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FORECASTING REGIME SHIFTS IN NONLINEAR DYNAMICAL PROCESSES

Abstract

by

Tua Agustinus Tamba

Regime shifts refer to sudden changes in the structure and function of a system

due to forces from external disturbances. Such shifts occur because the system has

alternative stable states and external disturbances force the system’s operating point

to shift from one stable state to another. Examples of regime shifts include the

collapse of coastal fisheries as a result of human-induced nutrient enrichment and

the voltage collapse in power network due to variations in storm frequency or user

demand. Due to such undesired consequences, there is a great challenge in finding

methods to forecast their occurrence. The work presented in this thesis addresses

this challenge using techniques from polynomial optimization. We first identify two

mechanisms by which regime shifts may occur and then formulate some real-valued

quantities that can be used as indicators of how close a system is to each type of

regime shifts. The first regime shift mechanism will be referred to as bifurcation-

induced regime shifts and it occurs because variation in the system’s parameters

exceeds a critical threshold and forces the system’s equilibria to undergo a bifurcation.

We use a quantity known as the minimum distance to bifurcation as a measure of

how close a system is to this type of regime shift and then formulate polynomial

optimization problems that can be used to compute the global minimum of this

quantity. We show that by using techniques from algebraic geometry and polynomial

optimization, the computation of this quantity in a class of nonnegative systems
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with kinetic realizations can be simplified. The second regime shift mechanism will be

referred to as noise-induced regime shifts and it occurs because the underlying system

has multiple stable equilibria and external stochastic disturbances drive the system’s

state from the region of attraction (ROA) of one stable equilibrium to the ROA of an

alternative stable equilibria. We use probabilistic quantities called mean first passage

times and safety probability to characterize the expected time and the likelihood for this

type of regime shifts to occur. We also formulate polynomial optimization problems

that can be used to compute upper bounds for these quantities.
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CHAPTER 1

INTRODUCTION

1.1 Motivation and Need

Regime shifts [132, 48, 72] refer to sudden and rapid changes in the structure or

function of a system due to the presence of forces/pressures from external distur-

bances. Originating in the ecological systems community, the term ’regime shifts’

has long been used to conceptualize the observed dramatic ecological change that

can occur suddenly, and at times without warning, potentially causing drastic or ir-

reversible shifts in ecosystem state [72, 82, 112, 104, 102]. In this concept, the change

is often conceived as a shift in the system state from one locally stable regime to

another, usually after external triggers or disturbances force the system towards its

local stability boundary or threshold. Examples of regime shifts in ecosystems in-

clude eutrophication (excessive nutrient enrichment) of freshwater lakes that shifts a

clear water lake into a turbid one [20, 131], the collapse of fish population and other

species due to excessive harvesting or human exploitation [29, 114, 28], degradation of

coral reefs due to seasonal hurricanes [113, 77, 5] and desertification (loss of perennial

vegetation in arid and semi-arid regions) of the Sahara desert due to climate change

[33, 45, 132]. Each of these shifts has the potential to disrupt the services that these

ecosystems provide to society. The study and better understanding of mechanisms

leading to regime shifts are therefore important to help find urgent management ac-

tions that can be taken to avoid the undesired consequences that the shifts may cause

[48, 127, 46, 47, 4].
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The objective of this thesis is to contribute to the study and understanding of

the underlying mechanisms leading to regime shifts. Specifically, this thesis develops

mathematical and computational methods to forecast the onset of regime shifts in

biological and ecological systems by characterizing the likelihood that a system shifts

from its current operating regime in the presence of external forces that perturb either

its states or parameters. The basic approach involves the characterization of some

measures of how close a system is to regime shifts. In this regard, we identify two

mechanisms by which regime shifts may occur and then formulate some real-valued

quantities that can be used as indicators of how close the system is to each type

of regime shift. The first regime shift mechanism will be referred to as bifurcation-

induced regime shifts which occurs because variation in the system’s parameters ex-

ceed a critical value and forces the system’s equilibria to undergo bifurcations. We

use a quantity called the ”minimum distance to bifurcation” [36] as a measure of how

close a system is to this type of regime shifts. The second regime shift mechanism

will be referred to as noise-induced regime shifts which occurs because the underlying

system has multiple stable equilibria and external stochastic disturbances drive the

system’s state from the region of attraction (ROA) of one stable equilibrium to the

ROAs of alternative stable equilibria. We use probabilistic quantities called mean

first passage times and safety probability to characterize the expected time and the

likelihood for this type of regime shifts to occur. The key technical approach in the

developed methods is the use of sum of squares (SOS) relaxation techniques [118] to

recast the computation of each of these quantities as an SOS optimization problem

[120, 117].

We point out that other phenomena with similar characteristics as ecological

regime shifts have also been observed in different systems or applications such as

engineering, physics, economics, chemistry and biology. Examples of these phenom-

ena includes phase transition due to variation in local thermodynamic potentials in
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ferromagnetism [86], cascade of voltage collapse due to storms or sharp variations in

power utilization in electrical power grids [35, 15], regime switching and crash of stock

market prices due to arrivals of new price information [148] and multistability/switch-

ing behaviors in chemical reaction networks and biological systems that result from

variation in reaction/interaction rates between species/population [26, 44, 23]. As in

the case of ecological regime shifts, each of these phenomena also shift the system’s

states towards undesired and irreversible alternative equilibria. Understanding the

underlying mechanisms leading to regime shifts in these systems is also important as

it may help assist the development of sustainable control and management strategies.

The method for characterizing regime shifts described in this thesis can therefore be

used as a starting point to study and better understand regime shifts in these different

areas.

1.2 Background and Prior Work

An important framework that has been adopted in various studies of regime shifts

is the concept of multistability or alternative stable states from dynamical systems

theory [104, 131, 99]. Within these concepts, a regime shift has been viewed as a

nonlinear dynamical behavior in which a system undergoes switches/jumps between

alternative stable states after a sufficiently large external disturbance pushes the sys-

tem state off of its current or nominal stable regime. The underlying mechanisms or

drivers governing such switches are often unknown for certain [130, 8, 126]. Never-

theless, the majority of works that studied regime shifts have usually assumed that

the mechanism by which the shifts occured follows one of the following two general

mechanisms.

• First, regime shifts occur through a bifurcation of the system’s equilibria as
external perturbations cause variation in system’s parameters that exceeds some
critical threshold. In this case, the regime shift is characterized by changes
in the number (single or multiple) and types (stable or unstable) of system

3



equilibria. Towards the end, we will refer to such mechanisms as bifurcation-
induced regime shifts.

• Second, regime shifts occur because the system’s nominal regime (or operating
point) has multiple equilibria and external stochastic disturbances drive the
system’s state to shift/jump between the ROAs of the competing stable equi-
libria. Towards the end, we will call this mechanism a noise-induced regime
shift.

As described below, the differences between these two mechanisms are in terms of

how the perturbations affect the nominal system and what impact do they cause to

the nominal system.

• In bifurcation-induced regime shifts, perturbations that cause the shifts are
viewed as the result of system’s internal dynamics/feedbacks. In particular, the
impact of these perturbations occur at slower time scales than the time scale
of the system’s states [130]. Examples of these perturbations are variations
in individual growth/death/consumption rates of each species in a population
which occur at slower time scales than the time scales of the total population’s
growth/death/consumption rates [129, 20]. From a modeling standpoint, these
perturbations are more suitable to be viewed as slow variations in the system’s
parameters rather than variations in the states. As a result, any change that
occurs due to these perturbations will be reflected as change in the nominal
system’s qualitative properties (phase portrait, number/stability of equilibria).

• In noise-induced regime shifts, pertubations that cause the shifts are viewed as
the result of external forces and directly affect the system’s states [74]. The
impacts of these perturbation are therefore assumed to occur at relatively sim-
ilar time scales as the time scales of the system’s states. Examples of these
perturbations are annual variation of fish population density in a lake due to
seasonal storms, floods or human harvestings [17, 38]. From a modeling stand
point, these perturbations are more suitable to be viewed as small variations
in the system’s states. Moreover, the presence of these perturbations do not
cause any change on the nominal system’s qualitative properties [130].

To better illustrate the aforementioned two regime shifts mechanisms, let us con-

sider the following ordinary differential equation (ODE) model of the lake eutrophi-

cation process [20].

ẋ(t) = a− bx(t) + x(t)2

1 + x(t)2 , x(0) = x0. (1.1)
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In equation (1.1), the state variable x(t) denotes the Phosphorus (P ) concentration

in the lake water column at time t whereas parameters a ≥ 0 and b ≥ 0 denote

the rates of inflow and outflow of P into and out of the lake, respectively. The

nonlinear function x(t)2

1+x(t)2 in the model denotes the rate of P increase in the water

column due to the recycling of P from the lake sediment. Model (1.1) will be used

to further illustrate the characteristics and difference between the two regime shift

mechanisms. Note that when steady state analysis is of concern, we will use a slight

abuse of notation by dropping the variable time t from the model and simply use x

to denote the system’s states.

1.2.1 Bifurcation-induced Regime Shifts

To evaluate possible bifurcations in model (1.1), one needs to analyze the impact

of parameter variation on the number and qualitative properties (i.e stability) of its

equilibria. The equilibria of system (1.1) can be computed by setting the right hand

side of the ODE to zero and then solving for the corresponding value of x. That is,

the equilibria are given by those values of x such that

a+ x2

1 + x2︸ ︷︷ ︸
f(x)

= bx︸︷︷︸
g(x)

.

The left (f(x)) and right (g(x)) hand side terms in the above equality denote the

rate of increase and decrease of x, respectively, and so the system’s equilibria will

correspond to a state with a constant value where its rates of increase and decrease

are equivalent. Geometrically, these equilibria are given by those values of x at the

intersections between the curves of f(x) and g(x) (cf. Figure 1.1).

Let us, for example, consider changes in the intersection between f(x) and g(x)

when the parameter b is held constant while a is varied. Figure 1.1 plots the curves

for a constant b = 0.525 and different values of a. This plot shows the change in
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Figure 1.1. Bifurcation-induced regime shifts in lake model (1.1).

the number of intersections between the two curves (i.e. equilibria) as the value of

parameter a is varied. In particular, for a small inflow rate (0 ≤ a ≤ 0.025), the

system has a single oligotrophic equilibrium that is characterized by pristine water

with high oxygen concentration that supports species biodiversity. For larger inflow

rate (0.026 < a ≤ 0.075), this equilibrium bifurcates into two stable equilibria: an

oligotrophic one and a eutrophic one (lake water characterized by algal bloom with

low oxygen concentration that does not support species biodiversity). Finally, for an

even larger inflow rate (a > 0.076), these two stable equilibria coalesce to a single

eutrophic equilibrium through a saddle-node bifurcation. This series of bifurcations

therefore demonstrates a transition from a lake with clear water to a lake with turbid

water.

The preceeding example illustrates that variations in the system’s parameters

that exceed a critical value may cause the system’s equilibria to undergo bifurcations.

The phenomena in which the number (from single to multiple and vice versa) and

the type (stable to unstable and vice versa) of the system’s equilibria change as the
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parameters are varied are what we refer to as bifurcation-induced regime shifts. In

particular, these bifurcations are followed by flips or shifts in the system’s operating

regime/point from one stable state to another [132].

Various studies to better understand the underlying mechanisms and possible con-

sequences of bifurcation-induced regime shifts have been reported in the ecological

systems literature (cf. [72, 104, 131, 129, 18, 27] and the references therein). Most

of these studies have mainly focused on using numerical bifurcation analysis to char-

acterized the parameter values where a bifurcation occured. The results from this

analysis usually gave the set of possible equilibria and the corresponding values of the

parameters where bifurcations occured. However, the currently available numerical

bifurcation tools can only handle up to at most two or three parameters simultane-

ously. This implies that this analysis can only be done for particular choices/subsets

of the entire groups of parameters [92]. The choice of such parameter subsets is

usually guided by ecologically meaningful hypotheses that were developed prior to

the analysis. Similar bifurcation analysis method has been used to study bistabil-

ity, switching between stable equilibria and other complex nonlinear dynamics in the

models of biological systems or chemical reaction networks (cf. [40, 101, 129]).

A slightly different problem in engineering that has strong relevance with the

study of bifurcation-induced regime shifts is the distance to bifurcation (D2B) prob-

lem. However, instead of trying to characterize all possible bifurcations that may

occur in the system, the objective in solving the D2B problem is to find the closest

critical parameter values at which a bifurcation occurs. Specifically, for dynamical

systems

ẋ(t) = f(x(t), k), x(0) = x0, (1.2)

whose vector fields are parameterized by a vector of real-valued parameters k, one
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defines a quantity

γ = inf
k
|k∗ − k0|, (1.3)

to measure the distance between a nominal parameter k0 and the closest critical

paramater k∗ at which a bifurcation occurs. The quantity γ is often called the

minimum D2B [36, 35] and is an indicator of how close a system is to a bifurcation

or instability. Prior works have proposed several methods to compute γ in the context

of robust stability analysis [88, 106, 110, 154] and voltage collapse in power systems

[35, 36]. In general, these methods combine both numerical bifurcation analysis and

optimization-based search techniques to compute the minimum γ over the bifurcation

manifold [63, 92]. These methods, however, are computationally demanding since the

search for the minimum γ requires the computation of the system’s equilibria x∗ at

every iteration of the search.

This thesis presents an SOS optimization method to bound the minimum D2B in

a class of nonnegative systems with kinetic realizations. A dynamical system ẋi(t) =

fi(x, k) with polynomial vector fields fi(x, k) is said to have a kinetic realization if

there exist polynomials gi(x, k) and hi(x, k) with nonnegative coefficients such that

fi(x, k) = gi(x, k)− xihi(x, k). (1.4)

The condition in equation (1.4) was presented in [67] and it essentially guarantees

that a polynomial dynamical system is a mass action systems for which a chemical

reaction network (CRN) graph can be realized. The existence of such realizations

implies that the system’s vector fields f(x, k) satisfy a decomposition of the form

f(x, k) = Nv(x, k) where N is a real-valued matrix and v(x, k) is a nonnegative-

valued vector of monomials in x. As will be discussed in Chapter 3, the special

structure of kinetic systems allows one to compute an expression for their equilibria

in terms of the system’s parameters. We show that such an equilibrium expression
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can simplify the D2B problem because the constraints that define the bifurcation

conditions can now be expressed only in terms of the system’s parameters, rather than

the system’s parameters and equilibria. By formulating the bifurcation conditions

using semialgebraic set descriptions in the parameter space, we show that the SOS

optimization techniques introduced in [117, 118] can be used to compute a lower

bound for the globally minimum D2B.

1.2.2 Noise-induced Regime Shifts

Consider again the lake model (1.1). Let us set the parameters to be a = 0.06 and

b = 0.525. For this choice of parameters, the system has two stable equilibria (olig-

otrophic and eutrophic) that are separated by one unstable equilibrium. Figure 1.2a

plots the phase portrait and the equilibria of the system for the chosen parameters.

The ROA of each equilibrium of the deterministic system is the area to the left or to

the right of the dashed line marked as the separatrix. In this case, any trajectory (or

sample path) that starts from the region to the left (right) hand side of the separatrix

line will remain in that region and eventually settle to the oligotrophic (eutrophic)

equilibrium. Now assume that the system is driven by an additive Wiener process

{w(t)} of constant variance σ. The system’s state is now a random process {x(t)}

modeled by a stochastic differential equation (SDE)

dx(t) = f(x)dt+ g(x)dw(t),

=
(
a− bx+ x2

1 + x2

)
dt+ σdw(t),

(1.5)

where f(x) and g(x) are the drift and diffusion terms, respectively [85, 91].

Figure 1.2b plots one realization of {x(t)} for a fixed σ = 0.05. The horizontal

dashed line in this plot marks the separatrix x∗U from Figure 1.2a. Figure 1.2b shows

that the process’ sample path that starts inside the region below the dashed line
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(a) Phase portrait of (1.5) for a = 0.06, b = 0.525.
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(b) One sample path of (1.5) for σ = 0.05.

Figure 1.2. Noise-induced regime shifts in lake model (1.5).

(oligotrophic lake) eventually shifts to the region above the dashed line (oligotrophic

lake). This example illustrates one mechanism of noise-induced regime shifts where

the presence of noise in systems with multiple equilibria may force the system’s state

to shift from the ROA of one stable state to the ROA of an alternative stable states.

The above example suggests that the mechanism of noise-induced regime shifts

can at least be characterized in terms of the expected time at which a shift may occur

and the probability for a shift to occur over a given finite time interval. In particular,

the characterization of the expected time and probability to shift can be formulated

using mean first passage time (MFPT) and finite time stochastic safety analyses,

respectively. Each of these analyses is formally stated as follows.

• MFPT analysis: Let {x(t)} be a stochastic process whose state x(t) at time
t ≥ 0 takes values on a bounded open subset X ⊆ Rn of the Euclidean space
with smooth boundary ∂X . Let X0 ⊂ X be an initial set such that x(0) = x0 ∈
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X0. The time at which the sample paths of {x(t)} hit the set ∂X is a random
variable τ called the first passsage time and is defined as

τ ≡ inf
t
{t ≥ 0 |x(t) ∈ ∂X } . (1.6)

The MFPT analysis is concerned with the computation of the expected value
E{τ} of τ .

• Finite time stochastic safety analysis: Let {x(t)} be a stochastic process whose
state x(t) at time t ≥ 0 takes values on a bounded open subset X ⊆ Rn of the
Euclidean space. Let X0 ⊂ X be an initial set such that x(0) = x0 ∈ X0 and let
Xs ⊆ X denote an arbitrary safe/desired set within the state space such that
X0 ⊂ Xs. The finite time stochastic safety analysis characterizes the probability
that, starting from inside the initial set X0, the sample paths x(t) of the process
leave the safe set Xs, at least once, in a finite time t ∈ [0, T ]. Formally, this
analysis seeks to compute β ∈ [0, 1] such that

P {x(t) 6∈ Xs, for some 0 ≤ t ≤ T | x(0) ∈ X0} ≤ β. (1.7)

Several studies have tried to characterize noise-induced regime shifts using quanti-

ties in equations (1.6)-(1.7). The work in [16, 24] uses Monte Carlo (MC) simulations

[89] to compute the MFPT for noise-induced regime shifts in models of lake eutroph-

ication whereas the works in [37, 60, 116] use the analytical solution to the Fokker

Planck (FP) equation [125, 54, 74] to characterize the MFPT in bistable models

of gene expression and intraguild predation systems. Analytical solution to the FP

equation and MC simulation have also been used for stochastic safety analysis as

defined in (1.7). One should note that solution methods based on the MC simula-

tion and the FP equation have their own difficulties. The FP equation is difficult to

solve for systems with dimensionality greater than one as it involves solving a set of

partial differential equations with appropriate boundary conditions [125, 54]. On the

other hand, the MC simulation is computationally expensive as it requires exhaustive

simulations of the process’s sample paths to estimate the process’ statistics.

This thesis presents an extension of the methods introduced in [91, 122] to com-

pute upper bounds for the quantities in (1.6)-(1.7) in systems that are modeled as

jump diffusion processes. As in the case of diffusion processes [91, 122], the tech-
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niques developed in this thesis are also based on searching for a barrier certificate,

V (x(t)), that generates a supermartingale from which the bounds for (1.6)-(1.7) can

be deduced. The main contribution of the proposed method is a polynomial charac-

terization of the jump diffusion process’ infinitesimal generators which allows the use

of SOS optimization technique to compute the bounds for (1.6)-(1.7).

1.3 Approach and Contribution

This thesis presents mathematical and computational methods for analyzing and

forecasting regime shift phenomena in nonlinear system models. The main contribu-

tions of this thesis are stated below.

1.3.1 Classification of Regime Shifts Mechanisms

Although there exists an overwhelmingly large literature on the study and char-

acterization of regime shifts mechanisms, there currently exist no clear frameworks

by which external perturbation that cause regime shifts to occur should be viewed

or understood. As discussed previously, various works in the literature often submit

to a view/approach that exclusively treat/study regime shifts as either a bifurcation

problem or a noise-induced transition problem. Such a confined view of regime shifts

can be problematic as it has the potential to limit the very definition of regime shifts

which includes any sudden and rapid change in a system’s structure/function in the

presence of forces from external perturbations, regardless of how the perturbations

affect the system.

As discussed in Section 1.2, this thesis provides a classification of mechanisms

(i.e. bifurcation-induced and noise-induced) by which regime shifts may occur. The

underlying reasoning for such a classification is a careful understanding of how the

perturbations affect the nominal system and what impact these perturbations have

on the nominal system. The main advantage of such a classification is that it provides
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clear guidance for looking at the established solution methods that can be used to

better understand the regime shift phenomena.

1.3.2 Polynomial Optimization Methods to Forecast Regime Shifts

The second contribution of this thesis is the development of mathematical and

computational methods to forecast the onset of a possible regime shift. As described

in Section 1.2, the main approach in the developed methods is the formulation of some

real-valued quantities that can be used as indicators of how close a system is to either

bifurcation-induced or noise-induced regime shifts. In bifurcation-induced regime

shifts, this quantity is called the minimum distance to bifurcation, γ ∈ R≥0, and it

measures the distance between nominal parameter values and their values at which

a bifurcation will possibly occur [36]. In noise-induced regime shifts, these quantities

are the mean first passage time (MFPT) and the finite time safety probability defined

in equations (1.6) and (1.7), respectively [54, 91]. The key technical tool in the

proposed methods is the use of sum of squares (SOS) relaxation techniques [118] to

recast the polynomial optimization problems that correspond to the computation of

each of these quantities [120, 117]. The main advantage of this formulation is that the

resulting SOS optimization problem can be solved using semidefinite programming

solvers [121, 100, 69]. This contribution is detailed below for each of the regime shifts

mechanisms.

1.3.2.1 Bifurcation-induced Regime Shifts

In the case of bifurcation-induced regime shifts, the contribution of the thesis

is on the use of SOS optimization methods [117, 118] to compute a lower bound

on the distance to bifurcation γ in (1.3) for the class of nonnegative systems with

kinetic realizations. A dynamical system ẋi(t) = fi(x, k) with polynomial vector

fields fi(x, k) is said to have a kinetic realization if there exists polynomials gi(x, k)
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and hi(x, k) with nonnegative coefficients such that fi(x, k) can be rewritten as [67]

fi(x, k) = gi(x, k)− xihi(x, k).

An important property of systems with this special structure is that it allows one to

compute an expression for the system’s equilibria in terms of the system’s parameters

and some convex parameters (cf. Chapter 3). The method to compute this expression

is based on concepts and techniques from algebraic geometry and was first proposed

in [57] for the study of chemical reaction network. As discussed in Chapter 4, the

use of such an equilibrium expression can helps simplify the computation of a lower

bound for the distance to bifurcation γ.

This thesis’ first contribution in this topic is the identification of larger class

of systems (other than chemical reaction network model) for which the equilibrium

parameterization method introduced in [57] can be applied. We call these systems

nonnegative systems with kinetic realizations and show through example how the

parameterization method from [57] can be applied to them. The thesis’ second con-

tribution in this topic is the use of such equilibrium parameterizations to formulate

an SOS optimization problem for computing a lower bound on the minimum distance

to bifurcation, γ. We show that the use of such parameterizations helps simplify the

computation of γ’s lower bound because the constraints in the optimization problem

can now be expressed only in term of the parameters rather than the parameters and

the equilibria.

1.3.2.2 Noise-induced Regime Shifts

In noise-induced regime shifts, the contribution of the thesis is on the use of

Lyapunov like methods to characterize the quantities in (1.6)-(1.7). This method

is commonly used in stochastic stability analysis [91] and essentially searches for a
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”stochastic” Lyapunov function from which upper bounds for quantities in (1.6) and

(1.7) can be deduced. Using the framework introduced in [122], we show that the

computation of these quantities can be formulated as an SOS optimization problem.

The main contribution of this thesis is the extension of the method in [122] to

compute upper bounds of (1.6)-(1.7) for systems that are modeled as jump diffusion

processes. The use of jump diffusion models (rather than pure diffusion) was moti-

vated by the fact that many noise-induced regime shifts are triggered by extreme or

abnormal events that result in jumps or discontinous changes in the system’s states

[130, 19]. These events are no longer suitable to be described by a Wiener process but

are better characterized as a stochastic renewal process in the form of jump diffusion

processes. By using the polynomial representation of the jump diffusion process’ in-

finitesimal generator, we show that the computation of upper bounds for quantities

in (1.6)-(1.7) can be formulated as an SOS optimization problem.

1.3.3 Software Toolkit

The third contribution of this thesis is a software toolkit that can be used to

assist the analysis of bifurcation-induced regime shifts in nonnegative systems with

kinetic realizations [147]. Some of the features in the toolkit include the construction

of kinetic realization for given ordinary differential equations or a set of elementary

chemical reactions, the computation of equilibrium parameterization based on the

systems’ kinetic realization and the computation of lower bounds for minimum dis-

tance to bifurcation. The toolkit is developed under MATLAB and it integrates

several computational tools [32, 87] that are required for the bifurcation-induced

regime shifts analysis. The developed toolkit is described in Appendix C.
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1.4 Outline of Thesis

The thesis is structured as follows. Chapter 2 presents mathematical background

and preliminaries on algebraic geometry and relaxation methods for solving poly-

nomial optimization problem. This material is essential for the methods we use to

forecast bifurcation-induced regime shifts. In Chapter 3, we present the concept of ki-

netic realizations that arise from the models of chemical reaction network (CRN) and

discuss a parameterization method that can be used to compute an expression for the

system’s equilibria. We show that such a parameterization can be applied to a larger

class of systems other than CRN models and discuss its use in analyzing the system’s

properties. Chapter 4 presents a method to characterize bifurcation-induced regime

shifts in the class of nonnegative systems with kinetic realizations. We formulate the

prediction of such regime shifts as a distance to bifurcation problem and show that

the solution to this problem for a class of nonegative systems with kinetic realizations

can often be simplified using the equilibrium parameterization method described in

Chapter 3. Chapter 5 presents a method to characterize noise-induced regime shifts

in systems that are modeled as jump diffusion processes (JDP). The approach used

to forecast this type of regime shift is based on formulating the prediction either as a

mean first passage time problem or as a stochastic safety analysis. The main result

in this chapter is the construction of a polynomial representation for the jump JDP’s

infinitesimal generator which allows the use of SOS optimization methods to compute

upper bounds for both the MFPT and the safety probability. Chapter 6 describes an

application of the proposed method to study regime shift in a model identified from

an experiment on an ecological system test bed. The test bed is a laboratory scale

chemostat that cultures a microbial predator and prey system between green algae,

Chlorella vulgaris, and rotifer, Brachionus calyciflorus. This chapter shows that the

proposed method can be used to compute a lower bound on the distance to a regime

shift in the model of Chlorella vulgaris and Brachionus calyciflorus interaction.
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CHAPTER 2

ALGEBRAIC GEOMETRY AND POLYNOMIAL OPTIMIZATION

2.1 Introduction

As mentioned in Chapter 1, the approach used to forecast regime shifts is based on

computing some real-valued quantities that characterize the onset of either bifurcation-

induced or noise-induced regime shifts. In particular, these quantities were computed

from the solutions of polynomial optimization problems. From the formulation’s

standpoint, the polynomial optimization set up arises naturally from the fact that

many real life systems such as those in biology, ecology and chemistry are often

modeled as polynomial dynamical systems [64, 54, 44]. This implies that the con-

ditions for the occurrence of regime shifts can be formulated as semialgebraic sets

(cf. Chapters 3-5). From the solution approach’s standpoint, the polynomial opti-

mization problems have an attractive property in that, even if they cannot be solved

exactly, their approximate solutions (i.e. lower or upper bounds) can be computed

from convex relaxations of the original problem. This approach was based on re-

cent developments in convex relaxation methods for solving polynomial optimization

problems [117, 142]. This implies that the proposed method can take advantage of

further developments in these areas.

In general, the polynomial optimization problems discussed in this thesis take the

following form
min p(x)

s.t. Fi(x) = 0, i = 1, . . . , NF ,

Gj(x) ≥ 0, j = 1, . . . , NG,

(2.1)
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where p(x), Fi(x), Gj(x) are some polynomial functions and NF and NG denote the

number of polynomial equalities and inequalities, respectively, characterizing the

problem’s feasible set. For the regime shift analyses discussed in this thesis, the

objective function p(x) in (2.1) is a real-valued function that characterizes the likeli-

hood of a regime shift occurring whereas functions Fi(x) and Gj(x) are constraints

that must be satisfied when a regime shift occurs.

This chapter discusses mathematical background from algebraic geometry that is

used to recast the polynomial optimization problem (2.1) into a convex optimization

problem [117, 142]. The first part of this chapter (Section 2.2) covers such concepts

as the Gröbner basis (which can be used to simplify a set of polynomial equations

Fi(x) = 0) and the positivstellensatz’s theorem (which can be used to check the exis-

tence of solutions/zeros of polynomial equations over a semialgebraic set) [25]. The

second part of this chapter then discusses the use of the positivstellensatz’s theorem

to recast the polynomial optimization problem (2.1) into an equivalent convex op-

timization problem. Examples are given throughout the text to help illustrate the

presented concepts.

The background discussed in this chapter will be useful for the presentations

in Chapters 3-5. The presented materials are mostly drawn from existing papers

[25, 10, 118, 117] and therefore the interested readers are urged to refer to these

references for a more detailed exposition.

Notational convention: Let R, C, Q and Z denote the set of real, complex, rational

and integer numbers, respectively. The set of nonnegative real, rational, and integer

numbers are denoted as R≥0,Q≥0 and Z≥0 , respectively, whereas the set of positive

real, rational, and integer numbers are denoted as R+,Q+ and Z+, respectively. Rn

denotes the n-dimensional Euclidean space. For a vector x ∈ Rn, we use xi, i =

1, . . . , n, to denote the ith component of x.
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An n-dimensional multi-index α ∈ Zn≥0 is an n-tuple α ≡ (α1, α2, · · · , αn) of non-

negative integers with an absolute value of |α| = ∑n
i=1 αi. For two multi-indices α, β ∈

Zn≥0, we say that α ≥ β if and only if αi ≥ βi for i = 1, 2, . . . , n. The sum/difference

of two multi-indices is the component-wise sum/difference of the indices.

Given a vector x ∈ Rn and a multi-index α ∈ Zn≥0, a monomial in variables x

with a total degree of |α| is a product of the form xα ≡ xα1
1 x

α2
2 · · ·xαnn . We use

monomial ordering to unambiguously arrange a pair of monomials in an ascending

(or descending) order. Let α, β ∈ Zn≥0 be multi-indices of vector x ∈ Rn. Let >

denotes a total ordering on Zn≥0 such that for α, β ∈ Zn≥0 at least one of the following

conditions is true: α > β, α < β, α = β. Then a monomial ordering in Zn≥0 is a total

ordering if (i) given multi-indices γ, α, β ∈ Zn≥0 with α > β, then α + γ > β + γ, (ii)

> is a well-ordering such that every nonempty subset of Zn≥0 has a smallest element.

One of the most frequently used monomial orderings is the lexicographic (lex) order

and is denoted as >lex. We say that α and β is in lex order, α >lex β, if the left-

most nonzero entry of the vector difference α − β is positive. Thus, xα >lex xβ

holds if α >lex β. Another commonly used monomial ordering is the graded reverse

lexicographic (grlex) order and is denoted as >grlex. We say that α and β is in grlex

order, α >grlex β, if |α| > |β| or |α| = |β| and the right-most nonzero entry of the

difference α− β is negative.

The set of n × n real symmetric matrices is denoted as Sn. A matrix Q ∈ Sn is

positive semidefinite (psd) if xTQx ≥ 0 for all x ∈ Rn and is positive definite (pd) if

xTQx > 0 for all nonzero x ∈ Rn. The set of n × n psd matrices is denoted as Sn≥0

and the set of n×n pd matrices is denoted as Sn+. We use the symbol ”�” to denote

the partial order induced by Sn≥0 such that if Q,R ∈ Sn≥0, then Q � R if and only if

Q−R is psd.
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2.2 Algebraic Geometry

Algebraic geometry is concerned with the the study of solutions (or zeros) of sys-

tems of polynomial equations. It does this by taking into consideration the close

relationship between the geometric properties of these solutions and the algebraic

structures associated with them [25]. Some fundamental concepts in algebraic geom-

etry are ideal, variety, and basis. This section presents a review of these concepts

and discusses the use of Gröbner bases in solving a system of polynomial equations.

Most of the following material is drawn from [25, 103].

2.2.1 Ideals, Varieties, and Gröbner Basis

A fundamental concept in algebra is a field. Intuitively, a field consists of a set K

and binary operations addition (+) and multiplication (·) such that if a, b ∈ K then

their binary operations satisfy the associative, commutative, distributive, identitites,

additive inverse, and multiplicative properties [103]. Examples of fields include the

sets of real (R), complex (C) and rational (Q) numbers. The set of integer numbers

(Z) is not a field since the only elements of Z that have multiplicative inverses are 1

and -1 (e.g. the multiplicative inverse of 2 is 1/2 but 1/2 6∈ Z).

Let K be any field. A dth order polynomial in n unknown variables x ∈ Rn with

coefficients k ∈ K is a finite linear combination of monomials of the form

f(x, k) =
∑
|α|≤d

kαx
α, with kα ∈ K,

where α is an n−dimensional multi-index. The set of all such polynomials forms

a polynomial ring and is denoted as K[x]. We use the symbol K(k)[x] to denote a

polynomial ring with unknown coefficients k in the field K (cf. Chapters 3-4). Unless

stated otherwise, we will use the phrase ”polynomials over K” to denote the set of

polynomials whose coefficients take values in the field K, i.e. fi(x, k) ∈ K[x] for
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i = 1, . . . ,m. We will mostly consider polynomials over R for which the polynomial

ring will simply be denoted as R[x].

Given a set of polynomial equations fi(x, k) = 0, i = 1, . . . , n, we define the

solution of these equations as the set {x ∈ Kn : fi(x, k) = 0} of common zeros of the

polynomials in Kn .

Let α ∈ ZN≥0 be a multi-index and assume a fixed monomial ordering. For a given

nonzero polynomial f(x, k) ∈ K[x], we define

• The multidegree of f(x) as: multideg(f) = max(α ∈ Z+), kα 6= 0

• The leading monomial of f as: LM(f) = xmultideg(f).

• The leading coefficient of f as: LC(f) = kmultideg(f).

• The leading term of f as: LT(f) = LC(f).LM(f)

Example 1 below illustrates how to determine each of the above definitions.

Example 1. Consider polynomial f(x, k) = 2x2
1x

8
2−3x5

1x2x
4
3 +x1x2x

3
3−x1x

4
2 in R[x]

where x = (x1, x2, x3) and k ∈ R. By choosing the lex ordering for its monomials, we

can rewrite the monomials of f(x) in a decreasing order as f = −3x5
1x2x

4
3 + 2x2

1x
8
2−

x1x
4
2 + x1x2x

3
3. We then have multideg(f) = (5, 1, 4), LM(f) = x5

1x2x
4
3, LC(f) =

−3, LT(f) = −3x5
1x2x

4
3.

Definition 1 formally defines an ideal in R[x].

Definition 1 ([25]). The set I ⊆ R[x] is an ideal if it satisfies: (i) 0 ∈ I, (ii)

∀a, b ∈ I ⇒ a+ b ∈ I, and (iii) ∀a ∈ I, b ∈ R(k)[x]⇒ a · b ∈ I.

Let f1, . . . , fm be polynomials in R[x] and set

I = {Σm
i=1hifi, with hi ∈ R[x]} = 〈f1, . . . , fm〉 ⊆ R[x].

It can be shown that I is an ideal generated by f1, . . . , fm [25]. For an ideal I =

〈f1, . . . , fm〉, the set of polynomials f1, . . . , fm is a generator of I. The set of all
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possible generators of I is called the basis of I. One advantage in using the concept

of an ideal is that it allows the use of different choices of generators for representing an

ideal. This advantage was due to the fundamental result in Hilbert’s Basis Theorem

[25]. Hilbert’s Basis Theorem states that every ideal I ⊆ K[x] is finitely generated

(hence it has a finite number of basis) and therefore can always be expressed as

I = 〈f1, . . . , fm〉. By the definition of an ideal, then Hilbert’s Basis Theorem implies

that all polynomials of the form Σm
i=1hifi with hi ∈ K[x] are also ideals generated by

fi’s. Working with ideals therefore removes the dependency on a particular generator

and allows for the use of any choice of generator that is more suitable with the context

of the problem [25].

Now let I = 〈f1, . . . , fm〉 ⊆ R[x] be an ideal. For 1 ≤ i ≤ m, the set

V(I) = V(f1, . . . , fm) = {x ∈ Cn : fi(x) = 0},

is called an algebraic variety (or simply variety) of I generated by fi’s. Essentially, a

variety V(I) is the set of common zeros (in C) of polynomial functions that generate

the ideal I. Given a variety V = V(f1, . . . , fm) at which polynomials f1, . . . , fm

vanish, then by the definition of an ideal, any polynomial of the form Σm
i=1gifi with

gi ∈ R[x] will also vanishes in V . Specifically, if ideals I1 = 〈f1, . . . , fm〉 and I2 =

〈g1, . . . , gk〉 are the same (i.e. they are generated by the same basis), then I1 and I2

also define the same variety, i.e. V(I1) = V(I2). This illustrates that the varieties of

an ideal are not affected by the choice of basis used for its representation [25].

The preceeding discussions suggest that the problem of solving a system of poly-

nomial equations fi = 0, i = 1, . . . , n is equivalent to that of computing the variety

V(I) of the ideal I = 〈fi〉 generated by fi’s. In other words, the solutions of poly-

nomial equations fi = 0 form the variety of the basis polynomials that generate the

ideal I = 〈fi〉. This implies that, even if a set of polynomial equations is too com-
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plicated to solve, the solutions of polynomial equations may easily computed from

the basis of the ideal generated by the polynomials. This fact is one of the basic

approaches used in algebraic geometry for solving systems of polynomial equations.

In particular, this approach can always be used since Hilbert’s Basis Theorem [25]

guarantees the existence of a finite basis for any ideal. A basis set that is useful

for this approach is the Gröbner basis [14] which can be computed using computer

algebra programs [32, 61]. Before we dwell further on the concept of a Gröbner basis,

we will first discuss the nullstellensatz and the positivstellensatz concepts that can

be used to verify the existence or emptiness of algebraic varieties of an ideal.

2.2.2 Existence of Algebraic Varieties

One method to verify the existence (or emptiness) of algebraic varieties of poly-

nomials over C is using the result from the Hilbert’s nullstellensatz stated below.

Theorem 2.2.1 (Nullstellensatz [25]). Let I ⊂ C[x] be an ideal generated by a finite

family of polynomials (fi)j=1,...,m in C[x]. The following statements are equivalent:

1. The set
{x ∈ Cn | fi(x, k) = 0, i = 1, . . . ,m} (2.2)

is empty.

2. The polynomial 1 belongs to the ideal I, i.e., 1 ∈ I.

3. The ideal is equal to the whole polynomial ring: I = C(k)[x].

4. There exist polynomials gi(x, k) ∈ C[x] such that:

f1(x, k)g1(x, k) + · · ·+ fm(x, k)gm(x, k) = 1. (2.3)

The nullstellensatz means that if for an ideal I = 〈fi(x, k)〉 there exist polynomi-

als gi(x, k)’s such that (2.3) is satisfied, then the complex solutions of polynomial

equation fi(x, k) = 0 do not exist (i.e. the set (2.2) is empty). Thus, the existence

of polynomials gi(x, k) certifies the infeasibility of complex solutions of a system of

polynomial equations. Example 2 illustrates an application of Theorem 2.2.1.
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Example 2. Let I = 〈f1, f2〉 ⊂ C[x] with x = (x1, x2), f1(x) = x2
1, f2(x) = 1− x1x2.

Note that V(f1, f2) = ∅ since there exist no x ∈ C2 that satisfies f1(x) = f2(x) = 0.

By the nullstellensatz, there exist g1(x), g2(x) ∈ C2[x] such that f1g1 + f2g2 = 1. One

choice is given by g1(x) = 1− x1x2 + x2
2 and g2(x) = 1 + x1x2 − x2

1.

A generalization of the nullstellensatz concept that can be used to verify or prove

the existence (or emptiness) of solutions over the reals, R is the positivstellensatz

[137]. In essence, the positivstellensatz gives a sufficient condition for the infeasibility

of real solutions to a system of polynomial equalities and inequalities. In order to

state the positivstellensatz theorem, let us first recall the definitions of a monoid and

a cone as given in [103].

Consider polynomials fi(x, k) ∈ R[x] for i = 1, . . . ,m. The multiplicative monoid

M(fi) generated by fi’s is the set of finite products of the elements of fi (including

the identity and the empty product). A cone C of R[x] is a subset of R[x] such that

(i) a, b ∈ C ⇒ a+b ∈ C, (ii) a, b ∈ C ⇒ a ·b ∈ C, and (iii) a ∈ R[x]⇒ a2 ∈ C. Given a

set S ⊆ R[x], let C(S) be the smallest cone of R[x] that contains S. It can be shown

that C(∅) is the smallest cone in R[x] and can be expressed as a sum of squares [103].

