs when small external variations in system parameters shift the system’s
state from a nominal to an alternative qualitative behavior. This paper uses robust stability margins to
evaluate a kinetic system’s vulnerability to bifurcation-induced regime shifts. The results are derived
for an important class of nonnegative polynomial systems defined with respect to a directed graph
characterizing mass/energy flows within the system. Such systems are sometimes called kinetic systems
and they are often found in mathematical ecology and biochemical reaction networks. This paper
characterizes a kinetic system’s robust stability in terms of the system’s elementary flux modes (EFM).
EFM’s are often used to characterize fundamental pathways controlling an ecological or biochemical
system’s function. We establish sufficient conditions characterizing the largest variation in EFM activity
for which system’s equilibrium is guaranteed to be asymptotically stable with respect to a specified
region of attraction. The main contribution is that these stability conditions can be posed as a separable
bilinear program whose local solution can be obtained using quadratic programming software. These
stability margins are used to evaluate the vulnerability to regime shifts for biochemical and ecological
system exhibiting limit cycle behavior
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1. INTRODUCTION

A regime shift occurs in a dynamical system if small pertur-
bations or disturbances abruptly shift the system state from
the neighborhood of a nominal to an alternative equilibrium.
The term has its origins in the ecological systems community
(see ? and ?), where it was used to describe abrupt changes
in ecosystem function as a result of external stressors such
as climate change and human activities. As stated, therefore,
we’re referring to systems that are multi-stable, but the concept
is easily generalized to shifts between any type of qualitative
behavior.

The shifts we’re concerned with represent ”large” variations in
system behavior that are triggered by what one would think of
as ”small” disturbances. Such disturbances can be categorized
as either being ”fast” or ”slow” with respect to the system’s
natural time constants. Fast disturbances appear as impulsive
inputs that cause a jump in the system state. We refer to these
as shock-induced regime shifts. Slow disturbances appear as
long-term changes in the system’s parameters that generate a
bifurcation in which the nominal qualitative behavior disppears.
We therefore refer to these as bifurcation-induced regime shift.

An important question concerns the vulnerability of a system to
bifurcation-induced regime shifts. Since the global behavior of
a system is often determined by the stability types of all of its
equilibria, one can then use a change in the stability type (i.e.
node, focus, center) of any equilibrium as a necessary condition
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for a regime shift. Assessing a system’s vulnerability to such
shifts, therefore, may be estimated by determining the largest
parameter set containing a known nominal parameter for which
we know the stability type will not change. Stated in this way,
the problem of regime shift vulnerability is recast as a robust
stability problem and that is the approach that is taken in this
paper.

This paper studies regime shifts in dynamical system that can be
realized using nonnegative polynomials defined on a directed
graph modeling the balanced flows of energy or mass within
the system. Such systems are sometimes called kinetic systems
since they are used in modeling chemical reaction networks
with mass action kinetics. While this type of system has its
origins in biochemical reaction networks, the models are actu-
ally very general in that a kinetic realization can be constructed
for just about any networked dynamical system generated by
flows of energy/mass. The main modeling requirement is that
the flows within the system be finitely generated over some
suitable algebra of functions with some rather mild structural
conditions on these functions. These conditions are satisfied by
many networked dynamical systems such as traffic flows, power
distribution systems, ecological food webs, and cellular signal-
ing networks. This paper focuses on applications in ecology and
cellular biology, though the methods should be applicable to
engineering networks also.

The robust stability problem is to determine the largest param-
eter set in which some specified stability concept is guaranteed.
There has, already, been a great deal of work in this area
for linear systems. Applying these ideas to nonlinear systems,
however, can be relatively difficult. For example, early work



in ? determined the ”distance-to-bifurcation” for simple power
systems using continuation methods. The problem with this is
that one is usually limited to a rather small number of param-
eters (2-3) and that the answers we obtain are local estimates
of the distance-to-bifurcation. More recent work in ? and ?
has attempted to pose the problem using the positivstellensatz
theorem (see ?), which searches for a barrier certificate (see ?)
whose existence certifies that the stability concept holds within
a specified test set of the parameter space. When the system is
polynomial one can pose this problem as a semidefinite pro-
gram (SDP) (see ?) and then take advantage of SDP solvers to
find a global bound on the distance to bifurcation. The problem
with this approach, is that the time and memory complexity of
these solvers does not scale well with respect to the number of
parameters and the degree of the polynomial constraints (see
?). This again limits the size of the problems we can consider.
Recent work in ? has used diagonal stability concepts that
require a specified matrix to be anM -matrix. Unfortunately the
formation of the required matrix and the subsequent checking
to see if it is an M -matrix requires symbolic methods that may
again not scale well for a large systems.

The issues identified with the preceding approaches limit the
utility of these tools in the ”real-life” applications of interest
to biologists. In general, a biologist is confronted by large-
scale systems with a high degree of parametric uncertainty.
For example in ?, a cyclic adenosine monophosphate (cAMP)
system was used to study biological oscillations, the ”simple”
system consists of 7 states and 14 parameters. Another system
in ? was used to explain the onset of limit cycling in aquatic
food webs consists of 6 states and least 7 parameters. These are
”idealized” systems in the sense that they greatly simplify the
actual complexity found in these systems, and yet we’ve found
these ”idealized” problems are still too large to be efficiently
handled using the methods discussed above.

One way to handle the inherent complexity of these problems
is to find a more compact way of parameterizing the system’s
equilibria. In kinetic systems, this is often done in ? through
the use of elementary flux modes (EFM). Due to graph structure
upon which a kinetic realization is built, one can study its equi-
libria through a set of equilibrium fluxes. These fluxes describe
the physical transport of materials within the system and they
must lie in a convex polyhedral cone that is finite generated by
a set of elementary flux modes (i.e. the extreme rays generating
the convex polytope). From a physical standpoint, these ele-
mentary flux modes represent fundamental process pathways
in the system (see ?) . When the activity in these pathways be-
comes too great, the system may become congested and it is the
”congestion” that triggers the bifurcation-induced regime shift.
This work, therefore, shifts attention from establishing robust
stability with respect to system parameters and focuses on char-
acterizing variation in EFM activity levels for which asymptotic
stability of a given equilibrium can be guaranteed. The key
finding in this paper, is that characterizing robust stability in this
way gives rise to a separable bilinear programming problem for
which solutions can be obtained using interior-point quadratic
programming algorithms. The solutions, of course, are only
local but each local solution can be computed rather easily for
large problems of the size mentioned above and this suggests
that we can use this approach to solve our problem for problems
that are not seen as ”toy” problems by biologists.

The remainder of this paper is organized as follows. Section ??
discusses kinetic realizations. Section ?? discusses elementary

flux modes. The main results in section ?? describes the EFM
parameterization used to solve the robust stability problem and
section ?? uses the solution to this problem to examine regime
shifts in a biological system known to exhibit limit cycling.

2. SYSTEM MODEL

This section describes the class of systems being studied in this
paper. Subsection ?? establishes some notational conventions.
Subsection ?? introduces kinetic realizations of nonnegative
polynomial systems and presents an example.

2.1 Notation:

The set of real numbers (integers) is denoted as R (Z). The
nonnegative real cone is denoted as R≥0. If A ∈ Rn×m is a
real matrix then aij denotes the element in A’s ith row and jth
column. Given a vector x ∈ Rn, we define vectors exp(x) in
Rn in a component-wise manner so that [exp(x)]i = exi for
i = 1, 2, . . . , n. Component wise division and multiplication
of two vectors x, y ∈ Rn will be denoted as x/y and xy,
respectively.

A polynomial, p(x; k), defined over the variables x = {x1, . . . , xn}
and parameters k = {k1, . . . , km} is a formal series

p(x; k) =

m∑
j=1

±kj
n∏
`=1

x
yj`
` (1)

where yj` are nonnegative integers for j = 1, 2, . . . ,m and ` =
1, 2 . . . , n. The set of all such polynomials whose parameters
take values in the real field is denoted as R(k)[x]. A polynomial
in which m = 1 is called a monomial. The n-dimensional row
vector yj = [yj1, yj2, . . . , yjn] for j = 1, 2, . . . , n is called
a multi-index and we will use x[yj ] to denote the monomial
generated by multi-index yj . Let Y ∈ Zm×n≥0 be an integer
matrix whose rows are the m distinct monomial terms in
p(x; k), then the m-vector of monomials in p(x; k) will be
written in multi-index notation as x[Y ].