The cone associated with a finite set S = {a1, . . . , am} ⊆ R[x] can be expressed as

C(S) = {f + Σr
i=1gibi | f, g1, . . . , gr ∈ C(∅), and b1, . . . , br ∈M(ai)} .

The following theorem is due to Stengle [137].

Theorem 2.2.2 (Positivstellensatz, [137]). Let {fi}i=(1,...,s), {gj}j=(1,...,t) and {h`}`=(1,...,u)

be finite families of polynomials in R[x]. Denote by C the cone generated by {fi}i=(1,...,s),

M the multiplicative monoid generated by {gj}j=(1,...,t), and I the ideal generated by

{h`}`=(1,...,u). Then, the following properties are equivalent

• The set
{x ∈ Rn | fi(x, k) ≥ 0, gj(x, k) 6= 0, h`(x, k) = 0} (2.4)
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is empty for i = (1, . . . , s), j = (1, . . . , t) and ` = (1, . . . , u).

• There exist f ∈ C, g ∈M, and h ∈ I such that f + g2 + h = 0.

Theorem 2.2.2 gives a sufficient condition for infeasibility/emptiness of real solutions

to a system of polynomial equalities/inequalities. Such an infeasibility is certified by

the existence of the positivstellensatz refutation in the forms of polynomials f, g and

h. Example 3 illustrates an application of Theorem 2.2.2.

Example 3. Consider the problem of checking the emptiness of the following set.

{x ∈ R : x ≤ −2, x 6= 0, x2 − x = 2} (2.5)

The above set satisfies the expression in equation (2.4) with i = j = ` = 1 and

f1(x) = −x − 2, g1(x) = x and h1(x) = x2 − x − 2. Now consider the following

polynomials f = f1 ∈ C(f1), g = g1 ∈ C(g1) and h = −h1 ∈ I(h1). We then have

f + g2 + h = (−x − 2) + (x2) + (−x2 + x + 2) = 0. By Theorem 2.2.2, we conclude

that the set in (2.5) is empty. Note from the equality in (2.5) that the solutions of

equation x2 − x − 2 = 0 are x = 2 or x = −1. The inequality x ≤ −2 in (2.5),

however, excludes these solutions and so the set in (2.5) will always be empty.

2.2.3 The Method of Gröbner Basis

This section discusses a technique for solving a system of polynomial equations

using the method of Gröbner basis. The discussion uses the Buchberger’s algorithm

[14] to compute a Gröbner basis of an ideal.

2.2.3.1 Buchberger’s Algorithm

Given an ideal I ⊆ K[x] with a finite set of generators, the Buchberger’s algorithm

takes the generators of I as an input and returns a Gröbner basis G of I as an

output in a finite number of steps [14]. At the heart of Buchberger’s algorithm is
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the division algorithm [25, 14] which generalizes the concept of Euclidean division

algorithm for canceling out the high order leading monomials of a polynomial to get

another polynomial with lower order leading monomial. To discuss the basic idea in

Buchberger’s algorithm, the division algorithm and S−polynomial will be needed.

Let f(x) be a polynomial and let S = {s1(x), s2(x), . . . , sq(x)} be a list of poly-

nomial divisors. For a fixed monomial ordering >, a division algorithm is one that

finds polynomials λi(x) ⊆ R[x] and a remainder term f(x)S which satisfy

f(x) =
q∑
i=1

λi(x)si(x) + f(x)S, (2.6)

and such that

• LT(f(x)S) is not divisible by any LT(si(x)),

• LT(f(x)S) < LT(f(x)),

• LT(λi(x)si(x)) < LT(f(x)).

Now let α and β be multi-indices. The least common multiple (LCM) of monomials

xα and xβ is

LCM(xα, xβ) = x
max(α1,β1)
1 x

max(α2,β2)
2 . . . xmax(αn,βn)

n .

The S−polynomial of a pair of polynomials f1 and f2 is defined as

S(f1, f2) = xγ

LT(f1)f1 −
xγ

LT(f2)f2, (2.7)

where xγ = LCM(LM(f1), LM(f2)). Based on the division algorithm and the S−polynomial

defined above, a Gröbner basis of an ideal I is formally defined as follows [14].

Theorem 2.2.3 ([14]). Let I ⊆ K[x] be an ideal with basis G = {g1, . . . , gq}. Then G

is a Gröbner basis for I if and only if the remainder on division of every S−polynomial

S(gi, gj), i 6= j, by G is zero.
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Theorem 2.2.3 was the basis of Buchberger’s algorithm [14] for computing a

Gröbner basis of an ideal. This algorithm essentially computes the S−polynomial of

each ideal’s generator pair and then tests whether the remainder upon division of the

generator by each of the S−polynomial is zero or not. If there exist non-zero remain-

ders, the original set of generators is extended by adding those non-zero remainders

and then the iteration is repeated over the new, extended generator. A Gröbner basis

is given by those extended generators whose S−polynomials divide the elements of

the extended generator with zero remainder. As was proven in [14], Buchberger’s

algorithm always terminates in a finite number of steps and so a Gröbner basis of

an ideal can always be computed. Example 4 illustrates the basic idea in using

Buchberger’s algorithm to compute the variety (or zeros) of an ideal.

Example 4. Consider an ideal I = 〈f1, f2〉 generated by two polynomials f1 = 2x2
1−

4x1 + x2
2 − 4x2 + 3 and f2 = x2

1 − 2x1 + 3x2
2 − 12x2 + 9. We will apply Buchberger’s

algorithm to compute a Gröbner basis of I. To begin, we use the generator of I

as the initial Gröbner basis G0 = {f1, f2} and consider the lex order x >lex y for

the monomials of I. Note that the ideal I is characterized by LM(f1) = 2x2 and

LM(f2) = x2 such that γ = (2, 0). The S−polynomial of f1, f2 is then given by

S(f1, f2) = x2
1

2x2
1
f1 −

x2
1
x2

1
f2 = −5

2x
2
2 + 10x2 −

15
2 .

Upon division of S(f1, f2) by G0, the remainder r12 is simply S(f1, f2) 6= 0. So we

now define f3 = S(f1, f2) and extend the Gröbner basis G0 to G1 = {f1, f2, f3}. We

then repeat the computation of the S−polynomials for the new generator pairs (f1, f3)

and (f2, f3). Note that we do not need to recompute the S−polynomial S(f1, f2) as it
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does not change from its value prior to extending the initial generator. Thus,

S(f1, f3) = 4x2
1x2 − 3x2

1 − 2x1x
2
2 + 1

2x
4
2 − 2x3

2 + 3
2x

2
2,

S(f2, f3) = 4x2
1x2 − 3x2

1 − 2x1x
2
2 + 3x4

2 − 12x3
2 + 9x2

2.

Dividing these S−polynomials by G1 gives

S(f1, f3) = (2x2 − 3/2)f1 + (4x1 − x2
2 + 4x2 − 3)f3/5,

S(f2, f3) = (2x2 − 3/2)f1 + (4x1 − 6x2
2 + 4x2 − 3)f3/5,

from which we have r13 = r23 = 0. Thus, a Gröbner basis of I is G = {f1, f2, f3}.

Buchberger’s algorithm has been implemented in many computer algebra pro-

grams such as Singular [32] and Macaulay2 [61]. One issue in the implementation

of Buchberger’s algorithm is that it has doubly exponential worst case complexity in

the number of unknown variables. As was shown in [39], for a given polynomial f(x)

in n variables with a total degree not exceeding d, then the degree of polynomials in

Gröbner basis G is bounded by 2(d2/2 + d)2n−1 . This bound is doubly exponential

with respect to the number of unknowns n, but only polynomial with respect to the

maximum degree d of the polynomial. The computation of Gröbner basis for high

dimensional systems will therefore require a large amount of computer memory [103].

Nevertheless, the use Buchberger’s algorithm for Gröbner basis computation in many

applications has shown that such a worst case bound is not frequently encountered

[25].

Note that the Gröbner basis of an ideal is not unique. For instance, another

Gröbner basis of the ideal I in Example 4 is G = {x2
2 − 4x2 + 3, x2

1 − 2x1 + 3x2
2 −

12x2 + 9}. This basis was computed in Singular [32] using the code snippet in

Listing 2.1. In this listing, the command ring declares a polynomial ring ’R’ of

unknown variables ’x1,x2’ with real coefficients ’0’. The monomial ordering in R
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is set to be the lex ordering ’lp’. The command poly defines polynomial functions

’f1,f2’ whereas the command ideal defines the ideal I. Finally, a Gröbner basis ’G’

of ideal ’I’ is computed using the command groebner(I).

Listing 2.1: Computing Gröbner basis of Example 4 using Singular[32].

> r i ng R = 0 , ( x1 , x2 ) , lp ;

> poly f1 = 2∗x1ˆ2 − 4∗x1 + x2ˆ2 − 4∗x2 + 3 ;

> poly f2 = x1ˆ2 − 2∗x1 + 3∗x2ˆ2 − 12∗x2 + 9 ;

> i d e a l I = ( f1 , f 2 ) ;

> i d e a l G = groebner ( I ) ;

> G;

G[1]= x2ˆ2−4∗x2+3

G[2]= x1ˆ2−2∗x1+3∗x2ˆ2−12∗x2+9

2.2.3.2 Elimination and Extension Theorems

It should now be intuitive to see how the Gröbner basis can be used to solve

a system of polynomial equations. In particular, Example 4 shows that one of the

Gröbner basis’s elements was f3 = S(f1, f2) = −5x2
2/2 + 10x2 − 15/2. In this basis

element, the variable x1 was eliminated. Since f3 is a univariate polynomial, it can

be solved using numerical root finding methods [25]. If the solution x2 is extended

by substitutions into f1 or f2, the total solution to fi = 0, i = 1, 2 can be obtained.

It is then clear that the Gröbner basis method for solving a system of polynomial

equations involves two main steps, namely the elimination and extension steps.

Given a Gröbner basis of an ideal I, the elimination step computes the rth elim-

ination ideal of I defined below.

Definition 2 ([25]). Given I = 〈f1, . . . , fq〉 ⊂ R[x1, . . . , xn], the rth elimination ideal
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Ir is the ideal of R[xr+1, . . . , xn] defined by

Ir = I ∩ R[xr+1, . . . , xn].

It can be seen that the elimination ideal is obtained by eliminating subsets of vari-

ables of the original ideal. Given a Gröbner basis of an ideal I with lex monomial

ordering, the Elimination Theorem can be used to compute a Gröbner basis for the

rth elimination ideal of I.

Theorem 2.2.4 (Elimination Theorem [25]). Let I ⊂ R[x1, . . . , xn] be an ideal and

let G be a Gröbner basis of I with respect to lexicographic order where x1 >lex x2 >lex

· · · >lex xn. Then, for every 0 ≤ r ≤ n, the set

Gr = G ∩ R[xr+1, . . . , xn],

is a Gröbner basis of the rth elimination ideal Ir.

Note that the variety V(Ir) of the rth elimination ideal Ir can be obtained by com-

puting the zeros of its Gröbner basis, Gr. The variety V(Ir), however, is only a

subvariety of the original ideal I (i.e. V(Ir) ⊂ V(I)) because it is defined only for

variables that are not eliminated from I. Thus, it only serves as a partial solution and

should be extended to the original ideal to get the total solution. Such an extension,

however, is not always guaranteed to be feasible. Equation (2.8) in the Extension

Theorem stated below gives the condition when such an extension is feasible.

Theorem 2.2.5 (Extension Theorem [25]). Let I = 〈f1, . . . , fm〉 ⊂ R[x] and let I1

be the first elimination ideal of I. For each 1 ≤ i ≤ m, write fi in the form

fi = gi(x2, . . . , xn)xNi1 + terms in which x1 has degree < Ni, (2.8)

where Ni > 0 and gi ∈ R[x] is nonzero. Assume we have a partial solution (x∗2, . . . , x∗n) ∈
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V(I1). If (x∗2, . . . , x∗n) /∈ V(g1, . . . , gm), then there exists x∗1 ∈ C such that (x∗1, . . . , x∗n) ∈

V(I).

The above discussions suggest that the goal of the elimination step is to iteratively

reduce the original problem into problems with a smaller number of variables for

which partial solutions can be computed. The extension step then back substitutes

these partial solutions into the original ideal to get the total solution. The importance

of the Gröbner basis is that it allows for a systematic execution of the elimination

step.

Example 5 illustrates the Elimination and the Extension Theorems.

Example 5. Consider the ideal and Gröbner basis from Example 4. We will show

how the Gröbner basis, combined with the elimination and extension steps, is used to

compute the varieties of an ideal I = 〈f1, f2〉 ⊆ R[x1, x2]. First, we let I2 = 〈I∩R[x2]〉

which gives I2 = 0. This means that any value of x2 = c2 is a partial solution and

c2 ∈ R. We now evaluate whether this partial solution extends to the total solution

x1 = c1, x2 = c2.

The application of Extension Theorem to the case of R[x2] ⊂ R[x1, x2] suggests

that the partial solution x2 = c2 extends to x1 = c1, x2 = c2, provided that the

coefficients of the highest power of x1 in the Gröbner basis f1 or f2 are not zero at

x2 = c2. The coefficients of the highest power of x1 in f1 and f2 are given by 1 and

2, respectively, which are not zero regardless of the value of x2. This implies that

the solution x2 = c2 always extends to the total solution x1 = c1, x2 = c2. From the

Gröbner basis of I2, we have that

G(I2) = G ∩ R[x2] = −5
2x

2
2 + 10x2 −

15
2 .

Since the variety of an ideal is equivalent to the variety of its Gröbner basis, the partial

solution x2 is then given by the zeros of G(I2). These are x∗2 = 1 or x∗2 = 3. We have
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Figure 2.1. Algebraic variety of I = 〈f1, f2〉 in Example 5.

shown previously that this partial solution extends to the total solution. Thus, we can

directly substitute x∗2 into either f1 or f2 and then solve for their corresponding zeros.

Upon substitution and solving for the zeros, the variety of I = 〈f1, f2〉 is given by

V(I) = {(x∗1, x∗2) : (0, 1), (0, 3), (2, 1), (2, 3)},

which are the four intersection points between ellipses f1 and f2 shown in Figure 2.1.

2.3 Polynomial Optimization

A fundamental problem that arises in many applications is that of proving the

nonnegativity of some functions in several variables. Specifically, given a function

p(x) in variables x = (x1, . . . , xn), one is often required to check the validity of the

proposition p(x) ≥ 0 for all x ∈ S in which S is a semialgebraic set. A semial-
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gebraic set is a set defined by functional equalities and/or inequalities of the form

Fi(x) = 0, Gj(x) ≥ 0 for i = 1, . . . , NF and j = 1, . . . , NG with NF , NG ∈ Z+.

From a computational standpoint, this problem is an NP-hard (Non-deterministic

Polynomial-time hard) problem. This means that the validity of the proposition gen-

erally cannot be decided in a polynomial time manner [119]. However, if the functions

p(x), Fi(x) and Gj(x) are multivariate polynomials, a checkable condition for proving

the validity of such a proposition can be obtained using methods for representing

nonnegative polynomials over semialgebraic set [119, 66]. This section will focus on

such a case where p(x), Fi(x) and Gj(x) are polynomial functions.

Let R[x] be the ring of polynomials in n unknowns x = (x1, . . . , xn) ∈ Rn with

real coefficients k ∈ R. Consider a polynomial optimization problem (POP)

min p(x, k), such that x ∈ S := {x ∈ Rn : Fi(x, k) = 0, Gj(x, k) ≥ 0}, k ∈ R

(2.9)

where p(x, k) ∈ R[x] and Fi(x, k), Gj(x, k) ⊆ R[x] are vectors of polynomial functions

that define a semialgebraic set S and i = 1, . . . , NF , j = 1, . . . , NG with NF , NG ∈ Z+.

As mentioned previously, the exact solutions of the POP (2.9) are generally difficult to

obtain. However, recent advances in real algebraic gemetry and convex optimization

techniques have developed methods to estimate a sequence of converging lower bounds

for the minimum of p(x, k) in 2.9 [119, 118, 95, 93, 9]. These methods generally use

the theory of positive polynomials over the reals (positivstellensatz) [137, 66, 25, see

also Section 2.2.2] to formulate hierarchies of semidefinite or linear programming

relaxation problems that correspond to the POP (2.9) [119, 118]. In particular, such

a relaxation of polynomial optimization problem (RPOP) takes the form

γ∗ := max γ, such that f(x, k) ∈ K, (2.10)

where f(x, k) = p(x, k) − γ ∈ K with γ ≥ 0 is a constant and K is a cone of
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polynomials that is nonnegative in S. It is clear that f(x, k) ∈ K implies p(x, k) ≥ γ

and so the solution γ∗ of the RPOP in (2.10) gives a lower bound for the POP (2.9).

There are two types of characterizations that are often used to represent the

nonnegative cone K. The first one seeks to represent K as a sum of squares polynomial

(SOS relaxation) while the second one aims to represent K in term of Handelman

basis polynomial (Handelman relaxation) [66]. The key important aspect in both

relaxations is that their formulations are convex optimization problems: the search of

SOS and Handelman relaxations of K is a semidefinite programming (SDP) problem

and a linear programming (LP) problem, respectively [94]. This implies that the

RPOP (2.10) is a computationally tractable method for solving the POP (2.9).

This section presents a brief introduction to the SOS relaxation of the RPOP

(2.10) for solving the POP in (2.9). The SOS relaxation technique discussed in this

section is the main computational approach used to forecast the onset of regime shifts

(Chapters 4 - 5).

Remark 2.3.1. Readers who are interested in the Handelmann relaxation of the RPOP

(2.10) may refer to Appendix A. This appendix also shows a comparison between the

SOS and the Handelman relaxations obtained from numerical simulations.

2.3.1 SOS Decomposition

A polynomial g(x, k) ∈ R[x] is said to be nonnegative or positive semidefinite (psd)

if g(x, k) ≥ 0 for all x ∈ Rn. A necessary condition which guarantees a polynomial to

be psd is that its total degree is even [117]. A class of polynomial systems for which

this condition is always satisfied is the SOS polynomials.

Definition 3 ([118, SOS polynomial]). We say that a polynomial g(x, k) is SOS if

it can be rewritten as g(x, k) = ∑`
i=1 q

2
i (x) for some set ` of polynomials qi(x), i =

1, . . . , `.
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Clearly, if polynomial g(x, k) is SOS then it is also psd. In what follows, we use P2d
n

to denote the set of SOS polynomials in n unknown variables with degree less than

or equal to 2d.

Consider a polynomial g(x, k) = ∑
|α|≤2d kαx

α ∈ R(k)[x] and g ∈ P2d
n . Note that

the number of coefficients of g(x, k) is
(
n+2d

2d

)
. Let

[x]d .= [1, x1, . . . , xn, x
2
1, x1x2, . . . , x

d
n]T ,

be the vector of all
(
n+d
d

)
monomials in x with degrees less than or equal to d. Let

Q be an
(
n+d
d

)
×
(
n+d
d

)
symmetric matrix and consider the equation

g(x, k) = [x]TdQ[x]d. (2.11)

Theorem 2.3.2 formally states that a polynomial g(x, k) is SOS if it can be decom-

posed as in (2.11).

Theorem 2.3.2 ([117, SOS decomposition]). A polynomial g(x, k) = ∑
|α|≤2d kαx

α

of degree 2d in n variables is SOS if and only if there exists Q ∈ S(n+d
d )

≥0 such that

(2.11) holds.

The symmetric psd matrix Q in Theorem 2.3.2 is also called a Gramian matrix and

can be factored as Q = V TV . This implies that (2.11) can be rewritten in a form

g(x, k) = [x]TdQ[x]d = [x]Td V TV [x]d = (V [x]d)T (V [x]d),

that satisfies the condition in Definition 3. Thus, any polynomial function that can

be decomposed as in (2.11) is always a psd function.

Now consider the decomposition in (2.11) and let us index the elements of matrix

Q in such a decomposition by the
(
n+d
d

)
monomials in [x]d. By comparing the mono-

mials of equivalent degrees on the left and right hand sides of the equation, then the
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following relationship between the coefficients of g(x, k) and the elements of Q can

be obtained.

kα =
∑
i+j=α

Qij, Q � 0. (2.12)

Equation (2.12) is a system of
(
n+2d

2d

)
linear equations relating the entries of matrix Q

and the coefficients kα of g(x, k). This relationship shows that finding a polynomial’s

SOS decomposition of the form (2.11) is equivalent with searching for a psd matrix

Q for which equation (2.12) holds. This is a well established problem which can be

posed as an SDP problem. Consequently, this suggests that the search of an SOS

representation of a polynomial function can be formulated as an SDP problem. This

fundamental equivalence was a result proved in [117, 118].

Theorem 2.3.3 ([117]). The existence of SOS decomposition of a polynomial in n

variables of degree 2d can be decided by solving an SDP feasibility problem.

Note that the connection between the feasibility of the SOS decomposition (2.11)

and its SDP formulation arises from the simultaneous requirements for matrix Q to

satisfy both the positive definiteness condition and the linear equalities in (2.12).

This shows that such requirements can be formulated as an SDP problem.

2.3.1.1 SOS Relaxation of POP

Theorem 2.3.3 is the basis for constructing an SOS relaxation of the form (2.10).

In particular, for a semialgebraic set S in (2.9), consider the following cone of poly-

nomial Ksos that is positive over S [117]

Ksos =
f(x) ∈ R[x] : f(x)−

NG∑
j=1

qj(x)Gj(x)−
NF∑
i=1

ri(x)Fi(x) is SOS
, (2.13)
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where ri(x) ∈ R[x], qj(x) ∈ P2d
n . The SOS relaxation of the form (2.10) is given by

γ∗ := max
γ,ri,qj

γ

s.t. p(x)− γ −∑NG
j=1 qj(x)Gj(x)−∑NF

i=1 ri(x)Fi(x) is SOS.
(2.14)

Now for any γ > 0, the equivalence in (2.12) implies that the optimization problem

(2.14) can be solved iteratively by testing the feasibility of solutions in the following

SDP problem

Find Q0, Qj, Ri

s.t. p(x)− γ = [x]Td
(
Q0 +∑NG

j=1Qj(x)Gj(x) +∑NF
i=1Ri(x)Fi(x)

)
[x]d,

(2.15)

where Q0, Qj(x), Ri(x) ∈ SN≥0 with N =
(
n+d
d

)
and [x]d denotes the vector of mono-

mials in x of degree less than or equal to d.

There are various software tools that can be used to solve the POP (2.9) using

the SDP relaxation (2.15). These tools include SOSTOOLS [121], GloptiPoly [69],

and YALMIP [100]. In general, these tools are parser codes which transform the

POP (2.9) into an SDP formulation (2.15) and then use available SDP solvers such

as Sedumi [139] or Mosek [111] to obtain the optimal solution.

2.4 Example

This section illustrates an application of the Gröbner basis and SOS relaxation

methods described in the previous sections. We use these methods to solve the voltage

collapse problem in power system.

This example considers a single machine, two-bus generator-line-load model of a

power network that was used in [15] to study the voltage collapse problem. The ODE

37



model governing the system is given by [15]

ω̇ = 1
M

[Pm − Pe1(δ, V )−DGω] ,

δ̇ = ω − 1
DL

[Pe2(δ, V )− Pd] ,

V̇ = 1
τ

[Qe(δ, V )−Qd] ,

(2.16)

where
δ = δ1 − δ2,

Pe1 = G− V (G cos δ −B sin δ),

Pe2 = −V 2G+ V (G cos δ +B sin δ),

Qe = −V 2 (B −Bc)− V (G sin δ −B cos δ) ,

G = R

R2 +X2
L

, B = XL

R2 +X2
L

.

Equation (2.16) is a lumped model of power network consisting three main parts

namely (i) the generator part (represented as a second order mechanical system), (ii)

the transmission line and (iii) the load part (active and reactive load powers) (cf.

Figure 2.2). One important subject in power system analysis is the voltaga collapse

phenomenon that occurs due to variations in the active (Pd) and reactive (Qd) load

powers. The collapse usually corresponds to voltage instability that occurs when the

system’s parameters, Pd and Qd, are varied. This instability is characterized by the

singularity of the system’s Jacobian matrix at some critical parameters P ∗d and Q∗d.

One approach that has been used to predict the onset of a voltage collapse is by

computing a quantity called the minimum distance to instability [15]. This quantity

measures the shortest distance from a nominal set of parameters k0 to the set of

critical parameters k∗ at which such an instability occurs.

We will use the methods described in the previous sections to bound the minimum

distance to instability. The set of parameters considered in this case is k = (Pd, Qd)

(i.e. the active and reactive load powers). In particular, the minimum distance to
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Figure 2.2. A single machine power network [15].

instability is defined as γ = infk |k∗ − k0|, where k∗ is the set of critical parameters

at which the system’s Jacobian matrix becomes singular [15].

In this analysis, we consider a nominal equilibrium in which ω = 0 and choose

R = 0.1, XL = 0.5 for the transmission line’s parameters [15]. Using this nominal

equilibrium, we are interested in characterizing the critical parameter k∗ = (P ∗d , Q∗d)

at which a voltage collapse occurs. The methods described in the previous sections

will be used for this purpose.

We first transform the vector fields in (2.16) into polynomial functions. To do

this, we introduce new variables x = sin δ and y = cos δ. Using these new variables, it

can be shown that the equilibria of (2.16) are defined by polynomial equations below

0 = −V 2G+ V Gy + V Bx− Pd,

0 = −V 2B − V Gx+ V By −Qd,

0 = x2 + y2 − 1.

(2.17)

In addition, it can be shown that the condition for the system’s Jacobian matrix to

be singular (i.e. has zero determinant) is given by

0 = B2 +G2 − 2B2V y − 2G2V y. (2.18)

Thus, the computation of the minimum distance to instability can be formulated as
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the following polynomial optimization problem (POP)

minimize: (P ∗d − P 0
d )2 + (Q∗d −Q0

d)2

such that: 0 = −V 2G+ V Gy + V Bx− Pd,

0 = −V 2B − V Gx+ V By −Qd,

0 = x2 + y2 − 1,

0 = B2 +G2 − 2B2V y − 2G2V y,

Pd ≥ 0, Qd ≥ 0.

(2.19)

Note that the first four constraints in POP (2.19) define a set of polynomial equa-

tions. These constraints can be simplified if there exists a Gröbner basis of the ideal

I generated by the polynomials in the constraints. In fact, when we computed a

Gröbner basis for these polynomials, we found a Gröbner basis G below (see Listing

B.1 in Appendix B for Singular code)

G = {B2
(
B (B − 4Qd) + 2

(
G2 − 2GPd − 2P 2

d

))
+G2 (G(G− 4Pd)− 4Qd(B +Qd)) + 8BGPdQd}. (2.20)

Note that the Gröbner basis G has only single element. In particular, for given values

of parameters B and G, the element of G is a polynomial function in variables Pd

and Qd only. The Gröbner basis G thus defines a manifold in the parameter space

where an instability occurs.

Using the element of G and the SOS relaxation method described in the previous

sections, a lower bound on the minimum distance to instability can be computed

using the following SOS optimization

max : γ

s.t.: (P ∗d − P 0
d )2 + (Q∗d −Q0

d)2 − γ +∑
i ri(µ)Gi, i = 1, . . . ,m, is SOS,

(2.21)
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Figure 2.3. Instability manifold and positivstellensatz certificate.

where m denotes the number of elements of G. In this example, m = 1.

We consider a nominal set of parameters k0 = (0, 0). We used SOSTOOLS [118]

to solve (2.21) (see Listing B.2 in Appendix B for MATLAB code). We found a

minimum γ = 0.2404 which corresponds to critical parameters k∗ = (0.0961, 0.4808).

These are the same as that obtained in [15], but our formulation is much simpler as

it only uses a single equality constraint. Figure 2.3 plots the curve of the Gröbner

basis’ element which defines the manifold where instability occurs. The curve Ω̃(γ)

plotted in this figure is the positivstellensatz certificate which verifies that γ is the

shortest distance from the nominal parameter set k0 to the manifold defined by G.
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CHAPTER 3

CHARACTERIZATION OF EQUILIBRIA IN NONNEGATIVE SYSTEMS WITH

KINETIC REALIZATIONS

3.1 Introduction

This chapter presents a method to characterize the equilibria of nonnegative sys-

tems with kinetic realizations. A dynamical system ẋi(t) = fi(x, k), i = 1, . . . , n,

with polynomial vector fields fi(x, k) is said to have a kinetic realization if there ex-

ist polynomials gi(x, k) and hi(x, k) with nonnegative coefficients such that fi(x, k)

can be written as fi(x, k) = gi(x, k)− xihi(x, k). One important property of systems

with kinetic realizations is that their special structure allows one to compute expres-

sions for the system’s equilibria as a rational function of the system’s parameters and

some convex parameters [57, 58]. This chapter discusses method to compute such

expressions of the system’s equilibria.

Recall from Chapter 2 that bifurcation-induced regime shifts in a parameterized

dynamical system

ẋ(t) = f(x, k), x(0) = x0 and f(x, k) ∈ R(k)[x] (3.1)

will be characterized by a quantity γ := inf |k∗ − k0|2 called the minimum D2B.

The minimum D2B essentially measures the shortest distance from a set of nominal

parameters k0 to the closest set of critical parameters k∗ at which the system’s qual-

itative properties (i.e. phase portrait, stability of the equilibria) change. One way to

compute γ is by characterizing the parameters, k, at which the number or stability of
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the nominal equilibrium x∗(k0) change. This can be done by analyzing the stability

(i.e. eigenvalues) of the system’s Jacobian matrix

J(x∗, k) = ∂f(x, k)
∂x

∣∣∣∣∣
x∗

(3.2)

at the equilibria x∗ := {x : f(x, k) = 0}. Observe in equation (3.2) that the value of

J can be obtained if the equilibria x∗ is known.

Computing the algebraic expression of the equilibria x∗ in high dimensional sys-

tems usually requires the use of symbolic computational methods. These methods

are based on the fact that a set of polynomials generates an ideal in the polynomial

ring and that the zeros of an ideal are equivalent to the zeros of any Gröbner basis of

that ideal [25, 10, see also Chapter 2]. The value in using the Gröbner basis is that

it allows one to formulate computational methods for systematically solving for the

system’s zeros in a manner that is very reminiscent of the back-substitution methods

used for solving a system of linear algebraic equations. The main stumbling block is

that the complexity of computing a Gröbner basis using Buchberger’s algorithm is

known to grow in a doubly exponential manner with respect to the number of the

unknown variables [39].

This complexity can be reduced if the vector fields in (3.1) have a special struc-

ture. The special structure that we consider is the case when the vector fields have

kinetic realizations. A dynamical system ẋi(t) = fi(x, k) with polynomial vector

fields fi(x, k) is said to have a kinetic realization if there exist polynomials gi(x, k)

and hi(x, k) with nonnegative coefficients such that fi(x, k) can be rewritten as [67]

fi(x, k) = gi(x, k)− xihi(x, k). (3.3)

The condition in equation (3.3) was presented in [67] and it essentially guarantees

that a polynomial dynamical system is a mass action systems for which a chemical
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reaction network (CRN) graph can be realized. In addition, the vector fields of these

systems form a special class of ideals called toric ideals [57, 58]. One advantage in

working with toric ideals is that there exist efficient algorithms (with lower complexity

than the standard Buchberger’s algorithm) for computing its Gröbner basis [140, 7].

Once such a Gröbner basis is obtained, the expression for the toric variety or the

zeros of the corresponding toric ideal can then be computed [140, 7, 6, 27].

This chapter discusses a method to compute an expression of the equilibria x∗ for

system whose vector fields satisfy equation (3.3). In this thesis, these systems are

called nonnegative systems with kinetic realizations. Dynamical systems with kinetic

realizations originate from the differential equation models of CRNs [153, 22, 44].

One important property of systems with kinetic realizations is that their special

structure allows one to compute expressions for the system’s equilibria as a rational

function of the system’s parameters and some convex parameters. This computational

method was first proposed in [57, 58] and is based on the concept of toric variety

from algebraic geometry [6, 7]. The main advantage of this method is that it helps

simplify the analysis of the system’s qualitative behaviors (cf. Chapter 4).

The remainder of this chapter is structured as follows. Section 3.2 discusses the

construction and properties of kinetic realizations. In particular, Section 3.2.1 dis-

cusses the construction of kinetic realizations for models of CRNs and nonnegative

dynamical systems. Section 3.2.3 then discusses the properties of these kinetic re-

alizations. Section 3.3 describes a method introduced in [57, 58] to compute the

expressions of kinetic realizations’ equilibria. An algorithmic implementation of this

computational method is also presented. Conclusions are given in Section 3.4.

The discussion in this chapter will be central for the discussion of the method

used to forecast bifurcation-induced regime shifts in Chapter 4. Specifically, the

computation of kinetic realizations’ equilibria is the starting point from which the

simplification of the minimum D2B problem is achieved. This chapter should there-
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fore be viewed as an essential part of Chapter 4.

3.2 Kinetic Realizations

3.2.1 Kinetic Realizations of CRN

The dynamics of the reactant and the product species concentrations in a CRN

can be modeled according to the law of mass action kinetics. This law states that

the velocity or rate of each elementary reaction in the CRN is directly proportional

to the product of the reactant concentrations [44]. Thus, this law can be used to

derive differential equation models of a CRN.

Consider a set of r elementary reactions Ri (i = 1, . . . , r) between s ≥ 1 chemical

species X1, X2, . . . , Xs described in the following CRN

Ri :
s∑
j=1

aijXj
ki→

s∑
j=1

bijXj, i = 1, 2, . . . , r. (3.4)

For each i = 1, 2, . . . , r, the quantity ki in (3.4) denotes the rate constant of the ith

reaction Ri between the ith reactant complex CRi = ∑s
j=1 aijXj (the sum of all species

on the tail of the ith reaction arrow) and the ith product complex Cpi = ∑s
j=1 bijXj

(the sum of all species on the head of the ith reaction arrow). Let C = {C1, C2, . . . , Cm}

be the union set of m complexes appear in both the heads and the tails of reaction

arrows of CRN (3.4). Then for i = 1, 2, . . . , r and p, q ∈ ` = 1, 2, . . . ,m with p 6= q,

the ith elementary reaction, Ri, in CRN (3.4) can be represented using the elements

of C as follows

Ri : Cp
ki→ Cq. (3.5)

In what follows, we use xj to denote the concentration of species Xj at time t and

x = [x1, . . . , xs]T to denote the vector of species concentrations in CRN (3.4).
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The association of all s chemical species to the set of m unique complexes in C

defines a bipartite graph from Xi (i = 1, . . . , s) to C` (` = 1, . . . ,m). In particular, the

weights of this graph are given by the coefficients aij or bij in each elementary reaction

of the CRN (3.4). From this graph, we define an (s×m) matrix Y whose `th column

entries are given by the coefficients aij or bij of the `th complex C`, (` = 1, . . . ,m) in

C. By denoting the `th column of Y as Y (`), we also define an m-rows vector ψ(x)

whose `th element is a monomial of the form

ψ`(x) = (xT )Y (`)T . (3.6)

The representation of CRN (3.4) in terms of the elements of C in (3.5) defines

a directed graph G(V,E) with a set of vertices V = {C`, ` = 1, . . . ,m} and a set

of directed edges E = {Ri, i = 1, . . . , r}. The weight of each edge in this graph is

given by the rate constant ki that corresponds to the ith reaction from Cp to Cq in

(3.5) where p, q ∈ ` = 1, . . . ,m and p 6= q. Based on this graph, we can construct an

(m × r) incidence matrix, Ia, such that for each pair of complexes (Cp, Cq) ∈ Ri in

the ith reaction (3.5), the entries in the ith column of matrix Ia are defined as

Ia(`, i) .=


Ia(p, i) = −1,

Ia(q, i) = 1,

0, otherwise.

(3.7)

Corresponding to matrix Ia, we also construct an (r ×m) weighting matrix IK such

that for each pair of complexes (Cp, Cq) ∈ Ri in the ith reaction (3.5), the entries in

the ith row of matrix IK is defined as

IK(i, `) .=


IK(i, p) = ki,

0, otherwise.
(3.8)
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Using the matrices Y, Ia, IK and the vector ψ(x) defined above, the evolution of the

species concentrations in the CRN (3.4) can be modeled by the following ODE.

ẋ(t) = Y IaIKψ(x), x(0) = x0. (3.9)

Equation (3.9) is called the kinetic realizations of the CRN (3.4).

There are two main properties of systems with kinetic realizations (3.9): (i) their

vector fields are defined by polynomial functions and (ii) their state trajectories always

lie in the positive orthant [44, 57]. As will be discussed in Section 3.3 and Chapter 4,

these properties are useful for characterizing the system’s equilibria or studying the

system’s stability. Example 6 illustrates the construction of kinetic realizations (3.9)

from a CRN of the form (3.4).

Example 6. Consider the following CRN of the Brusselator system consisting chem-

ical species X, Y with concentration [X], [Y ], respectively [44].

2X + Y
k1−→ 3X ∅

k4
�
k3

X
k2−→ Y

This CRN can be rewritten as a set of elementary reactions of the form

R1 : 2X + Y
k1−→ 3X, R2 : X k2−→ Y, R3 : X k3−→ ∅, R4 : ∅ k4−→ X

which satisfy the representation in (3.4). This CRN has s = 2 species (X and Y ),

r = 4 elementary reactions and m = 5 complexes (C = {C1, . . . , C5} where C1 =

2X + Y, C2 = 3X, C3 = X, C4 = Y, C5 = ∅). Thus, the above CRN can be rewritten

in terms of the elements of C as follows.

R1 : C1
k1−→ C2, R2 : C3

k2−→ C4, R3 : C3
k3−→ C5, R4 : C5

k4−→ C3 (3.10)
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Figure 3.1. Bipartite graph of the Brusselator system.

We use x1 and x2 to denote the concentrations of species [X] and [Y ], respectively,

and define a vector of species concentrations x = [x1, x2]T .

Figure 3.1 shows a bipartite graph that defines the association of species X and Y

to the set of complexes in C. Based on this graph, the matrix Y in equation (3.9) is

Y =

 2 3 1 0 0

1 0 0 1 0

 .

As a result, the vector of monomials, ψ(x), in (3.6) is given by

ψ(x) =



x2
1x2

x3
1

x1

x2

1


.

Figure 3.2 shows a directed graph associated with the CRN in (3.10). Using this
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Figure 3.2. Directed graph of the Brusselator system.

graph and the rules in equations (3.7)-(3.8), the matrices Ia and IK in (3.9) are

Ia =



−1 0 0 0

1 0 0 1

0 −1 −1 1

0 1 0 0

0 0 1 −1


, IK =



k1 0 0 0 0

0 0 k2 0 0

0 0 k3 0 0

0 0 0 0 k4


.

A kinetic realization of the form (3.9) for this CRN is then given by

ẋ(t) = Y IaIKψ(x)

=

 2 3 1 0 0

1 0 0 1 0





−1 0 0 0

1 0 0 1

0 −1 −1 1

0 1 0 0

0 0 1 −1





k1 0 0 0 0

0 0 k2 0 0

0 0 k3 0 0

0 0 0 0 k4





x2
1x2

x3
1

x1

x2

1


.

(3.11)

As a result, the following ODE model of the Brusselator system can be obtained.

ẋ1(t) = k1x
2
1x2 + k4 − k2x1 − k3x1,

ẋ2(t) = −k1x
2
1x2 + k2x1,

(3.12)

with x(0) = x0 = [x1(0), x2(0)]T .
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Now consider the kinetic realizations in (3.9) and define a real-valued matrix

N = Y Ia and a vector of monomials v(x, k) = IKψ(x). Then (3.9) can be written as

ẋ(t) = Nv(x, k) = N diag(k)xZ , (3.13)

where N ∈ Zn×m is known as the stoichiometric matrix and v(x, k) ∈ Rm
+ is a

nonnegative-valued flux vector which satisfies a decomposition of the form

v(x, k) = diag(k)xZ , (3.14)

in which k is a vector of reaction constants and Z ∈ Zn×m≥0 is a matrix of nonnegative

integers whose ith column denotes the multi-index of the ith monomial vi(x, k). The

kinetic realizations in (3.13) was introduced in [22] and used to study the dynamics of

chemical species in CRNs based on the dynamics of their reaction fluxes/complexes.

Since the state trajectories of (3.9) always lie in the nonnegative orthant, then the

state trajectories of (3.13) are also guaranteed to be nonnegative. In particular, for

the ODE ẋ(t) = Nv(x(t), k) in (3.13) and any time t1 < t2 ∈ [0, t], the vector

difference x(t2) − x(t1) is an element of Im(N). By integrating this difference along

the solution of x(t), we have

x(t2) = x(t1) +
∫ t2

t1
Nv(x(t), k)dt,

which implies

x(t2)− x(t1) = N
∫ t2

t1
diag(k)ψ(x(t))dt.

The above equation shows that the difference x(t2)− x(t1) is a linear combination of

the column of matrix N with nonnegative coefficients ci = ki
∫ t2
t1
x(t)αidt in which α

is the multi-index of the monomials in ψ(x). Thus for any initial condition x0 ∈ Rn
≥0,

the state trajectories at any time t ≥ 0 are guaranteed to stay in the positive orthant
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(x0 + Im(N)) ∩ Rn
≥0 [57].