A labeled directed graph, G = (V,E, L) is a triple consisting
of a finite set, V of n vertices, a finite set L of m labels, and a
setE ⊂ V ×V ×L consisting ofm labeled edges. For an edge,
e = (v, w, k), we refer to v ∈ V as the edge’s initial vertex,
w ∈ V as the edge’s terminal vertex, and k ∈ L is the edge’s
label.

2.2 Kinetic System

Consider a polynomial system whose n-dimensional state tra-
jectory x(·) : R≥0 → Rn satsifies ẋ = f(x; k) with initial
condition x(0) = x0. This system is polynomial if f(x; k) ∈
R(k)[x]. The polynomial vector f(x; k) for a given k ∈ Rm
is essentially nonnegative if and only if fi(x; k) ≥ 0 for all
i = 1, 2, . . . , n and all x ≥ 0 for which xi = 0. A necessary
and sufficient condition for the nonnegative real cone Rn≥0 to be
positively f -invariant is that f(x; k) is essential nonnegative.
Such systems are also said to be nonnegative.

Consider an n-dimensional nonnegative polynomial system
ẋ = f(x; k). This system has a kinetic realization if there exists
a labeled directed graph, G = (V,E, L) where V is a finite set
of p multi-indices of length n, L is a set of m parameters, and
E ⊂ V × V × L is a set of labeled of q edges such that



ẋ = f(x; k) = Y TBIkx
[Y ] (2)

where Y is a p× n matrix whose rows are multi-indices in the
vertex set V , B is a p × q incidence matrix from graph G, Ik
is a q × p matrix whose rows have only one nonzero element
corresponding to one parameter (label) in L, and x[Y ] is the
vector of monomials generated by the multi-indices in Y .

Remark: Realizations in (??) appear in chemical reaction net-
works with x being a set of chemical species, the monomials in
x[Y ] representing a set of chemical complexes, and k represent-
ing reaction rates. The graph G is sometimes called a complex-
graph since its vertices are complexes and the edges describe
the chemical reactions transforming one complex into another
complex.

A sufficient condition for a nonnegative polynomial system ẋ =
f(x; k) to have a kinetic realization is that for all i = 1, 2, . . . , n
there exist polynomials gi(x; k) and hi(x; k) in R(k)[x] with
nonnegative coefficients such that

fi(x; k) = gi(x; k)− xihi(x; k) (3)

This condition is presented in ? with a constructive proof that
describes an algorithm used to automate the construction of the
kinetic realization from the polynomials in f(x; k).

The construction algorithm may be described as follows. Con-
sider the nonnegative polynomial system ẋ = f(x; k) with n
states and m parameters. Let Z by an m × n integer matrix
whose rows are the multi-indices of all monomial terms in
f(x; k). Construct an n × m matrix N such that the original
differential equation can be written as

ẋ = f(x; k) = Ndiag(k)x[Z] (4)

Note that N is an integer matrix whose ijth element, nij ,
satisfies

nij =

 1 kjx
[zj ] is positive in fi(x; k)

−1 kjx
[zj ] is negative fi(x; k)

0 otherwise
(5)

Initialize the vertex set, V , and edge set E to the empty set.
Definite the label set L = {k1, k2, . . . , km}. For each nonzero
element nij in the matrix N , create a new multi-index

y = zj + sign(nij)ui (6)

where ui is an n-dimensional row vector whose only nonzero
element is 1 at the ith component. Create the edge e =
(zj , y, kj) if sign(nij) < 0 or create the edge e = (y, zj , kj)
if sign(nij) > 0. Add the multi-indices zj and y to V if they
are not already there. Add the created edge to the edge set E.
This algorithm terminates after a finite number of steps and
the realizations matrices, Y , B, and Ik are directly constructed
from the graph G.

Remark: The construction does not create a minimal realiza-
tion. But one can combine the construction with optimization
procedures as done in ? to obtain canonical realizations that
have useful properties such as minimal deficiency.

As an example, consider the cAMP molecular network from ??

1

x5

x4

x4x5

x3

x3x7
x3x4

x2

x2x5

x2x3

x1

x1x6

x1x5

x1x2

x2^2

k1
k2

k3

k4 k5

k6

k7

k8

k9

k10

k11

k12

k13

k14
x7

x6

x6x7

Fig. 1. cAMP Complex Graph

ẋ1 = k1x7 − k2x1x2

ẋ2 = k3x5 − k4x2

ẋ3 = k5x7 − k6x2x3

ẋ4 = k7 − k8x3x4

ẋ5 = k9x1 − k10x4x5

ẋ6 = k11x1 − k12x6

ẋ7 = k13x6 − k14x7

(7)

In this system, extracellular adenosine monophosphate (ext.
cAMP, x6) binds to the surface receptor (CAR1, x7) which ac-
tivates adenylyl cyclase (ACA, x1) and the MAP kinase ERK2
(x3). The internal concentration of cAMP (int. cAMP x5) is ac-
tivated by ACA and inhibited by ERK2 though the cAMP phos-
phodiesterase (REGA, x4). Increased levels of internal cAMP
activates the protein kinase A (PKA, x2) which in turn inhibits
ERK2. Numerical solutions describing these interactions show
that each of these components is necessary for the network to
generate oscillatory behavior whose frequency is robust to large
variations in the reaction rates. The kinetic realization com-
puted using the above algorithm generated a complex-graph
with 18 complexes and 14 edges. The monomials defining these
complexes are

x[Y ] =

 1 x7 x6 x6x7 x5 x4 x4x5 · · ·
· · · x3 x3x7 x3x4 x2 x2x5 x2x3 · · ·
· · · x1 x1x6 x1x5 x1x2 x2

1

 (8)

A picture of the complex graph is shown in Figure ??.

3. ELEMENTARY FLUX MODES

Consider the kinetic system in (??) with a nominal parame-
ter vector k0. A state equilibrium for that nominal parameter,
x∗(k0), is any real vector in Rn≥0 such that 0 = f(x∗(k0); k0).
Let us assume that a given equilibrium x∗(k0) is asymptotically
stable with a compact set Da being known to lie within that
equilibrium’s region of attraction. The traditional robust stabil-
ity problem determines the largest β > 0 such that x∗(k) is
asymptotically stable with a region-of-attraction that contains
Da for all k such that |k − k0| < β.



It is difficult to find the stability margin, β, for nonlinear
systems such as those in (??) with so many parameters. The
difficulty arises because it may be impossible to find closed
form expressions for the state equilibria, x∗(k), as a function
of parameter k. This means that one must numerically solve
for x∗(k) as an algorithm recursively searches through the
parameter space for that point at which asymptotic stability can
no longer be guaranteed. This is what is done in continuation
algorithms (see ?) and the complexity of the search usually
limits us to problems with no more than 2 or 3 parameters.

An alternative to continuation methods must be to study the
robust stability of systems with many parameters. One approach
used in ? projects the system states into a higher dimensional
space of fluxes for which the projected equilibria have a con-
vex parameterization. This convex parameterization is finitely
generated by a unique set of elementary flux modes (EFM)
for the system as described in ?. In ?, EFMs and their exten-
sions provide a framework for describing fundamental process
pathways through the system’s complex graph. The activity
level in each pathway becomes a transformed system state and
because the ”flux” equilibria have a convex parameterization
with respect to the EFM activity levels; the subsequent analysis
of the equilibria’ robust stability is greatly simplified.