For a kinetic realization of the form (3.13), let w = w1, . . . , wm be a basis vector

of the orthogonal complement of Im(N). This means w is a basis of ker(NT ) with

dimension d = dim(ker(NT )) = m = rank(N). Let x(0) = x0 be an initial condition

and define ci = wTi x0. We then have

x0 + Im(N) = {x ∈ Rn | wTi x− ci = 0 for i = 1, . . . , d}. (3.15)

Equation (3.15) defines an invariant space of equationt (3.13) [153, 57]. In the context

of CRN, equation (3.15) is often interpreted as a conservation relation describing the

total conserved concentrations in the CRN. Thus if the rank, rank(N), of matrix N in

(3.13) is less than the number of state variables, n, then (3.13) satisfies the following

n− rank(N) algebraic equations.

wTi x = ci, i = 1, . . . , n− rank(N). (3.16)

This thesis will focuses on using the kinetic realizations in (3.13). Example 3.17

illustrates the construction of the kinetic realizations (3.13).

Example 6 (continuing from p. 47). Using the matrices Y, Ia, IK and vector ψ(x) in

3.11, a kinetic realization (3.13) of the Brusselator system is given by

ẋ(t) = Nv(x, k)

=

 1 −1 −1 1

−1 1 0 0





k1x
2
1x2

k2x1

k3x1

k4


.

(3.17)
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The matrices diag(k) and Z such that v(x, k) = diag(k)xZ are

diag(k) =



k1 0 0 0

0 k2 0 0

0 0 k3 0

0 0 0 k4


, Z =

 2 1 1 0

1 0 0 0


T

. (3.18)

The rank of matrix N (rank(N) = 2) in (3.17) is equal to the number of state

variables. Thus, the kinetic realization in (3.17) has no conservation relation.

3.2.2 Kinetic Realizations of Nonnegative Systems

Recall from Section 3.2.1 that the kinetic realizations of a CRN is given by

ẋ(t) = Y IaIKψ(x) (3.19)

where matrices Y, Ia, IK and vector ψ(x) were constructed from the graphs of the

CRN. By defining a matrix N = Y Ia and a vector of monomials v(x, k) = IKψ(x),

then (3.19) can be rewritten as

ẋ(t) = f(x, k) = Nv(x, k), (3.20)

where v(x, k) is a nonnegative-valued vector of monomials in variables x. Recall that

the main properties of systems with kinetic realizations (3.19)-(3.20) are that (i) the

systems’ vector fields are polynomials and (ii) the system’s trajectories are always

nonnegative. Note that while any polynomial dynamical system can be written as

in (3.20), not all of them have kinetic realizations of the form (3.19). The class of

polynomial systems that have kinetic realizations is known as mass action systems

[67]. A sufficient condition for polynomial systems to have a kinetic realization (3.19)
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was presented in [67] as stated in Lemma 3.2.1.

Lemma 3.2.1 ([67]). An m polynomial systems f1, . . . , fm in n variables x = (x1, . . . , xn)

is a mass action kinetic systems if and only if for i = 1, . . . , n, there exist real poly-

nomials gi(x), hi(x) with nonnegative coefficients such that fi = gi(x)− xihi(x).

Lemma 3.2.1 essentially states that a polynomial dynamical system of the form ẋi =

fi(x, k) will have a kinetic realization if its vector fields can be written as

fi(x, k) = gi(x, k)− xihi(x, k) (3.21)

in which g(·) and h(·) are polynomials with nonnegative coefficients. Note that any

polynomial system which satisfies the condition in (3.21) is guaranteed to be non-

negative [65]. This is because a necessary and sufficient condition for the trajectories

of a dynamical system ẋi(t) = f(x, k) to be nonnegative is that its vector fields sat-

isfy fi(x, k) ≥ 0 for all x in which xi = 0 [64, 65]. Setting xi = 0 in (3.21), we

have that fi(x, k) = gi(k) ≥ 0 due to the nonnegativity of the coefficients of gi(x, k)

and therefore guarantees the satisfaction of the requirements for the system to be

nonnegative.

From the above discussion, it can be concluded that the kinetic realizations (3.9)

and (3.13) can be constructed for polynomial systems with vector fields that satisfy

the condition (3.21). Below, we argue that such requirements are not too restrictive

and are satisfied by the models of many real life systems.

• The first requirement that the system’s vector fields to be polynomial func-
tions is not too restrictive. This is because any smooth function with bounded
variation defined on a compact set can be approximated as polynomial func-
tion using Taylor or higher order polynomials approximation methods [138, 55].
Moreover, there exist various methods to transform nonpolynomial functions
into polynomial functions [83, 71, 43].

• The second requirement that the system’s vector fields satisfy the condition
in (3.21) is also not too restrictive. This is because many models of real life
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systems (such as biological, ecological, or compartmental systems) satisfy this
property [65, 64]. In particular, these models usually take the Lotka-Volterra
type representation and so the transformation methods described in [83, 71, 43]
can be used to obtain representation of the form (3.21).

The above argument suggest that there exist a large number of real life systems

(other than CRN) whose models have kinetic realizations (3.19) and (3.20). This the-

sis will focus on studying a class of polynomial systems that have kinetic realizations

(3.20). We refer to these systems as nonnegative systems with kinetic realizations.

Specifically, a dynamical system modeled by differential equations

ẋi(t) = fi(x, k), xi(0) = xi0, i = 1, . . . , n

is said to be nonnegative system with kinetic realization if its vector fields are poly-

nomial functions that satisfy the condition in (3.21). Note that the construction of

kinetic realizations (3.20) does not require the construction of the system’s CRN. As

long as the system’s vector fields satisfy the condition in (3.21), then a kinetic real-

ization (3.20) can directly be constructed by collecting all monomials in the system’s

vector fields in a vector v(x, k) and then constructed the corresponding matrix N . By

Lemma 3.2.1, the satisfaction of condition (3.21) guarantees that a kinetic realization

of the form (3.19) can also be constructed. Example 7 illustrates the construction of

kinetic realizations (3.20) for a model of tritrophic food web in ecology [68].

Example 7. This example illustrates the construction of a kinetic realization (3.20)

for a tritrophic food web model described in [68]. The differential equation model of

the system is given by

ẋ1 = x1 (1− x1)− k1x1x2

k2 + x1

ẋ2 = k3x1x2

k2 + x1
− k4x2x3 − k5x2

ẋ3 = k6x2x3 − k7x3
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where x1, x2 and x3 denote the biomasses of producers, consumers, and top predators,

respectively. For each i = 1, . . . , 7, the positive parameter ki describes the rate of

interaction between different species. Note that the system’s vector fields are not

polynomial functions due to the rational functions that appear in the first and the

second state’s equations. By introducing an augmented state x4 = (k2 + x1)−1 with

time derivative

ẋ4 = (∂x4/∂x1)ẋ1 = x1x
2
4(x1 − 1) + k1x1x2x

3
4,

the original system’s model can be rewritten as

ẋ1 = x1 (1− x1)− k1x1x2x4

ẋ2 = k3x1x2x4 − k4x2x3 − k5x2

ẋ3 = k6x2x3 − k7x3

ẋ4 = x1x
2
4(x1 − 1) + k1x1x2x

3
4

(3.22)

Clearly the vector fields of the extended model are now polynomial functions. Now

note that equation (3.22) can be rewritten in the form

ẋ1 = x1 − x1 (x1 + k1x2x4)

ẋ2 = k3x1x2x4 − x2(k4x3 + k5)

ẋ3 = k6x2x3 − x3(k7)

ẋ4 =
(
x2

1x
2
4 + k1x1x2x

3
4

)
− x4(x1x4)

which satisfies the condition in (3.21) with (g1, h1) = (x1, x1 + k1x2x4), (g2, h2) =

(k3x1x2x4, k4x3 + k5), (g3, h3) = (k6x2x3, k7) and (g4, h4) = (x2
1x

2
4 + k1x1x2x

3
4, x1x4).

By Lemma 3.2.1, model (3.22) is guaranteed to have kinetic realizations.

We now construct a kinetic realization of the form (3.20). By collecting the unique
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monomials of (3.22)’s vector fields in a vector v(x, k) and arranging their correspond-

ing coefficients in a matrix N , then a matrix N and a vector v(x, k) that form a kinetic

realization ẋ = Nv(x, k) for system (3.22) are

N =



1 −1 1 0 0 0 0 0 0 0 0

0 0 0 1 −1 1 0 0 0 1 0

0 0 0 0 0 0 1 −1 0 0 0

0 0 0 0 0 0 0 0 1 −1 1


,

v(k, x) = [x1, x
2
1, k1x1x2x4, k3x1x2x4, k4x2x3, k5x2, k6x2x3, k7x3, x

2
1x

2
4, x1x

2
4, k1x1x2x

3
4]T .

(3.23)

The matrices diag(k) and Z such that v(x, k) = diag(k)xZ are

diag(k) = diag ([1, 1, k1, k3, k4, k5, k6, k7, 1, 1, k1]) ,

Z =



1 2 1 1 0 0 0 0 2 1 1

0 0 1 1 1 1 1 0 0 0 1

0 0 0 0 1 0 1 1 0 0 0

0 0 1 1 0 0 0 0 2 2 3


.

(3.24)

Remark 3.2.2. As described in Section (3.2.1), the construction of the kinetic realiza-

tions (3.19) requires the graph of the CRN in (3.4). So in order to compute such a

realization from an ODE model ẋ(t) = f(x, k), an equivalent CRN structure (3.4) of

the corresponding ODE should be constructed. The problem of constructing a CRN

graph of an ODE is often called the inverse realization problem [67, 143–145, 80, 79].

In particular, Lemma 3.2.1 gives a sufficient condition under which a CRN graph of

an ODE can be realized [67]. As shown in [67, 143], Lemma 3.2.1 also identifies a
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method to construct a CRN model (3.4) from an ODE of the form

ẋi = fi(x, k), i = 1, . . . , n,

=
zi∑
j=1

kijx
[αij ].

(3.25)

where α is the multi-index associated to monomials xα and f(x) = ∑z
k=1 ckx

[αk] is a

representation of polynomial f(x) as linear combination of z monomials with coeffi-

cient k. The basic approach in this method is to construct an equivalent elementary

reaction for each monomial in fi(x) using a set of rules that are defined based on

the sign of each monomial and in which polynomial fi that particular monomial ap-

pears. Algorithm 1 summarizes these rules. Given a polynomial dynamical system

(3.25) with zi monomials, Algorithm 1 produces at most n(R) = ∑n
i=1 zi elementary

reactions of the form (3.4). The output of Agorithm 1 may not be optimal in the

sense that the number of constructed elementary reactions may exceeds the minimum

number of elementary reactions required to construct the corresponding ODE model.

In such a case, one may use the method in [144] to obtain a minimal realization

based on Algorithm 1’s output. Using the obtained set of elementary reactions, both

realizations (3.19) and (3.20) can be constructed.

3.2.3 Properties of Kinetic Realizations

Consider a polynomial system ẋ(t) = f(x, k) whose vector fields satisfy condition

(3.21) and assume that the system’s kinetic realization takes the form

ẋ(t) = Nv(x, k).
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Algorithm 1 Realization of CRN from ODE model (adapted from [67, 143])
1: procedure ElementaryReaction(kxα)
2: if (kxα ∈ fi) and (sign(kxα) is positive) then

3: build reaction R: ∑n
i=1 αixi

k−→ (∑n
i=1 αixi) + xi

4: else

5: if (kxα ∈ fi) and (sign(kxα) is negative) then

6: build reaction R: ∑n
i=1 αixi

k−→ (∑n
i=1 αixi)− xi

7: end if

8: end if

9: Return R
10: end procedure

The state equilibria, x∗ of this realization is defined as

x∗ = {x ∈ Qn(k) : Nv(x, k) = 0}. (3.26)

Computing the analytical expression of equilibria (3.26) in high dimensional sys-

tems usually requires the use of symbolic computational methods. One such method

is based on computing the zeros of the Gröbner basis of the polynomial equations

Nv(x, k) = 0 [25, see also Chapter 2]. A Gröbner basis for a system of polynomial

equations can be computed using Buchberger’s algorithm [14, 25]. However, the stan-

dard Buchberger’s algorithm has a drawback in that the degree of the computed bases

grows in a doubly exponential manner with respect to the number of the unknown

variables [39, see also Chapter 2].

One alternative approach for computing the equilibria in (3.26) is by studying the

solution of kinetic realizations (3.20) in the flux space, v ∈ Rm [57]. Specifically, by

considering continuous mapping functions v : Rn → Rm and g : Rm → Rn, then the
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following statements for realization (3.20) are equivalent [56, 57].

∃x ∈ Rn with g(v(x, k)) = 0,

∃v ∈ Rm with v ∈ Im(v(x, k)) and g(v) = 0.

In kinetic realizations (3.20), the function v(·) is the nonnegative-valued flux vector

v(x, k) = diag(k)xZ whereas the function g(·) is the matrix N . From Sections 3.2.1-

3.2.2, we know that v(x, k) ≥ 0 and so the above equivalence can be rewritten as

∃x ∈ Rm
≥0 with Nv(x, k) = 0.

∃v ∈ Rm
≥0 with v ∈ Im(v(Rn

≥0)) and Nv = 0.
(3.27)

By the nonnegativity of v, the flux equilibria v∗ = {v ∈ Rm | g(v) = 0} is given by

∃v∗ ∈ Rm with v∗ ∈ Im(v(Rn
≥0)) and v∗ ∈ ker(N) ∩ Rm

≥0. (3.28)

The above observation suggests the following two important consequences:

First: it means that the flux equilibria form a convex polyhedral cone [22, 87, 57]

v∗ ∈ Kv = ker(N) ∩ Rm
≥0 =

{
v ∈ Rm

≥0 : v = Σq
i=1λiEi

}
. (3.29)

The cone, Kv, in equation (3.29) is finitely generated by a set of extreme rays, Ei ∈

Rm
≥0 for i = 1, 2, . . . , q. Such rays are routinely computed using tools such as efmtool

[149, 87]. Every flux equilibrium in Kv can therefore be parameterized with respect

to these rays. In equation (3.29), the parameters λ = (λ1, λ2, . . . , λq) are called the

convex parameters [22] and so any equilibrium flux can be written as v∗(λ) a linear

function of the convex parameters.
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Second: it means that any flux, v, in kinetic realizations (3.20) must satisfy

vi = kix
zi , i = 1, 2, . . . ,m. (3.30)

Equations (3.30) are binomials in R(k)[x, v] and this system’s zeros characterize both

the flux equilibria, v∗, and the state equilibria, x∗. The ideal generated by these

binomials is a toric ideal [7, 57] for which efficient algorithms for computing a Gröbner

basis are available [140, 62]. Thus, the equilibria of the system can be solved in terms

of its flux equilibra and the system’s parameters.

The preceding two consequences of kinetic realizations can be summarized as

(i) any flux equilibrium can be expressed as a function v∗(λ) in terms of the convex
parameters (λ), and

(ii) any state equilibrium can be expressed as a rational function x∗(v∗, k) of the
flux equilibria (v∗) and the system’s parameters (k).

Using the expression v∗(λ) of the flux equilibria in terms of the convex parameters,

one may then parameterize the state equilibria x∗(λ, k) ∈ Qn(k, λ) in terms of the

system’s parameters, k, and the convex parameters, λ. Section 3.3 discusses the

details of this computation.

Another property of kinetic realizations (3.20) is that the system’s Jacobian ma-

trix can be parameterized as [57, 58]

J(λ, k) = Ndiag(v∗(λ))ZTdiag(1/x∗(λ, k)). (3.31)

The Jacobian in (3.31) is now parameterized in terms of parameters k and λ. Thus,

this Jacobian can be used to study the properties of kinetic realizations’ equilibria

under parametric variations. Chapter 4 will discuss this type of analysis.
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3.3 Equilibria of Kinetic Realizations

Section 3.2.3 stated that the special structure of kinetic realizations (3.20) allows

one to compute an expression for the system’s state equilibria, x∗ in terms of the

system’s parameters, k, and some convex parameters, λ. This section discusses a

computational method for characterizing the kinetic realizations’ state equilibria, x∗.

The method consists of two main steps. The first step computes a Gröbner basis for

the toric ideal generated by the binomial system (3.30). This basis is defined only

with respect to the flux variable, v, and so its computation involves the elimination

of unknown variables x from the binomial system (3.30). The variety of this basis

therefore defines the flux equilibria, v∗. The second step extends the flux equilibria,

v∗, over the original binomial ideal and then uses equations (3.29)-(3.30) to compute

the state equilibria, x∗. Such an extension is achieved through a transformation using

Hermite normal form [142, Chapter 3.2]. Thus, the two steps essentially correspond

to the elimination and extension steps for computing a Gröbner basis of the binomial

ideal (3.30) [7, 57]. Each step is detailed below.

3.3.1 Computation of the Flux Equilibria

This section discusses the first step that computes a Gröbner basis of the binomial

system (3.30).

Let R(k)[x] and R(k)[v] be polynomial rings in the unknowns x = (x1, . . . , xn)

and v = (v1, . . . , vm), respectively. The mapping v(x, k) from the state x ∈ Rn to the

flux v ∈ Rm in (3.14) satisfies

v(x, k) : Rn
≥0 7→ Rm

≥0, x 7→ v(x, k).
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The image of v(x, k) is then given by

v1(x, k) = k1x
Z1 , v2(x, k) = k2x

Z2 , . . . , vm(x, k) = kmx
Zm .

The above relation shows that a flux equilibrium, v∗ ∈ Rm
≥0, will corresponds to a

state equilibrium, x∗ ∈ Rn
≥0, if and only if v∗ lies on the image of the function v(x∗, k),

i.e. if

v∗ ∈ Im(v(x∗, k)).

This requirement is satisfied if

vi − vi(x, k) = 0, for i = 1, . . . ,m. (3.32)

The expression on the left hand side of (3.32) defines a binomial ideal over R(k)[x, v].

Since the flux vector, v, satisfies the decomposition v = diag(k)xZ where Z ∈ Zn×m≥0 ,

then matrix Z in this mapping induces a substitution homomorphism on v(x, k) and

that v ∈ R(k)[v] is a toric ideal associated with the function v(x, k) [7]. This implies

that any flux equilibrium, v∗, should lie on the toric variety V (I) of the toric ideal

I = 〈vi − vi(x, k)〉 ∩ R(k)[v]. Since the varieties of an ideal are equivalent to the

varieties of the ideal’s Gröbner basis, then the Elimination Theorem can be used to

compute a Gröbner basis of I. This Gröbner basis will be a defining ideal of the toric

variety V(I) and can therefore be used to compute the flux equilibria, v∗. Below, we

describe the procedure to compute v∗.

First, define an ideal I ∈ R(k)[x, v] that corresponds to the binomial system (3.32)

I = 〈v1 − k1x
Z1 , . . . , vm − kmxZm〉 ⊆ R(k)[x, v]. (3.33)

By Hilbert’s Basis Theorem [25], we know that I is generated by a finite number of

elements of its Gröbner basis [25]. Since I ∈ R(k)(x, v) is a binomial ideal, then its
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Gröbner bases will also generate a binomial ideal in R(k)(x, v) [103]. The associated

toric ideal I ⊆ R(k)[v] (note the difference on the unknown variables of the ring) is

defined as

I = 〈v1 − k1x
Z1 , . . . , vm − kmxZm〉 ∩ R(k)[v],

= I ∩ R(k)[v]. (3.34)

Now let G be the Gröbner basis of I in (3.33) with respect to a lex order that

eliminates variables x. Note that the toric ideal I in (3.34), obtained from the inter-

section I ∩R(k)[v], is the nth elimination ideal of I (as it is obtained by eliminating

n variables x from I) defined in R(k)[v]. Using the Gröbner basis G of ideal I, the

Elimination Theorem (cf. Chapter 2) implies that the basis

Gn(v) = G ∩ R(k)[v]

is a Gröbner basis for I ∩R(k)[v] = I. This means that the elements in the Gröbner

basis of the toric ideal I are given by those elements of G that only contain indeter-

minates v. And since the variety of an ideal is equivalent to the variety of its Gröbner

basis [25], the variety V(I) of the toric ideal (3.34) is defined as

V(I) = {v ∈ Qm(k) : Gn(v) = 0} ⊆ R(k)[v]. (3.35)

As a result, the flux equilibria, v∗, can be computed from the toric variety V(I), i.e.

v∗(k) ∈ V(I). (3.36)
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3.3.2 Computation of State Equilibria

This section describes the second step that computes the state equilibria, x∗, using

the flux equilibria in (3.36).

By the Ideal-Variety Correspondence theorem [25], any ideal that vanishes on the

variety V(I) ∈ R(k)[x, v] of the binomial ideal (3.32) will also vanishes on the toric

variety V(I) ⊆ R(k)[v] in (3.36). But since v∗(k) ∈ V(I) ⊆ R(k)[v], then v∗(k) only

defines partial solutions to V(I). Thus, the obtained v∗ should be extended over the

ring R(k)[x, k] to get the solutions x∗ ∈ R(k)[x, v]. If the solutions x∗ exist, then

both x∗ and v∗ define the variety V(I) ⊆ R(k)[x, v] of the binomial system (3.32).

The Extension Theorem [25] can be used to show that the partial solutions defined

by the flux equilibria, v∗(k), can be extended to get the state equilibria, x∗. To begin,

note that equation (3.30) can be rewritten as

v = diag(k)xZ . (3.37)

For a given nonzero solution v∗(k), the above representation satisfies the condition

in equation (2.8) of Theorem 2.2.5 for gi(·) = diag(k) (with the second term on the

right hand side of (2.8) equals to zero) and thereby guarantees the existence of the

extended solutions x∗.

Next, we show how to compute the state equilibria x∗ from the flux equilibria v∗

using the Hermite normal form [142, 58, 103]. First, introduce a coordinate transfor-

mation x∗ = ωU where ω ∈ Rn is an arbitrary vector and U is a unimodular matrix.

From linear algebra, we know that the Hermite normal form H of an integer-valued

matrix Z satisfies H = UZ [142]. Evaluating (3.37) at state and flux equilibria gives

v∗(k) = diag(k)(x∗)Z . This implies

diag(k)(x∗)Z = diag(k)ωUZ = diag(k)ωH = v∗(k). (3.38)
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For a given v∗(k), we first computed ω in the equation diag(k)ωH = v∗(k). Using the

obtained ω and the unimodular matrix U , the state equilibria can then be computed

from equation x∗ = ωU . Both x∗(k) and v∗(k) then define the varieties or the total

solution of polynomial equations defined by the binomial ideal I in (3.32).

Now recall from (3.29) that the flux equilibria, v∗, is also defined on the convex

cone Kv and satisfies a parameterization of the form

v∗(λ) ∈ Kv. (3.39)

This implies that v∗ is given by the intersection of (3.36) and (3.39), i.e.

v∗(λ, k) = {v∗ ∈ V(I)} ∩ {v∗ ∈ Kv} ⊆ R(λ, k)[v]. (3.40)

By the substitution of (3.40) into (3.38), then the state equilibria, x∗(v∗, k), obtained

from the transformation in (3.38), can be rewritten as a function x∗(λ, k) of the

system’s parameters, k, and the convex parameters, λ.

3.3.3 Algorithm and Examples

Algorithm 2 illustrates the computation of the state and flux equilibria for the

kinetic realizations (3.20). A MATLAB software toolkit [147] that implemented Al-

gorithm 2 was also developed in this thesis (cf. Appendix C). In the following, we

present some examples that illustrate the computation of kinetic realizations’ equi-

libria. Algorithm 2 is used to guide the presentation of these examples.

Example 6 (continuing from p. 47). This example illustrates the computation of state

and flux equilibria for a kinetic realization of the Brusselator system in (3.17)-(3.18).

Step 1: We first compute the expression of the flux equilibria in (3.29). For kinetic
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Algorithm 2 Computing the equilibria of kinetic realizations (3.13).
Input: vector v(x, k) = (k1x

Z1 , . . . , kmx
Zm)T and matrix N in (3.13)

Output: flux equilibria, v∗(λ, k), and state equilibria x∗(λ, k)

Step 1: Compute the flux equilibria v∗ (3.29) in terms of the convex parameters λ
1: Use efmtool [149] or CellNetAnalyzer [87] to compute vectors Ei such that v∗

can be expressed as
v∗ ∈ Kv = ker(N) ∩ Rm

≥0 =
{
v ∈ Rm

≥0 : v = Σq
i=1λiEi

}
.

Step 2: Compute the toric variety V(I) in (3.35) of the toric ideal I in (3.34)
2: Construct the binomial ideal I ⊆ R(k)[x, v] defined in (3.35), i.e.

I = 〈v1 − k1x
Z1 , . . . , vm − kmxZm〉 ∈ R(k)[x, v]

3: Use Singular computer algebra [32] to compute a Gröbner basis G of I ∈
R(k)[x, v] with respect to a lex ordering that eliminates the indeterminates x, i.e.
x1 � · · · � xn � v1 · · · � vm

4: Use G and the Elimination Theorem to compute the Gröbner basis Gn ∈ R(k)[v]
for the nth elimination ideal of I, i.e. Gn = G ∩ R(k)[v]

• The elements of the Gröbner basis Gn are given by those elements of G
which only contain variables v.

• The toric ideal (3.37) is given by I〈Gn〉 ⊆ R(k)[v] and its toric variety is
V(I) = {v ∈ R(k)m : Gn = 0} ⊂ R(k)[v]

5: The flux equilibria defined by the above toric variety is given by v∗(k) ∈ V(I).

Step 3: Compute the intersection between v∗ that are obtained in Step 1 and Step 2

6: Substitute v(λ) from Step 1 to variables v in V(I). The flux equilibria become
v∗(λ, k) = {v∗ ∈ V(I)} ∩ {v∗ ∈ Kv}

Step 4: Use Hermite transformation to compute x∗ from v∗

7: Use transformation (3.38) to obtain x∗(λ, k) from v∗(λ, k).
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realization (3.17), two extreme rays were identified by CellNetAnalyzer [87]

[E1, E2] =



0 1

0 1

1 0

1 0


.

Thus, the expression of the flux equilibria (3.39) is given by

v∗(λ) =
2∑
i=1

λiEi =



λ2

λ2

λ1

λ1


. (3.41)

Step 2: Next, we compute the flux equilibria defined by the toric variety I in (3.36).

The ideal I formed by the flux vector vi and the monomial in v(x, k) is given by

I = 〈v1 − k1x
2
1x2, v2 − k2x1, v3 − k3x1, v4 − k4〉.

A Gröbner basis of I was computed using Singular [32] and is given by

G(I) = {v4 − k4, k3v2 − k2v3, k1x2v
2
3 − k2

3v1, k3x1 − v3}.

The Gröbner basis of the toric ideal I in (3.34) was given those elements of G that

only contain the unknown v, i.e.

Gn(I) = {v4 − k4, k3v2 − k2v3}.

The toric ideal, I, is then given by I = 〈Gn〉 and its toric variety is defined as
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V(I) = {Gn(I) = 0}. The flux equilibria obtained from V(I) therefore satisfy

v∗4 − k4 = 0, k3v
∗
2 − k2v

∗
3 = 0. (3.42)

Step 3: We now compute the intersection of v∗(k) and v∗(λ). From (3.41), we have

v∗1 = v∗2 = λ2, and v∗3 = v∗4 = λ1.

The substitution of (3.41) into (3.42) gives the following equations

λ1 − k4 = 0,

k3λ2 − k2λ1 = 0.
(3.43)

Thus, the flux equilibria can now be expressed either in terms of the convex parame-

ters, λ, or the system’s parameters, k, below.

v∗(λ, k) =



λ2

λ2

λ1

λ1


=



k2k4/k3

k2k4/k3

k4

k4


. (3.44)

Step 4: Finally, we use the Hermite transformation (3.38) to compute the expression

for the state equilibria, x∗(λ, k) from the flux equilibria, v∗(λ, k) in (3.44). For matrix

Z in (3.18), the unimodular matrix U and the Hermite normal form H such that

UZ = H are

UZ = H ⇔

 0 1

1 −2

Z =

 1 0 0 0

0 1 1 0

 .
Using the transformation in (3.38), the equation diag(k)wH = v∗(λ, k) with v∗(λ, k)
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defined in (3.44) becomes

diag(k)wH =



k1w2

k2w1

k3w1

w3


= v∗(λ, k).

Solving the above equation for w and then using the relation x∗ = wU in (3.38), the

expression for the state equilibria x∗(λ, k) is given by

x∗1 = λ2

k3
, x∗2 = k2

3λ1

k1λ2
2
. (3.45)

Note that x∗i s in (3.45) are explicit functions of the system’s and the convex pa-

rameters. Thus, for a given set of parameters, equation (3.45) can be used to com-

pute the corresponding state equilibria. For example, let the reaction constants in the

Brusselator system be specified as ki = 1, i = 1, . . . , 4. Using the expression for the

intersection between v∗(k) and v∗(λ) in (3.43), the corresponding convex parameters

are λ1 = λ2 = 1. The substitution of these parameters into (3.45) gives an equilib-

rium x∗1 = x∗2 = 1. To check this result, we simulated the Brusselator’s ODE model

using the specified parameters ki = 1, i = 1, . . . , 4. Figure 3.3 plots the system’s tra-

jectories for the specified parameters. This figure shows that the trajectories converge

to a steady state x∗1 = x∗2 = 1, the same equilibrium obtained using (3.45).

In the next example, we illustrate the computation of flux and state equilibria for

the tritrophic foodweb model discussed in Example 7.

Example 7 (continuing from p. 54). In this example, we illustrate the computation of

the equilibria for a kinetic realization of the tritrophic foodweb model in (3.23)-(3.24).

Again, we follow the routines in Algorithm 2.

Step 1: First, we compute the expression for the flux equilibria, v∗, in terms of
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Figure 3.3. State trajectories of the Brusselator system for
ki = 1, i = 1, . . . , 4.

the convex parameters, λ. For the kinetic realization in (3.23), seven extreme rays

(Ei, i = 1, . . . , 7) were identified from CellNetAnalyzer[87].

[
E1 E2 E3 E4 E5 E6 E7

]
=



1 0 0 0 0 1 0

0 1 0 0 0 0 1

1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 1 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1



.
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Thus, the expression of the flux equibria in (3.39) is

v∗(λ) = [λ1 + λ6, λ2 + λ7, λ1, λ2, λ3, λ3, λ4, λ5, λ4 + λ5, λ6, λ7]T . (3.46)

Step 2: Next, we compute the flux equilibria from the toric variety V(I) in (3.36).

The ideal I generated by the flux vector, vi, and the monomials in v(x, k) is given by

I = 〈 v1−x1, v2−x1x
2
4, v3−x2

1, v4−x2
1x

2
4, v5−k7x3, v6k6x2x3, v7−k5x2, v8−k4x2x3,

v9 − k3x1x2x4, v10 − k1x1x2x4, v11 − k1x1x2x
3
4 〉.

Using a Gröbner basis G(I) of I computed from Singular [32] and applying

eliminations on variables x in G(I), a Gröbner basis for the toric ideal I is

Gn(I) = { k6v7v8 − k5k7v7, k6v5 − k4v7, k
2
5v

2
4 − k2

3v
2
6v9, k3v3 − k1v4, k

2
5v2 − v2

6,

v1v11 − v3v10, v1v10 − v9 }. (3.47)

The toric ideal is then defined as I = 〈Gn〉 and the toric variety is given by V(I) =

{v : Gn = 0}. Thus, the flux equilibria obtained from V(I) satisfy

v∗(k) = {v : Gn(I) = 0}. (3.48)

Step 3: By substituting v(λ) in (3.46) into variables v in (3.47) and using some

algebraic simplifications, the following expressions for the flux equilibria were obtained

v∗(λ, k) = [v∗1, v∗2, v∗3, λ3 + λ4, λ3, λ4, k6λ3/k4, k6λ3/k4, λ6, λ6(1 + λ2/(λ1 − λ2)),

λ2λ6/(λ1 − λ2)]T ,
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where
v∗1 = (k7/k6)2 − (k1/k6)(λ3 + k5k7/k6),

v∗2 = (k7/k6)2 − (k1/k6 − k1/k3)(λ3 + k5k7/k6),

v∗3 = (k1/k3)(λ3 + k5k7/k6).

Note that we used µ = (k1, k5, k6, λ3, λ4, λ5, λ6, λ7) to parameterize the flux equilibria.

Step 4:We now use the Hermite transformation (3.38) to compute the state equilibria

x∗(λ, k) from v∗(λ, k). A unimodular matrix U for matrix Z in (3.24) is

U =



1 0 0 −1

0 0 0 1

0 0 1 0

0 1 0 0


.

Using (3.38), the following expressions of the state equilibria, x∗, were obtained.

x∗1 = λ1 + λ6, x∗2 = k7

k6
, x∗3 = k3k6λ6

k1k4k7
− k5

k4
, x∗4 = k6λ6

k1k7(λ1 + λ6) . (3.49)

The above result can be used to compute the system’s equilibria for a given set

of parameters. Consider a parameter set k = [0.5, 0.5, 0.5, 0.1, 0.25, 0.25, 0.2]. Using

the intersection between v∗(k) and v∗(λ) defined in Step 3, the corresponding convex

parameters were computed to be λ1 = 0.453, λ2 = 0.25, λ6 = 0.2 and λ7 = 0.11.

Thus, the equilibria of the first three states for these parameters are x∗1 = 0.653, x∗2 =

0.8, x∗3 = 0.332. To check this result, we simulated the ODE of the tritrophic foodweb

model using the specified parameters. Figure 3.4 plots the state trajectories of the

model for the chosen parameters. It can be seen that the state trajectories converge to

an equilibrium x∗1 = 0.65, x∗2 = 0.8, x∗3 = 0.33. These values are the same with that

computed using (3.49).
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Figure 3.4. Trajectories of the tritrophic foodweb model for k = [0.5, 0.5,
0.5, 0.1, 0.25, 0.25, 0.2].

3.4 Conclusion

This chapter has presented a method to compute an equilibrium parameterization

of nonnegative systems with kinetic realizations. As will be shown in the Chapter 4,

this equilibrium parameterization will be used to help simplify the minimum distance

to bifurcation problem.
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CHAPTER 4

FORECASTING BIFURCATION-INDUCED REGIME SHIFTS

4.1 Introduction

This chapter presents a method to forecast bifurcation-induced regime shifts. Re-

call that bifurcation-induced regime shifts occur because the system’s equilibrium

undergoes a bifurcation as a result of variations in the system’s parameters. The

method presented in this chapter characterizes such regime shifts as a minimum dis-

tance to bifurcation (D2B) problem. The solution to this problem is the minimum

distance γ = infk |k∗ − k0| from a nominal parameter k0 to the closest critical pa-

rameter k∗ at which a bifurcation occurs. The method discussed in this chapter uses

this distance as a measure of how close a system is to a bifurcation-induced regime

shift. This chapter focuses on the computation of γ in a class of nonnegative systems

with kinetic realizations. A dynamical system ẋi(t) = fi(x, k) with polynomial vector

fields fi(x, k) is said to have a kinetic realization if there exist polynomials gi(x, k)

and hi(x, k) with nonnegative coefficients such that fi(x, k) can be rewritten as [67]

fi(x, k) = gi(x, k)− xihi(x, k).

One important property of systems with kinetic realizations is that their special

structure allows one to compute expressions for the system’s equilibria as a rational

function of the system’s parameters and some convex parameters. We show that this

property helps simplify the computation of a lower bound for the minimum D2B.
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The approach to compute the quantity γ discussed in this chapter consists of two

main steps:

• First, we use the method to compute an expression of kinetic realizations’ equi-
libria that simplifies the optimization problem for computing the D2B. In
particular, we express the constraints on the formulated optimization problems
only in term of the system’s parameters rather than the system’s parameters
and the equilibria.

• Second, by rewriting the constraints of the optimization problem as a semial-
gebraic set conditions in the parameter space, we show that we can recast the
computation of γ as a polynomial optimization problem (POP). Using the SOS
relaxation of this POP, we formulate an SOS optimization problem to compute
bounds on γ. This SOS optimization problem is then solved using semidefinite
programming solvers [121, 100, 69].

4.1.1 Background and Prior Work

To motivate the discussion, recall the model of the lake eutrophication process

below

ẋ = a− bx+ x2

1 + x2

where the state variable x denotes the Phosporus (P ) concentration in the lake water

column and the parameters a ≥ 0 and b ≥ 0 denote the rates of inflow and outflow of

P into and out of the lake, respectively. The equilibria of this system are defined by

those values of x at the intersections of the curves of production function f(x) and

loss function g(x). This means that the equilibria are those values of x such that

a+ x2

1 + x2︸ ︷︷ ︸
f(x)

= bx︸︷︷︸
g(x)

.

First, let us consider the characteristic of these equilibria when one of the sys-

tem’s parameter is varied. For example, assume that parameter b is held fixed while

parameter a is varied. The values of the system’s equilibria for different a can be
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(a) One-parameter bifurcation diagram. (b) Two-parameters bifurcation diagram.

Figure 4.1. Bifurcation diagrams of the lake model.

traced from the one-parameter bifurcation diagram in Figure 4.1a that was generated

using XPPAUT [41]. In this plot, one may see that the number of equilibria changes

as the value of parameter a is increased. In particular, these changes are also followed

by the change on the qualitative behaviors (i.e. stability type) of the equilibria. For

a small inflow rate (0 ≤ a ≤ 0.025), the system has a single oligotrophic equilibrium

(monostable). For larger inflow rate (0.026 < a ≤ 0.075 = a∗), this equilibrium bi-

furcates into two stable equilibria: an oligotrophic one and a eutrophic one. Finally,

for an even larger inflow rate (a > a∗), these two stable equilibria coalesce to a single

eutrophic equilibrium. Once the system stays in the high P concentration equilib-

rium, the return to a low P concentration requires a decrease on parameter a down

to the critical value a∗∗ ≈ 0.025 due to the hysteresis characteristic of the equilibrium

curve shown in the bifurcation diagram. One may further analyze how the equilibria

bifurcate when both parameters a and b are varied simultaneously. As can be seen in

Figure 4.1b, the two-parameter bifurcation diagram [41] clearly shows the partition

of the parameter space into regions where the system has single (oligotrophic or eu-

trophic) or multiple equilibria (bistable). The curve which encapsulates the bistable

region in Figure 4.1b is known as the bifurcation manifold and it contains all criti-
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cal parameters k∗ at which transitions or regime shifts between different qualitative

behaviors of the system occur [41]. Thus for any set of nominal parameters k0, the

minimum D2B is defined as

γ = inf
k
|k∗ − k0|. (4.1)

The computation of γ, however, is generally difficult since the bifurcation manifold

is usually not known [41, 36]. In particular, numerical bifurcation analysis illustrated

in the above example are limited to systems having at most two or three unknown

parameters [41, 92]. For a dynamical system

ẋ(t) = f(x(t), k), x(t) = x0, (4.2)

whose vector fields depend on parameter k, the bifurcation manifold consists of those

critical parameters k∗ that satisfy the bifurcation conditions as given in Table 4.1

[92]. The first row of the table shows necessary and sufficient conditions for a Hopf

bifurcation to occurs. The transversality condition requires that the partial derivative

(with respect to parameter k) of the real part of the characteristic polynomial’s roots

be not equal to zero. The other transversality conditions in this table are conditions

on the various derivatives of the vector field in which w and v are the left and right

eigenvectors, respectively, associated with the zero eigenvalue of the Jacobian matrix

(see [92] for details). Each of these transversality conditions essentially describes an

instance where the system undergoes change on its stability properties at the critical

parameter k∗. Prior works have proposed several methods for computing γ in the

context of robust stability analysis [88, 106, 110, 154] and voltage collapse problem

in power systems [36, 36]. In general, these methods use numerical optimization

techniques to search for the minimum γ subject to the constraints that the critical

parameter k∗ satisfy the condition in Table 4.1. These methods, however, are compu-

tationally demanding since the search for the minimum γ requires the computation
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TABLE 4.1

NECESSARY CONDITIONS FOR LOCAL BIFURCATONS [92].

Type Jacobian Eigenvalue Transversality

Hopf simple imaginary pair Dk{Re(s)} 6= 0

Saddle-node simple 0 w
(
Dkf

∣∣∣
x∗,k∗

)
6= 0, w

(
D2
xf
∣∣∣
(v,v)

)
6= 0

Transcritical simple 0 w
(
Dkf

∣∣∣
x∗,k∗

)
6= 0, w

(
D2
x,kf

∣∣∣
v,v

)
6= 0

Pitchfork simple 0 w
(
Dkf

∣∣∣
x∗,k∗

)
6= 0, w

(
D3
xf
∣∣∣
x∗,k∗

)
6= 0

of system’s equilibria x∗ numerically for each values of the parameter and at every

iteration.

4.1.2 Approach and Contribution

This chapter uses SOS relaxations to compute lower bounds on the minimum

D2B (4.1) in nonnegative systems with kinetic realizations. A dynamical system of

the form (4.2) with polynomial vector fields is said to have a kinetic realization if

there exist polynomials gi(x, k) and hi(x, k) with nonnegative coefficients such that

fi(x, k) = gi(x, k)− xihi(x, k).

The above condition essentially guarantees that the system is a mass action systems

for which a chemical reaction network (CRN) graph can be realized [67]. The exis-

tence of such realizations implies that the system’s vector fields can be decomposed
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as f(x, k) = Nv(x, k) where N is a real-valued matrix and v(x, k) is a nonnegative-

valued vector of monomials in x. The special structure of these systems allows one

to compute an expression for their equilibria in terms of the system’s parameters and

some convex parameters. Such an equilibrium expression simplifies the D2B problem

because the constraints that define the bifurcation conditions can now be expressed

only in terms of the system’s parameters, rather than the system’s parameters and

equilibria. By rewriting the eigenvalue conditions in Table 4.1 as a semialgebraic

set in the parameter space, we formulate the D2B problem as an SOS optimization

problem that can be solved using semidefinite programming solvers.

The remainder of this chapter is structured as follows. Section 4.2 presents back-

ground on local bifurcation theory. Section 4.3 describes the necessary bifurcation

conditions that will be used later in Section 4.4 to recast the D2B problem as an SOS

optimization problem. Section 4.5 illustrates an application of the proposed method.

Final remarks are given in Section 4.6.

4.2 Local Bifurcation and D2B Problem

4.2.1 General Nonlinear Systems

Consider the parameterized dynamical systems in (4.2) and assume for the mo-

ment that the system’s parameters are fixed to some real numbers. Equation (4.2)

may then be written as

ẋ = f(x), x(0) = x0. (4.3)

Let ϕ(t) : Rn 7→ Rn be an evolution operator that transforms the system’s initial

state x0 ∈ Rn into a state x(t) ∈ Rn at time t ∈ [0, T ] such that

x(t) = ϕ(t)x0.
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The operator ϕ(t) is known as the flow of the system and it characterizes the evolution

of the state x(t) of the system at any time t when initialized at x0 [63]. For a

dynamical system with a flow ϕ(t), two basic geometric objects can be associated with

it, namely its orbits in the state space and its phase portrait in the state space formed

by these orbits. An orbit that starts at x0 is an ordered subset of the state space at

which the evolution operator ϕ(t)x0 is defined. Examples of orbits include fixed points

(equilibria), cycles, etc. The phase portrait is a partitioning of the state space into

orbits and thereby provides a topological description about the qualitative dynamics

of the system. Two dynamical systems are said to be topologically equivalent if their

phase portraits are qualitatively similar, namely if there exists a homeomorphism

between the orbits of the two phase portraits [63, 92].

The dynamics of a system are usually studied locally in a bounded region X ⊂ Rn

of the state space. This is particularly helpful for topological classification of the

phase portrait near the equilibrium points because the local behaviors of a system

near its equilibrium points can be studied from its linearization [92]. Let x∗ be an

equilibrium of (4.3) such that f(x∗) = 0 and let J = ∂f
∂x

∣∣∣
x∗

denotes its Jacobian matrix

evaluated at the equilibrium x∗. Let n−, n0 and n+ be the number of eigenvalues of

J with negative, zero and positive real parts, respectively. An equilibrium is called

hyperbolic if n0 = 0, that is, if there are no eigenvalues on the imaginary axis [92].

In the neighborhood of a hyperbolic equilibriums x∗ of (4.3), the Grobman-Hartman

Theorem [92] states that the qualitative dynamic of a nonlinear system (4.3) is locally

topologically equivalent to its linearization ξ̇ = Jξ. One can then study the local

topological equivalence of dynamical systems by analyzing the local phase portrait

of its linearization around the equilibrium points.

Now assume that the vector fields of (4.2) depend on the parameters k ∈ Rp and

consider the phase portrait of this system. If the values of parameters k are varied in

the parameter space, Rp, then the equilibria x∗ and the phase portrait of the system
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will also vary in the state space, Rn. In particular, the phase portrait of the system

may either remain topologically equivalent to the nominal one or it may also change

to something else. The appearance of a topologically nonequivalent phase portrait

under variation of the parameters is called a bifurcation. The values of the param-

eters at which a bifurcation occurs are called the bifurcation (critical) parameters

[92]. Since the behavior of a nonlinear system is locally topologically equivalent with

its linearization around a hyperbolic equilibrium, the onset of a bifurcation can be

studied using the system’s linearized model around that particular equilibrium. In

this case, topological equivalence of the system in the presence of parameter varia-

tions can be studied by analyzing the impact of such variations on the topology of

the system’s equilibria [63, 92].

Let x∗ be a nominal equilibrium of the systems and let y∗ be the equilibrium

when the parameter varies. The following theorem provides conditions under which

the linearized system is locally topologically equivalent.

Theorem 4.2.1 ([92]). The phase portrait of a system near two hyperbolic equilibria,

x∗ and y∗ are locally topologically equivalent if and only if these equilibria have the

same number n− and n+ of eigenvalues with negative and positive real part, respec-

tively.

Theorem 4.2.1 is the basic result from which the necessary conditions in Table 4.1 are

constructed [92]. The search for parameter sets that satisfy these conditions, however,

is not trivial because it requires knowledge of system’s equilibria. In particular, the

currently available numerical software tools [34, 41] for bifurcation analysis are limited

to analyze at most two parameters simultaneously. As a result, the computation of

minimum D2B in (4.1) for systems that have more than two parameters cannot be

done (cf. the review in [36]).
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4.2.2 Nonnegative Systems with Kinetic Realizations

The computation of minimum D2B can be simplified in a class of nonnegative

systems that have kinetic realizations. Recall that system (4.2) with polynomial

vector fields fi(x, k) has a kinetic realization if there exists polynomials gi(x, k) and

hi(x, k) with nonnegative coefficients such that the vector fields satisfy condition (??).

If a system’s vector fields satify the condition in (??), then the system is a mass action

system for which a chemical reaction graph can be realized [67]. In particular, these

systems’ vector fields satisfy a decomposition of the form

ẋ(t) = f(x, k) = Nv(x, k), x(0) = x0, (4.4)

where N is a real-valued matrix and v(x, k) is a nonnegative-valued flux vector that

satisfies a decomposition v(x, k) = diag(k)xZ . An important property of systems

with this special structure is that it allows one to compute an expression for the

system’s equilibria in terms of the system’s parameters and some convex parameters

(cf. Chapter 3).

Nonnegative systems with kinetic realizations exist for a large number of real

world systems including compartmental, biological, and ecological systems [65, 64].

The restriction to polynomial systems is not overly restrictive since 1) any function

with finite variations that is defined over a bounded interval can be approximated

arbitrarily closely with a polynomial [138], 2) systems with rational vector fields can

be transformed into polynomial systems [42], and 3) there exist a number of methods

for extracting kinetic realizations from polynomial systems [67, 144, 145, 79–81].

As discussed in Chapter 3, the special structure of nonnegative systems with

kinetic realizations has two major consequences, namely

(i) any equilibrium flux can be expressed as a function v∗(λ) in terms of some
convex parameters (λ), and
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(ii) any equilibrium state can be expressed as a rational function x∗(v∗, k) of the
equilibrium fluxes (v∗) and the system parameters (k).

Using the expression of the equilibrium fluxes v∗ in term of the convex parameters,

one may compute an algebraic expression for the equilibrium state x∗(k, λ) ∈ Qn(k, λ)

as a rational function of the system’s parameters (k) and some convex parameters (λ).

This algebraic equation characterizes all system equilibria as a function of the system

and convex parameters and it provides a critical starting point for characterizing the

bifurcation constraints in the D2B problem.

Another property of systems with kinetic realizations is that its Jacobian matrix

can be parameterized as [57, 58]

J(λ, k) = Ndiag(v∗(λ))ZTdiag(1/x∗(λ, k)). (4.5)

This implies that the eigenvalue conditions in Table 4.1 can now be expressed in terms

of the parameters k and λ without the need to compute the system’s equilibria x∗ for

different values of k. Earlier works for solving the D2B problem [35, 36, 15] always

required that one solve for the equilibrium as part of the optimization; this approach

is computationally expensive as it increases the number of decision variables in the

formulation of the optimization problem. In Section 4.3, the Jacobian matrix (4.5)

will be used to recast the necessary conditions for the occurrence of bifurcations.

4.3 Necessary Bifurcation Conditions

Consider the Jacobian matrix in (4.5). Let p(s) = |sI − J | be the Jacobian’s

characteristic polynomial, i.e.

p(s) = a0s
n + a1s

n−1 + · · ·+ an−1s+ an, (4.6)
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where the coefficients ai(λ, k) are functions of the parameters (λ, k). For notational

convenience, we denote these parameters as µ = (λ, k). The eigenvalues of J are given

by the roots of p(s). The Jacobian J is asymptotically stable if and only if all of its

eigenvalues have negative real parts and is unstable otherwise [63]. For z = 1, . . . , n,

the zth Hurwitz determinant, 4z, associated with characteristic polynomial p(s) is

defined as

4z =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a1 a3 a5 . . . a2z−1

a0 a2 a4 . . . a2z−2

0 a1 a3 . . . a2z−3

... ... ... . . . ...

0 0 0 az−2 az

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
such that

41 = |a1|, 42 =

∣∣∣∣∣∣∣∣
a1 a3

a0 a2

∣∣∣∣∣∣∣∣ , 43 =

∣∣∣∣∣∣∣∣∣∣∣∣

a1 a3 a5

a0 a2 a4

0 a1 a3

∣∣∣∣∣∣∣∣∣∣∣∣
, . . . .

Proposition 4.3.1 characterizes the conditions for the Jacobian (4.5) to have a simple

zero eigenvalue.

Proposition 4.3.1. Consider matrix J in (4.5) with characteristic polynomial p(s)

in (4.6). If the coefficients of p(s) satisfy the conditions an = 0 and an−1 6= 0, then

matrix J will have zero eigenvalue with multiplicity not greater than one.

Proof. That an = 0 implies one of the roots of p(s) is zero is clear. Now notice that

p(s) will have zero eigenvalue with multiplicity not greater than one if ∂p(s)
∂s
|s=0 6= 0,

which will be satisfied when an−1 6= 0.

The following lemma from [23] characterizes the condition for matrix J to have a

simple pair of imaginary eigenvalues. The proof of this lemma is based on the Orlando
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formula (cf. [52]).

Lemma 4.3.2 ([23]). Consider matrix J in (4.5) with characteristic polynomial p(s)

in (4.6). If the (n−1)th Hurwitz determinant of p(s) satisfies 4n−1 = 0, then matrix

J will have a pair of imaginary eigenvalues with multiplicity not greater than one.

Now let us express the eigenvalue conditions in Table 4.1 in terms of the coef-

ficients of p(s) in (4.6). Let q denote the number of parameters in µ. Let ΩSN be

the parameter set where a saddle-node (also pitchfork and transcritical) bifurcation

occurs. Based on the conditions in Proposition 4.3.1, then

ΩSN =
{
µ ∈ Rq

≥0 | an(µ) = 0, an−1(µ) 6= 0
}
. (4.7)

In a similar way, Lemma 4.3.2 can be used to characterize the parameter set ΩH

where a Hopf bifurcation occurs.

ΩH =
{
µ ∈ Rq

≥0 | 4n−1(µ) = 0
}
. (4.8)

Equations (4.7)-(4.8) suggest that if a bifurcation occurs, then one may denote the

parameter set Ω for which at least one type of bifurcation occurs as

Ω = ΩSN ∪ ΩH . (4.9)

Note that the sets defined in (4.7)-(4.9) are algebraic sets which characterize those

parameters for which a bifurcation may occurs. Equivalently, system (4.4) will not

undergoes a bifurcation if the set Ω is empty. In the next section, a method for

verifying the emptiness of this set will be discussed.

Remark 4.3.3. Note that the analysis in this chapter will only characterize the eigen-

value conditions for the occurrence of a Hopf and a saddle-node bifurcations (the
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necessary conditions for the occurrence of pitchfork and transcritical bifurcations are

the same as that for the saddle-node bifurcation, cf. Table 4.1). This implies that the

semialgebraic descriptions for the transversality conditions in Table 4.1 will not be

included in the formulation of the optimization problem for computing the minimum

D2B. Rather than embedding them in the formulated optimization problem, the

satisfaction of these transversality conditions can be tested after the set of critical

parameters k∗ from the optimization is obtained.

4.4 Distance-to-Bifurcation Problem

From the discussions in Section 4.3, it should be clear that the non-existence of a

particular bifurcation is equivalent to the emptiness of the corresponding bifurcation

set (i.e. the sets ΩSN and ΩH in (4.7) and (4.8), respectively). In general, verifying

the emptiness of the set ΩSN , for example, can be difficult. However in recent years,

it has been proven fruitful to consider convex relaxations of this problem in which

one checks for the emptiness of the set Ω̃(γ) ∩ ΩSN , where Ω̃(γ) is a semi-algebraic

set defined by a psd certificate function V (µ) [156].

In particular, let γ > 0 be a real-valued constant and let α(|µ− µ0|) be a class K

function (i.e. α is a continuous, strictly increasing function with α(0) = 0) in which

µ is the parameter set with known initial µ0. We define the certificate set as

Ω̃(γ) = { µ ∈ Rq | α(|µ− µ0|) ≤ γ } . (4.10)

For a given γ > 0, if the intersection of the certificate set Ω̃(β) in (4.10) with the

saddle-node bifurcation set ΩSN in (4.7) is empty, then the D2B cannot be less than

α−1(γ). The key point in formulating the problem in this way is that the conditions

which specify whether the intersection Ω̃(β)∩ΩSN is empty or not can be formulated

using SOS relaxations. This fact is formally stated in Proposition 4.4.1 below.
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Proposition 4.4.1. For a constant γ > 0, let Ω̃(γ) be a certificate set defined in

(4.10). Consider the saddle-node bifurcation set ΩSN in (4.7). If there exist polyno-

mials V (µ) and r(µ) such that

a2
n−1(µ)(V (µ)− γ) + r(|µ|)an(µ) is SOS, (4.11)

then ΩSN ∩ Ω̃(γ) = ∅.

Proof. Verifying the condition ΩSN ∩ Ω̃SN = ∅ amounts to check the emptiness of

the set

{ µ | an = 0, an−1 6= 0, V (µ)− γ 6= 0, −(V (µ)− γ) ≥ 0 } .

Using the positivstellensatz theorem [137, 10, see also Chapter 2], this set is empty

if there exist SOS polynomials s0, s1 and polynomials V (µ), t(µ) such that

s0 − s1(V (µ)− γ) + a2m
n−1 (V (µ)− γ)2m + t(µ)an = 0.

Setting s0 = 0, m = 1, and t(µ) = (V (µ)− γ)r(µ), the above equation becomes

s1(V (µ)− γ) = (V (µ)− γ)
(
a2
n−1(V (µ)− γ) + r(µ)an

)
,

which is the SOS condition in (4.11). Now consider any parameter µ ∈ ΩSN for which

the condition an(µ) = 0 holds. Upon substitution with the SOS condition in (4.11),

we have that

a2
n−1(µ)(V (µ)− γ) ≥ 0.

Since a2
n−1 > 0, we have V (µ)− γ ≥ 0 which implies that any parameter µ ∈ ΩSN lie

outside the level set defined by V (µ) ≤ γ.

In a similar way, an SOS relaxation for the non-existence of a Hopf bifurcation can

be obtained as stated in Proposition 4.4.2 below.
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Proposition 4.4.2. For a constant γ > 0, let Ω̃(γ) be a certificate set as defined

in (4.10). Consider the Hopf bifurcation set ΩH in (4.8). If there exist polynomials

V (µ), r(µ) such that

V (µ)− γ + r(µ)4n−1(µ) is SOS, (4.12)

then ΩH ∩ Ω̃(γ) = ∅.

Proof. Verifying the condition ΩH ∩ Ω̃(γ) = ∅ amounts to check the emptiness of the

set

{ µ | 4n−1 = 0, V (µ)− γ 6= 0, −(V (µ)− γ) ≥ 0 } .

Using the positivstellensatz theorem, this set is empty if there exist SOS polynomials

s0, s1 and polynomials V (µ), t(µ) such that

s0 − s1(V (µ)− γ) + (V (µ)− γ)2m + t(µ)4n−1 = 0.

Let s0 = 0, m = 1, t(µ) = (V (µ)− γ)r(µ), then

s1(V (µ)− γ) = (V (µ)− γ) [(V (µ)− γ) + r(µ)4n−1] ,

which is the SOS condition in (4.12). Now consider any parameter µ ∈ ΩH for which

the condition 4n−1(µ) = 0 holds. Upon substitution with the SOS condition (4.12),

we have that V (µ) > γ which implies that any µ ∈ ΩH will lie outside the level set

defined by V (µ) ≤ γ.

Note that Propositions 4.4.1 and 4.4.2 characterize those values of γ for which

the associated certificate set Ω̃(γ) contains no bifurcation parameters. Clearly, if one

were to identify the maximum value of γ for which, say, Proposition 4.4.1 held, then

this γ could be used to bound the minimum D2B. In particular, let µ0 be a known
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initial parameter. Define the certificate function as V (µ) = α(|µ− µ0|) where α is a

class K function. Let γ denotes the largest real constant for which, say, Proposition

4.4.1 holds. Then the minimum D2B, γ, can be bounded below as

γ = |µ∗ − µ0| ≥ α−1(γ).

One obvious choice for α is to let it be |µ − µ0|. This observation suggests that the

computation of the minimum γ can now be formulated as a polynomial optimization

problem which can be solved through the SOS relaxation method. This is formalized

in Poposition 4.4.3 below which is stated for the case of saddle-node bifurcation (cf.

Proposition 4.4.1). Clearly a similar result holds for the Hopf bifurcation case.

Proposition 4.4.3. Consider system (4.4) with Jacobian matrix in (4.5). Let µ0

be the set of initial parameters and let µ∗ denotes the set of critical parameters at

which a saddle-node bifurcation occurs. If there exist a constant γ̄ > 0, polynomials

V̄ = |µ∗ − µ0| and r(µ) such that the following SOS optimization problem

max γ̄

s.t. a2
n−1(µ)(V̄ (µ)− γ) + r(µ)an(µ) is SOS,

has a feasible solution, then the D2B is defined as |µ∗ − µ0| ≥ γ.

Proof. From the assumption in the proposition, we know that a saddle-node bifur-

cation exists and therefore the set ΩSN is not empty. Now since no bifurcation takes

place at µ0, one can take the infimum of this set, say inf(ΩSN). Note that the sets

Ω̃(γ) are compact sets, so there exists γ = inf(ΩSN) such that for any γ < γ we know

from Proposition 4.4.1 that no saddle-node bifurcation occurs.

Note that the SOS optimization problem in Proposition 4.4.3 can be solved using

semidefinite programming solvers [121, 100, 111, 139]. Section 4.5 presents some
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examples of the method discussed in this section.

4.5 Examples

This section uses the method discussed in Sections 4.3-4.4 to compute lower

bounds on the minimum D2B in nonnegative systems with kinetic realizations. The

first example computes a lower bound on the minimum distance to a Hopf bifurca-

tion in a kinetic realization of the Brusselator system. The second example computes

a lower bound on the minimum distance to a saddle-node bifurcation in a kinetic

realization of the tritrophic foodweb system. The kinetic realizations of these models

were constructed in the examples discussed in Chapter 3.

4.5.1 The Brusselator Model (Hopf Bifurcation)

A kinetic realization of this system is given in (3.17)-(3.18) and the expression for

its state equilibria is given in (3.45). Note that this model has four parameters and so

the standard numerical bifurcation analysis cannot be used to analyze all parameters

simultaneously.

The Jacobian matrix (4.5) for this system is given by

J(λ, h) = Ndiag(Eλ)ZTdiag(h),

=

 (λ1 − λ2)h1 λ1h2

−λ1h1 −λ1h2

 ,

with hi = (1/x∗i ) and x∗i (i = 1, 2) are given in (3.45). The characteristic polynomial

of J is given by

p(s) = s2 + (λ1h2 + λ2h1 − λ1h1)s+ λ1λ2h1h2.

Using the expression for the state equilibria in (3.45), then polynomial p(s) can be
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rewritten in terms of the system’s parameters below

p(s) = s2 + (k2 − k1 − k3)s+ k1k3.

It can be seen that polynomial p(s) will have a simple pair of imaginary eigenvalues

if the following conditions are satisfied

k1k3 > 0

k2 − k1 − k3 = 0.

Since ki ≥ 0, (i = 1, . . . , 4), the first condition is automatically satisfied and so

the eigenvalue condition for a Hopf bifurcation can be reduced to a single algebraic

equation: k2 − k1 − k3 = 0. Now define F (k) = Σ4
i=1(k∗i − k0

i )2 where k0
i denotes

the initial/nominal parameters. A lower bound on the minimum D2B may then be

obtained by solving the following SOS optimization problem.

max γ,

s.t. F (k)− γ − σ(k)(k2 − k1 − k3) is SOS.

Let us consider, for example, an initial set of parameters, k0
i = 1 for i = (1, . . . , 4),

and initial states, x1(0) = x2(0) = 1. As shown in Figure 4.2a, these initial state

and parameter values cause the system to have an asymptotically stable equilibrium

at x∗1 = x∗2 = 1. We used SOSTOOLS [121] to solve the above SOS optimization

problem and found a minimum D2B γ = 0.33 that corresponds to a set of critical

parameters k∗ = [2/3, 4/3, 2/3, 1]. Figure 4.2b plots the state trajectories for this k∗

and shows that a Hopf bifurcation occurs.
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Figure 4.2. Hopf bifurcation in the Brusselator model.

4.5.2 Tritrophic Foodweb Model (Saddle-node Bifurcation)

A kinetic realization of this system is given in (3.23)-(3.24) and the expression of

its state equilibria is given in (3.49). The Jacobian matrix (4.5) is given by

J(λ, h) = Ndiag(Eλ)ZTdiag(h)

=



−h1λ1 −h2λ6 0 −h4λ6

h1(λ4 + λ5) 0 −h3λ5 h4(λ4 + λ5)

0 h2λ3 0 0

h1λ2 h2λ7 0 h4λ7



with hi = (1/x∗i ) and x∗i (i = 1, . . . , 4) are given in (3.49). The Jacobian’s character-

istic polynomial is given by

p(s) = s4 + a3s
3 + a2s

2 + a1s+ a0,
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where

a0 = h1h2h3h4λ3λ5(λ2λ6 − λ1λ7),

a1 = h2[h3λ3λ5(h1λ1 − h4λ7)− h1h4(λ1λ4λ7 − λ2λ4λ6 + λ1λ5λ7 − λ2λ5λ6)],

a2 = h1h2λ6(λ4 + λ5)− h1h4(λ1λ7 + λ2λ6) + h2h3λ3λ5 − h2h4λ7(λ4 − λ5)

a3 = h1λ1 − h4λ7.

Using the condition in Proposition 4.3.1, the eigenvalue condition for a saddle-node

bifurcation to occur is

a0 = h1h2h3h4λ3λ5(λ2λ6 − λ1λ7) = 0.

Since hi, i = 1, . . . , 4 and λj, j = 1, . . . , 7 are always nonnegative, the above condition

can be simplified into

λ2λ6 − λ1λ7 = 0. (4.13)

As the above condition indicates, the saddle-node bifurcation in this system’s ki-

netic realization depends only on the convex parameters λ1, λ2, λ6 and λ7. The SOS

optimization problem for computing a lower bound on the minimum distance to a

saddle-node bifurcation may then be formulated as

max γ

s.t. F (λ)− γ − σ(λ)(λ2λ6 − λ1λ7) is SOS,
(4.14)

with F (λ) = (λ∗1 − λ0
1)2 + (λ∗2 − λ0

2)2 + (λ∗6 − λ0
6)2 + (λ∗7 − λ0

7)2. Let us consider a

set of nominal parameters k0 = [0.5, 0.5, 0.5, 0.1, 0.25, 0.25, 0.2]. The set of convex

parameters that correspond to k0 is λ0 = [λ0
1, λ

0
2, λ

0
6, λ

0
7] = [0.453, 0.15, 0.2, 0.31].

Figure 4.3 plots the state trajectories of the nominal system when initialized from

two different initial conditions, namely x0 = [0.1, 0.1, 0.1]T (Figure 4.3a) and x0 =
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(a) Initial condition: x0 = [0.1, 0.1, 0.1].
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(b) Initial condition: x0 = [0.5, 0.5, 0.5].

Figure 4.3. Trajectories for k0 using two different initial conditions.

[0.5, 0.5, 0.5]T (Figure 4.3b). Note in Figure 4.3 that the trajectories for both initial

conditions go to the same stable equilibrium x∗ = [0.65, 0.8, 0.33]T .

We solved the optimization problem in (4.14) using SOSTOOLS [121] and found

a minimum value γ(λ) = 0.0374 for a set of critical convex parameters λ∗ = [0.393,

0.246, 0.283, 0.177]. The set of critical system’s parameters that corresponds to λ∗ is

k∗ = [0.411, 0.255, 0.5, 0.15, 0.26, 0.25, 0.2]. Figure 4.4 plots the state trajectories for

this k∗ using two different initial conditions mentioned previously. The plots in Figure

4.4 show that the state trajectories follow two different qualitative behaviors (i.e.

steady states) when initialized from different initial conditions. This suggests that

the corresponding saddle-node bifurcation leads to the birth of alternative equilibria

in the system’s phase portrait.

4.6 Discussions and Remarks

This chapter has presented a method to predict bifurcation-induced regime shifts

by solving the minimum D2B problem. We formulated a polynomial optimization

problem that can be used to compute a lower bound on the minimum D2B in non-
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Figure 4.4. Trajectories for k∗ using two different initial conditions.

negative systems with kinetic realizations. Example applications of the proposed

method illustrate its effectiveness in analyzing local bifurcations caused by simulta-

neous variations in several parameters.
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CHAPTER 5

FORECASTING NOISE-INDUCED REGIME SHIFTS

5.1 Introduction

This chapter presents the method to characterize noise-induced regime shifts.

Recall from Chapter 1 that noise-induced regime shifts are defined using stochastic

differential equation models of dynamical systems. In particular, such shifts occur

because the underlying drift part of the system has multiple stable equilibria and

perturbations from external noise push the system’s sample paths from the region

of attraction (ROA) of one stable equilibrium to the ROA of the alternative equilib-

ria. One important characteristic that distinguishes noise-induced regime shifts from

bifurcation-induced regime shifts is that perturbations that trigger the shifts do not

change the phase portrait or the number of equilibria of the drift part of the nom-

inal system. This chapter presents two probabilistic quantities that can be used to

predict the onset of noise-induced regime shifts. These quantities are the mean first

passage time (MFPT) and the finite time safety probability. The MFPT quantifies

the average time required by the process’ sample paths to cross the boundary of an

ROA. The finite time safety probability characterizes the probability that, starting

from the ROA of a stable equilibrium, the process’ sample paths eventually reach

the boundary of and leave that ROA in a finite time. We show how the computation

of these quantities can be formulated and solved using SOS relaxation method (cf.

Chapter 2).
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5.1.1 Background and Prior Work

To motivate the discussion, consider the stochastically perturbed lake eutrophi-

cation model from Chapter 1. The stochastic differential equation (SDE) model of

the system is defined as

dx(t) = f(x)dt+ g(x)dw(t),

=
(
a− bx+ x2

1 + x2

)
dt+ σdw(t),

(5.1)

In equation (5.1), x(t) denotes the state of the random process {x(t)}, f(x) and g(x)

are the drift and diffusion terms, respectively, and {w(t)} is a Wiener process with

a constant variance σ. The scalar SDE (5.1) can be written as a stochastic gradient

system of the form [53]

dx = −∇V (x)dt+ σdw(t),

where ∇V (x) = dV (x)
dx

and V (x) = −
∫
f(x)dx is a potential function governing the

drift of the system. This means that the system’s state x can be viewed as a particle

moving in a potential landscape defined by V (x). For equation (5.1), this potential

function is defined as

V (x) = −
∫ (

a− bx+ x2

1 + x2

)
dx = bx2

2 + arctan(x)− (a+ 1)x.

Let us consider the values a = 0.06 and b = 0.525 for the parameters. For this choice

of parameters, the drift term has two stable equilibria (oligotrophic and eutrophic

states) that are separated by one unstable equilibrium. Figure 5.1 plots the equilibria

and the phase portrait of the drift term.

Figure 5.2a plots the potential V (x) for the chosen parameters. This plots shows

that V (x) has two local minima (at x∗L = 0.16 and x∗H = 1.33) that are separated by

one local maxima (at x∗U = 0.52). In particular, the local minima x∗L and x∗H corre-
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Figure 5.1. Phase portrait of the lake eutrophication model.
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Figure 5.2. Potential function and sample path of lake eutrophication
model.

spond to the two stable equilibria of the system whereas the maxima x∗U corresponds

to the unstable equilibrium. The potential V (x) also defines the ROAs ’Low ROA’

and ’High ROA’ of the stable equilibria x∗L and x∗H , respectively. These two ROAs

are separated by a separatrix defined by the unstable equilibrium x∗U . As a result,

any trajectory of the drift term that starts from one of the ROAs will remain in that

ROA and eventually settle to the equilibrium point of that ROA.

In the presence of the noise process {w(t)}, the system’s sample paths can no

longer be guaranteed to stay inside a particular ROA. In other words, there is a

positive probability that the process’ sample paths will reach the separatrix (indicated

by dashed line in Figure 5.2b) of the competing ROAs in a finite time. Once the
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sample path gets closer to the separatrix, the noise process may force the sample

path to cross the separatrix and then reach the ROA of an alternative equilibrium.

Figure 5.2b illustrates such noise-induced regime shifts when the noise process has a

variance of σ = 0.05. This example illustrates that even small noise intensity may

drive the process’ sample paths to shift from the ROA of equilibrium x∗L to the ROA

of an alternative equilibrium x∗L.

The statistics of process {x(t)} can be studied from its probability density func-

tion, ϕ(x, t), whose evolution satisfies the Fokker-Planck (FP) equation [54]

∂ϕ(x, t)
∂t

= − ∂

∂x
(f(x)ϕ(x, t)) + 1

2
∂2

∂x2

(
σ2ϕ(x, t)

)
.

For a scalar stochastic gradient system as in (5.1), the corresponding FP equation

can be solved explicitly. This solution can then be used to compute the average time,

τ , required by {x(t)} to reach the point x∗U when initialized in the neighborhood of

point x∗L (i.e. MFPT). In the above example, the quantity τ is given by [54]

τ(x∗L → x∗U) = π

(|∇2V (x∗U)| ∇2V (x∗L))1/2 exp

{
V (x∗U)− V (x∗L)

σ2

}
.

The time τ would then indicates the expected time at which the system undergoes a

regime shift. One may also compute the probability that the sample paths of {x(t)}

starting in the ROA XL of the equilibrium point x∗L will eventually leave that ROA

through its boundary, ∂XL, in a finite time t ≤ τ(x 6∈ XL). For the lake model in

(5.1), this probability is given by [53]

P{x(t) 6∈ XL|x(0) ∈ XL} =
∫ ∂XU
x∗L

ψ(x)dx∫ ∂XU
0 ψ(x)dx

, where ψ(x) = exp

(∫ x∗L

0

−∇V (x)
σ2 dx

)
,

which can be used to characterize the likelihood of regime shifts occurring.

The above example suggests that the characterization of noise-induced regime
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shifts can be formulated either as an MFPT problem or a stochastic safety analysis

as stated below.

• MFPT problem: Let {x(t)} be a stochastic process whose state x(t) at time
t ≥ 0 takes values on a bounded open subset X ⊆ Rn of the Euclidean space
with smooth boundary ∂X . Let X0 ⊂ X be an initial set such that x(0) = x0 ∈
X0. The time at which the sample paths of {x(t)} hit the set ∂X is a random
variable τ called the first passsage time and is defined as

τ ≡ inf
t
{t ≥ 0 |x(t) ∈ ∂X } . (5.2)

Thus, the MFPT problem concerns with the computation of the expected value
E{τ} of τ .

• Stochastic safety analysis: Let {x(t)} be a stochastic process whose state x(t)
at time t ≥ 0 takes values on a bounded open subset X ⊆ Rn of the Euclidean
space. Let X0 ⊂ X be an initial set such that x(0) = x0 ∈ X0 and let Xs ⊆ X
denote an arbitrary safe/desired set within the state space such that X0 ⊂ Xs.
The finite time stochastic safety analysis characterizes the probability that,
starting from inside the initial set X0, the sample paths x(t) of the process
leave the safe set Xs, at least once, in a finite time t ∈ [0, T ]. Formally, this
analysis seeks to compute β ∈ [0, 1] such that

P {x(t) 6∈ Xs, for some 0 ≤ t ≤ T | x(0) ∈ X0} ≤ β. (5.3)

Note that the method used for solving these two problems in the lake model (5.1)

does not scale up to systems with dimensionality greater than one. This is because the

method requires analytical solutions to the corresponding FP equation. It is widely

acknowledged that solving the FP equation for systems with dimensionality greater

than one is generally intractable as it involves solving a set of partial differential

equations with appropriate boundary conditions [125, 49, 53]. As a result, stochastic

simulations using Monte Carlo (MC) methods [89] have become the commonly used

approach to compute (5.2)-(5.3). However, the MC method is also computationally

expensive as it requires exhaustive simulations of the process’ sample paths.
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5.1.2 Approach and Contribution

One alternative approach to approximate the quantitites (5.2)-(5.3) is using the

Lyapunov-like methods in stochastic stability analysis [122, 91]. An important feature

of this method is that it does not rely on the solution of the FP equation or require

exhaustive simulations through MC methods. This method essentially searches for

a positive semidefinite function V (x(t)), called a barrier certificate, from which the

upper bounds for (5.2)-(5.3) can be deduced. In particular, if the drift and diffusion

terms of the process’s model are polynomial functions, then the computation of these

bounds can be formulated and solved using SOS relaxation method [122]. This ap-

proach was recently used in [122] for solving the stochastic reachability problem in

systems that are driven by simple Brownian motion.

One should realize that many cases of noise-induced regime shifts occur due to

the extreme or abnormal events that cause jumps or discontinous changes on the

system’s states. Examples of these events include storms that wash organisms out

of the lakes or rivers [132], abnormal variations of stock prices that lead to market

crash [3] or natural disaster and human exploitation that destroy an ecosystem [132].

These events are no longer suitable to be modeled by a Wiener process but are better

characterized as a stochastic renewal process. Forecasting regime shifts that are

induced by these ’shock’ noises is also important and so it is valuable to extend the

basic approach in [91, 122] to systems that are modeled as jump diffusion processes.

This chapter presents an extension of the methods introduced in [91, 122] to

compute upper bounds for (5.2)-(5.3) in systems that are modeled as jump diffusion

processes. As in the case of diffusion processes [91, 122], the techniques discussed

in this chapter are also based on searching for a barrier certificate, V (x(t)), that

generates a supermartingale from which the bounds can be deduced. The main

contribution in this chapter is a polynomial characterization of the jump diffusion

process’ infinitesimal generators that allows the use of SOS optimization techniques
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to search for the appropriate barrier certificate V (x(t)).

The remainder of this chapter is structured as follows. Section 5.2 gives back-

ground on jump diffusion processes. Section 5.3 derives upper bounds for (5.2)-(5.3)

in systems that are modeled as jump diffusion processes. The formulation of a SOS

optimization problem for computing these bounds is also discussed. Section 5.5 illus-

trates example using the proposed method for managing fish population in freshwater

ecosystems. Section 5.6 gives remarks and suggestions for future works.

Notational Conventions: Let {x(t)} denotes a random process whose state x(t) ∈

X at time t ∈ R+ takes values in an open subset X ⊆ Rn of the Euclidean space.

E{·} and E{·|·} denote the total and conditional expectations of a random variable,

respectively, while P{·} and P{·|·} denote the total and conditional probabilities of

an event, respectively. If {x(t)} has a distribution F (x), its nth moment is Mn
x =

∫ xndF (x).

The binomial coefficient of n-dimensional multi-indices α and β is defined as

(
α

β

)
=
(
α1

β1

)
· · ·

(
αn
βn

)
= α!
β!(α− β)! .

Given n-dimensional vectors x, y ∈ Rn and n-dimensional multi-indices α and β, the

multi-index binomial theorem states

(x+ y)[α] =
∑

0≤β≤α

(
α

β

)
x[α−β]y[β].

It can be shown that

∂[α]x[β] =


β!

(β−α)!x
[β−α], if α ≤ β,

0, otherwise.

Given a bounded real-valued function V (x) : Rn → R and an n-dimensional multi-
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index α, the αth order partial derivative of V with respect to x is defined as ∂[α]V =
∂α1V
∂x
α1
1

∂α2V
∂x
α2
2
. . . ∂αn

∂xαnn
.

5.2 Jump Diffusion Processes

Let {Ω,F ,P} be a complete probability space with filtration {Ft}t≥0 that satisfies

the usual conditions (cf. [124, Ch. I.5]): (i) Ft contains P−negligible sets for all t, (ii)

Ft is right continuous, i.e. Ft+ = Ft, ∀t (i.e. the totality of information is observable

by time t). Consider an adapted JDP {x(t)}

dx(t) = f(x(t))dt+ σ(x(t))dw(t) + dJ(t), x(0) = x0, (5.4)

where f(·) : Rn → Rn and σ(·) : Rn → Rn are Lipschitz continuous functions with

linear growth, {w(t)} is a Wiener process, {J(t)} is a shot noise process defined as

[124]

J(t) =
N(t)∑
`=1

y`e
−δ(t−τ`), ` ∈ Z+. (5.5)

In equation (5.5), N(t) is a Poisson process with intensity ρ, {τ`} are the event

times of a Poisson jump, {y`} is an i.i.d. random process with distribution F (y)

describing the `-th jump’s size, and δ is a real positive constant representing the rate

of exponential decay after a jump. The JDP in (5.4) is understood in Itô’s sense and

processes {w(t)} and {J(t)} are assumed to be independent from each other.

Let Y (τ`, y`) = y`e
δτ` , then J(t) in (5.5) may be written as

J(t) = e−δt
∫ t

0

∫
Rn
Y (τ, y)N(dτ, dy), (5.6)

where N(dτ, dy) is a Poisson random measure with E{N(dτ, dy)} = ρdtF (dy) and

F (dy) is the distribution of jump’s size. We define the increment of J(t) as dJ(t) =

J(t + dt) − J(t) where dt is an infinitesimal time increment. Using (5.6) to expand
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out dJ(t) and retaining the first order terms in dt, the jump process increment can

be written as

dJ(t) = −δJ(t)dt+
∫
Rn
yN(dt, dy), (5.7)

where the second term in (5.5) is known as a compound Poisson process [124]. Using

the expression for the jump increment in (5.5), the JDP in (5.4) can be rewritten as

dx(t) = (f(x(t))− δJ(t)) dt+ σ(x(t))dw(t) +
∫
Rn
yN(dt, dy), x(0) = x0. (5.8)

Since {J(t)} and {w(t)} in (5.7) are independent Markov processes and by the as-

sumed conditions on the filtration Ft, one may conclude that the solution of the JDP

in (5.8) is a Markov process with right continuous sample paths (cf. [124]).

Now consider a Markov process {x(t)} with right continuous sample paths and

consider any function V (x(t)) : Rn → R that generates some statistics of {x(t)}.

The (infinitesimal) generator of {x(t)} is an operator, L, whose action on V (x(t)) is

defined by

LV (x(t)) = lim
h↓0+

E{V (x(h))|V (x0)} − V (x0)
h

(if the limit exists),

where ↓ means that the limit is taken from the right. For a diffusion process {x(t)}

that satisfies stochastic differential equation dx(t) = f(x(t))dt + σ(x(t))dw(t) and a

function V (x(t)) ∈ C2(Rn) that is twice continuously differentiable in x and bounded

for all x ∈ Rn (denote this class of functions as C2(Rn)), its generator, LDP , is given

by [128]

LDPV (x(t)) = ∂V (x(t))
∂x

f(x(t)) + 1
2Tr

(
σT (x(t))∂

2V (x(t))
∂x2 σ(x(t))

)
. (5.9)

For the jump process {x(t)} in (5.8) and a function V (x(t)) ∈ C2(Rn), one can show
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that its generator LJP is defined as [148, 115]

LJPV (x(t)) = ρ
∫ ∞

0
(V (x+ y)− V (x)) dF (y)− ∂V (x(t))

∂x
δJ(x). (5.10)

Combining the above generators of diffusion and jump processes, one may conclude

that the generator, L, of the JDP in (5.8) is given by

LV (x(t)) = ∂V (x(t))
∂x

(f(x(t))− δJ(t)) + 1
2Tr

(
σT (x(t))∂

2V (x(t))
∂x2 σ(x(t))

)

+ρ
∫ ∞

0
(V (x+ y)− V (x))dF (y). (5.11)

Dynkin’s formula for JDP in (5.8) which can be used to characterize a supermartingale

V (x(t)) is stated below.