A more formal description of elementary flux modes is given
below. Consider the kinetic system in (??) and define the
system’s flux vector as v(x; k) = Ikx

[Y ]. A flux vector v∗ ∈
Rq≥0 is a flux equilibrium if Y TBv∗ = 0 and v∗ is nonnegative.
Note that this means any equilibrium flux must lie in the
intersection of the right null space of Y TB and the nonnegative
cone Rq≥0. This set is denoted as as

Kv = ker(Y TB) ∩ Rq≥0 (9)
Kv is a convex polyhedral cone (see ?) and is finitely generated
by the positive linear combination of a set of r flux modes,
{e1, e2, . . . , er}. This means that any flux equilibrium can be
written as v∗ =

∑r
j=1 ejλj where ej is a nonnegative real q-

vector and λj is a nonnegative real number. We let E denote
the Rq×r matrix whose columns are the flux modes ej and then
express the equilibrium flux as v∗ = Eλ where λ ∈ Rr≥0 is
a non-negative real vector parameterizing the equilibrium flux
v∗. The vector λ is sometimes called Kv’s convex parameters
and each λ vector may be viewed as the system’s ”flux” state
vector whose components characterize the activity level in each
fundamental pathways associated with the system’s flux modes.

Consider the matrixE of flux modes for a given kinetic system.
If no flux mode in E can be expressed as the positive linear
combination of other elements in E, one says the set of flux
modes is elementary and we refer to E as the elementary
flux mode or EFM matrix. The EFM matrix, E, is uniquely
determined up to a reordering of the matrix columns. This can
be proven by contradiction. Assume that Kv has two sets of
EFMs, {ei}ri=1 and {di}si=1. Clearly ek for any k = 1, 2, . . . , r
can be positively generated by {di}si=1 and similarly any d` for
` = 1, 2, . . . , s can be positively generated by {ei}ri=1. This
means that

ek =

s∑
i=1

µidi =

s∑
i=1

µi

 r∑
j=1

λijej


This shows that the ek could not be elementary and hence
contradicts the assumption that the EFM matrix is not unique.

flux mode reactions species

e1 {(x1
k1→ x2

1), (x1x2
k2→ x2)} x1 (ACA)

e2 {(x6
k13→ x6x7), (x7

k14→ 1)} x7 (CAR1)

e3 {(x5
k3→ x2x5), (x2

k4→ 1)} x2 (PKA)

e4 {(x1
k11→ x1x6), (x6

k12→ 1)} x6 (ext. cAMP)

e5 {(x7
k5→ x3x7), (x2x3

k6→ x2)} x3 (ERK2)

e6 {(x1
k9→ x1x5), (x4x5

k10→ x4)} x5 (int. cAMP)

e7 {(1 k7→ x4), (x3x4
k8→ x3)} x4 (REGA)

Table 1. Elementary Flux Modes in cAMP System

Remark: A useful observation about elementary flux modes is
that each one corresponds to the ”fate” of a particular species
(i.e. xi) in the system. This can be readily inferred from the
way in which the kinetic realization was constructed. The con-
struction algorithm only adds an edge when it changes the
degree of one term in the complex. Since Y TBei = 0 for any
i = 1, 2, . . . , r, one can readily conclude that every elementary
flux mode corresponds to the balance of a particular species
entering or exiting the complex. This gives a very concrete
physical meaning to each EFM in terms of defining funda-
mental pathways governing the system. This is same reasoning
that led ? to use EFMs to characterize fundamental cellular
metabolic pathways. Each EFM, therefore, can be treated as a
fundamental process from which the entire networked system’s
dynamics can be generated. This means we can treat the activity
level in each EFM as a degree-of-freedom that we can control.

There are a number of software tools to compute the EFM
matrix of a kinetic system. A well known general purpose
tool CellNetAnalyzer described in ? uses the open source
code, EFMTOOL, of ? to compute EFM matrices. This tool
was used to compute the elementary flux modes of the cAMP
network introduced in section ??. This tool identified 7 elemen-
tary flux modes for the cAMP system. The EFM are shown in
Table ??. The first column represents the flux mode, the second
column shows which edges are in the flux mode, and the third
column identifies the species whose growth is controlled by the
flux mode.