Lemma 5.2.1 ([115]). Consider the JDP in (5.8) defined on a bounded open set X ⊆

Rn with smooth boundary ∂X . Let τ := inf{t ∈ R+ |x(t) ∈ ∂X} with τ <∞ be a stop-

ping time. For V (x(t)) ∈ C2(Rn), suppose that E {|V (x(τ))|+
∫ τ
0 |LV (x(s))|ds} <

∞. Then

V (x(τ)) = V (x0) +
∫ τ

0
LV (x(s))ds. (5.12)

Now recall that a process {V (x(t))} is said to be a supermartingale with respect

to the filtration {Ft}t≥0 generated by process {x(t)} if: (i) ∀t ≥ 0, V (x(t)) is Ft-

measurable, (ii) E{|V (x(t))|} < ∞, and (iii) E{V (x(t2))|V (x(t1))} ≤ V (x(t1)) for

0 ≤ t1 ≤ t2 ≤ τ (cf. [128]). For a function V (x(t)) ∈ C2(Rn) with x(t) ∈ X that

takes values in a bounded open set X ⊆ Rn, it is known that the generated {V (x(t))}

is a martingale with respect to {x(t)} and satisfies conditions (i) and (ii) (cf. [124, Ch.

IV]). If V (x(t)) also satisfies LV (x(t)) ≤ 0, ∀x ∈ X with JDP’s generator LV (x(t)) is

as defined in (5.11), then Dynkin’s formula in (5.12) implies {V (x(t))} also satisfies

condition (iii). One may then conclude that V (x(t)) ∈ C2(Rn) with LV (x(t)) ≤ 0,

∀x(t) ∈ X generates a supermartingale with respect to {x(t)}. In this note, we will
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consider nonnegative supermartingale for which the following inequality holds.

Lemma 5.2.2 ([90]). Let {V (x(t))} be a supermartingale with respect to the process

{x(t)} where x(t) ∈ X ⊆ Rn and 0 ≤ t ≤ τ := inf{t : x(t) 6∈ X}. Let V (x(t)) be

nonnegative in X . Then for a constant θ > 0 and any initial condition x0 ∈ X ,

P
{

sup
0≤t≤τ

V (x(t)) ≥ θ
∣∣∣∣x(0) = x0

}
≤ V (x0)

θ
. (5.13)

5.3 Upper Bounds of MFPT and Safety Probability

Using the generator in (5.11), Dynkin’s formula in (5.12), and the supermartingale

inequality in (5.13), we now present methods to compute upper bounds for (5.2)-(5.3)

in JDP (5.8). The technique used in these computational methods is inspired by the

Lyapunov-like techniques in stochastic stability analysis of Markov processes [90].

5.3.1 Upper Bound for MFPT

Proposition 5.3.1 below characterizes an upper bound θ ≥ 0 for the MFPT of

JDP (5.8).

Proposition 5.3.1. Consider the JDP in (5.8) defined on a bounded open subset

X ⊂ Rn with smooth boundary ∂X . Let the initial condition x(0) = x0 be a random

variable that takes values in X0 ⊂ X . If there exists a real-valued function V (x(t)) ∈

C2(Rn) and a constant θ ≥ 0 such that

V (x(t)) ≥ 0, ∀x ∈ X ,

V (x(t)) ≤ 0, ∀x ∈ ∂X ,

V (x(t)) ≤ θ, ∀x ∈ X0,

∂V (x(t))
∂t

+ LV (x(t)) ≤ −1, ∀x ∈ X ,

where LV (x(t)) is defined in (5.11), then E{τ} ≤ θ with τ = inft{t ≥ 0 : x(t) ∈ ∂X}.
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Proof. The technique of the proof is similar to that in [122]. Itô’s lemma provides a

stochastic differential equation for V (x(t))

dV (x(t)) =
(
∂V (x(t))

∂t
+ LV (x(t))

)
dt+

m∑
k=1

(
n∑
i=1

∂V (x(t))
∂xi

σik

)
dwk(t).

Let τ ≡ inf{t ≥ 0 : x(t) ∈ ∂X} and define τ ∧ t = min{τ, t}. Integrating dV (x(t))

over the time interval [0, τ ∧ t] and taking the expectation yields

E {V (x(τ ∧ t))} = V (x(0)) + E
{∫ τ∧t

0

(
∂V (x(s))

∂s
+ LV (x(s))

)
ds

}
.

Taking the limit of the above equation as t→∞ and using the last condition in the

proposition’s statement, one finds

E[V (x(τ))] ≤ V (x0)− E
[∫ τ

0
ds
]

= V (x0)− E[τ ].

τ is the first time the state trajectory hits the boundary set ∂X and so the above

equation implies that the MFPT satisfies

E{τ} ≤ V (x0)− E[V (x(τ))].

Boundary points of X are limit points of X and since V (x(t)) ≥ 0 on X , this means

V (x(t)) = 0 on ∂X . One may therefore conclude that E{V (x(τ))} = 0 which implies

E{τ} ≤ V (x0). By the third condition in the proposition, we know that V (x0) ≤ θ

on X0 which implies E{τ} ≤ θ.

Remark 5.3.2. From the proof of this proposition, we see that E{V (x(t))|V (x0)} ≤

V (x0) for 0 ≤ t ≤ τ . Since X is a bounded set, this implies E{V (x(t))} < ∞ which

along with the requirement that V (x(t)) ≥ 0 for all x implies the stochastic process

generated by V (x(t)) is a supermartingale.
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Proposition 5.3.3 below is a simple extension of Proposition 5.3.1 and characterizes

an upper bound for the MFPT of diffusion processes. The proof of Proposition 5.2 is

similar with that of Proposition 5.3.1 except that we need to use the corresponding

generator LDPV (x(t)) of diffusion processes defined in (5.9).

Proposition 5.3.3. Consider a diffusion process dx(t) = f(x(t))dt + σ(x(t))dw(t)

defined on a bounded open subset X ⊂ Rn with smooth boundary ∂X . Assume the

initial condition satisfies x(0) = x0 ∈ X0 ⊂ X . If there exists a function V (x(t)) ∈

C2(Rn) and a constant θ > 0 such that

V (x(t)) ≥ 0, ∀x ∈ X ,

V (x(t)) ≤ 0, ∀x ∈ ∂X ,

V (x(t)) ≤ θ, ∀x ∈ X0,

∂V (x(t))
∂t

+ LDPV (x(t)) ≤ −1, ∀x ∈ X ,

where LDPV (x(t)) is given in (5.9), then E{τ} ≤ θ with τ = inft{t ≥ 0 : x(t) ∈ ∂X}.

Section 5.4 presents SOS relaxation methods for searching function V (x(t)) in Propo-

sitions 5.3.1 and 5.3.3.

5.3.2 Upper Bound for Safety Probability

We now present a characterization of the safety probability for JDP in (5.8). In

particular, Proposition 5.3.4 below characterizes a function V (x(t)) that bounds such

probability. The proof of this proposition is based on the proof in [90, Theorem 1]

(except that we use the JDP’s generator in (5.9)). The proof uses Dynkin’s formula in

(5.12) and the supermartingale inequality in (5.13). Using the polynomial expression

of the JDP’s generator in (5.9), a two-stage SOS optimization method to compute

the probability bound characterized in Proposition 5.3.4 is presented in Section 5.4.
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Proposition 5.3.4. Consider the set ΩV,γ = {x ∈ X |V (x) < γ} defined by a

constant γ > 0 and a nonnegative function V (x(t)) ∈ C2(Rn). Let {x(t)} with

x0 ∈ ΩV,γ be a right continuous JDP in (5.8) defined on ΩV,γ until at least some time

τ > τγ
.= inf{t ∈ R+ |x(t) 6∈ ΩV,γ}. Let LV (x(t)) be the JDP’s generator in (5.9) and

let V (x(t)) be in the domain of LV (x(t)). For a constant α > 0 and finite interval

t ∈ [0, T ], assume the condition below holds (with probability 1) in ΩV,γ.

LV (x(t)) ≤ −αV (x(t)) + β(t), (5.14)

where β(t) is a continuous, strictly positive function on [0, T ] with a maximum ε =

max0≤t≤T β(t). Let B(t) =
∫ t

0 β(s)ds for t ∈ [0, T ] and define θ = α/ε. Then for any

x0 ∈ ΩV,γ

P
{

sup
0≤t≤T

V (x(t)) ≥ γ | x0

}
≤

V (x0) + 1
θ
(eθB(T ) − 1)

γeθB(t) + 1
θ
(eθB(T ) − eθB(t)) . (5.15)

Proof. In the interval t ∈ [0, T ], define

W (x(t)) = e
αt
β(t)V (x(t)) + β(t)

α

(
e
αB(T )
β(t) − e

αB(t)
β(t)

)
, (5.16)

Let λ > 0 be such that if V (x(t)) > γ, then W (x(t)) ≥ λ. Consider the set

ΩW,λ , {x ∈ Rn, t ∈ R+ : W (x(t)) < λ, t < T}. (5.17)

Let τ .= inft{t ∈ R+ |x(t) 6∈ ΩW,λ} and consider the process {x(s)} = {x(t∧ τ)} that

takes values on ΩW,λ, with t ∧ τ = min(t, τ). Let L̃ be the infinitesimal generator

of {x(s)} acting on the function W (x(s)) defined on ΩW,λ. From the definition of

W (x(s)) in (5.16), we have

L̃W (x(s)) = θβ(s)eθB(s)V (x(s)) + eθB(s)LV (x(s))− β(s)eθB(s),

= eθB(s) (θβ(s)V (x(s)) + LV (x(s))− β(s)) .
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Since θβ(s) = αβ(s)/ε ≤ α and using LV (x(t)) in (5.14), then

L̃W (x(s)) ≤ eθB(s) (αV (x(s))− αV (x(s)) + β(s)− β(s)) ≤ 0.

Applying Dynkin’s formula to function W (x(t)) gives

E{W (x(t))} = E{W (x(0))}+ E
{∫ s

0
L̃W (x(t)) dt

}
≤ W (x0),

which implies W (x(t)) is a supermartingale. Thus, for λ ≥ 0

P
{

sup
0≤t≤T

W (x(t)) ≥ λ
∣∣∣∣ x(0) = x0

}
≤ W (x0)/λ

≤ V (x0)/λ+ (eθB(T ) − 1)/λθ.
(5.18)

Now since W (x(t)) ≥ λ implies V (x(t)) ≥ γ, then

W (x(t)) = eθB(t)V (x(t)) + (eθB(T ) − eθB(t))/θ ≥ λ

can be rearranged to obtain

V (x(t)) ≥ e−θB(t)
(
λ− (eθB(T ) − eθB(t))/θ

)
.

Thus, the condition that V (x(t)) ≥ γ implies

γ = e−θB(t)
(
λ− (eθB(T ) − eθB(t))/θ

)
.

Solving the above equation for λ and then substituting it back into (5.18) gives the

probability bound in equation (5.15).

Remark 5.3.5. Note that the bound in (5.15) corresponds to the probability that

the process’ sample paths fail to stay inside the set ΩV,γ. One may notice that the
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condition in (5.14) is less restrictive than the requirement LV (x) ≤ 0 used in [122].

This suggests that a better estimate of (5.15) can be achieved by choosing the function

β(t) in (5.14) to be a strictly decreasing function with small maxima (cf. Section 5.4

for one choice of β(t)).

5.4 SOS Optimization

As discussed in Section 5.1, provided that the drift, diffusion and the jump terms

in JDP (5.8) are polynomial functions and the sets X , ∂X ,X0,Xs in equations (5.2)-

(5.3) are semialgebraic, then the search for a barrier certificate, V (x(t)), can be

formulated as an SOS optimization problem. In this SOS optimization, V (x(t)) is

a polynomial function whose coefficients are the decision variables that will be de-

termined during the optimization task. Thus, our goal is to formulate polynomial

representations for the conditions (given in the previous subchapter) that guarantee

the process {V (x(t))} is a supermartingale. One issue in formulating such a repre-

sentation comes from the integral term in the JDP’s generator in (5.11). Proposition

5.4.1 below shows how to address this issue.

Proposition 5.4.1. Let y ∈ Rn be an n-dimensional independent random variable

with distribution F (y). Let V (x) = ∑
|α|≤p cαx

[α] be a multi-index representation of

polynomial function V (x). Then

∫
(V (x+ y)− V (x)) dF (y) =

∑
1≤|β|≤p

1
β!∂

[β] [V (x)]M|β|, (5.19)

and the generator in (5.11) can be rewritten as

LV (x(t)) = ∂V (x(t))
∂x

(f(x(t))− δJ(t)) + 1
2Tr

(
σT (x(t))∂

2V (x(t))
∂x2 σ(x(t))

)

+
∑

1≤|β|≤p

1
β!∂

[β] [V (x)]M|β|. (5.20)
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Proof. We only need to show that equation (5.19) holds since its substitution into

the integral term in equation (5.11) gives the generator in equation (5.20). Let us

write
V (x+ y) =

∑
|α|≤p

cα(x+ y)[α] =
∑
|α|≤p

cα
∑

0≤|β|,β≤α

(
α

β

)
x[α−β]y[β],

=
∑
|α|≤p

cα

x[α] +
∑

1≤|β|,β≤α

(
α

β

)
x[α−β]y[β]

 .
For notational convenience, let us denote the difference V (x+y)−V (x) as ∆V (x, y).

Using the above sum, one can write this difference as

∆V (x, y) =
∑
|α|≤p

cα
∑

1≤|β|,β≤α

(
α

β

)
x[α−β]y[β],

and since

∂[β]
[
x[α]

]
=


α!

(α−β)!x
[α−β] if β ≤ α,

0 otherwise,

the expression for ∆V (x, y) defined above can then be rewritten as

∆V (x, y) =
∑
|α|≤p

cα
∑

1≤|β|,β≤α

1
β!∂

[β]
[
x[α]

]
y[β].

Now expand out the first summation to obtain

∆V (x, y) =
∑
|α|=1

cα
∑
|β|=1

1
β!∂

[β]
[
x[α]

]
y[β] +

∑
|α|=2

cα
∑

1≤|β|≤2

1
β!∂

[β]
[
x[α]

]
y[β] + · · ·

+
∑
|α|=p

cα
∑

1≤|β|≤p

1
β!∂

[β]
[
x[α]

]
y[β].

The order of the summations can now be interchanged since α and β are no longer
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directly coupled to yield

∆V (x, y) =
∑
|β|=1

1
β!

 ∑
|α|=1

cα∂
[β]
[
x[α]

] y[β] +
∑

1≤|β|≤2

1
β!

 ∑
|α|=2

cα∂
[β]
[
x[α]

] y[β] + · · ·

+
∑

1≤|β|≤p

1
β!

 ∑
|α|=p

cα∂
[β]
[
x[α]

] y[β].

Reordering the terms in the first summation yields,

∆V (x, y) =
∑
|β|=1

1
β!

 ∑
1≤|α|≤p

cα∂
[β]
[
x[α]

] y[β] +
∑
|β|=2

1
β!

 ∑
2≤|α|≤p

cα∂
[β]
[
x[α]

] y[β] + · · ·

+
∑
|β|=p

1
β!

 ∑
|α|=p

cα∂
[β]
[
x[α]

] y[β].

Because ∂[β]
[
x[α]

]
= 0 when α ≤ β, the summation limits of the inner sums can be

extended from 1 to p, thereby yielding

∆V (x, y) =
∑
|β|=1

1
β!

 ∑
1≤|α|≤p

cα∂
[β]
[
x[α]

] y[β] +
∑
|β|=2

1
β!

 ∑
1≤|α|≤p

cα∂
[β]
[
x[α]

] y[β] + · · ·

+
∑
|β|=p

1
β!

 ∑
1≤|α|≤p

cα∂
[β]
[
x[α]

] y[β]. (5.21)

Now note that

∂[β]V (x) = ∂[β]

 ∑
|α|≤p

cαx
[α]

 =
∑

1≤|α|≤p
cα∂

[β]
[
x[α]

]
,

which is simply the inner sum in (5.21) and so the difference becomes

∆V (x, y) =
∑

1≤|β|≤p

1
β!∂

[β] [V (x)] y[β].

Integrating both sides with respect to F (y), and since each component of y is inde-
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pendent from each other, gives

∫
∆V (x, y)dF (y) =

∑
1≤|β|≤p

1
β!∂

[β] [V (x)]
∫
y|β|dF (y),=

∑
1≤|β|≤p

1
β!∂

[β] [V (x)]M|β|,

where we have noticed that the integral
∫
y|β|dF (y) = M|β| is the |β|-th moment of y.

Finally, the substitution of the above expression to the integral term in (5.11) gives

the JDP generator defined in (5.20).

Using the polynomial representation of the JDP’s generator in (5.20), we now for-

mulate the SOS optimization problems for computing upper bounds of the quantities

stated in Propositions 5.3.1 - 5.3.4.

5.4.1 Computation of MFPT Upper Bound

Proposition 5.4.2 below formulates the SOS optimization problem to compute

an upper bound for the MFPT in Proposition 5.3.1. In particular, this proposition

formulates the search of a barrier certificate V (x(t)) in Proposition 5.3.1 from which

an upper bound of the MFPT, θ can be deduced.

Proposition 5.4.2. Consider the JDP in (5.8) with initial condition x0 ∈ X0. Let

the sets X , X0, ∂X be described by X = {x ∈ Rn : gX (x) ≥ 0},X0 = {x ∈ Rn :

gX0(x) ≥ 0}, ∂X = {x ∈ Rn : g∂X (x) = 0}, respectively, where the g’s are polynomial

functions. Consider the polynomial parameterization V ∈ C2(Rn) of V (x(t)), and

define τ ≡ inf{t ≥ 0 : x(t) ∈ ∂X}. If there exists a function V (x(t)) ∈ V, constants

θ, ε > 0, and SOS polynomials σX (x), σX0(x), σ∂X (x) such that the SOS optimization
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min θ

such that V (x(t))− σX (x)gX (x)− ε is SOS,

−V (x(t))− σ∂X (x)g∂X (x) is SOS,

−V (x(t)) + γ − σX0(x)gX0(x) is SOS,

−∂V (x(t))
∂t

− LV (x(t))− σX (x)gX (x)− 1 is SOS,

(5.22)

has a feasible solution, then E{τ} ≤ θ.

Proof. The conditions for V (x(t)) in the above SOS program are the SOS relaxations

of inequality constraints in Proposition 5.3.1. In particular, such a relaxation is con-

structed using SOS polynomial multipliers σ(·)(x). Thus for a choice of SOS polyno-

mial parameterization, any feasible θ obtained from the minimization in Proposition

5.4.2 will serve as the tightest bound for the MFPT of the JDP in (5.8).

5.4.2 Computation of Safety Probability’s Upper Bound

This section presents a two-stage SOS optimization method to compute the prob-

ability bound in Proposition 5.3.4. The first stage on this method computes a Lya-

punov function V (x) for the drift term of the JDP in (5.8) that maximizes a subset

ΩV,γ of the system’s region of attraction (ROA). The second stage on the method

then uses the obtained Lyapunov function V (x) to estimate the values of constant α

and function β(t) in (5.14). Each of these stages is discussed below and illustrated

in Algorithm 3.

5.4.2.1 Computation of V (x) and ΩV,γ

Let ẋ = f(x), x(0) = x0 with x ∈ Rn, f(x) ∈ R[x] be a polynomial system and

assume x = 0 is a locally asymptotically stable equilibrium. The ROA of this system

is defined as

R := {x0 | if x(0) = x0 then lim
t→∞

x(t) = 0}.
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An exact computation of R is generally hard and one often limits the search to

estimate a largest subset ΩV,γ ⊂ R [84, 150]. The method described in this section

considers the set ΩV,γ := {x |V (x) ≤ γ} to be an ellipsoid defined by a constant

γ > 0 and a function V (x) = xTMx with M ∈ Sn+. Thus the objective is to compute

γ > 0 in the following optimization problem.

γ := max γ, s.t. ΩV,γ ⊂ R. (5.23)

We solve this problem by computing γ which guarantees that ΩV,γ is a maximal inner

approximation ΩV,γ ⊂ Ωω of the bounded level set Ωω of a Lyapunov function V(x)

defined as

Ωω = {x | V(x) ≤ ω} ⊂ {x | ∇V(x)f(x) < 0} ∪ {0},

for a constant ω > 0. Note that any feasible γ will guarantees that ΩV,γ ⊂ Ωω ⊂ R

and the corresponding V (x) is also a Lyapunov function. The optimization problem

in (5.23) can then be formulated as two optimization problems of the form

ω∗ := max ω, s.t. Ωω ⊂ R,

γ := max γ, s.t. ΩV,γ ⊂ Ωω,

which can be reformulated as the following two SOS optimization problems

ω∗ := max ω, s.t. − (ω − V)s1 − (∇Vf(x) + σ(x)) ∈ Σ(x),

V(0) = 0, V(x) ∈ Σ(x).

γ := max γ, s.t. − (γ − V )s2 − (ω∗ − V) ∈ Σ(x),

−(ω∗ − V )s1 − (∇V f(x) + σ(x)) ∈ Σ(x),

V (0) = 0, V (x) ∈ Σ(x),

116



where s1, s2 ∈ Σ(x) and σ(x) = ε‖x‖ for a small constant ε > 0. The constraints on

ω∗ are the SOS relaxations for the Lyapunov function property of V(x) whereas the

constraints on γ are the SOS relaxations for the Lyapunov function property of V (x)

and the set containment condition ΩV,γ ⊂ Ωω (cf. [151, Lemma 1]). As shown in

Stage 1 of Algorithm 3 (cf. [134, 21]), these optimizations can be solved iteratively by

bisections on both ω and γ using V(x) = V0(x) for initialization in which V0(x) is a

Lyapunov function of the linearized system. In particular, V0(x) = xTPx for a matrix

P ∈ Sn+ that satisfies the Lyapunov equation ATP + PA = −Q with A := ∂f(x)
∂x
|x=0

and Q ∈ Sn+. Note that the maximization of ω∗ is bilinear in the pairs (V , s1) and

(ω, s1) while the maximization of γ is bilinear in the pairs (γ, s2), (V, s1) and (V, s2).

Algorithm 3 shows that these bilinearities are avoided by holding one decision variable

fixed while searching for the other one [21]. The largest ΩV,γ is then searched for by

iterating Stage 1 until γ is no longer increasing.

5.4.2.2 Computation of α and β(t)

Based on the values of V (x) and ΩV,γ obtained in Stage 1, then Stage 2 searches

for a constant α > 0 and a function β(t) which satisfy (5.14). From the discussion

in Remark 5.3.5, we choose β(t) to be a rational function of time of the form β(t) =

tq−1/(c + t2q) with a maxima ε > 0 where c > 0 is a constant and q ∈ Z+. Since ε

is required to be small (cf. Remark 5.3.5), the condition in (5.14) suggests that one

needs to find a maximum α which satisfies equation (5.14) for a given V (x) and a

prespecified ε. If such an α is feasible then the corresponding β(t) can be determined

by choosing a maximum c such that max β(t) ≤ ε. The following two-step SOS

optimization algorithm summarizes the computation of constant α and function β(t)

(cf. Stage 2 in Algorithm 3).

1. Fix ε > 0 and solve for α in the following optimization.

α∗ := max α, s.t. ε− LV − αV ∈ Σ(x).
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Algorithm 3 Two-stage SOS optimization.

Stage 1 - Computation of V (x) and ΩV,γ.

Input: f(x),V0(x) and V (x)
1: Fix V , bisect ω, solve the optimization below for s1 ∈ Σ(x).
ω∗ := max ω, s.t. − (ω − V)s1 − (∇Vf(x) + σ(x)) ∈ Σ(x)

2: Fix V , ω∗, bisect γ, solve the optimization below for s1 ∈ Σ(x).
γ := max γ, s.t. − (γ − V )s2 − (ω∗ − V) ∈ Σ(x)

3: Fix s1, s2, γ, ω
∗ and find V (x) such that

V (0) = 0, V (x) ∈ Σ(x),
−(ω∗ − V )s2 − (∇Vf(x) + σ(x)) ∈ Σ(x),
−(γ − V )s1 + (ω∗ − V) ∈ Σ(x).

4: Set V = V and repeat from line 1 until γ stop increasing.

Stage 2 - Computation of α and c.

Input: V (x), ε0 > ε

5: procedure [α, c] = Bound (V, ΩV,γ, ε0)
6: set ε > 0, ε← ε0

7: while ε ≥ ε do

8: max α, s.t. [−LV − αV + ε] ∈ Σ(x)
9: if α exists then

10: max c, s.t. [tq−1 − (c+ t2q)(LV + αV )] ∈ Σ(x, t)
11: end if

12: ε← ε/2 . Bisection on ε

13: end while

14: return α∗ and c∗ . The optimal α and c

15: end procedure

2. Fix α and solve for c in the following optimization.

c∗ := max c, s.t. tq−1 − (c+ t2q)(LV + αV ) ∈ Σ(x, t),
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where Σ(x, t) denotes the set of SOS polynomials in variables x and t. Note that the

constraint in the second step is an SOS representation of the condition in (5.14). As

illustrated in Stage 2 of Algorithm 3, this two-step optimization is solved iteratively

through bisection on ε. The specified small constant ε > 0 in Algorithm 3 can be

used as a stopping criteria in searching for a feasible α. In particular, Remark 5.3.5

suggests that a small value of ε will gives a better estimate for the bound in (5.15).

Remark 5.4.3. The feasibility of α and c in Stage 2 depends on V (x) obtained in Stage

1. If a solution to α is not feasible for a fixed order V (x), one may try repeat the search

from Stage 1 using higher degree V (x) but at the expense of higher computational

effort. This computational complexity is still an active research problem in SOS

optimization method [117, 151]. Note also that the obtained ROA estimate can be

improved by using simulation data [151] or using the level-set method [155].

5.5 Examples

5.5.1 MFPT Approximation

This section illustrates the use of MFPT analysis discussed in the previous sections

in ecosystems management. In particular, we consider the problem of choosing a

harvesting strategy to manage the bass-crayfish population in freshwater lakes. Bass-

crayfish interaction is an intraguild predation system in which both species compete

for the same resource while also predating on one another. The model presented in

this section has two equilibria; one in which the bass dominate the ecosystem and

the other in which the crayfish dominate the ecosystem. An outbreak of crayfish

is undesirable as it can suppress the bass population. If such an outbreak occurs,

management strategies are needed to shift the crayfish-dominated equilibrium point

to the bass-dominated equilibrium point. One method to achieve this management

objective is to permit the harvesting of crayfish by anglers. In general, this harvesting
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process can be modeled as a jump process in which the size and the intensity of

harvesting events are variables that the ecosystem manager needs to set.

This example was drawn from a paper [38] that used MFPT as a basis for manage-

ment decisions. The underlying nondimensionalized model is given by the following

state equations,

ẋ1(t) = x1(k1 − k11x1 − k12x2)− k∗12x2x
2
1

K2
1 + x2

1
−

Nt∑
i=1

yiδ(t− τi),

ẋ2(t) = r21x2(k2 − k22x2 − k21x1) + η
k∗12x2x

2
1

K2
1 + x2

1
,

(5.24)

where the biomass of the crayfish and bass are denoted as x1 and x2, respectively, ki

and kii are the intrinsic growth rate and the strength of density dependence of the ith

species, respectively, kij is the competition rate on resource between species i and j,

k∗ij is the attack rates of species j on i, Ki is the carrying capacity, η is the conversion

efficiency, and rij is the ratio of growth rate between species i and j. The parameter

values are ki = kii = 1, k12 = 0.7, k21 = 0.9, k∗12 = 0.075, r21 = 1.5, η = 0.01, K1 = 0.1.

The last term in the first equation of (5.24) models crayfish harvesting as a compound

Poisson process in which the harvest size {yi}Nti=1 and the harvest times, {τi}Nti=1 are

i.i.d with exponential distribution of intensity µ and λ, respectively, and Nt is the

number of harvest events in the interval [0, t].

Figure 5.3 plots the isoclines for equation (5.24), identifies the two stable equilibria

and their regions of attraction (ROA), and marks the separatrix between the two

ROAs. Assuming that the system’s current state lies in the ROA dominated by the

crayfish, we are interested in computing the MFPT required by the process’ sample

paths to finally reach the ROA dominated by the the bass population.

To compute an upper bound for the MFPT using the SOS program in Proposition
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Figure 5.3. ROA in bass-crayfish interaction model (5.24) [37].

5.4.2, we define the following sets.

X =
{
x ∈ R2

+, t ∈ R+

∣∣∣ x1(1− x1) ≥ 0, x2(1− x2) ≥ 0, t(T − t) > 0
}
,

X0 =
{
x ∈ R2

+

∣∣∣ (x1 − 0.72)2 + (x2 − 0.36)2 ≤ 10−4
}
,

∂X = {x ∈ R2
+

∣∣∣0.27x1 ≥ x2
1, x2 ≥ x2

2, x2 − 0.14x3
1 − 9.5x2

1 − 1.1x1 + 3.10−4 = 0}.

Region X characterizes a unit square in R2
+ over the time interval [0, T ]. The initial

region X0 is a disk of radius 0.01, centered at the crayfish-dominated equilibrium.

The boundary region ∂X is the separatrix shown in Figure 5.3.

Figure 5.4a shows the MFPT approximation (circle) for µ = 0.1 and λ ∈ [0, 6]

obtained using SOSTOOLS. This plot also shows the MFPT obtained using a Monte

Carlo (MC) simulation with a 95% confidence interval and estimates (plus) obtained

in [37]. The estimates in [37] were based on a linearization and were only valid for

small mean harvest sizes (µ). As a result, the estimates from [37] under approximate

the actual MFPT seen in MC simulations, whereas our results provide reasonable

upper bounds on the MFPT.
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(a) MFPT comparison for various λ. (b) MFPT as a function of µ and λ..

Figure 5.4. Result of MFPT approximation.

Figure 5.4b shows a more complete surface plot of our MFPT approximations for

a range of µ and λ. Clearly, one can maximize the likelihood of a regime shift by

simply increasing the intensity of harvesting. In general, one would want to limit such

harvesting intensity since large harvesting intensity may drive the crayfish population

to extinction. While crayfish may be considered to be a ”nuisance”, the extinction of

a species in the eco-system reduces overall bio-diversity and often makes such systems

more prone to collapse from extreme events [73]. Thus for management purposes, a

reasonable choice on harvesting strategy involves limiting the harvesting rates λ and

µ to minimize the likelihood of crayfish extinction while still achieving a regime shift

over a specified time interval.

5.5.2 Safety Probability

This example illustrates the use of stochastic safety analysis in ecosystems man-

agement. In particular, we are interested in bounding the probability that a coexist-

ing bass-crayfish population fails to maintain a desired bass-dominated state in the

presence of harvesting activities.

The density of the bass population in many freshwater lakes has been observed

to decline significantly due to sport harvesting activities. In many cases, overfishing
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of bass may shift the lake from a bass-dominated state to an undesired crayfish-

dominated one whereupon the bass population is further suppressed due to their

loss in competition for food and shelter. In order to evaluate the sustainability of

the bass population under such harvesting pressure, we need methods to evaluate

the likelihood that a coexisting bass-crayfish population fails to stay within the de-

sired bass-dominated region. One such method can be developed by modeling the

harvested bass-crayfish interaction as a jump diffusion process in which the jump

process part of the model is used to describe the harvesting activities of certain in-

tensity and size parameters. For a given set of harvesting parameters, the objective

is then to bound the probability that the coexisting bass-crayfish population fails to

stay within the bass-dominated region.

A normalized model of crayfish (x1) and bass (x2) interaction under harvesting

events is given by [37]

dx1(t) =
(
x1(1− x2

1 − 0.65x2)− 0.65x2x
3
1

0.01 + x4
1

)
dt+ σx1dw1(t),

dx2(t) =
(

1.5x2(1− x2
2 − x1) + 0.01x2x

3
1

0.01 + x4
1

)
dt+ σx2dw2(t)− x2dJ(t),

(5.25)

where (x1, x2) = x ∈ X and X is a unit square. The Wiener processes {wi(t)}, i = 1, 2

of intensities σ = 0.05 describe small fluctuations in each population due to variations

in growth rate or other environmental factors. The jump process {J(t)} models

crayfish harvesting as a shot noise process (5.6) in which N(t) is the number of

harvest events in the interval [0, t], the harvest time {τ`}N``=1 and size {y`}N``=1 are i.i.d.

with exponential distribution of intensity ρ = 0.2 and mean µ = 0.075, respectively,

and δ = 0.25. Since the noise processes may drive the system persistently outside X ,

we consider the stopped process of (5.25) defined up to a stopping time τ := inf{t ∈

R+ | x(t) ∈ ∂X} so that x(t) = 0,∀t > τ .

In the absence of processes {w(t)} and {J(t)}, model (5.25) has two stable equi-

123



libria: a bass-dominated equilibrium E1 at x = (0.19, 0.89) and a crayfish-dominated

equilibrium E2 at x = (0.75, 0.5). Fig. 5.5a plots the isoclines, identifies the two sta-

ble equilibria, and marks the separatrix between the two ROAs. Fig. 5.5a also plots

one realization of (5.25) when initialized from the ROA of E1. This realization shows

that each harvesting event causes a step decrease in the bass population, after which

the system begins relaxing back to E1. There is a finite probability that repeated

harvesting events will drive the system state across the separatrix, whereupon the

system’s equilibrium state shifts to E2. Assuming that the system starts inside a safe

region Xs defined by the ROA of E1 (shaded area in Fig. 5.5a), we are interested in

bounding the probability that its sample paths leave (exit) the set Xs in a finite time

interval t ∈ [0, T ].

A circle of radius 0.05 centered at x = (0.01, 0.5) is used as initial set X0 ∈ Xs. To

bound the exit probability of {x(t)} in (5.25) from Xs, we implemented Algorithm

3 in MATLAB using software tools SOSOPT [134], SOSTOOLS [121] and SeDuMi

[139]. A dual core 2.2GHz PC with 4GB RAM was used for simulations.

After shifting E1’s coordinate to the origin, we ran Stage 1 of Algorithm 3 and

found a fourth order Lyapunov function V (x) whose ROA’s level set ΩV,γ = {x ∈

X |V (x) ≤ γ∗} for a lower bound γ∗ = 6.96 is plotted in Fig. 5.5a as a bold line

ellipse. The closest intersection between V (x)’s level set and the separatrix is at

V (x) = γ = 14.55 and so the probability P{x(t) 6∈ Xs, t ≤ T} of leaving Xs :=

{x | V (x) < γ} in a finite time T is no greater than P{ sup
0≤t≤T

V (x(t)) ≥ γ |x0 ∈ X0}.

We choose β(t) = t/(c + t4). Using the obtained V (x) and setting ε = 10−4 with

ε0 = 0.1, we ran Stage 2 of Algorithm 3 and found α = 0.117 and c = 5.79×103. These

results can then be used in (5.15) to bound P{x(t) 6∈ Xs, t ≤ T}. Our simulation

results indicate that both steps are solved optimally (feasibility ratio ≥ 1, duality

gaps ≈ 10−10, cf. [139]).

Figure 5.5b (dashed curve UB(γ)) shows the probability bound obtained using
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(a) Phase portrait and ROA.
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Figure 5.5. Phase portrait, ROA and probability bound.

the proposed method when evaluated over a finite time T = 105. This plot suggests

that for t ≥ 2× 103 and the specified harvesting parameters, the probability that the

coexisting population fails to stay within the bass-dominated region is greater than

or equal to 0.5. This information can be used to design lake management strategies.

For example, in order to ensure the probability that the lake fails to maintain its safe

bass-dominated state is lower than 0.5, a lake manager may choose to allow the sport

harvesting of bass only up to time t = 2 × 103. Alternatively, the manager can also

choose to regulate the allowed harvesting parameters over different time intervals.

The design of such management strategies is beyond the scope of this note and is left

for future work.

Figure 5.5b also plots the estimates of the probability bounds obtained using the

method described in [122] (dashed star curve [122](γ)) and from 500 realizations of

a Monte Carlo (MC) simulation (dashed circle curve MC(γ)) based on the Euler-

Maruyama scheme with 95% confidence interval and uniformly distributed initial

condition X0. It can be seen that the result obtained using the proposed method

upper bounds the MC simulation result (average difference ≈ 0.1 over the given T )

and is tighter than that obtained using the method described in [122]. This suggests
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that the use of less restrictive (time-varying) condition on the JDP’s generator in our

proposed method helps provide better upper bounds.

Note that Figure 5.5b also compares the obtained results when the safe set is

X ∗s := {x |V (x) < γ∗} (solid lines [MC](γ∗), [UB](γ∗), [3](γ∗)). This plot suggests

that an upper bound for the safety probability can still be obtained using the proposed

method (possibly more conservative) even if the separatrix that defines the boundary

of the system’s true ROA is not known.

The main advantage of the SOS optimization method as compared to the MC

simulation method can be seen in terms of the computation time and the memory

usage. In our simulations, the computation of the MC(γ) bound in Figure 5.5b takes

about eight minutes and uses up to 95 megabytes (MB) of memory whereas the

computation of the SOS bounds takes an average of one minute and only use up to

15 MB of memory. This illustrates the effectiveness of the proposed method to verify

the safety of a process without requiring exhaustive simulations of its sample paths.

5.6 Remarks and Future Works

This chapter presented a computational framework to predict the occurrence of

noise-induced regime shifts for systems that are perturbed by jump/shock processes.

Such predictions are formulated either as mean first passage time problem or as

stochastic safety analysis whose solutions can be obtained using SOS optimization

method. We presented examples of using the proposed method in the studies of

ecosystem regime shift management.

Future works: One possible extension of the method discussed in this chapter is

its application to predict large scale regime shifts or phase transitions in networks

of interconnecting stochastic processes. The method presented in this chapter, how-

ever, cannot be applied directly to this large scale problem due to the limitation of

the SOS optimization method which only capable of solving small to medium scale
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Figure 5.6. Network of lake systems.

problems. A method to address this issue is by using the divide-and-conquer method

to decompose the network into smaller subsystems. If an appropriate decomposition

of the network can be obtained, the method presented in this chapter can be used to

analyze each subsystem.

To illustrate this approach, let us consider a hypothetical networked systems in

Figure 5.6. This networked system assumes that each subsystem or site is governed

by the scalar SDE of the lake eutrophication model discussed in Section 5.1. Thus,

one may view this networked system as a spatial model for the Phosporus (P ) concen-

tration in three connected sites of a lake. The influx (u) of P from the environment

enters the lake in site 1 and then distributed to other sites through inter-site fluxes

of intensity α. The Wiener process wi(t), (i = 1, . . . , 3) in the model of each site

illustrates stochasticity that occurs due to small variation in the amount of input or

inter-site fluxes that enter each site. We assume that the drift term of the model

of each site is bistable and that the intensity σ of the Wiener process in each site is

relatively small such that each stable equilibria of the site is stochastically stable with

probability 1. Moreover, the network is assumed to be weakly coupled so that the

assumption that each subsystem is stochastically stable guarantees that the network

system also stochastically stable [107, 108].

To analyze the system in Figure 5.6, we view the network as an interconnection

of isolated subsystems that are coupled through the inter-site fluxes. In this case, the

127



dynamic of each site is governed by SDE of the form

dxi(t) = [fi(xi(t)) + g(x−i(t))]dt+ σdwi(t), (i = 1, 2, 3),

in which the subscript −i ∈ Ni denotes the ith site’s nearest neighbors Ni. This

modeling approach results in the following SDE model of the network.

dx1(t) =
(
u− (1 + α)x1 + x3

1
θ3 + x3

1
+ αx2

)
dt+ σdw1(t),

dx2(t) =
(
−(1 + 2α)x2 + x3

2
θ3 + x3

2
+ α(x1 + x3)

)
dt+ σdw2(t),

dx3(t) =
(
−(1 + α)x3 + x3

3
θ3 + x3

3
+ αx2

)
dt+ σdw3(t).

(5.26)

Notice in model (5.26) that the last term in the drift part of the ith site’s is only a

function of its nearest neighbors’ states. This suggests that networked system (5.26)

can be viewed as a random process evolving on a graph and the dynamics of the

network can be studied using Markov Random Field (MRF) formalism [86, 13].

Let G = (S,E) be an undirected graph of networked system in Figure (5.6) which

consists of a finite number of sites S whose edges E ⊂ S × S characterize the sites

that are adjacent to each other. Consider a random process evolving on the graph

G and let wi be random variables describing the configuration of the ith site. In

our case, the set of configurations are the two possible stable states that the system

may have (i.e. oligotrophic and eutrophic states). Assume the probability of site ith

configuration wi taking some value can be specified as a conditional probability (or

local specification) [86, 13] of the form

P(wi|wj, j ∈ S) = P(wi|w−i,−i ∈ Ni). (5.27)

The above relation suggests that the probability of site i taking a particular configu-
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ration wi depends only on the configuration of its neighboring sites. In other words,

the probability of the ith site’s state to switch between the two possible configura-

tion (i.e. from oligotrophic to eutrophic and vice versa) depends only on the size of

the inter-site fluxes with its neighboring sites. This exactly is the stochastic safety

problem discussed in the previous section and so the local specification in (5.27) can

be evaluated using the SOS optimization techniques discussed in Section 5.3.

Figure 5.7 shows a preliminary result supporting the idea of using MRF abstrac-

tion to study regime shifts in coupled SDEs. The sample trajectories of the coupled

SDEs (5.26) generated using direct integration method is plotted in Figure 5.7a. This

figure is generated using an input flux u = 0.1 which is large enough to trigger regime

shifts between the stable states of site 1. One may see from this figure that the shift

from low to high P levels in site 1 is followed by the same shifts in sites 2 and 3,

causing a phase transition of the network from low to high P concentrations. Figure

5.7b plots the Monte Carlo (MC) simulations of the MRF model discussed previ-

ously. The transition probability (5.27) used in the MC simulation of the MRF is

constructed based on the solution of the stochastic safety analysis discussed in Section

5.3. One may see that the result from the MRF abstraction is capable of capturing

(a) Direct integration. (b) MRF abstraction.