4. EFM ROBUST STABILITY

This section presents the paper’s main result; a characterization
of a kinetic system’s robust stability in terms of the EFM’s
convex parameter vector λ. Consider the n-dimensional kinetic
system in (??) whose directed graph consists of p vertices and
q edges. Let k0 denote a nominal system parameter and assume
that the nominal state equilibrium, x∗(k0), is asymptotically
stable and that a known compact set Da ⊂ Rn≥0 is contained
within the equilibrium’s region of attraction. Consider a candi-
date Lyapunov function V (·) : Rn≥0 → Rn that takes values

V (x) =

n∑
i=1

(
x∗i − xi + xi log

(
xi
x∗i

))
(10)

The following lemma states that V (x) is a positive definite
function that goes to zero at the equilibrium x∗.
Lemma 1. For the system in (??) with state-equilibrium x∗, the
function V defined in (??) satisfies V (x) > 0 for all x 6= x∗

and V (x∗) = 0.

Proof: Note that z − 1 ≥ log(z) for all z ≥ 0. We can use
this relation to see that x∗i −xi ≥ xi log(x∗i /xi), which implies



that the function Vi(xi) ≡ x∗i − xi + xi log(xi/x
∗
i ) ≥ 0 for all

nonnegative xi. Since Vi is convex, it has a unique minimum
of 0 that occurs when xi = x∗i and so Vi > 0 for all xi 6= x∗i .
This is sufficient to establish the result since it must hold for all
i = 1, 2, . . . , n. �

Remark: The function in (??) is similar to entropy functions
used to establish the global stability of Lotka-Volterra equations
(see ?) and their extensions (see ?). The particular function
in (??) was used in ? to establish global stability of kinetic
systems whose matrix BIk has zero row/column sums. The
kinetic systems in this paper only guarantee that the column
sums of BIk are zero.

The following lemma presents a useful parameterization of V ’s
directional derivative in terms of the EFM parameter vector λ.
An important feature of this representation is that it is linear in
the convex parameters.
Lemma 2. Consider the n-dimensional kinetic system (??)
with parameter vector k and state equilibrium x∗. Let the sys-
tem’s complex graph have p vertices and q edges. Let λ ∈ Rr≥0
be a nonnegative vector of the system’s EFM activity levels.
Then there exist matrices Pj ∈ Zq×q for j = 1, 2, . . . , r such
that the directional derivative of V may be written as

V̇ =
∂V

∂x
ẋ = zT

 r∑
j=1

λjPj

 ez (11)

where z = Y log(x/x∗).

Proof: This is proven by direct computation. Note that dV (xi)
dxi

=

log
(
xi
x∗
i

)
. Therefore the directional derivative may be written

as

V̇ (x) =

n∑
i=1

dVi(xi)

dxi
ẋi =

[
log
( x
x∗

)]T
Y TBIkx

[Y ] (12)

The flux vector v(x; k) = Ikx
[Y ] may be rewritten as

Ikx
[Y ] = Ikdiag

(
[x∗][Y ]

) [ x
x∗

][Y ]

= Iv∗
[ x
x∗

][Y ]

(13)

where Iv∗ = Ikdiag
(
[x∗][Y ]

)
is a q × p matrix in which

each row has only one non-zero element that is equal to one
component of the equilibrium flux v∗ = Ik[x∗][Y ]. This means
the directional derivative in (??) may be written as

V̇ (x) =
[
log
( x
x∗

)]T
Y TBIv∗

[ x
x∗

][Y ]

(14)

Since each row of Iv∗ has only one nonzero element that is
equal to one of the equilibrium fluxes. Recall that any equilib-
rium flux vector can be written as v∗ = EλwhereE is a unique
EFM matrix and λ is a vector of EFM parameters. One may use
this reparameterization of the equilibrium fluxes rewrite BIv∗
in terms of the EFM flux parameters λ. In particular this means
that there exist r matrices P1, P2, . . . , Pr such that

BIv∗ =

r∑
j=1

Pjλj (15)

Finally, let us introduce the state transformation z = Y log(x/x∗).
Under this transformation, we can use the methods employed in
? to show that

[ x
x∗

][Y ]

= exp
(
Y log

( x
x∗

))
= ez. (16)

Using these new state variables in (??) yields equation (??) and
therefore completes the proof. �

With lemma ?? it is now possible to state one of the paper’s
main results. This result is an upper bound on the directional
derivative of V . This bound is useful because it is a separable
bilinear function of the EFM parameters and the transformed
system states, z, defined in lemma ??. This bilinear bound will
then be used to pose sufficient conditions for the a given equi-
librium to be asymptotically stable with respect to a specified
region of attraction.
Lemma 3. Under the assumptions of lemma ??, there exists a
matrix Q such that the directional derivative of V is bounded
above as

V̇ (z, λ) ≤ [ez]
T
Qλ (17)

for z ≥ 0 and λ ≥ 0.