Figure 5.7. Simulation comparison of the coupled SDEs (5.26).
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the qualitative properties of the network’s transition from low to high P level. The

main advantage in using the MRF abstraction is that its required computation effort

is less than that required by direct integration method (i.e. simulation time of the

MRF abstraction is 1/100 th of the simulation time required by the direct integration

method). The MRF abstraction method therefore provides a means to reduce the

computation cost required in analyzing a large scale interconnected SDEs.

Future research directions that could be pursued include the development of a

theoretical framework for explaining the large scale regime shifts phenomena in in-

terconnected systems as well as the construction of efficient algorithm that connects

the SOS optimization method and the sampling methods in MC simulation of MRF.
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CHAPTER 6

FORECASTING REGIME SHIFTS IN A MICROBIAL PREDATOR AND PREY

SYSTEM

This chapter describes an application of regime shift analysis in a mathematical

model identified in an experiment on an ecological system test bed. The test bed

is a laboratory scale chemostat that cultures a microbial predator and prey system.

The prey is green algae, Chlorella vulgaris and the predator is a rotifer, Brachionus

calyciflorus. The test bed was based on a similar experiment reported in [50, 157].

In that experiment, it was shown that this particular predator and prey system

setup exhibited different alternative dynamics including population extinction, stable

coexistence and sustained oscillation.

The initial objective of the work reported in this chapter was to evaluate the

potential use of the D2B analysis from Chapter 4 for studying regime shifts in models

of real life systems. The chemostat experiment reported in [50, 157] is a suitable

candidate for this purpose. This is not only because the experiment was relatively

simple but also because the models of the C. vulgaris and B. calyciflorus interaction

identified in [50, 157] have kinetic realizations.

To achieve our objective, a laboratory chemostat similar to that reported in [50,

157] was constructed. Using data obtained from the chemostat, we identified several

differential equation models for the C. vulgaris and B. calyciflorus interaction. We

found that the data was best predicted by models with multiple clones of C. vulgaris

that differ in palatability. This finding was consistent with that suggested in [135,

157]. One of the identified models was then used to study regime shifts in the C.
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vulgaris and B. calyciflorus interaction.

We first attempted to use the D2B analysis to study the system’s robustness

under parametric variations. We found that the analysis could not be applied to

the identified model because both the computation of the Gröbner basis and the

characterization of the bifurcation conditions were intractable.

To address the limitation of the D2B analysis, we developed another approach

to study regime shifts [98]. The approach essentially formulated the regime shift

analysis as robust stability analysis of affine parameter dependent systems [51]. This

formulation was based on a modification of the method described in Chapter 4. The

approach combined the effectiveness of linear matrix inequality (LMI) methods [12]

and the symbolic-numerical algorithms [31]. The approach was applied to one of

the identified models to predict regime shifts in the presence of parametric variation.

We found that the analysis results from the proposed method provide lower bound

for the distance to regime shifts obtained from direct numerical simulations of the

system’s ODE model. This suggests that the used method indeed provides a way of

characterizing how robust a system may be to parametric variations and therefore

can be used as a measure of the distance to regime shifts.

This chapter is structured as follows. Section 6.1 presents basic chemostat concept

and the model of the predator and prey system. Section 6.2 describes the materi-

als and methods used for constructing the chemostat test bed. Model identification

of the C. vulgaris and B. calyciflorus interaction using maximum likelihood estima-

tion method [123, 59] is also discussed. Section 6.3 presents the results on model

identification and robustness analysis of the identified model. Section 6.4 gives final

remarks.
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6.1 Introduction

This section presents background on the chemostat and discusses a model for

the predator and prey system to be cultured inside the chemostat. A chemostat is

a well-mixed, continuous culture device that is often used in experiments to study

the dynamics of nutrient-limited microorganisms or bacteria [70, 136]. It is a useful

platform for hypothesis testing purposes because many environmental factors that

affect microbial growth can be systematically controlled during the experiments.

6.1.1 Chemostat

Figure 6.1 illustrates the basic set up of a chemostat. The set up consists of three

connected vessels namely the feed, the culture and the collection vessels. The feed

vessel is filled with a media (liquid) that contains all nutrients that are required for

bacterial growth. All of these nutrients are available in excess except one that is

often referred to as the limiting nutrient [136]. By limiting a particular nutrient, the

chemostat can be used to study how variations in this limiting nutrient affect the

growth of the cultured bacteria. The culture vessel is the place where bacteria grow

under the supply of media from the feed vessel. Other environmental factors such as

light or sterile air are also provided to the culture vessel. The media in the culture

is assumed to be well mixed in the sense that the content from the feed, the light

illumination, and the air supply are uniformly dispersed throughout the vessel. The

collection vessel is where the products of the culture are collected for measurement

or other purposes.

The basic operation of a chemostat is as follows. The media in the feed vessel is

pumped into the culture vessel at a steady state flow rate F and the media emerges

from the culture vessel at the same rate. Thus, the residence time of a particle in the

culture vessel with volume V is determined by the dilution rate δ = F/V which is

defined as the number of complete volume-changes/hour [136]. This implies that the
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Figure 6.1. Basic schematic of a chemostat.

mean residence time of any particle in the culture vessel is equal to 1/δ. Thus, if the

concentration of an organism in the culture vessel is denoted as x, then its dilution

rate from the culture vessel is defined as dx/dt = −δx.

Now consider a single species bacteria that is cultured in the chemostat with a

constant inflowing media containing one limiting nutrient N at concentration Nin.

Assume that all other nutrients required for bacterial growth are available in excess

within the media and that the culture vessel of the chemostat is well aerated and

sufficiently illuminated. Assume further that an experimenter may only control (i)

the concentration Nin of the limiting nutrient in the media supplied from the feed

vessel and (ii) the dilution rate δ at which the the media emerges from the culture

vessel. Using the law of mass conservation, the rate of change of the bacteria (x) and

the limiting nutrient (N) concentrations in the culture vessel satisfy the following

differential equation [136]

dN

dt
= δ(Nin −N)− µx

ε

(
N

Kx +N

)
,

dx

dt
= x

(
µN

Kx +N
− δ

)
,

(6.1)

where µ denotes the rate of nutrient uptake by the bacteria and ε is an efficiency

factor describing fraction of bacteria increase for the available amount of nutrient.

Model (6.1) uses the Michaelis-Menten kinetics with a half saturation constant Kx
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to describe the nutrient uptake by the bacteria. The differential equation (6.1) is a

basic model for the dynamics of a single species bacteria cultured in the chemostat.

It can be extended to model interactions of multiple bacteria that are simultaneously

cultured in the chemostat.

6.1.2 C. Vulgaris and B. Calyciflorus Interaction in the Chemostat

One example of microbial interaction in the chemostat is the predator and prey

interaction between C. vulgaris and B. calyciflorus [50]. C. vulgaris is a unicellular

green algae that grows and multiplies through photosynthesis with the help of carbon

dioxide, water, light, and some nutrients. The rotifer, B. calyciflorus, is a freshwater

zooplankton whose growth rate depends on the available concentration of algae such

as C. vulgaris. Culturing both B. calyciflorus and C. vulgaris simultaneously in

a chemostat therefore sets a microbial predator and prey interaction. By limiting

the concentration of a primary nutrient such as nitrogen in the supplied media, the

growth of the prey species (C. vulgaris) will be limited by the available limiting

nutrient concentration whereas the growth of the predator species (B. calyciflorus)

will be limited by the available prey species concentration.

A model for the C. vulgaris and B. calyciflorus interaction was proposed in [50]

and is given below.
dN

dt
= δ(Nin −N)− FC(N)C,

dC

dt
= FC(N)C − FB(C)B

ε
− δC,

dR

dt
= FB(C)R− (δ + µ+m)R,

dB

dt
= FB(C)R− (δ +m)B.

(6.2)

In equation (6.2), variables N, C, R and B denote the concentrations of nitrogen

(limiting nutrient), C. vulgaris, reproducing B. calyciflorus and nonreproducing B.

calyciflorus, respectively, in the culture vessel. The parameters δ,Nin and ε are the
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dilution rate of the chemostat, the nitrogen concentration in the supplied media

and the conversion efficiency of the nutrient uptake by the C. vulgaris, respectively.

Functions FC(N) and FB(C) denote the monoid type response functions of C. vulgaris

and B. calyciflorus, respectively, defined as follows.

FC(N) = bCN

KC +N
and FB(C) = bBC

KB + C
.

The parameters bC (bB) and KC (KB) in these functions denote the maximum birth

rate and half saturation constant of the C. vulgaris (B. calyciflorus), respectively.

Note that model (6.2) classifies the rotifer population into those that can reproduce

(R) and cannot reproduce (B). This classification was based on experiments reported

in [50] where it was observed that the decline in rotifer population was not only caused

by their exit from the culture (δ) but also due to the loss of fecundity while senescent.

These additional loss effects are described in model (6.2) through parameters m and

λ that describe the instantaneous mortality and the senescence rate of the rotifers,

respectively.

Experimental data was used in [50] to estimate equation (6.2)’s parameters. In

the experiment reported in [50], the media was set to have a limited nitrogen concen-

tration and observations of both species concentrations were conducted for different

values of dilution rates. The experimental observations suggested that the C. vul-

garis and B. calyciflorus interaction result in a stable equilibrium where both the

predator and the prey coexist at a steady state concentration. This occured at both

low and high dilution rates. The system also exhbited a limit cycle behavior for

medium dilution rate. As described in [50], model (6.2) correctly predicted these

different dynamics for the corresponding values of dilution rates. However for the

case of population cycle, model (6.2) failed to capture the observed period and phase

of the population cycle.
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Further analyses of the experimental data were conducted to find possible mech-

anisms that were excluded in model (6.2) [135]. In particular, four modifications of

model (6.2) were proposed to account for the observed cycles. Each model encap-

sulated a hypothesis about the mechanism responsible for the feature of the cycles.

The hypothesized mechanisms were (i) viability of rotifers’ eggs increases with the

available food source, (ii) algae’s nutritional value increases with nitrogen availabil-

ity, (iii) algal physiological state varies with toxins’ accumulation in the chemostat

and (iv) algae evolves in response to predation [135]. It was found that the fourth

hypothesis on algae evolution best predicted the observed period and phase of the

cycle [135, 76]. By incorporating this evolutionary effect into model (6.2), a modified

model in (6.3) was shown in an experiment to resolve such a discrepency [157].

dN

dt
= δ(V Nin −N)−

k∑
i=1

FC,i(N)Ci,

dCi
dt

= ηCFC,i(N)Ci − FB,iB − δCi,
dR

dt
= ηBFB(Ci)R− (δ +m+ λ)R,

dB

dt
= ηBFB(Ci)R− (δ +m)B,

(6.3)

where i = 1, 2, . . . , k denotes the k number of different clones in the C. vulgaris

population and

FC,i(N) = bCN

KC(pi) +N
, FB,i = bBpiCi

KB +∑k
i=1Ci

, FB(Ci) =
∑k
i=1Cipi

KB +∑k
i=1Cipi

.

The main difference between models (6.3) and (6.2) is that the C. vulgaris population

in (6.3) is now partitioned into k number of different clones. Each clone is charac-

terized by a palatability parameter pi ∈ [0, 1] which indicates its relative food value

to the B. calyciflorus. Clones with low pi are less prone to predation but are also

less competitive than clones with higher pi in term of nutrient utilization. This char-
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acteristic therefore suggests a trade off between food value and competitive ability

among clones in the C. vulgaris population [157].

6.2 Materials and Methods

This section describes the materials and methods used to construct a chemostat

with similar setup as that reported in [50, 157]. A maximum likelihood estimation

method [123, 59] for identifying differential equation models for the C. vulgaris and

B. calyciflorus interaction is then presented.

6.2.1 Materials

Figure 6.2 shows the constructed chemostat and its schematic. The set up consists

of one feed vessel that pumps media containing the limiting nutrient (i.e. nitrogen)

into five plastic culture vessels with volume V = 400 mL. The media emerging from

each culture vessel is collected in a collection vessel.

The feed vessel continuously supplies the media throughout the experiment. The

media is a 50% Bold’s Basal Medium (BBM-Medium, modified) [75] with a limited

100 micromolar (µM) nitrogen concentration and additional 5 gram per liter (g/L)

NaCl crystal (see Appendix D.1). The dilution rates of the media from the feed to

the cultures are adjusted using two peristaltic pumps (Cole-Palmer’s Masterflex L/S).

One pump sets a low dilution rate to three culture vessels (C1 - C3) while another

pump sets a medium dilution rate to the other two culture vessels (C4 - C5).

Continuous light illumination and inflow of sterile air are provided to each culture

vessel to prevent light or CO2 limitation in microbial growth. Each culture vessel is

equipped with a magnetic stirrer bar to ensure complete mixing of the nutrients and

the microorganisms inside it.

The C. vulgaris (Item # 151955) and B. calyciflorus (Item # 162860) species

used in the experiment were obtained from the Carolina Biological Supply Company
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(a) The constructed chemostat.

(b) Schematic of the chemostat.

Figure 6.2. Chemostat used in the experiment.
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(http://www.carolina.com).

6.2.2 Methods

6.2.2.1 Experiment and Measurement

Experiment was started by setting both supply pumps at low dilution rates (δ =

0.04 V/day). Five mL C. vulgaris were added to each culture vessel and the chemostat

was left to operate for five days until each culture contained a high density of C.

vulgaris (≥ 106 cell/mL). One of the pumps (supplying C1 - C3) was then switched

to a dilution rate δ = 0.1 V/day while the other (supplying C4 - C5) was set to a

dilution rate δ = 0.95 V/day. The chemostat was then left to run for another five

days to ensure that the cultures still contained a high density of C. vulgaris (≥ 106

cell/mL) for the two dilution rates. After that, five (5) mL B. calyciflorus (1 mL

≈ 20 cells) were added to the culture vessels C2 - C5. Note that the B. calyciflorus

was not added into the culture vessel C1 because the vessel was only used to stock

the C. vulgaris population.

The measurements were done daily for 45 days to obtain a measure of the daily

variation in the population of both microorganisms. The measurements were obtained

from culture vessels C2 - C5 by sampling through their top covers. The samples were

taken using serological pippette. For each sample, the number of cells of both C.

vulgaris and B. calyciflorus were measured. The total number of B. calyciflorus cells

were counted using a dissecting microscope whereas the total number of C. vulgaris

cells were counted using a compound microscope. Figure 6.3 plots the data for the

two dilution rates (cf. Appendix D.2 for the raw data). For each dilution rate, the

data were averages of the measurements from the corresponding two culture vessels.

Figure 6.3 shows that both microorganisms coexisted in the chemostat for the two

dilution rates. For a low dilution rate δ = 0.1, the microorganisms coexisted in

a stable steady state. For a medium dilution rate (δ = 0.95), the microorganisms
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(a) Dilution rate δ = 0.1.

0 5 10 15 20 25 30 35 40 45
0

20

40

60

80

100

120

 

 

Chlorella (×104 cell/mL)

0 5 10 15 20 25 30 35 40 45
0

5

10

15

20

day

 

 

Brachionus (cell/mL)

(b) Dilution rate δ = 0.95.

Figure 6.3. Measurements of C. vulgaris and B. calyciflorus: (a) δ = 0.1,
(b) δ = 0.95.

coexisted in a limit cycle. These observations were in agreement with that reported

in [50]. This data set was used to estimate the parameters in models (6.2) and (6.3).

6.2.2.2 Model Identification

The data obtained from the chemostat was used in model identification. The

model identification was done to estimate the parameters of equations (6.2) and

(6.3). This section describes a maximum likelihood estimation method [123, 59] that

was used to fit models (6.2) and (6.3) to the data.

Consider a dynamical system with n state variables x(t) = [x1, . . . , xn]T and p

parameters k = [k1, . . . , kp]. Assume that the system is modeled as a parameterized

ordinary differential equation (ODE)

ẋ(t) = f(x(t), k), x(0) = x0. (6.4)

It is often the case that only some of the state variables can be measured directly

in the experiment. In particular, it can be the case that only combination or rel-
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ative quantities of some state variables that can be measured. This is true in our

experiment where only the total number of rotifer cells (R + B in equation (6.1))

were measured rather than the individual number of reproducible (R) and nonrepro-

ducible (B) rotifer cells. In order to take such cases into consideration, let us define

an observation function g : Rm → Rm that maps the state variables x(t) to a set of

m measurement y(t) = [y1, . . . , ym]T such that

y(t) = g(x(t), η) (6.5)

where η denotes the measurement parameter. The state and observation equations

in (6.4) and (6.5), respectively, therefore take into account the case when the system

states are only partially observable, i.e. when m < n. In reality, the measurements

are usually corrupted with noise. Thus, if yij denotes the jth measurement data taken

at time ti, (i = 1, . . . , T ), one may assume that it contains the true measurement

yj(ti) and a random process ej(ti), i.e.

yij = yj(ti) + ej(ti). (6.6)

In practical applications, the process ej(ti) is often assumed to be an i.i.d. random

variables with a Gaussian distribution [123].

Given the system model in (6.4)-(6.5) and the measurement data of the form (6.6),

the maximum likelihood estimation (MLE) method seeks an optimal parameter k∗

that maximizes the likelihood of the data y for the given parameter k [123]. This

is achieved by searching for parameter k that maximizes the likelihood function. If

the measurement error has a Gaussian distribution with a zero mean and a time-

dependent variance σ2
ij, then the likelihood function L is given by

L(y|k) =
T∏
i=1

m∏
j=1

1
σij
√

2π
exp

(
−1

2
(yij − gj(x(ti, k), k))2

σij

)
(6.7)
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In practice, the maximization of the likelihood function L is done through minimiza-

tion of its negative logarithm, i.e.

− log [L(y|k)] =
T∑
i=1

m∑
j=1

1
2Rij(k)2 + log

[
σij
√

2π
]
, (6.8)

where

Rij(k) = yij − gj(x(ti, k), k)
σij

(6.9)

is often called the residual function [123]. Thus, the optimal parameter, k∗ obtained

by the MLE method is given by

k∗ := arg min
k

T∑
i=1

m∑
j=1

1
2Rij(k)2. (6.10)

Note that the second term on the right hand side of (6.8) can be excluded in the

minimization (6.10) as it is independent of the unknown parameter k.

One approach to solve the minimization in (6.10) uses the gradient-based opti-

mization method described in [123, 59]. In this approach, parameter updates that

minimize (6.10) are computed iteratively. These parameter updates are obtained

based on the gradient of the residual Rij with respect to parameter k that is com-

puted at each step of the iteration. In particular, the gradient of the Rij is defined

as
∂

∂k
Rij(k) = −1

σij

∂gj(x(ti, k), k)
∂k

= −1
σij

 n∑
i=1

∂gj
∂xn

∣∣∣∣∣
ti

∂xn
∂k

∣∣∣∣∣
ti

+ ∂gj
∂k

∣∣∣∣∣
ti

 . (6.11)

Note that the terms ∂gj
∂xn

and ∂gj
∂k

are the Jacobian matrices of the output equation

(6.5). Since the form of function (6.5) is specified, these Jacobians can be computed

symbolically beforehand. The term ∂xn
∂k

in (6.11) is known as the sensitivity Sk of

the state variables of (6.1). Since the analytical solution x(t, k) of (6.1) is gener-
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ally unknown, the sensitivity Sk is usually obtained by numerically integrating the

sensitivity equation defined below [123]

dSk
dt

=
n∑
i=1

∂f

∂xi

∂xi
∂k

+ ∂f

∂k
(6.12)

in parallel while numerically integrating the ODE in (6.1). At each integration step,

the value of the residual’s gradient (6.12) is computed. Algorithm 4 summarizes the

gradient-based optimization for the minimization of (6.10) [59]. The minimization in

Step 3 of Algorithm (4) can be done using function ’lsqnonlin’ in MATLAB.

Algorithm 4 Minimization of (6.10) [59]
Input: Models (6.4)-(6.5) and an initial parameter k

LOOP

1: Using the current parameter value, integrate ODEs in (6.1) and (6.12).
2: Compute the residual Rij in (6.9) and the gradient in (6.11)
3: Compute k∗ in (6.10) using gradient-based optimization method (such as function

lsqnonlin in MATLAB)
4: if convergence criteria is satisfied then

5: BREAK

6: else

7: Update the parameter vector k
8: end if

ENDLOOP
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6.3 Results

6.3.1 Model Identification

The MLE method described in Section 6.2.2.2 was used to fit the C. vulgaris

and B. calyciflorus measurements to models (6.2) and (6.3). Model (6.2) will be

called the single clone model (as it does not distinguishes different clones of the C.

vulgaris population) while model (6.3) will be called the multi clone model. We

further considered two types of the multi clone models: one which assumes there are

two different clones (2-clone model) and one which assumes there are three different

clones (3-clone model) in the C. vulgaris population. In total, three model candidates

were fitted to the data.

For the 2-clone model, the corresponding ODE model is

Ṅ = δ(Nin −N)− bCNC1

Kc1 +N
− bCNC2

Kc2 +N

Ċ1 = bCNC1

Kc1 +N
− p1bBC1B

ε(KB + p1C1 + p2C2) − δC1

Ċ2 = bCNC2

Kc2 +N
− p2bBC2B

ε(KB + p1C1 + p2C2) − δC2

Ṙ = bB(p1C1 + p2C2)
KB + p1C1 + p2C2

R− (δ +m+ α)R

Ḃ = bB(p1C1 + p2C2)
KB + p1C1 + p2C2

B − (δ +m)B.

(6.13)

In model (6.13), we assumed that the two clones have extremely different palatability

values: the first clone (C1) has a high palatability (p1 = 1) while the second clone (C2)

has a low palatability (p2 = 0.15). These values of p1 and p2 were chosen arbitrarily
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during model identification. For the 3-clone model, the corresponding ODE model is

Ṅ = δ(Nin −N)− bCNC1

Kc1 +N
− bCNC2

Kc2 +N
− bCNC3

Kc3 +N

Ċ1 = bCNC1

Kc1 +N
− p1bBC1B

ε(KB + p1C1 + p2C2 + p3C3) − δC1

Ċ2 = bCNC2

Kc2 +N
− p2bBC2B

ε(KB + p1C1 + p2C2 + p3C3) − δC2

Ċ3 = bCNC3

kc3 +N
− p2bBC3B

ε(KB + p1C1 + p2C2 + p3C3) − δC3

Ṙ = bB(p1C1 + p2C2 + p3C3)
KB + p1C1 + p2C2 + p3C3

R− (δ +m+ α)R

Ḃ = bB(p1C1 + p2C2 + p3C3)
KB + p1C1 + p2C2 + p3C3

R− (δ +m)B.

(6.14)

In model (6.14), we also assumed that the three clones have different palatability

values: the first clone (C1) has high palatability (p1 = 1), the second clone (C2)

has a medium palatability (p = 0.5) and the third clone (C3) has a low palatability

(p3 = 0.15). The MLE method described in Section 6.2.2.2 was used to estimate the

parameters in each model. The initial guesses of the parameters used in model iden-

tification were bC = 3.3, KC1 = 4.3, bB = 2.25, KB = 15, ε = 0.25, m = 0.055, α =

0.4. These were values reported in [50, 157].

Table 6.1 summarizes the estimated parameters of each model for data with di-

lution rate δ = 0.95. Figure 6.4 compares the trajectories of each estimated model

and the corresponding data. One may see in Figure 6.4a that the estimated single

clone model poorly predicted the cycle period shown by the data. Nevertheless, the

model correctly captures the oscillatory feature of the data for the specified dilution

rate (δ) and the media’s nutrient content (Nin). This result is in agreement with

that reported in [50] where similar characteristics of the fitted model were observed.

On the other hand, the estimated 2-clone and 3-clone models fit well with the data.

Both models correctly captured the cycle periods observed in the data. Based on

these results, we concluded that the C. vulgaris population used in our experiment
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TABLE 6.1

ESTIMATED PARAMETERS IN DIFFERENT MODELS (δ = 0.95).

MODEL δ Nin bC KC1 bB KB ε m α KC2 Kc3

1-clone 0.95 100 7.15 11.16 4.72 9.99 0.066 0.0003 1.806 - –

2-clone 0.95 100 2.73 6.75 2.58 25.39 0.304 0.0025 0.406 11.24 –

3-clone 0.95 100 2.33 6.08 3.03 21.78 0.45 0.005 0.778 8.15 10.29

contain at least two different clones.

Due to its simplicity, the single clone model was chosen for regime shifts analysis

presented in the next section. The analyses of the other identified models are left for

future work.

6.3.2 Distance to Regime Shifts

This section describes regime shifts analysis in a kinetic realization of the single

clone model (6.2). This analysis searches for parameter values that give rise to a

shift in the the system’s qualitative behavior. A necessary condition for this shift to

occurs is a change in the stability type of any of its equilibria. This section will be

focused on predicting the occurrence of such a shift when the dilution rate, δ of the

chemostat is varied. This is because the chemostat’s dilution rate can be easily varied

in the experiment. Furthermore, its impact on the C. vulgaris and B. calyciflorus

interaction can be studied/observed from the measurement data.

In our analysis, we first constructed a kinetic realization for model (6.2). We
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Figure 6.4. Comparison between the data and the identified models.
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introduced a time scaling τ = t/(KC +N)(KB + C) and defined

ẋ1 = dN

dτ
, ẋ2 = dC

dτ
, ẋ3 = dR

dτ
, ẋ4 = dB

dτ
. (6.15)

The ODE (6.2) can then be written in a time scaling form below

ẋ1 = δ(Nin − x1)(KC + x1)(KB + x2)− bC(KB + x2)x1x2,

ẋ2 = bC(KB + x2)x1x2 −
bB
ε

(KC + x1)x2x4 − δ(KC + x1)(KB + x2)x2,

ẋ3 = bB(KC + x1)x2x3 − (δ +m+ α)(KC + x1)(KB + x2)x3,

ẋ4 = bB(KC + x1)x2x3 − (δ +m)(KC + x1)(KB + x2)x4.

(6.16)

We further defined the following parameters

k1 = δ, k2 = δNin, k3 = bC , k4 = KC ,

k5 = bB, k6 = KB, k7 = bB/ε, k8 = δ +m,

k9 = δ +m+ α, k10 = δNin − bCKB − δKC , k11 = bC − δ,

k12 = (bC − δ)KB, k13 = (bB − (δ +m+ α))KC , k14 = bB − (δ +m+ α), (6.17)

such that model (6.16) is reparameterized into the following polynomial system.

ẋ1 = k2k4k6 + k2k4x2 + k2k6x1 + k10x1x2 − x1(k1k4k6 + k1x1x2 + k1k6x1 + k3x
2
2),

ẋ2 = k11x1x
2
2 + k12x1x2 − x2(k1k4x2 + k1k4k6 + k4k7x4 + k7x1x4),

ẋ3 = k13x2x3 + k14x1x2x3 − x3(k4k6k9 + k6k9x1),

ẋ4 = k4k5x2x3 + k5x1x2x3 − x4(k4k6k8 + k4k8x2 + k6k8x1 + k8x1x2).
(6.18)

It can be seen that system (6.18) is a mass action system (cf. [67]) and so its kinetic

realization exists and can be constructed. In our analysis, we constructed a kinetic
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realization of the form

ẋ = Nv(x, k) = Ndiag(k)xZ , (6.19)

where the corresponding matrix N and vector v(x, k) are

N =



0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 1 1 0 0 −1 0 0 0 0 −1 0 0 0

1 1 0 0 0 0 0 −1 0 0 0 0 −1 0 0

0 0 0 0 0 −1 0 0 −1 1 −1 0 0 −1 1

−1 1 1 1 −1 −1 0 0 −1

0 0 0 0 0 0 −1 −1 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0


, (6.20)

v(x, k) = [k14x1x2x3, k13x2x3, k12x1x2, k11x1x
2
2, k10x1x2, k8x1x2x4, k7x1x2x4, k6k9x1x3

k6k8x1x4, k5x1x2x3, k4k8x2x4, k4k7x2x4, k4k6k9x3, k4k6k8x4, k4k5x2x3, k3x1x
2
2

k2k6x1, k2k4x2, k2k4k6, k1x
2
1x2, k1k6x

2
1, k1k4x

2
2, k1k4k6x2, k1k4k6x1]T . (6.21)

The matrices diag(k) and Z such that v(x, k) = diag(k)xZ are

diag(k) = diag
(
[k14, k13, k12, k11, k10, k8, k7, k6k9k6k8, k5, k4k8, k4k7, k4k6k9,

k4k6k8, k4k5, k3, k2k6, k2k4x2, k2k4k6, k1, k1k6, k1k4, k1k4k6, k1k4k6]
)
, (6.22)
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Z =



1 0 1 1 1 1 1 1 1 1 0 0 0 0 0 1 1 0 0 2 2 0 0 1

1 1 1 2 1 1 1 0 0 1 1 1 0 0 1 2 0 1 0 1 0 2 1 0

1 1 0 0 0 0 0 1 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 1 0 1 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0


.

(6.23)

The D2B analysis described in Chapter 4 can now be applied to (6.19)-(6.23).

6.3.2.1 Limitation of the D2B Analysis

Recall from Chapter 4 that the computation of the minimum D2B for a kinetic

realization (6.19) involves two main steps.

• The first step is to compute the expression for the flux equilibria v∗(k, λ) from
which the state equilibria x∗(k, λ) can be obtained. In particular, the flux
equilibria v∗ are computed from the intersection v∗ := Kv ∩ V(I) between the
flux equilibria defined by a convex polyhedral cone Kv

v∗ ∈ Kv := ker(N) ∩ Rm
≥0 = Σ` λ`E`, ` = 1, . . . , q, (6.24)

and the flux equilibria defined by the toric variety V(I)

v∗ ∈ V(I) := {v : G(I) = 0} (6.25)

of a binomial ideal I := 〈v − v(x, k)〉 ⊂ R(k)[v]. This means that the compu-
tation of v∗ requires the variety of the binomial ideal I contains only finitely
many points. In other words, I has to be a zero dimensional ideal [25]. An ideal
I ⊂ R(k)[v1, . . . , vm] with a Gröbner basis G(I) is said to be zero dimensional
if and only if for each 1 ≤ i ≤ m there exists an element in G(I) whose leading
terms is a pure power of vi [25].

• The second step is to characterize the necessary bifurcation condition from the
Jacobian

J(λ, h) = Ndiag(Eλ)ZTdiag(h), (6.26)
where E and λ, respectively, are the matrix of extreme generators and its asso-
ciated vector of convex parameters that define Kv in (6.24) and h = 1/x∗ where
x∗ is the state equilibria obtained from the first step. The obtained condition
is then used to formulate an SOS program for computing the minimum D2B.

We first attempted to use the above method to compute the minimum D2B for system

(6.18). We found that it could not be applied to system (6.18) due to the following
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difficulties:

• For the kinetic realization in (6.19)-(6.23), the associated binomial ideal I :=
〈v−v(x, k)〉 was not a zero dimensional ideal. This made computing an analyt-
ical expression for the variety V(I) in (6.25) intractable. As a result, the flux
equilibria defined by the intersection v∗ := Kv ∩ V(I) could not be computed.

• For the kinetic realization in (6.19)-(6.23), there were 36 extreme generators
(cf. Appendix D.3, equation (D.1)) and so the convex polyhedral cone Kv in
(6.24) was also formed by 36 convex parameters (cf. Appendix D.3, equation
(D.2)). As a result, the Jacobian matrix (6.26) was a dense matrix with 36
variables (cf. equation (6.35)). The coefficients of this Jacobian’s characteristic
polynomials were very long symbolic expressions. This not only made charac-
terizing necessary bifurcation conditions impossible but also caused computing
the minimum D2B using semidefinite programming tools intractable.

Because of these difficulties, we proposed another approach to study regime shifts

in system (6.18). The approach used a robust asymptotic stability analysis method

described in [98]. The analysis takes advantage of the Jacobian reparameterization

(6.26) in terms of the convex parameter, λ. Under this parameterization, the as-

sociated linear system is a linear affine parameter dependent (APD) system whose

robust stability can be examined using linear matrix inequalities (LMI) [51]. In this

approach, a regime shift was defined as an event in which the robust stability of a

system’s nominal operating point could no longer be assured.

6.3.3 Robust Asymptotic Stability of Kinetic Realizations

As mentioned in Section 6.3.2, a necessary condition for the shift in a system’s

qualitative behavior is a change in the stability type of its equilibria. This section

examines the local asymptotic stability of a kinetic realization’s equilibrium point

under parametric variations. The analysis uses the Jacobian reparamerization in

(6.26) and combined the effectiveness of linear matrix inequality (LMI) methods

[51, 12] and the symbolic-numerical algorithms for solving polynomial equations [31].
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6.3.3.1 Robust Stability of Affine Parameter Dependent Systems

Note that the Jacobian matrix in (6.26) is bilinear with respect to the convex

parameter λ and the reciprocal of the state equilibria 1/x∗. We argue that (6.26)

can be reparameterized to be affine in a new parameter. In particular, we introduce

a parameter vector, µ, whose elements are formed from the product of the convex

parameters, λ, and the reciprocal of the state equilibria, h = 1/x∗. More specifically,

let us introduce the following notational convention

Ih = diag(1/x∗), J̃ = Ndiag(Eλ)ZT (6.27)

so that the Jacobian (6.26) may be written as J(λ, x∗) = J̃(λ)Ih. With this change

of notation, the linearized system equations becomes

d

dt
(x− x∗) = J̃(λ)Ih(x− x∗). (6.28)

Introducing a change of variables, z − 1 = Ih(x − x∗) and noting that ż = Ihẋ, the

linearized system can be rewritten as

ż = IhJ̃(λ)z (6.29)

with state equilibrium at z∗ = 1.

Given the system in (6.29), we introduce parameters, hi = 1/x∗i for i = 1, . . . , n

and let λ` be the system’s convex parameters (` = 1, . . . , q). Note that Ih is a diagonal

matrix in h and that J̃(λ) is an APD matrix with respect to λ. If we let M denote

the set of parameters µj (j = 1, . . . , s) formed from the products hiλ` that appear

in IhJ̃(λ), then it should be apparent that IhJ̃(λ) will also be an APD matrix with

respect to the new parameters µj ∈ M . So there will exist s = (qn + 1) real n × n
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matrices A0, A1, . . . , As such that

IhJ̃ = A0 + µ1A1 + · · ·+ µsAs ≡ A(µ), (6.30)

thereby establishing that the linearized system in (6.29) may be rewritten as a linear

APD system

ż = A(µ)z (6.31)

with respect to the new parameter set µ.

Remark 6.3.1. In term of kinetic realizations (6.19), the new parameters µ are elemen-

tary flux mode (EFM) levels normalized with respect to the nominal state equilibria

x∗. In particular, each EFM controls the fate of a particular species in the system

[133].

The work in [51] established sufficient conditions for the APD system in (6.31)

to be asymptotically stable for all parameters µ defined within a polytope, Γ. These

conditions are in the form of linear matrix inequalities (LMIs) characterizing a pa-

rameter dependent function,

P (µ) = P0 + µ1P1 + · · ·+ µsPs (6.32)

that serves as a Lyapunov function at each vertex of the parameter polytope, Γ. This

leads to the following proposition from [51] which is stated without proof.

Proposition 6.3.2 ([51]). Consider the APD system in equations (6.30)-(6.31) with

time-invariant nomional parameter µ0. Let Γ be a polytope in the parameter space

defined by vertices γ1, γ2, . . . , γN that contain the parameter µ0. This system’s state

equilibrium is asymptotically stable if A(µ0) is Hurwitz and there exist s+1 symmetric

matrices P0, P1, . . . , Ps such that the parameter dependent matrix P (µ) in equation
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(6.32) satisfies

A(γi)TP (γi) + P (γi)A(γi) < 0 (6.33)

for all i = 1, 2, . . . , N and

ATi Pi + PiAi ≥ 0 (6.34)

for all i = 0, 1, 2, . . . , s.

Remark 6.3.3. The sufficient conditions in equations (6.33)-(6.34) are LMIs with with

matrix variables P0, P1, . . . , Ps. Since LMI problems are a class of convex optimiza-

tion problem for which efficient interior point algorithm exist [12], it means it is

computationally practical to evaluate the robust stability of kinetic realizations with

a relatively large number of normalized flux parameters, µ. Moreover, this problem

can be solved using one of the standard function in MATLAB’s LMI toolbox. This

function, pdlstab, is described in [51] and is used in the next section to examine the

regime shift in the kinetic realization (6.18).

6.3.3.2 Computation of Equilibria Using a Triangular Decomposition

Note that the method described in Section 6.3.3.1 requires the knowledge about

the system’s equilibria, x∗ (or the zeros of the system’s vector fields). Clearly, one way

to compute x∗ is by using numerical simulations to integrate the system’s ODE model.

However, numerical methods are prone to numerical errors and often unstable [25, 31].

Moreover, numerical simulations only provide local information about the system’s

equilibria around the chosen nominal parameters and initial condition. In contrast,

the symbolic computation method based on Gröbner basis gives global information

about the system’s equilibria. Specifically, it provides the correct information about

the structure (i.e. the number and the (real and complex) values) of the equilibria

[31]. With regard to the robust stability analysis described in Section 6.3.3.1, these

information can be used to preprocess the numerical simulations of the formulated
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LMI problem.

Consider a polynomial dynamical system whose state trajectories are modeled

by differential equation ẋ(t) = f(x) where f(x) = {f1(x), . . . , fn(x)} ∈ K[x] and

x = [x1, . . . , xn]T . Suppose we are interested in computing the system’s equilibria,

x∗ defined by the zeros of its vector fields, i.e. x∗ = {x : f1(x) = · · · = fn(x) = 0}.

This is equivalent with the problem of characterizing the varieties V(I) of the ideal

I = 〈f1, . . . , fn〉 generated by the system’s vector fields. If I is a zero dimensional

ideal, then the Gröbner basis method can be used to approximate the numerical

values of x∗ through what is known as a symbolic-numerical approach [31]. In this

approach, the symbolic part aims at computing a Gröbner basis G(I) of the ideal

I. In particular, the computed Gröbner basis is then decomposed into a set of bases

with special forms. One such form is known as a triangular basis defined below.

Definition 4 ([31]). Let I ⊂ K[x] be a zero dimensional ideal. A set of polynomials

T = {T1, . . . , Tn} ⊂ K[x] is called a triangular basis if, for each j = 1, . . . , n,

(i) Tj ∈ K[xn−j+1,...,xn ]\K, and

(ii) the leading monomial of Tj with respect to the lexicographic order is of the form
x
mj
n−j+1 for some mj ≥ 1.

A list of triangular bases T1, . . . , Tt is called a triangular decomposition of I if

V(I) = V(T1) ∪ · · · ∪ V(Tt).

Definition 4 essentially means that each triangular basis, T` has at least one univariate

polynomial, say T1, in its elements. As such, the zeros/varieties of such a T1 can be

computed using numerical root finding technique. The computed zeros can then

be back substituted to another polynomial, say T2, in T` to get another univariate

polynomial. The back substitution process is then repeated to all polynomials Tj

in each T`. As a result, the varieties V(T`) of each T` are defined as V(T`) = {x :

156



T1 = · · · = Tj = 0}. By combining the varieties of all triangular bases T1, . . . , Tt, the

varieties of an ideal I are then defined by the union set V(I) = V(T1) ∪ · · · ∪ V(Tt)

of each triangular basis’ varieties.

The main advantage in using the symbolic-numerical approach is that it char-

acterizes all the zeros of a system of polynomial equations [31]. In other words, it

provides global information about the structure (i.e. the number and the values) of

the varieties of an ideal. These information are provided in the forms of the trian-

gular bases T1, . . . , Tt. As a result, if one is interested in studying the behavior of a

particular variety, one may choose to focus only on the triangular basis T` associated

with that variety.

Algorithm 5 summarizes the symbolic-numerical method for computing the va-

rieties of a zero dimensional ideal based on a triangular decomposition [31]. This

algorithm has been implemented in Singular computer algebra [32]. The Buch-

berger’s algorithm [14] can be used in step 1 to compute a Gröbner basis G(I) of a

zero dimensional ideal I. Furthermore, the Singular library triang.LIB contains

a function triangMH that can be used in step 2 to compute the triangular bases T`.

In particular, this library implemented triangular decomposition methods proposed

in [97, 109]. Finally, numerical root finding method such as the function roots in

MATLAB can be used in step 3. Section 6.3.4 illustrates the use of Algorithm 5 in

robust stability analysis of the kinetic realization (6.18).

Remark 6.3.4. Note that the triangular decomposition method described in this sec-

tion can only be applied for zero dimensional ideals (i.e. ideals whose variety contains

only finitely many points). The extension of this method to positive dimensional ide-

als is currently an active research topic [96, 105] and so its integration to the method

proposed in this thesis is left for future work.
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Algorithm 5 Symbolic-numerical method for solving zero dimensional ideals [31]
Input: a list of polynomials f1, . . . , fn ∈ K[x] generating a zero dimensional ideal in

K[x]
Output: the set of all complex solutions of f1, . . . , fn = 0

1: Compute a reduced lexicographic Gröbner basis G(I) for I = 〈f1, . . . , fn〉.
2: Starting from the Gröbner basis G(I), compute a triangular decomposition
T1, . . . , Tt for I using function triangMH in Singular library triang.LIB

3: Step 3. For each i, successively use a numerical root finding solver to find the
coordinate entries of the zeros of T`

6.3.4 Robust Asymptotic Stability Analysis of the Single Clone Model

This section describes an application of the robust stability analysis method from

Section 6.3.3 for characterizing regime shifts in the kinetic realization (6.19)-(6.23).

In this analysis, we are interested in characterizing the value of the dilution rate, δ

where the system’s robust asymptotic stability could no longer be assured. We show

that the prediction from our analysis match the results from numerical simulations.

For the kinetic realization in (6.19)-(6.23), we first computed the extreme gener-

ators or the EFMs using EFMtool [149, 87]. We found 36 flux modes as shown in

equation (D.1) in Appendix D.3. The convex cone Kv in (6.24) is given in equation

(D.2) in Appendix D.3. The Jacobian matrix (6.26) of the realization was computed

and is given by

J(λ, h) =



J1,1 J1,2 0 0

h1
(∑8

i=6 λi +∑12
j=10 λj

)
J2,2 0 J2,4

−h1 (λ1 − λ4) h2
(∑4

i=1 λi
)

0 0

J4,1 J4,2 h3
(∑20

i=13 λi
)
−h4

(∑20
i=13 λi

)


,

(6.35)
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where hi = 1/x∗i , i = 1, . . . , 4 and

J1,1 = −h1

 24∑
i=21

λi +
36∑
j=31

λj +
∑

`=23,24,26,29,32,35
λ`

 ,
J1,2 = −h2(λ25 − λ23 − λ21 − λ27 + 2λ28 + λ29 + λ31 − λ33 + 2λ34 + λ35),

J2,2 = h2 (λ9 − λ7 + λ10 + λ12) ,

J2,4 = −h4 (λ5 + λ6 + λ9 + λ10) ,

J4,1 = −h1 (λ14 − λ16 − λ17 + λ18) ,

J4,2 = h2 (λ15 + λ16 + λ18 + λ19) .

A MATLAB script was written to automate the computation of the Jacobian’s pa-

rameter dependent form A(µ) in (6.31). For the Jacobian matrix (6.35), the following

66 new parameters were identified

µ1 = h1λ1, µ2 = h1λ10, µ3 = h1λ11, µ4 = h1λ12, µ5 = h1λ14, µ6 = h1λ16,

µ7 = h1λ17, µ8 = h1λ18, µ9 = h1λ21, µ10 = h1λ22, µ11 = h1λ23, µ12 = h1λ24,

µ13 = h1λ26, µ14 = h1λ29, µ15 = h1λ31, µ16 = h1λ32, µ17 = h1λ33, µ18 = h1λ34,

µ19 = h1λ35, µ20 = h1λ36, µ21 = h1λ4, µ22 = h1λ6, µ23 = h1λ7, µ24 = h1λ8,

µ25 = h2λ1, µ26 = h2λ10, µ27 = h2λ12, µ28 = h2λ15, µ29 = h2λ16, µ30 = h2λ18,

µ31 = h2λ19, µ32 = h2λ2, µ33 = h2λ21, µ34 = h2λ23, µ35 = h2λ25, µ36 = h2λ27,

µ37 = h2λ28, µ38 = h2λ29, µ39 = h2λ3, µ40 = h2λ31, µ41 = h2λ33, µ42 = h2λ34,

µ43 = h2λ35, µ44 = h2λ4, µ45 = h2λ7, µ46 = h2λ9, µ47 = h3λ13, µ48 = h3λ14,

µ49 = h3λ15, µ50 = h3λ16, µ51 = h3λ17, µ52 = h3λ18, µ53 = h3λ19, µ54 = h3λ20,

µ55 = h4λ10, µ56 = h4λ13, µ57 = h4λ14, µ58 = h4λ15, µ59 = h4λ16, µ60 = h4λ17,

µ61 = h4λ18, µ62 = h4λ19, µ63 = h4λ20, µ64 = h4λ5, µ65 = h4λ6, µ66 = h4λ9.

(6.36)
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The system’s parameter dependent matrix A(µ) is then given by

A(µ) =



A1,1 A1,2 0 0∑4
i=2 µi +∑24

j=22 µj µ26 + µ27 − µ45 + µ46 0 A2,4

µ21 − µ1 µ25 + µ32 + µ39 + µ44 0 0

µ6 − µ5 + µ7 − µ8 µ28 + µ29 + µ30 + µ31
∑54
i=47 µi −

∑63
i=56 µi


,

(6.37)

where

A1,1 = −µ9 − µ10 − 2µ11 − 2µ12 − µ13 − µ14 − µ15 − 2µ16 − µ17 − µ18 − 2µ19 − µ20,

A1,2 = µ33 + µ34 − µ35 + µ36 − 2µ37 − µ38 − µ40 + µ41 − 2µ42 − µ43,

A2,4 = −µ55 − µ64 − µ65 − µ66.

Given the matrix A(µ) in (6.37), 67 matrices A0, A1, . . . , A66 were computed and

used as inputs to the LMI toolbox function pdlstab. In addition to system matrices

A0, A1, . . . , A66, the function pdlstab also requires a set of vertices characterizing

the polytopic set Γ of the uncertain parameter µ. In our case, we used a simplex

constructed around a nominal flux parameter µ0. The vector µ0 was computed from

a nominal system parameter vector, k0 as explained below.

6.3.4.1 Nominal State Equilibria

For model (6.2), we chose the following values for the nominal parameters.

δ = 1.3, Nin = 100, bC = 7.151, KC = 11.164, bB = 2.729,

KB = 9.995, ε = 0.066, m = 0.003, α = 0.806. (6.38)

These nominal parameters, except the dilution rate δ, were values obtained from

model identification (cf. Table 6.1). The dilution rate δ = 1.3 was chosen for the
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Figure 6.5. State trajectories of (6.18) for k0 in (6.39).

nominal parameter because it ensures the nominal system has a stable coexistence

equilibrium. With these parameters, the nominal set of parameters k0 = [k1, . . . , k14]

in the scaled model (6.18) is

k0 = [1.3, 130, 7.151, 11.164, 2.729, 9.995, 41.348,

1.303, 2.109, 44.012, 5.851, 58.48, 6.921, 0.62]. (6.39)

Figure 6.39 plots the state trajectories of system (6.18) for the given k0.

Algorithm 5 was used to compute the nominal state equilibria for the chosen k0.

161



First, note that the right hand side of the ODE (6.16) can be rewritten as

ẋ1 = (KB + x2)g1(x) = (KB + x2) [δ(Nin − x1)(KC + x1)− bCx1x2] ,

ẋ2 = g2(x) = bC(KB + x2)x1x2 −
bB
ε

(KC + x1)x2x4 − δ(KC + x1)(KB + x2)x2,

ẋ3 = (KC + x1)g3(x) = (KC + x1) [bBx2x3 − (δ +m+ α)(KB + x2)x3] ,

ẋ4 = (KC + x1)g4(x) = (KC + x1) [bBx2x3 − (δ +m)(KB + x2)x4] .
(6.40)

The system equilibria x∗ are given by

x∗ := {x : (KB +x2)g1(x) = 0, g2(x) = 0, (KC +x1)g3(x) = 0, (KC +x1)g4(x) = 0}.

(6.41)

Since we are only interested in nonnegative equilibria, it is sufficient to consider

x∗ = {x : gi(x) = 0, for i = 1, . . . , 4}. (6.42)

This is because both the factors (KB + x2) and (KC + x1) in (6.41) define negative

equilibria for x2 and x1, respectively. Thus, the input for Algorithm 5 was polynomials

gi, i = 1, . . . , 4, that generate an ideal I = 〈g1, . . . , g4〉. The output of Algorithm 5

was the following set of three triangular bases

T1 = {x4, x3, 200x2
2 + 1999x2, (0.357x1x2 − 5.774x1 + 0.065x2

1 − 72.566)× 105},

T2 = {(0.27x2
4 − 2.53x4 + 4.34)× 1017, (2.109x3 − 1.303x4)× 103,

(0.124x2 − 4.215)× 106, (0.177x1 + 4.358x4 − 11.703)× 108},

T3 = {x4, x3, (0.029255x2 − 2.852934)× 106, (2.925x1 − 7.256))× 108}.
(6.43)

Thus, the system equilibria are defined by the varieties of these bases, i.e. x∗ :=

{x : Ti = 0, i = 1, . . . , 3}. We examined the varieties of each triangular basis by

numerically solving for the zeros of their elements.

162



• The varieties V1 = V(T1) of T1 were given by

V1
1 = {x1 = 99.9953, x2 = 0, x3 = 0, x4 = 0},

V1
2 = {x1 = −11.1645, x2 = 0, x3 = 0, x4 = 0},

V1
3 = {x1 = 54.4417, x2 = 9.995, x3 = 0, x4 = 0},

V1
4 = {x1 = −20.5063, x2 = 9.995, x3 = 0, x4 = 0}.

(6.44)

Note that each of these varieties has either negative value of x1 (corresponds
to negative nitrogen concentration) or zero values of x3 and x4 (correspond to
rotifers’ extinction). Since we are only interested in those equilibria in which
all species coexist in positive concentrations, the equilibria defined by V(T1)
were neglected in further analysis.

• The varieties V2 = V(T2) of T2 were given by

V2
1 = {x1 = −108.4769, x2 = 33.9991, x3 = 4.3855, x4 = 7.0982},

V2
2 = {x1 = 10.2915, x2 = 33.9991, x3 = 1.4002, x4 = 2.2664},

(6.45)

The first variety has a negative value of x1 and so it was also neglected. The
second variety contains all states with positive values. This means V2

2 defines an
equilibrium where all species coexist and will be included for further analysis.

• The variety V3 = V(T3) of T3 was given by

V3
1 = {x1 = 2.4805, x2 = 97.5195, x3 = 0, x4 = 0}. (6.46)

This variety was also neglected as it has x3 and x4 with zero values (correspond
to the extinction of the rotifers population).

The above inspection suggests that we should consider the second element of T2 in

our analysis. In this case, the nominal equilibrim point was then given by

x∗ = [x∗1, x∗2, x∗3, x∗4]T = [10.2915, 33.9991, 1.4002, 2.2664]T . (6.47)

We compared the equilibrium computed above with that obtained from direct inte-

gration of ODE (6.18). We found that the results were the same (cf. Figure 6.5).
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6.3.4.2 Nominal Flux Mode

The substitution of x∗ in (6.47) and k0 in (6.39) into the flux vector v(x, k) in

(6.21) gives a vector of nominal flux equilibrium

v(x∗, k0) = 104×[0.0304, 0.0330, 2.0463, 6.9606, 1.5400, 0.1033, 3.2791, 0.0304, 0.0304

0.1337, 0.1121, 3.5570, 0.0330, 0.0330, 0.1450, 8.5072, 1.3372,

4.9344, 1.4506, 0.4681, 0.13761.6776, 0.4932, 0.1493]T . (6.48)

The nominal vector of convex parameters λ0 = [λ0
1, . . . , λ

0
36] was then obtained from

the solution λ0 of linear equations

Eλ0 = v(x∗, k0), (6.49)

where E is the matrix of flux modes in (D.1) and v(x∗, k0) is the nominal flux equi-

librium in (6.48). The computed nominal convex parameters was

λ0 = 104×[0, 0.0330, 0.0304, 0, 2.0463, 0, 0, 0, 1.2328, 3.5570, 1.6776, 0.4932, 0.1033

0, 0.0304, 0, 0, 0, 0.0330, 0.1121, 0.1376, 0, 0, 0, 1.4024, 0, 0,

0.7198, 0.4681, 0.1493, 4.9344, 0, 0, 1.4506, 0, 0]T . (6.50)

Using λ0 in (6.50) and the reciprocals of the state equilibrium in (6.47), we computed

the vector of nominal flux parameters µ0 = [µ1,0, . . . , µ66,0]T using equation (6.36).

Using µ0, the nominal parameterized matrix A(µ0) in (6.37) was then constructed
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and is given by

A(µ0) =



−0.6792 −0.3237 0 0

0.5086 0.1409 0 −3.0163

0 0.0019 0 0

0 0.0019 0.1991 −0.1230


× 104. (6.51)

The eigenvalues ν(A(µ0)) of A(µ0) were computed to be

ν(A(µ0)) = 103 × [−3.751, −0.512− 0.896i, −0.512 + 0.896i, −1.982]. (6.52)

All eigenvalues in (6.52) have negative real parts. This indicates that the nominal

flux mode µ0 guarantees the asymptotic stability of the nominal system.

6.3.4.3 Robust Stability to Variation in the Dilution Rate

Given the nominal matrix A(µ0) in (6.51), we are interested in characterizing the

range of dilution rate, δ where the system’s states are guaranteed to be in a stable

coexistence equilibrium. For this purpose, we identified a subset of the EFMs that

depends on the parameter δ (or parameter k1 in the scaled model (6.18)). In our

analysis, this was done by first identified those λs in the convex cone Kv (D.2) that

correspond to the last two rows of the flux vector v(x, k) in equation (6.21). The

EFMs that depend on k1 were then given by those µ’s in (6.36) that correspond

to these λs. We identified the following seven EFMs: µ4 = h1λ12, µ17 = h1λ33,

µ20 = h1λ36, µ24 = h1λ8, µ27 = h2λ12, µ36 = h2λ27, µ41 = h2λ33. Thus, the set of

varying parameters in the MATLAB function pdlstab was given by µ̃ = {µ4, µ17,

µ20, µ24, µ27, µ36, µ41}. All other EFMs were set to their nominal values in µ0 and

stored in matrix A0 (cf. equation (6.30)).

In our analysis, a simplex characterizing polytopic set Γ of the uncertain param-
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eters in µ̃ was constructed around the nominal flux parameter µ0. One vertex was

obtained by scaling µ0 back to the origin, v1 = µ0/α where α > 1. For the chosen

varying EFMs, this origin is defined by µ0 = {479.2112, 0, 0, 0, 145.0706, 0, 0}. The

other vertices were obtained by multiplying one component of µ0 by α. A bisection

search was used to find the largest α for which the function pdlstab assures the ro-

bust stability of the nominal parameter µ0. From our analysis, we found that pdlstab

guarantees the robust stability of µ0 for α = 4.325. The set of critical varying EFMs

that corresponds to this α was µ̃∗ = {2072.6, 0, 0, 0, 627.4302, 0, 0}.

We then perturbed the parameter δ to find the critical value δ∗ that corresponds

to µ̃∗. We found δ∗ = 1.54965 which corresponds to µ̃∗ = {2072.6, 0, 0, 0, 172.92,

0, 0}. In terms of the chosen varying EFMs, this indicates that the robust stability

is more sensitive to variation in µ4. From this result, we then concluded that the

robust stability can be assured for the following range of dilution rate

1.3 = δLapd ≤ δ ≤ δUapd = 1.5496. (6.53)

We checked the result of our analysis with that from numerical simulations through

direct integration of the ODE model in (6.16). In our simulations, the parameter

values in (6.38) for which the system has a stable coexistence equilibrium were chosen

as the nominal parameters. We varied parameter δ and used simulations to determine

the upper δUsim and lower δLsim values where the system was no longer has a stable

coexistence equilibrium. We found that stable coexistence equilibria were assured

within the parameter range

1.07 = δLsim ≤ δ ≤ δUsim = 1.66. (6.54)

Figure 6.6 plots the state trajectories of system (6.18) for dilution rates outside this

range. For δ = 1.06 < δLsim the system exhibits limit cycle whereas for δ = 1.67 > δUsim
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the system is in a steady state where rotifers are extinct. It can be seen that the

results from the APD robust stability analysis lie within the range obtained from

numerical simulations through direct integration of the system’s ODE model. This

suggests that the proposed method indeed provides a way of characterizing how robust

a system may be to parametric variations and therefore can be used to estimate lower

bounds on the distance to regime shifts.

The analyis results described in this chapter can be tested in a manner that is

similar to the presented simulation. First, a nominal set up of the chemostat with a

dilution rate δ = 1.3 should be established. From the analysis, this nominal dilution

rate is expected to result in a stable coexistence of both the C. vulgaris and B.

calyciflorus population in the chemostat. Once the nominal condition is achieved,

the dilution rate can be changed to δ∗ = 1.5496. Based on the APD robust stability

analysis, we expect that the nominal stable equilibrium where both species coexist

will still be maintained for this δ∗. As the the dilution rate is further increased up to

δ > 1.67, we expect that the C. vulgaris will survive in the chemostat while the B.

calyciflorus will go extinct.

6.4 Final Remark

This chapter has presented an application of regime shifts analysis in a model

of real life systems from ecology. We descibed the practical limitations of the D2B

analysis method when studied regime shifts in this model and proposed an alternative

approach [98]. The approach essentially formulated the regime shifts analysis as

robust stability analysis of affine parameter dependent systems [51]. The approach

combined the effectiveness of linear matrix inequality (LMI) methods [12] and the

symbolic-numerical algorithms for solving a system of polynomial equations [31]. We

found that the analysis results from the newly proposed method provide lower bounds

on the results obtained from numerical simulations of the model. This suggests that
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Figure 6.6. State trajectories of (6.18) for different dilution rates.

the used method indeed provides a way of characterizing how robust a system may

be to parametric variations and therefore can be used as a measure of the distance

to regime shifts.

168



CHAPTER 7

CONCLUSION

Regime shifts refer to sudden and rapid changes in the structure or function of an

ecosystem due to the presence of forces from external disturbances. These changes

can occur suddenly, and at times without warning, potentially causing drastic or

irreversible shifts in the ecosystems states. While regime shifts are well documented

in the ecological literature, the underlying mechanisms governing such shifts are often

unknown for certain. This thesis contributes to the study and understanding of the

underlying mechanisms leading to regime shifts. Specifically, this thesis developed

mathematical and computational methods to forecast the onset of regime shifts in

biological and ecological systems.

The basic approach on the developed methods is the formulation of some quan-

tities characterizing the likelihood that a system shifts from its current operating

regime in the presence of external forces that perturb either its states or parameters.

We identified two mechanisms by which regime shifts may occur and formulated

some real-valued quantities that can be used as indicators of how close the system

is to each type of regime shift. The first regime shifts mechanism was referred to

as bifurcation-induced regime shifts and it occurs because variations in the system’s

parameters force the system’s equilibria to undergo bifurcations. We used a quantity

called the minimum distance to bifurcation as a measure of how close a system is

to this type of regime shifts (cf. Chapter 4). We presented an SOS optimization

method that simplifies the computation of this quantity’s lower bound in the class of

nonnegative systems with kinetic realizations. The second regime shifts mechanism
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was referred to as noise-induced regime shifts and it occurs because the underlying

system has multiple stable equilibria and external stochastic disturbances drive the

system’s state from the region of attraction (ROA) of one stable equilibrium to the

ROA of an alternative stable equilibrium. We used probabilistic quantities called

mean first passage times and safety probability to characterize the expected time and

the likelihood for this type of regime shifts to occur (cf. Chapter 5). We presented

SOS optimization methods that can be used to compute upper bounds for these quan-

tities in systems that are modeled as jump diffusion processes. In both mechanisms,

we demonstrated the effectiveness of the proposed methods to predict the occurrence

of regime shifts in several theorethical models of dynamical systems.

The results from experiments on an ecological test bed that was used to evaluate

the methods developed in this thesis were also reported. The test bed was a labo-

ratory scale chemostat that cultures a microbial predator and prey system between

green algae, C. vulgaris, and rotifer, B. calyciflorus. The experiment was conducted

to identify a mathematical model for the C. vulgaris and B. calyciflorus interaction

in the chemostat. The identified model was then analyzed to predict regime shifts

that may occur in the system under parametric variations (e.g. change on the dilu-

tion rate of the chemostat). We showed how the methods developed in this thesis,

combined with symbolic-numerical algorithm for solving polynomial equations, can

be used to predict regime shifts in the identified model. In particular, we showed that

the analysis results from the proposed method provide lower bounds on the distance

to regime shifts. This suggests that the developed method can be used to measure

and characterize the likelihood of a regime shift in models of real life system.

The results from our experimental evaluation suggest that the robust stability

analysis based on the affine parameter dependent formulation is a more feasible ap-

proach to characterize distance to regime shifts in the models of real life systems.

In this regard, we identified several directions in which the presently established ap-
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proach can be extended. The first direction is the extension of the triangular decom-

position method used in this thesis so that it can be applied to positive dimensional

ideals. As mentioned in Chapter 6, such an extension is currently an active research

topic among researchers in Algebraic Geometry [96, 105]. If such an extension can be

achieved, then the currently developed approach can be used to analyze polynomial

systems whose vector fields generate positive dimensional ideals. The second direc-

tion is to use different shapes of polytope (other than a simplex) when searching for

the parameter region where the robust stability of the system is assured. We expect

that the use of different polytope shape can helps refine the search of robustly stable

parameter region. The last direction is to explore the graph properties of kinetic real-

izations and then examine their possible use to improve the robust stability analysis

approch proposed in this thesis.

171



APPENDIX A

HANDELMAN RELAXATION OF POP PROBLEM

A.1 Handelman Polynomial

Consider again the set S in (2.9) and let us define the following sets

SF := {x ∈ Rn : Fi(x, k) = 0, k ∈ R}, (A.1a)

SG := {x ∈ Rn : Gj(x, k) ≥ 0, k ∈ R}, (A.1b)

that is SF and SG denote the set of equalities and inequalities, respectively, which

define the set S. Assume further that each polynomial Gj(x, k) in SG are affine

function in x. Then for a compact polytope SG in (A.1b) and an NG dimensional

multi-index β, the βth Handelman monomial HG
β (x) that corresponds to SG is defined

as [66]

HG
β (x) =

NG∏
j=1

(Gj)βj . (A.2)

One important property of the Handelman monomials is given by the following Han-

delmann representation theorem.

Theorem A.1.1 (Handelman representation [66]). Let SG ⊂ Rn be a compact

polytope as defined in (A.1b) where each Gj : Rn → R is an affine function for

j = 1, . . . , NG. A polynomial g : Rn → R is nonnegative on SG if and only if there

exist nonnegative coefficients cβ such that g(x) can be represented as

g(x) =
∑
β

cβH
G
β (x). (A.3)
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For an integer d ≥ 1, define the following set of Handelman polynomials

Hd(SG) =
∑
|β|≤d

cβH
G
β , cβ ∈ R+

 . (A.4)

Given a function g : Rn → R with g(x) ∈ R[x], a sequence of lower bounds γ∗d for the

minimum γ∗ := min{g(x), ∀x ∈ SG} of g(x) on SG can be computed by solving the

following optimization problem.

γ∗d = max γ, such that g(x)− γ ∈ Hd(SG).

Note that γ∗d ≤ γ∗ and γ∗d converges asymptotically to γ∗ as d→∞ [94, 30].

Theorem A.1.2 below combines the Handelman representation described above

and the positivstellensatz [154, 137] to characterize the existence of solution to a

system of equations of the form (A.1a) over a compact poytope SG defined in (A.1b).

Theorem A.1.2 ([154]). Consider the system of equations in (A.1a) and let SG be

a compact polytope as defined in Theorem A.1.1. Then the following two statements

are equivalent.

(i) The system of equations in (A.1a) does not have a solution in SG.

(ii) There exist polynomials Pi(x) ∈ R[x], i = 1, . . . , NF and nonnegative coeffi-
cients cβ such that the polynomial

Z(x) =
NF∑
i=1

PiFi − 1 (A.5)

can be represented as
Z(x) =

∑
|β|
cβH

G
β (x). (A.6)

For given polynomials Fi in (A.1a), one may see that the Z(x)’s representation in

(A.5) is linear in the unknown coefficients of polynomials Pi(x). Similarly, for given

polynomials Gj in (A.1b) then Z(x)’s representation in (A.6) is also linear in the

unknown Handelman polynomials’ coefficients cβ. By equating the coefficients of the
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monomials of similar degree in both (A.5)’s and (A.6)’s representations, the search

for certifying polynomial Z(x) may then be posed as a feasibility problem of a linear

programming (LP) formulation (cf. [154, procedure/algorithm in pp. 1143]). By

Theorem A.1.2, the existence of such a polynomial Z(x) implies that the solution to

a system of polynomial equations in (A.1a) does not exist.

A.2 Handelman Relaxation of POP

In order to use the above Handelman representation to compute the bound γ in

RPOP (2.10), let us consider the set SḠ defined below

SḠ := {x ∈ Rn : Gj(x, k) ≥ 0, f(x, k)− γ > 0}. (A.7)

Note that the set S̄G in (A.7) is obtained by combining the set SG in (A.1b) and the

constraint f(x, k)−γ > 0 in RPOP (2.10). Thus, for any nonnegative constant γ and

an (NG + 1) dimensional multi-index β̄, the following extension of the Handelman

monomials in (A.2) can be defined

HḠ
β̄ (x) =

NG∏
j=1

(Gj)βj(f(x, k)− γ)βNG+1 . (A.8)

As a result, Theorem A.1.2 can be used to compute the bound γ by simply replacing

HG
β in (A.6) with HḠ

β̄
(x) in (A.8), i.e. polynomial Z(x) in (A.6) is now given by

Z(x) =
∑
|β|
cβ̄H

Ḡ
β̄ (x). (A.9)

Thus for any fixed γ, then Z(x) in (A.9) still maintains linearity in the unknown

coefficients cβ̄. This suggests that the LP formulation discussed in the previous section

can also be constructed by implementing a bisection procedure on γ. The optimal γ∗

will then corresponds to the largest value of γ for which Z(x)’s representations that
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satisfy both (A.5) and (A.9) exist.

A.3 Size of the LP formulation

Consider polynomials Fi(x) and Gj(x) in (A.1). Let dFi and dGj denote the

maximum degree of each Fi and Gj, respectively, and define DF = max(dFi ) and

DG = max(dGj ). In what follows, we will compute the size of the LP formulation that

is required to search for polynomial certificate Z(x) in Theorem A.1.2.

• Equality constraints: For polynomial Z(x) in (A.5)

Z(x) =
NF∑
i=1

PiFi − 1,

where for each i = 1, . . . , NF , note each polynomial Pi ∈ R[x] has a maximum
degree dPi with multi-index representation of the form

Pi(x) =
∑
|α|≤dPi

cαx
α. (A.10)

It can be shown that the number of coefficients N(Pi) in each polynomial Pi is

N(Pi) =
dPi∑
k=1

(k + (n− 1)) !
k !(n− 1) ! .

Thus, if there are NF equality constraints of the form (A.1a) and by assuming
that each polynomial Pi(x) has a similar maximum degree of DP = dPi for all
i = 1, . . . , NF , then the number of unknown coefficients N1(Z) of polynomial
Z(x) in (A.5) is

N1(Z) = NFN(Pi) = NF

DP∑
k=1

(k + (n− 1)) !
k !(n− 1) !

 .
Note that the degree DZ of polynomial Z(x) in this case is DZ = DF +DP .

• Inequality constraints: Let DH = 1 + dDZ/2e be the degree of the Handelman
representation in (A.6) where d·e denotes the ceiling function. The Handelman
representation of polynomial Z(x) in (A.6) is then given by

Z(x) =
∑
|β|≤DH

cβH
G
β (x). (A.11)
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It can be shown that the number of unknown coefficients N2(Z) of the Handel-
man representation of Z(x) defined in (A.6) is

N2(Z) =
DH∑
`=1

(`+ (NG − 1)) !
` !(NG − 1) ! . (A.12)

Thus, the number of decision variables NH of the LP formulation for searching poly-

nomial certificate Z(x) which verifies Theorem A.1.2 is

NH = N1(Z) +N2(Z) = NF

DP∑
k=1

(k + (n− 1)) !
k !(n− 1) !

+
DH∑
`=1

(`+ (NG − 1)) !
` !(NG − 1) ! . (A.13)

Table A.1 illustrates the size NH of the LP formulation when there is one equality

constraint of degree 2 and 2n inequality constraints of the form (A.1b) in which n is

the number of unknown variables. When compared with the size of SDP’s decision

variables in Table A.2, one may see from Table A.1 that the size of the LP problem

is larger than that of the SDP problem for a chosen degree of polynomial multipliers

for the equality constraints.

As a comparison, the size Nsos of the SDP formulation (2.15) for computing an

SOS relaxation of a polynomial function in n variables with degree d is given by

Nsos =
(
n+ d

d

)
. (A.14)

It can be seen that Nsos grows polynomially if either n or d is fixed. Table A.2 (cf.

[119, Table 1]) illustrates the number of decision variables when there is only one

equality constraint in the SDP formulation (2.15).

A.3.1 Comparison between SOS and Handelman Representations

As discussed in the previous sections, the use of SOS and Handelman relaxations

for solving the POP (2.9) boils down to formulations of SDP and LP problems,
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TABLE A.1

NUMBER OF DECISION VARIABLES IN LP

Number of unknowns (n)

2 3 4 5 6 7 8 9 10

D
eg

re
e

of
P
i(x

)

1 59 124 225 370 569 824 1149 1550 2035

2 62 130 235 385 588 852 1185 1595 2090

3 136 350 750 1421 2464 3996 6150 9075 12936

4 141 365 785 1491 2590 4206 6480 9570 13651

5 273 848 2128 4620 9030 16296 27621 44506 68783

6 280 876 2212 4830 9492 17220 29337 47509 73788

TABLE A.2

NUMBER OF DECISION VARIABLES IN SDP.

Variables (n)

3 5 7 9

D
eg

re
e

of
r i

(x
)

1 4 6 8 10

2 10 21 36 55

3 20 56 120 220

4 35 126 330 715

5 56 252 792 2002

6 84 462 1716 5005
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respectively, that correspond to RPOP (2.10). Note that both SDP and LP belong

to the class of convex optimization problems. Moreover, an SDP problems can be

viewed as a generalization of an LP problem and there are several computational

properties and methods in LP formulation that can be extended to SDP formulation.

There are, however, some properties of LP problems that do not extend to SDP

problems. Some of these are mentioned below [78].

• On one hand, a feasible solution to an LP problem is always guaranteed to
achieve its optima. On the other hand, the solutions of SDP problem may or
may not achieve their optima and so there may be a finite/ infinite duality gap
between the solutions of its primal and dual formulations.

• While there exist finite algorithms (such as simplex) for solving an LP problem,
there exists no finite algorithm for solving an SDP problem. In other words,
SDP formulations do not have direct analog of the ”basic feasibility problem”
[11] found in LP formulation.

A major consequence of the above discrepencies can be seen in term of the gap on

their solvers’ maturity. Specifically, it is widely known that most of the currently

available solvers for SDP problems are still under developed and are not as mature as

solvers for LP problems [94]. As a result, while many solvers for LP problems have

been proven to be capable of dealing with large scale problems [1, 2, 158], solvers

for SDP problems have often been found to be capable of dealing with only medium

scale problems (cf. [150, 94]).

Based on the above discussion, it is reasonable to expect that the method for

solving the RPOP (2.10) based on LP formulation will have a better performance

than that of the method based on the SDP formulation one. However, a result

from numerical simulations described below, which were conducted to verify the

hypothesis, suggests a negative answer. In this simulation, the objective is to compute

the minimum of a quadratic polynomial function p(x) in three variables (n = 3)
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subject to one equality (NF = 1) and six inequalities (NG = 6) constraints.

min p(x) = (x1 − 1)2 + (x2 − 1)2 + (x3 − 1)2

s.t. x1 − (x1 − x2)x3 = 0

0 ≤ xi ≤ 2, i = 1, . . . , 3.

Both the SOS and Handelman relaxations were used to solve the above POP. The

corresponding SDP and LP formulation were both solved using similar SDP/LP solver

Mosek [111].

Figure A.1 illustrates the results obtained after solving both the SDP and LP

relaxations of the above optimization problem. On one hand, this figure shows that,

while a second order SOS relaxation (solved in 0.45 second) is sufficient to compute a

lower bound that satisfies a prespecified accuracy, a tenth order Handelman relaxation

(solved in 4.05 second) is required to compute a lower bound that satisfies the same

level of accuracy. As suggested in [94], this result illustrates that the SOS relaxation

method has a faster convergence to the optimal solution than that of the Handelman

relaxation method. On the other hand, Figure A.1b illustrates that, although the

size (i.e the number of decision variables) of the corresponding LP problem is larger

than that of the corresponding SDP problem (for equal degree of relaxation), the

time required to solve LP problem is relatively shorter than that to solve the SDP

problem. Such a gap in computation time illustrates the limitation of solvers for SDP

problems as compared to solvers for LP problems.

The preliminary finding from numerical simulations discussed above illustrates

that, for relatively small size problems (n ≤ 5), the SDP formulation via SOS re-

laxation outperforms the LP formulation via Handelman relaxation. However, since

the currently available solvers for SDP problems are limited to small or medium sizes

problems, it is important to realize that similar numerical characteristics as illus-

trated in Figure A.1 cannot be guaranteed to hold for problems that consist of higher
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Figure A.1. Comparison between SOS and Handelman relaxations.

order polynomials and larger unknown variables. Equivalently, although solvers for

LP problems are known to be capable of handling large scale problems, the combi-

nation of ”slow convergence” (to the true/optimal solution) of its solutions and the

exponential increase on the number of decision variables (relative to linear increase

on the degree of relaxation) illustrated in Figure A.1b raises a concern about the

conservativeness of the LP formulation. Future research that further investigate this

trade off is therefore essential as it possibly allows one to make decision about which

type of relaxation is more suitable for a given problem.
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APPENDIX B

COMPUTER CODES FOR EXAMPLE 2.4

B.1 Singular Code

Listing B.1: Computing Gröbner basis in (2.20 using Singular[32].

> r i ng R=(0 ,P,Q,B,G) , (V, x , y ) , lp ;

> poly f1 = −Vˆ2∗G + V∗(G∗y+B∗x ) − P;

> poly f2 = −Vˆ2∗B − V∗(G∗x − B∗y ) − Q;

> poly f3 = xˆ2 + yˆ2 − 1 ;

> poly f4 = Bˆ2 + Gˆ2 − 2∗Bˆ2∗V∗y − 2∗Gˆ2∗V∗y ;

> i d e a l I = ( f1 , f2 , f3 , f 4 ) ;

> i d e a l G = groebner ( I ) ;

> G;

G[1 ]=(4P2B2−8PQBG+4PB2G+4PG3+4Q2G2+4QB3+4QBG2−B4−2B2G2−G4)

B.2 MATLAB Code

Listing B.2: Computing γ in (2.21) using SOSTOOLS[121].

pvar P Q gam % d e c l a r e v a r i a b l e s

vars = [P;Q] ; % v a r i a b l e s o f the r ing

P0 = 0 ; Q0 = 0 ; % i n i t i a l load parameters

B = . 5 / . 2 6 ; G = . 1 / . 2 6 ; % system parameter

J = (P−P0)ˆ2 + (Q−Q0) ˆ 2 ; % d i s t anc e to i n s t a b i l i t y

181



prog = sosprogram ( vars ) ; % i n i t i a l i z e SOSprogram

prog = sosdecvar ( prog , gam ) ; % Declare the d e c i s i o n v a r i a b l e

% Use the Grobner b a s i s from L i s t i n g B. 1 as an e q u a l i t y c o n s t r a i n t

Cons = Bˆ4−4∗Bˆ3∗Q+2∗Bˆ2∗Gˆ2−4∗Bˆ2∗G∗P−4∗Bˆ2∗Pˆ2−4∗B∗Gˆ2∗Q . . .

+8∗B∗G∗P∗Q+Gˆ4−4∗Gˆ3∗P−4∗Gˆ2∗Qˆ2 ;

% Def ine SOS m u l t i p l i e r ( constant i s s u f f i c i e n t in t h i s case )

[ prog , lam ] = sospo lyvar ( prog , 1 ) ;

% Def ine the SOS i n e q u a l i t y

f = J + lam∗Cons ;

prog = so s in eq ( prog , ( f−gam ) ) ;

% Set o b j e c t i v e func t i on : maximize d e c i s i o n v a r i a b l e gam

prog = s o s s e t o b j ( prog ,−gam ) ;

% Solve the SOS program

prog = s o s s o l v e ( prog ) ;

% Get and d i sp l ay the s o l u t i o n s

Lbound = s o s g e t s o l ( prog , gam ) ; d i sp l ay ( Lbound ) ;
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APPENDIX C

TOOLKIT MANUAL

C-BRANDS: A MATLAB toolkit for Certificate-based Bifurcation and Robustness

Analyses of Nonnegative Dynamical Systems

User’s Guide

C.1 Introduction

C-BRANDS (Certificate-based Bifurcation and Robustness Analyses for Nonneg-

ative Dynamical Systems) is a MATLAB toolkit for local bifurcation and robustness

analyses of nonnegative polynomial dynamical systems. It implements the method

described in [146] by utilizing freely available softwares such as SeDuMi [139], SOS-

TOOLS [121], CellNetAnalyzer [87], and Singular[62]. The current version of C-

BRANDS can be used to study the robustness and the distance-to-bifurcation (from

a nominal operating point) of nonnegative dynamical systems.

C-BRANDS is a free software; you can redistribute it and/or modify it un-

der the terms of the GNU General Public License as published by the Free Soft-

ware Foundation; either version 2 of the License, or (at your option) any later ver-

sion. C-BRANDS is distributed in the hope that it will be useful, but WITHOUT

ANY WARRANTY; without even the implied warranty of MERCHANTABILITY

or FITNESS FOR A PARTICULAR PURPOSE. You should have received a copy

of the GNU General Public License along with this toolkit. If not, please refer to

http://www.gnu.org/licenses/.
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Throughout this user’s manual, we use the typewriter typeface to denote MAT-

LAB variables and functions, MATLAB commands that you should type, and results

given by MATLAB. MATLAB commands that you should type will also be denoted

by the symbol >> before the commands. For example,

>> x = sin(1)

x =

0.8415

In this case, >> x = sin(1) is the command that you type, and x = 0.8415 is

the result given by MATLAB.

C.2 Getting Started

C.2.1 System Requirements and Installation

C-BRANDS is developed under Windows platform and takes advantage of MAT-

LAB’s symbolic engine MuPAD for symbolic object manipulation. Thus in order to

use C-BRANDS, you need to make sure that your MATLAB version includes the

Symbolic Math Toolbox. One way to verify this is by typing the following command

in MATLAB’s Command Window

>> ver

and then check if Symbolic Math Toolbox is in the list of your MATLAB’s toolboxes.

The current version of C-BRANDS has been tested under MATLAB R2013a (and

higher) and is available for download as a .ZIP file C-BRANDS.zip at

http://nd.edu/l̃emmon/projects/NSF-12-520/
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To install C-BRANDS, please follow the following step-by-step guidelines.

1. Download the .ZIP file C-BRANDS.zip from
http://nd.edu/l̃emmon/projects/NSF-12-520/.
Using any file archiver tool (such as 7-zip, cf. http://www.7-zip.org/), extract
the C-BRANDS.zip file to your MATLAB’s default directory. In Windows platform,
this usually creates a folder C:\Users\UserName\Documents\MATLAB\C-BRANDS
(assuming that C:\Users\UserName\Documents\MATLAB is the MATLAB’s de-
fault directory). After extracting the content of the .zip file, navigate to the
C-BRANDS folder and make sure that it contain the following folders/file

• SOSTOOLS3.00 (cf. http://www.cds.caltech.edu/sostools/)
• SeDuMi 1 3 (cf. http://sedumi.ie.lehigh.edu/)
• BRANDS

• Docs

• Singular-3-1-7-Small.exe (cf. http://www.singular.uni-kl.de/)
• SingularTest.sh

SOSTOOLS3.00 and SeDuMi 1 3 are Matlab’s third party toolboxes for sum of
squares (SOS) and semidefinite programmings, respectively.
BRANDS contain MATLAB files (mfiles) that implement C-BRANDS’s functional-
ity.
Docs this user’s guide and report [146].
Singular-3-1-7-Small.exe is an executable installation file of Singular com-
puter algebra (cf. step 3).
SingularTest.sh is a shell script file which will be used to test the connection
between MATLAB and Singular computer algebra (see step 5).

2. Download the .ZIP file of CellNetAnalyzer toolbox from http://www2.mpi-magdeburg.
mpg.de/projects/cna/download.html and extract its content to the C-BRANDS’s
folder (CellNetAnalyzer is not included in C-BRANDS due to distribution copy-
right).

3. Navigate to the C-BRANDS’s folder. Double click the file Singular-3-1-7-Small.exe
to run the installation of Singular computer algebra in your computer. Follow
the pop-up windows instruction to complete the installation (example views of
this installation can be seen at http://www.singular.uni-kl.de/index.php/
singular-download/install-windows-single-file.html). Note that the in-
stallation of Singular will includes the installation of Cygwin in your computer
(cf. www.cygwin.com).

4. Run MATLAB from Cygwin and add C-BRANDS’s folder to the MATLAB’s path
by following the steps below.
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• Open Cygwin bash shell (terminal) from Windows desktop by navigating
through
Start → All Programs → Singular CAS → Cygwin → Bash shell

• In Cygwin shell, type matlab. This will open a MATLAB window with
Current Folder at C:\cygwin\home\UserName

• In MATLAB’s window, set the Current Folder to the MATLAB’s folder, i.e.
C:\Users\UserName\Documents\MATLAB.