Proof: From lemma ?? define the matrix P (λ) =
∑r
j=1 Pjλj .

One can expand the expression for V̇ to obtain

V̇ (x) =

q∑
i=1

zi
∑
j=1

pij(λ)ezj (18)

Since P (λ) has zero column sums and since pii(λ) =
−
∑
j 6=i pji(λ), we can rewrite (??) as

V̇ (z, λ) =

q∑
i=1

∑
j 6=i

(zi − zj)pij(λ)ezj (19)

Since the exponential function is convex, one can show that

(β − α)eα ≤ eβ − eα (20)

for any α, β ≥ 0. Using this inequality in the same way as was
done in ?, we can then bound V̇ as

V̇ (z, λ)≤
q∑
i=1

q∑
j 6=i

pij(λ)(ezj − ezi) (21)

= [ez] P̃ (λ)1 (22)

where 1 is a vector of ones. P̃ (λ) is a q × q matrix whose
off-diagonal elements satisfy p̃ij(λ) = pij(λ). The diagonal
elements are the negative of the row sums; so that p̃ii(λ) =∑
j 6=i pij(λ). Note that this is different from the original P

matrix which had zero column sums. P̃ (λ)1 is linear in λ, we
can rewrite it as Qλ which when substituted in (??) completes
the proof. �

The bound in (??) is bilinear and separable with respect to
transformed system state, z, and the EFM parameter vector, λ.
Because the bound is bilinear, it can usually be made arbitrarily
large by simply making the appropriate component of z or λ
large. So it will not usually be the case that V̇ is negative
definite over the entire state space or the entire parameter space.
Instead, all that can be guaranteed is that for a compact set of
states and parameters that V̇ is negative definite.

In particular, let λ0 denote the EFM parameterization of a
nominal flux equilibrium with associated state equilibrium x∗.



Consider a known positive q-vector, α, a positive real number
β, and define the following compact sets

Dα =
{
x ∈ Rn≥0 : 0 ≤ z(x) = Y log(x/x∗) ≤ α

}
Ωβ =

{
λ ∈ Rq≥0 : |λ− λ0|

} (23)

If we can verify that V̇ is negative definite for all x ∈ Dα and
λ ∈ Ωβ , then we know that the equilibrium is asymptotically
stable for all EFM parameters in Ωβ with a region of attraction
that contains Dα. The largest β for which this occurs becomes
an estimate on the equilibrium’s robust stability margin. So
the problem of characterizing the robust stability of the kinetic
system with respect to a known domain Dα is reduced to
solving a separable bilinear programming problem of the form

maximize: β
subject to: W = max

z∈Da,λ∈Ωβ
[ez]TQλ ≤ 0 (24)

The problem in (??) is a bilinear program and such problems
are NP-hard. Global solvers exist for such problems often use
semidefinite programming relaxations (see ?). Matlab inter-
faces such as ? or ? make it relatively easy for users to access
these solvers, but in general one can only get answers for rela-
tively small problems.

To deal with larger problems one can use local solvers. For
the applications considered in this paper, we’ve had success in
using interior-point quadratic programming algorithms based
on trust-region methods (see ?). This algorithm is used in the
Matlab function quadprog. To use this algorithm, one trans-
forms the bilinear constraint in (??) into a quadratic constraint.
This is done by recognizing that

[ez]TQλ =
1

2
ξT Q̃ξ (25)

where Q̃ =

[
0 Q
QT 0

]
and ξ =

[
ez

λ

]
. Making use of (??), the

optimization problem in (??) can be restated as

maximize: β
subject to: W = max

ξ∈Da×Ωβ
ξT Q̃ξ (26)

which can be easily addressed using Matlab’s quadprog
function. The algorithm has quadratic convergence, but it is
only guaranteed to converge to a local extremum.

5. REGIME SHIFT ANALYSIS