• Add C-BRANDS’s folder to the MATLAB’s path, i.e. right click on the
CBRAND’s folder and choose
Add to Path → Selected Folders and Subfolders

• Set MATLAB’s Current Folder to C-BRANDS’s folder, i.e.
C:\Users\UserName\Documents\MATLAB\C-BRANDS

5. In MATLAB’s Command Window, type and execute the following command
>> system(’C:\cygwin\bin\bash singular "SingularTest.sh"’)

You should receive the following output in MATLAB’s Command Window which
indicates that the Singular computer algebra can be accessed sucessfully from
MATLAB.

SINGULAR /
A Computer Algebra System for Polynomial Computations / version 3-1-6

0<
by: W. Decker, G.-M. Greuel, G. Pfister, H. Schoenemann \ Dec 2012

FB Mathematik der Universitaet, D-67653 Kaiserslautern \
Auf Wiedersehen.

ans =

0

6. Run example files in folder C-BRANDS/examples to get familiar with C-BRANDS.

C.2.2 Polynomial Representation

Polynomials in C-BRANDS are represented as symbolic object according to the

standard of MATLAB Symbolic Math Toolbox. To avoid an ambiguity in symbolic

variables’ declaration and ordering in MATLAB and Singular, the current version of

C-BRANDS requires that polynomials are defined in polynomial ring K(k)[x] where
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K is a field, k = (k1, . . . , km)T ∈ Km is a vector of unknown parameters and x =

(x1, . . . , xn)T ∈ Rn is a vector of indeterminate variables in the ring.

To define a scalar polynomial or vector of polynomial functions, one should first

declare the unknown parameters/variables and then apply standard algebraic op-

erations that define the functions. For example, to define a vector of polynomial

functions f(k)[x] with unknown parameters ki, i = (1, . . . , 4) and indeterminate

variables x = (x1, x2)T of the form

f(x1, x2) =

 f1(x1, x2)

f2(x1, x2)

 =

 k1x1 − k2x1x2

k3x1x2 − k4x2

 ,

we first declare the unknown parameters k and the indeterminate variables x by

typing

>> syms k1 k2 k3 k4 x1 x2;

and then construct polynomial f(x1, x2) using the command

>> f = [k1*x1 - k2*x1*x2; k3*x1*x2 - k4*x2]

f =

k1*x1 - k2*x1*x2

k3*x1*x2 - k4*x2

Alternatively, one may use the vector representation of x and k as follows.

>> x = sym(’x’,[1,2]); k = sym(’k’,[1,4]);

>> f = [k(1)*x(1) - k(2)*x(1)*x(2); k(3)*x(1)*x(2) - k(4)*x(2)];

Polynomial representation f as given above can be manipulated in MATLAB using

standard scalar or vectorial operators. For example, the Jacobian matrix J = ∂f
∂x

of

f(k)[x] with respect to indeterminate variables x can be computed using the com-

mand

>> J = jacobian(f,x)

J =
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[ k1 - k2*x2, -k2*x1]

[ k3*x2, k3*x1 - k4]

and the coefficients a = [a0, a1, a2] of the characteristic polynomial p(s) of the form

p(s) = det(sI − J) = a0 + a1s+ a2s
2

of the Jacobian matrix J can be computed using the command

>> a = charpoly(J)

a =

[ 1, k4 - k1 + k2*x2 - k3*x1, k1*k3*x1 - k1*k4 + k2*k4*x2]

For other types of symbolic object manipulations and descriptions, please refer to the

MATLAB Symbolic Math Toolbox documentation which can be accessed using the

command

>> doc sym

C.3 Method and Implementation

C.3.1 Basic Theory

C-BRANDS can be used to study nonnegative polynomial dynamical systems

modedeled as ordinary differential equations (ODE) of the form

ẋ(t) = f(x, k), x(0) = x0. (C.1)

for t ≥ 0 where x ∈ Rn is a vector of state variables, k ∈ Rm is a vector of unknown

parameters, f(x, k) ∈ R(k)[x] is polynomial function in polynomial ring R(k)[x] (i.e.

the set of all polynomials in indeterminate variables x = (x1, . . . , xn) with unknown

real-valued coefficients k = (k1, . . . , km)). System (C.1) is said to be nonnegative if
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and only if x(t, x0) ∈ Rn
+ for all x0 ∈ Rn

+, t ≥ 0. A necessary and sufficient condition

for (C.1) to be non-negative is that f(x, k) ≥ 0 for all x in which x = 0 [65, 64].

The analysis of local bifurcation and robustness of ODE model (C.1) in C-

BRANDS is carried out by studying the kinetic realization of (C.1) of the form

ẋ(t) = Nv(x, k) = Ndiag(k)xZ , x(0) = x0

wTx(t) = c,

(C.2)

where N is a matrix with integer coefficients, v(x, k) is a vector of monomials de-

scribing the flux in the system, Z is a matrix of nonnegative integers whose ith

column correspond to the x’s multi-index of the ith monomial in v(x, k) (i.e. the

flux vector v(x, k) satisfies a decomposition of the form v(x, k) = diag(k)xZ). The

equation wTx(t) = c is known as the conservation relation in the system

Remark C.3.1. Beside the ODE model in equation (C.1), C-BRANDS can also be

used to analyze chemical reaction network (CRN) described by a set of r elementary

reactions between s ≥ 1 chemical species X1, X2, . . . , Xs described by the following

CRN

s∑
j=1

aijXj
ki→

s∑
j=1

bijXj, for i = 1, 2, . . . , r, (C.3)

where parameter ki’s are the rate constant of the ith reaction between the reactant

species ∑s
j=1 aijXj and the product species ∑s

j=1 bijXj. By denoting the concentration

of species Xj at time t as xj(t) and defining x(t) = [x1(t), . . . , xs(t)]T , a kinetic

realization of the form (C.2) for CRN in (C.3) can be constructed (cf. [57, 58]).

As discussed in [57, 58], the main advantage of using the kinetic realization in (C.2)

is that it allows one to obtain an expression of the state equilibria x∗(k, λ) ∈ Q(k, λ)

as a rational function of the system parameter k and some convex parameter λ.

The special structure in (C.2) means that the system’s vector fields f(x, k) may be
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decomposed into a linear map (N) which is independent of x and k and a vector of

nonlinear fluxes (v). This decomposition has two important consequences that were

originally exploited in [57, 58]

First: it means that the equilibrium fluxes (i.e. those v∗ such that Nv∗ = 0) are

non-negative vectors lying in the null space of N . In particular, any equilibrium flux

must lie in a convex polyhedral cone

v∗ ∈ Kv = ker(N) ∩ Rm
+ =

{
v ∈ Rm

+ : v = Σq
i=1λiEi

}
. (C.4)

The cone, Kv, in equation (C.4) is finitely generated by a set of extreme rays, Ei ∈ Rm
+

for i = 1, 2, . . . , q. Such rays are routinely computed using tools such as CellNetAna-

lyzer [87]. Every equilibrium flux in Kv can therefore be parameterized with respect

to these rays. In equation (C.4), the parameters λ = (λ1, λ2, . . . , λq) are called convex

parameters [22] and so any equilibrium flux can be written as v∗(λ) a linear function

of the convex parameters.

Second: any flux, v, in the system must satisfy the equation

vi = kix
zi , i = 1, 2, . . . ,m, (C.5)

where zi is the ith column of Z in (C.2). The equations in (C.5) are binomials in

R(k)[x, v] and this system’s zeros characterize both the equilibrium fluxes, v∗, and

the state equilibria x∗. The ideal generated by these binomials is a toric ideal [7] for

which efficient algorithms for computing a Gröbner basis are available [140] and have

been implemented in computer algebra programs such as Singular [62]. One can

therefore solve for the equilibria of the system in terms of its equilibrium fluxes and

system parameters.

The preceding two consequences of kinetic realization (C.2) can be summarized
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as 1) any flux equilibrium can be expressed as a function, v∗(λ), in terms of the con-

vex parameters and 2) any state equilibrium can be expressed as a rational function,

x∗(v∗, k) of the equilibrium and the system parameters, k. Using the convex param-

eterization of v∗, one may then parameterize the equilibrium as x∗(k, λ) ∈ Qn(k, λ).

This algebraic equation characterizes all system equilibria as a function of the system

and convex parameters and it provides a critical starting point for characterizing the

bifurcation constraints in the distance-to-bifurcation problem.

The above equilibrium parameterization implies that the Jacobian matrix J of the

system can also be parameterized in term of parameters k and λ as follows [57, 58].

J(λ, h) = Ndiag(v∗(λ))ZTdiag(h), (C.6)

where h = 1/x∗(λ, k) and v∗(λ) is a parameterization of the flux equilibrium in

(C.4). Given the parameterization of Jacobian matrix in equation (C.6), one may

then analyze the robustness and local bifurcation of system (C.1) using techniques

from robust stability and local bifurcation analyses.

Consider the Jacobian matrix J in (C.6) and let p(s) = |sI−J | be its characteristic

polynomial defined as

q(s) = a0s
n + a1s

n−1 + · · ·+ an−1s+ an, (C.7)

where the coefficients ai(λ, h) are polynomial functions of the parameters (λ, h). For

notational convenience, we denote these parameters as µ = (λ, h) ∈ Rp where p

denotes the number of parameters in µ. For z = 1, . . . , n, let 4z denotes the zth

Hurwitz determinant associated with q(s). The following Routh-Hurwitz criteria

provides a necessary and sufficient condition for robust stability of system (C.1).

Theorem C.3.2 (Routh-Hurwitz stability criteria). System (C.1) with Jacobian ma-

trix J in (C.6) is robustly stable if and only if the Hurwitz determinant 4z of the
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characteristic polynomial q(s) in (C.7) satisfy 4z > 0 for all z = 1, . . . , n

On the other hand, the necessary condition for system (C.1) to undergoes a local

bifurcation (i.e. Hopf or saddle-node bifurcations) is given in the following theorem.

Theorem C.3.3 (Necessary local bifurcation condition). System (C.1) with Jaco-

bian matrix J in (C.6) will undergoes a Hopf or saddle-node bifurcation if there

exists parameter µ such that µ ∈ Ω(µ) where Ω(µ) = ΩH ∪ ΩSN with ΩH = { µ ∈

Rp
+ | 4n−1(µ) = 0 } and ΩSN = { µ ∈ Rp

+ | an(µ) = 0 } denotes the set of parameters

at which a Hopf or a saddle-node bifurcation occurs.

Using the condition in Theorem C.3.3, one may also formulate and solve the

distance-to-bifurcation problem for system (C.1). In particular, consider the dy-

namical system (C.1) with a nominal parameter µ0 for which the system has an

asymptotically stable equilibrium x∗(µ0). The minimum distance-to-bifurcation γ =

infµ |µ0 − µ∗| is defined as the distance between the nominal parameter µ0 and the

closest critical parameter µ∗ at which the corresponding system equilibrium x∗(µ∗)

undergoes a bifurcation. Using the condition in Theorem C.3.3, a lower bound on γ

for a particular local bifurcation can be computed by solving a sum of squares (SOS)

optimization problem. For the case of Hopf bifurcation, a lower bound on β is given

by the solution to the following SOS optimization problem.

max γ,

s.t. V (µ)− γ + r(µ)4n−1(µ) is SOS,
(C.8)

where V (µ), r(µ) are some polynomials parameterization in indeterminates µ of the

form

V (µ) = Σα cαµ
α, r(µ) = Σβ cβµ

β,

whose coefficients cα and cβ, respectively, are decision variables to be determined
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in the optimization. Similarly, a lower bound on γ for the case of a saddle-node

bifurcation can be computed by solving the following SOS optimization problem.

max γ,

s.t. V (µ)− γ + r(µ)an(µ) is SOS.
(C.9)

Notice that the SOS optimization problems as defined above can be solved using

SOS programming tool such as SOSTOOLS [121] in conjunction with semidefinite

programming solvers such as Sedumi [139].

C.3.2 What C-BRANDS Does

C-BRANDS implements the method described in the previous section by taking

advantage of several third party toolboxes including Singular, CellNetAnalyzer,

SOSTOOLS and Sedumi. As illustrated in Figure C.1, the robustness/bifurcation

analysis using C-BRANDS can be devided into four major steps, namely the con-

struction of kinetic realization (C.2), the construction of robustness/bifurcation con-

ditions, the computation of equilibrium parameterization x∗(λ, k) and the computa-

tion of minimum distance to bifurcation (D2B). Each step is described below.

C.3.2.1 Construction of Kinetic Realization

There are two types of system descriptions that can be analyzed in C-BRANDS:

an ODE model of the form (C.1) or a set elementary reactions in CRN (C.3). In

either case, C-BRANDS can be used to construct kinetic realizations of the form

(C.2).

For the case in which the input is an ODE model, let us consider an example using

the well-known Lotka-Volterra model of predator (x1) and prey (x1) interaction of
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Figure C.1. Flow chart for using C-BRANDS.

the form
ẋ1 = k1x1 − k2x1x2,

ẋ2 = k3x1x2 − k4x2,

where ki, (i = 1, . . . , 4) are some nonnegative parameters. To define this model in

C-BRANDS, one first declare the set of indeterminate variables x = (x1, x2) and

the set of unknown parameters k = (k1, . . . , k4) and then define the polynomial

function f(x, k) according to the system model. This can be done using the following

MATLAB commands.

>> x = sym(’x’,[1,2]); k = sym(’k’,[1,4]);

>> f = [k(1)*x(1) - k(2)*x(1)*x(2); k(3)*x(1)*x(2) - k(4)*x(2)]

f =
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k1*x1 - k2*x1*x2

k3*x1*x2 - k4*x2

A kinetic realization of the form (C.2) for this system can be constructed using the

function d2b ODE2realization as follows

>> NVKZ = d2b_ODE2realization(f,x,k)

NVKZ =

v: [4x1 sym]

k: [4x1 sym]

Z: [2x4 double]

N: [2x4 double]

Inv: ’No conservation relation’

The output NVKZ of function d2b ODE2realization is a data structure that stores

the values of matrices/vectors N, v(x, k), k, Z that corresponds to kinetic realization

(C.2). They can be accessed using standard MATLAB commands as follows.

>> NVKZ.N

ans =

0 0 -1 1

-1 1 0 0

>> NVKZ.v

195



ans =

k4*x2

k3*x1*x2

k2*x1*x2

k1*x1

>> NVKZ.k

ans =

k4

k3

k2

k1

>> NVKZ.Z

ans =

0 1 1 1

1 1 1 0
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Thus a kinetic realization of the form (C.2) for this system is given by

ẋ =

 0 0 −1 1

−1 1 0 0





k4x2

k3x1x2

k2x1x2

k1x1



=

 0 0 −1 1

−1 1 0 0





k4 0 0 0

0 k3 0 0

0 0 k2 0

0 0 0 k1





x2

x1x2

x1x2

x1



The last data Inv in NVKZ data structure contains the conservation relation wTx = c in

model (C.2). The output of function d2b ODE2realization as shown above indicates

that the kinetic realization of the Lotka-Volterra model has no conservation relation.

For the case in which the input is a CRN, let us consider the following reaction

network between species X, Y with concentration [X] and [Y ], respectively.

2X + Y
k1−→ 3X

∅
k4
�
k3

X
k2−→ Y

Let x1, x2 denote [X], [Y ], respectively. The kinetic realization of the form (C.2) for

this CRN can be construced using the function d2b CRN2realization as follows

>> x = sym(’x’,[1,2]); k = sym(’k’,[1,4]);

>> R = [2*x(1)+x(2), 3*x(1), k(1);...

>> x(1), x(2), k(2);

>> x(1), 0, k(3);
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>> 0, x(1), k(4)];

>> NVKZ = d2b_CRN2realization(R)

NVKZ =

N: [2x4 double]

v: [4x1 sym]

k: [4x1 sym]

Z: [2x4 double]

Inv: ’No conservation relation’

The above MATLAB script indicates that one first declare the set of indeterminate

variables x = (x1, x2) (i.e. vector of species concentrations) and the set of unknown

parameters k = (k1, . . . , k4) (i.e. reaction constants) in the CRN. All r elementary

reactions are then declared as a 3×r vector R in which the first and second columns of

R contains the term on the left- (reactant complexes) and right- (product complexes)

hand sides of each elementary reaction, respectively, whereas the third column of R

contains the reaction constant of each elementary reaction. Similar to the case where

systems described by an ODE model, the output of function d2b CRN2realization

is also a data structure NVKZ containing matrices/vectors N, v(x, k), k, Z that corre-

spond to the kinetic realization (C.2). Using the same method as described above to

access the content of NVKZ data, it can be verified that a kinetic realization for the
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above CRN is given by

ẋ =

 1 −1 −1 1

−1 1 0 0





k1x
2
1x2

k2x1

k3x1

k4


,

=

 1 −1 −1 1

−1 1 0 0





k1 0 0 0

0 k2 0 0

0 0 k3 0

0 0 0 k4





x2
1x2

x1

x1

1


.

It is easy to see that the ODE model for the above CRN is then given by

ẋ1 = k4 − k2x1 − k3x1 + k1x
2
1x2,

ẋ2 = −k1x2x
2
1 + k2x1.

C.3.2.2 Construction of Robustness/Bifurcation Conditions

Using the obtained kinetic realization described in the previous sections, then the

robust stability or bifurcation conditions in Theorems C.3.2 and C.3.3 can be con-

structed from the coefficients and Hurwitz determinants of the characteristic polyno-

mials (C.7) that corresponds to the parameterized Jacobian matrix in (C.6). These

constructions can be done using C-BRANDS as illustrated below using the kinetic

realization of the CRN discussed in the previous section.

First, the the parameterized Jacobian matrix J in (C.6) and the parameterized

flux equilibrium Kv in (C.4) for the CRN model described in the previous section can

be computed using the matlab function d2b jacobian as follows

The outputs J and Kv of function d2b jacobian above correspond to matrix J in

(C.6) and vector Kv in (C.4), respectively.
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The coefficients a and Hurwitz determinant detH of the Jacobian’s characteristic

polynomial q(s) can be computed using function d2b hurwitz. Vector Kv will later

be used to compute the equilibrium parameterization x∗(λ, k) (see section C.3.2.3)

whereas matrix J will be used to compute characteristic polynomial q(s) in (C.7) as

shown below.

>> [detH,a] = d2b_hurwitz(J,NVKZ.Inv)

detH =

[ h_1*lam_2 - h_1*lam_1 + h_2*lam_1, 1]

[ h_1*h_2*lam_1*lam_2*(h_1*lam_2 - h_1*lam_1 + h_2*lam_1), 1]

a =

[ 1, h_1*lam_2 - h_1*lam_1 + h_2*lam_1, h_1*h_2*lam_1*lam_2]

The Hurwitz determinant data detH in the output of function d2b hurwitz shown

above is interpreted as follows. The first column in detH is the nth Hurwitz deter-

minant of J . Thus in our example we have that

41 = h1λ2 − h1λ1 + h2λ1, 42 = h1h2λ1λ2(h1λ2 − h1λ1 + h2λ1).

The second column in detH contains logical indexes indicating whether the corre-

sponding zth Hurwitz determinant always positive (index 0) or not (index 1) for any

nonnegative values of λ and h. As indicated in detH data, both the first and the sec-

ond Hurwitz determinants can take values less than or equal to zero for some choice

of nonnegative parameters h and λ. Based on the condition stated in Theorem C.3.2,

the CRN described above is robustly stable if and only if 4i > 0, (i = 1, 2).
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The output data a of the function d2b jacobian shown above suggests that the

characteristic polynomial for the Jacobian matrix of our CRN model takes the form

q(s) = s2 + a1s+ a2 where

a1 = h1λ2 − h1λ1 + h2λ1, a2 = h1h2λ1λ2

Using the condition in Theorem C.3.3, one may concludes that this system can-

not exhibits a saddle-node bifurcation since an = a2 6= 0 for any choice of posi-

tive parameters λ and h. This system, however, may exhibits a Hopf bifurcation if

4n−1 = 41 = 0 for some choice of nonnegative parameters λ and h.

C.3.2.3 Computation of Equilibria

The computation of equilibrium parameterization x∗(λ, k) in C-BRANDS can be

done using function d2b equi. For the above CRN model, the following command

can be used.

>> TG = d2b_toricGroebner(x,k,NVKZ.v);

>> [G,vw,xw] = d2b_equi(x,k,TG,Kv,NVKZ.Z)

G =

lam_2 - k4

k3*lam_1 - k2*lam_2

vw =

w1
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w2

w2

1

xw =

w2

w1/w2ˆ2

The output TG of d2b toricGroebner above denotes a Gröbner basis of the bi-

nomial system (C.5). The output G of d2b equidenotes the intersection between

Gröbner basis TG and the flux equilibrium Kv in (C.4) (cf. Kv in section C.3.2.2).

One may then rewrite the flux equilibrium v∗ as

v∗ =



k2k4/k3

k2k4/k3

k4

k4


.

On the other hand, the outputs vw and xw on the other hand are variable trans-

formation (obtained using Hermite transformation, see ) that can be used to compute

x∗ from v∗. By equating diag(NVKZ.k)*vw and v∗ as given above, it can be shown

that  w1

w2

 =

 k2k4/k1k3

k4/k3
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from which the equilibrium parameterization can be obtained using the output data

xw as follows

x∗ =

 k4/k1

k2k4/k1k3

 .

C.3.2.4 Computation of distance-to-bifurcation

For our CRN model, a lower bound on the minimum distance γ to a Hopf bifur-

cation from a nominal parameter µ0 can then be computed by solving the following

SOS optimization (cf. (C.8)).

max γ,

s.t. V (µ)− γ + r(µ)[h1λ2 − h1λ1 + h2λ1] is SOS.

Note that for any set of nominal parameters µ0 = (k0, h0), the corresponding initial

convex parameter λ0 can be computed using equations x∗ and the Gröbner basis G.

C.4 Applications

For detailed explanation on each of these examples, please refer to the example

section in [146].

C.4.1 Robustness Analysis

C.4.1.1 Lotka-Volterra predator and prey model

Consider the Lotka-Volterra model for predator and prey interaction as follows.

ẋ1 = k1x1 − k2x1x2,

ẋ2 = k3x1x2 − k4x2,
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where k1, k2, k3, k4 are some positive constants. Using MATLAB codes in Section

C.5.1, it can be concluded that this system exhibits a robust oscillatory dynamics for

any choice of nonnegative parameters ki, (i = 1, . . . , 4).

C.4.1.2 A minimal lake model

Consider the following minimal lake model from [152].

ẋ1 = k1x1x2 − k2x1,

ẋ2 = −k1x1x2 + x3µ(x4),

ẋ3 = k2x1 − x3µ(x4),

ẋ4 = k3(k4 − x4) + k5x1 − k6x3µ(x4),

where x1, x2, x3, x4 denote the concentrations of autotroph, nutrient, detritus, and

dissolved oxygen, respectively, ki (i = 1, . . . , 6) are some positive constants, and

µ(x4) = x4 is a function describing the oxygen transformation (cf. [152] for details).

Using MATLAB codes in Section C.5.2, it can be concluded that this system is

robustly asymptotically stable for any choice of nonnegative parameters ki, (i =

1, . . . , 6).

C.4.1.3 Feedback inhibition pathway model

Consider a chemical reaction network for the feedback inhibition pathway below.

∅ k9−→ x1
k8−→ ∅

x1 + x6
k1−→ x2 + x6

x2
k2−→ x3

k3−→ x4
k4−→ x5

k5−→ ∅

x5 + x6
k6
�
k7

x7
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Using MATLAB codes in Section C.5.3, it can be concluded that this system is

robustly asymptotically stable for any choice of nonnegative rate constants ki, (i =

1, . . . , 9).

C.4.2 Distance-to-bifurcation problem

C.4.2.1 Hopf bifurcation

Consider the model of the Brusselator described in the previous section. Let the

nominal operating point be given by initial parameter k0
i = 1 for i = (1, . . . , 4) and

initial condition x1(0) = x2(0) = 1 for which the corresponding nominal equilibrium

is x∗1 = x∗2 = 1. Using MATLAB codes in Section C.5.4, we found that a lower bound

on the minimum distance a Hopf bifurcation for this system is γ = 0.4.

C.4.2.2 Saddle-node bifurcation

Consider a model of the peroxidase-oxidase system below

ẋ1 = k2 + k3x1 − 2k1x
2
1 − k4x1x2

ẋ2 = k5 − k6x2 − k4x1x2

Let us consider an initial condition x0 = [0.5, 1.5] and a nominal parameter k0 =

[2, 3, 3, 2, 3, 1] which correspond to a nominal stable equilibrium point x∗j = 1, (j =

1, 2). Using MATLAB codes in Section C.5.5, we found a lower bound on the mini-

mum distance a saddle-node bifurcation for this system is γ = 1.5473.
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C.5 Matlab codes for the examples

To run these examples, MATLAB’s Current Folder should be set to the C-

BRANDS’s folder.

C.5.1 Lotka-Volterra predator and prey model

clear all; close all; clc

x = sym(’x’,[1,2]);

k = sym(’k’,[1,4]);

f = [k(1)*x(1) - k(2)*x(1)*x(2);...

k(3)*x(1)*x(2) - k(4)*x(2)];

% Construct the kinetic realization

NVKZ = d2b_ODE2realization(f,x,k);

% Jacobian matrix, characteristic polynomial, and Hurwitz determinant

[Jac,Kv,E] = d2b_jacobian(NVKZ.N,NVKZ.Z);

[detH,Cpoly] = d2b_hurwitz(Jac,NVKZ.Inv);

display(Cpoly);

C.5.2 Minimal lake model

clear all; close all; clc

x = sym(’x’,[1,4]);

k = sym(’k’,[1,6]);
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f = [k(1)*x(1)*x(2) - k(2)*x(1);...

-k(1)*x(1)*x(2) + x(3)*x(4);...

k(2)*x(1) - x(3)*x(4);...

k(3)*(k(4)-x(4)) + k(5)*x(1) - k(6)*x(3)*x(4)];

% Construct the kinetic realization

NVKZ = d2b_ODE2realization(f,x,k);

% Jacobian matrix, characteristic polynomial, and Hurwitz determinant

[Jac,Kv,E] = d2b_jacobian(NVKZ.N,NVKZ.Z);

% Test robust local stability

dec = d2b_isasystable(Jac,NVKZ.Inv);

C.5.3 Feedback inhibition pathway

clear all; close all; clc;

x = sym(’x’,[1,7]);

k = sym(’k’,[1,9]);

% ODE model

f = [k(9) - k(8)*x(1) - k(1)*x(1)*x(6);...

k(1)*x(1)*x(6) - k(2)*x(2);...

k(2)*x(2) - k(3)*x(3);...

k(3)*x(3) - k(4)*x(4);...

k(4)*x(4) - k(5)*x(5) - (k(6)*x(5)*x(6) - k(7)*x(7));...
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-k(6)*x(5)*x(6) + k(7)*x(7);...

k(6)*x(5)*x(6) - k(7)*x(7)];

% Kinetic realization

NVKZ = d2b_ODE2realization(f,x,k);

% Compute steady state Jacobian matrix

[Jss,Kv,E] = d2b_jacobian(NVKZ.N,NVKZ.Z);

% Test robust local stability

dec = d2b_isasystable(Jss,NVKZ.Inv);

C.5.4 Brusselator

clear all; close all; clc;

% states and parameters

x = sym(’x’,[1,2]);

k = sym(’k’,[1,4]);

% Elementary reactions network

R = [2*x(1)+x(2), 3*x(1), k(1);...

x(1), x(2), k(2);

x(1), 0, k(3);

0, x(1), k(4)];

tic

% Kinetic realization

[NVKZ,f] = d2b_CRN2realization(R);
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% Jacobian matrix, characteristic polynomial, and Hurwitz determinant

[Jss,Kv,E] = d2b_jacobian(NVKZ.N,NVKZ.Z);

[detH,Cpoly] = d2b_hurwitz(Jss,NVKZ.Inv);

% Construct local bifurcation condition

[HB,SNB] = d2b_Instability(detH,Cpoly);

% Compute Grobner basis of the toric ideal and Hermite transformation

TGB = d2b_toricGroebner(x,k,NVKZ.v);

[Gn,vw,xw] = d2b_equi(x,k,TGB,Kv,NVKZ.Z);

% Equilibrium parameterization

lam_vars = setdiff(symvar(Gn),k);

lam = solve(Gn,lam_vars(1),lam_vars(2));

Kv = subs(Kv,lam_vars,[lam.lam_1, lam.lam_2]);

w_lam = diag(k)*vw - Kv; w = w_lam(w_lam˜=0);

wvars = setdiff(symvar(w),k);

wsol = solve(w,wvars(1),wvars(2));

Equi = subs(xw,symvar(xw),[wsol.w1,wsol.w2]);

%% Minimum Distance to Hopf bifurcation

SOSvar = symvar(HB.Eq);

Obj = sum((SOSvar - ones(1,4)).ˆ2);

Eq = SOSvar(1)*SOSvar(4) - SOSvar(1)*SOSvar(3) + SOSvar(2)*SOSvar(3);

Ineq = SOSvar(1)*SOSvar(4) - SOSvar(1)*SOSvar(3) + SOSvar(2)*SOSvar(3);

[d2b,var,optval] = findbound(Obj,[SOSvar, Ineq],Eq,2);
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display(d2b); toc

C.5.5 The peroxidase-oxidase reaction network

clear all; close all; clc;

% states and parameters

x = sym(’x’,[1,2]);

k = sym(’k’,[1,6]);

% vector fields

f = [-2*k(1)*x(1)ˆ2 + k(2) + k(3)*x(1) - k(4)*x(1)*x(2);...

k(5) - k(6)*x(2) - k(4)*x(1)*x(2)];

tic

% Construct the kinetic realization

NVKZ = d2b_ODE2realization(f,x,k);

% Jacobian matrix, characteristic polynomial, and Hurwitz determinant

[Jac,Kv,E] = d2b_jacobian(NVKZ.N,NVKZ.Z);

[detH,Cpoly] = d2b_hurwitz(Jac,NVKZ.Inv);

% Construct the bifurcation conditions

[HB,SNB] = d2b_Instability(detH,Cpoly);

% Compute toric variety and variable transformation

TGB = d2b_toricGroebner(x,k,NVKZ.v);

[Gn,vw,xw] = d2b_equi(x,k,TGB,Kv,NVKZ.Z);

Gn(4) = [];
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% SOS program to compute distance to saddle-node bifurcation

k0 = [2, 3, 3, 2, 3, 1]; % initial parameter

x0 = [1 1]; % equilibrium corresponding to k0

G = subs(Gn,k,k0); % equation to determine initial lambda

lam0 = ones(1,5); % initial lambda corresponding to k0

SOSvar = symvar(SNB);

Object = sum((SOSvar(3:end) - lam0).ˆ2);

Eq = subs(SNB,SOSvar(1:2),ones(1,2));

[d2b,var,optval] = findbound(Object,SOSvar(3:end),Eq,2);

display(d2b); toc

211



C.6 Functions Descriptions

The main functions used in C-BRANDS are described as follows.

• NVKZ = d2b ODE2realization(f,x,k)
Function d2b ODE2realization constructs a kinetic realization of the form
(C.2) from an ODE model ẋ = f(x, k). The inputs of this function are symbolic
vector f of the vector field f(x, k), symbolic vector x of indeterminate variables
x and symbolic vector k of unknown parameters k. The output of this function
is a data structure NVKZ that stores the matrices/vectors N, v(x, z), k, Z in
kinetic realizations (C.2).

• [NVKZ,f,CRNTmod] = d2b CRN2realization(R)
Function d2b CRN2realization constructs a kinetic realization (C.2) from a
set of r elementary reactions of the form (C.3). The input R to this function
is a (r × 3) matrix in which r denotes the number of elementary reactions.
The first and second columns of R correspond to the reactant and product
complexes, repectively, in each elementary reactions, whereas the third column
of R is the corresponding reactant constant. There are three outputs of this
function namely NVKZ, f and CNRTmod. NVKZ is a data structure containing
matrices/vectors N, v(x, k), k, Z and w that correspond to kinetic realization in
(C.2). The output f is a symbolic vector of vector field f(x, k) that defines an
ODE model ẋ = f(x, k) for the input CRN defiines in R. The output CRNTmod is
a data structure containing matrices/vectors Y, Ia, Ik, ψ(x) that define alterna-
tive realization of the form ẋ = Y IaIkψ(x) which is often used in the chemical
reaction network theory (CRNT) literatures (cf. [44]).

• J = d2b jacobian(N,Z)
Function d2b jacobian constructs the parameterized Jacobian matrix (C.6) of
a kinetic realization of the form (C.2). The inputs N and Z to this function are
matrices N and Z, respectively, in kinetic realizations (C.2). The output J is
a symbolic object of Jacobian matrix (C.6).

• [dH,a] = d2b hurwitz(J,w)
Function d2b hurwitz computes the coefficients of the characteristic polyno-
mial and its corresponding zth Hurwitz determinant. The inputs J and w of
this function are the parameterized Jacobian matrix J in (C.6) and the conser-
vation matrix w in (C.2). The output of this function is a vector a containing
the coefficients ai of the characteristic polynomial q(s) in (C.7) and a vector dH
containing the zth Hurwitz determinant of q(s).

• G = d2b toricGroebner(x,k,v)
Function d2b toricGroebner computes a Gröbner basis for the toric ideal
formed by the kinetic realizations’ flux vector. The inputs to this function are
symbolic vector x of indeterminate variables x, symbolic vector k of unknown
parameters k, and symbolic vector v of the flux v(x, k) in (C.2). The output of
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this function is a Gröbener basis G of the toric ideal formed by binomial system
in (C.5).

• [Gn,vw,vx] = d2b equi(x,k,G,Kv,Z)
Function d2b equi constructs the parameterized flux equilibria and the corre-
sponding Hermite transformation [141] that can be used to obtain the equi-
librium parameterization x∗(λ, k). The inputs for this function are symbolic
vector x of indeterminate variables x, symbolic vector k of unknown parame-
ters k, symbolic vector G of the Gröbner basis Gn, symbolic vector Kv of the flux
equilibrium parameterization Kv, and matrix Z in kinetic realizations (C.2).

• [HB, SNB] = d2b Instability(dH,a)
Function d2b Instability constructs the conditions for the Hopf and saddle-
node bifurcations to occurs in system (C.2). The inputs dH and a to this
function are the Hurwitz determinant4z and coefficients ai, respectively, of the
characteristic polynomial q(s) in (C.7). The outputs HB and SNB of this function
are the conditions for the occurrence of Hopf and saddle-node bifurcations,
respectively, stated in Theorem C.3.3.
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APPENDIX D

DATA OF THE CHEMOSTAT EXPERIMENT & ANALYSIS

D.1 BBM-Medium used in the experiment

BOLD’S BASAL MEDIUM (modified)

STOCK SOLUTION 100% (mL/L)

1. KH2PO4 8.75 gr/500 mL 10 mL

2. CaCl2 ·2 H2O 1.25 gr/500 mL 10 mL

3. MgSO4 ·7 H2O 3.75 gr/500 mL 10 mL

4. NaNO3 12.5 gr/500 mL 4 mL

5. K2HPO4 3.75 gr/500 mL 10 mL

6. NaCl 1.25 gr/500 mL 10 mL

7. Na2EDTA 10 gr/L 1 mL

KOH 6.2 gr/L

8. FeSO47 H2O 4.98 gr/L 1 mL

H2SO4 (concentrated) 1 mL

9. Trace Metal Solution See below* 1 mL

10. H3BO3 5.75 gr/ 500 mL 0.7 mL

Instructions for making 2L of 50%: Add 1 L of MilliQ water to a 2L volumetric

flask. Add the amount of each stock indicated in the above table for 100%. Add

stocks one at a time using the pre-labelled 10 mL serological pipettes. Be sure to

keep track of which ones you have added. Add 175 µL of 1M NaOH and 10 gr NaCL
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crystal. Fill the flask to the line with MilliQ water and put the flask on magnetic

stirrer for 10 minutes. When complete, pour into a 2L media bottle and autoclave

on liquid setting for 30 minutes.

Trace Metal Solution*

Substance gr/L

1. H3BO3 2.86 gr

2. MnCl2 ·4 H20 1.81 gr

3. ZnSO4 ·7 H2O 0.222 gr

4. Na2MoO4 ·2 H2O 0.39 gr

5. CuSO4 ·5 H2O 0.079 gr

6. Co(NO3)2 ·6 H2O 0.0494 gr
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D.2 Chemostat Measurements

D.2.1 Raw data for δ = 0.95

The data were obtained from 45 days of chemostat measurements. The data were averages of measurements from two

chemostats.

• The C. vulgaris measurements for each chemostat were the average number of cells in two samples (each of which was 10
microliters).

• The B. calyciflorus measurements for each chemostat were the average number of individuals in four samples (each of
which was 1 milliliters).

Day 1 2 3 4 5 6 7 8 9 10

C. vulgaris 5437500 4512500 4637500 4725000 4125000 4287500 3775000 2175000 2062500 3137500

B. calyciflorus 0.9375 0.75 0.8125 1.8125 2.25 4.0625 4.8125 7.8125 5.5625 4.875

Day 11 12 13 14 15 16 17 18 19 20

C. vulgaris 4275000 4187500 4425000 4712500 4025000 4512500 4525000 4762500 4662500 5387500

B. calyciflorus 2.1875 1.9375 0.8125 1.0625 0.9375 0.375 0.25 0.1875 0.25 0.5625
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Day 21 22 23 24.0 25 26 27 28 29 30

C. vulgaris 5037500 3737500 4412500 4325000 4862500 4287500 3875000 3625000 2975000 1750000

B. calyciflorus 0.3125 0.25 0.6875 0.4375 1.75 1.8125 3.1875 4.375 7.5 6.9375

Day 31 32 33 34 35 36 37 38 39 40

C. vulgaris 2712500 3712500 3725000 4312500 4187500 3912500 4537500 4462500 4812500 4937500

B. calyciflorus 5.375 3.9375 1.75 1.1875 0.75 1.125 0.9375 0.125 0.3375 0.1875

Day 41 42 43 44 45

C. vulgaris 5137500 4862500 4075000 5812500 4662500

B. calyciflorus 0.3125 0.8125 0.1875 0.8625 0.4375
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D.2.2 Raw data for δ = 0.1

The following data were obtained from 45 days of chemostat measurements.

The data were averages of measurements from two chemostats.

• The C. vulgaris measurements for each chemostat were the average number of cells in two samples (each of which was 10
microliters).

• The B. calyciflorus measurements for each chemostat were the average number of individuals in four samples (each of
which was 1 milliliters).

Day 1 2 3 4 5.0 6 7 8 9 10

C. vulgaris 1762500 1687500 1587500 1762000 1712500 1612500 1887500 1737500 1675000 1575000

B. calyciflorus 1.875 1.75 1.875 1.6875 1.75 1.9375 2.3125 1.8125 1.875 1.9375

Day 11 12 13.0 14 15 16 17 18 19 20

C. vulgaris 1512500 1462500 1675000 1587500 1831250 1593750 1362500 1975000 1587500 1762500

B. calyciflorus 2.0625 2.125 2.0625 2.1875 1.9375 2.1875 1.8125 1.75 1.6875 1.5625

Day 21 22 23 24 25 26 27 28 29 30

C. vulgaris 1575000 1662500 1675000 1487500 1462500 1587500 1567500 1767500 1412500 1725000

B. calyciflorus 1.9375 1.9375 2.0625 1.9375 2.1875 2.0625 2 1.625 1.6875 1.875

218



Day 31 32 33 34 35 36 37 38.0 39 40

C. vulgaris 1537500 1662500 1512500 1762500 1512500 1537500 1712500 1687500 1525000 1537500

B. calyciflorus 2.125 1.6875 1.75 1.875 1.75 2.0625 1.9375 1.875 2.0625 1.75

Day 41.0 42 43 44 45

C. vulgaris 1512500 1762500 1612500 1562500 1662500

B. calyciflorus 2.0625 1.6875 1.9375 2.0625 1.875
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D.3 Extreme Generators

E = [E1, E2, . . . , E36]

=



0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 1



(D.1)
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The convex cone Kv = ∑36
i=1 λiEi defined by the extreme generators in (D.1) is

Kv(λ) =



λ3 + λ4

λ1 + λ2

λ5 + λ6 + λ7 + λ8

λ9 + λ10 + λ11 + λ12

λ21 + λ25 + λ26 + λ27

λ13 + λ14

λ5 + λ9

λ1 + λ3

λ15 + λ18

λ13 + λ15 + λ16 + λ17

λ17 + λ20

λ6 + λ10

λ2 + λ4

λ16 + λ19

λ14 + λ18 + λ19 + λ20

λ25 + λ28 + λ31 + λ34

λ22 + λ28 + λ29 + λ30

λ23 + λ31 + λ32 + λ33

λ24 + λ34 + λ35 + λ36

λ26 + λ29 + λ32 + λ35

λ21 + λ22 + λ23 + λ24

λ7 + λ11

λ8 + λ12

λ27 + λ30 + λ33 + λ36



(D.2)

where λi, (i = 1, . . . , 36) are the convex parameters.
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