CERTS Microgrid Technology; Where are we now?

ADVANCED DISTRIBUTION AND CONTROL FOR HYBRID INTELLIGENT POWER SYSTEMS - Phase II STTR Program

Bob Lasseter University of Wisconsin-Madison

February 19, 2010

CERTS Microgrid Architecture

Objectives

- Promote CHP
- Provide for high power quality
- Allow non-compliant sources behind the PCC

Configuration

- Sources clustered with loads
- Smart switch
- Plug & Play sources

<u>Control</u>

- Stable for all events
- Autonomous (no central controller)
- Automatic power balance (P vs. Fq)
- Voltage control (V vs. Q)
- Intentional islanding
- Automatic re-synchronizing

CERT's Q versus E droop for stability

MADISON

power vs. frequency droop

Assume two DER sources

- P₀₁ & P₀₂ are dispatched powers while grid connected
- Square indicts the new operating points after islanding if there is loss of power from the grid.
- Square indicts the new operating points after islanding if the microgrid was exporting power.

CERTS Concept

- Each DER unit is a voltage source.
- Multi-unit stability is insured through voltage vs. reactive power control.
- Communication between components is through frequency.
 - DER output control uses power vs. *frequency* droop.

Track load through frequency

Intelligent load shedding on low *frequency* and source shedding on high *frequency*.

Automatic re-synchronizing using *frequency* difference between the island and Utility network.

These concepts have been tested at the AEP/CERTS Microgrid test site

Confidential University of Wisconsin-Madison February 2010

THE UNIVERSITY

MADISO

AEP Islanding Microgrid with A2 near P_{max}

TEST 8.3: A2 Power Limit

Voltage Sag AEP/CERTS Microgrid

inverter controller

inverter interface

Induction Machine Starting while Islanding: Test 10.2.17

Large Disturbance: A1 voltage and current

Control of overcurrents at AEP

No current control

With current control

AEP Static Switch

Smart Switch Test: Seamless Re-closing

MADISON

SS Synchronization site test

CERTS/AEP test site

- Each DER unit is a voltage source inverter.
- Multi-unit stability is insured through voltage vs. reactive power control.
- No controller needed for stable operation and load tracking
- No oscillations in freq., voltage, P and Q

Synchronous generator issues: Kohler

Confidential University of Wisconsin-Madison February 2010

3 cylinder diesel engine

Physical Modifications

Synchronous Generator controller

Synchronous generator and Inverter : UW

Storage and SOC Management

- Upper-reserve controller reduces
 P_{min} to zero when SOC reach
 upper reserve limit
- Lower-limit controller forces converter to charge batteries when SOC reaches reserve limit

Storage with SOC controller

Storage and Generation droop

Genset and storage

- P_{S ref} & P_{G ref} are dispatched powers while grid connected
- 2. Red circles indicts the new operating points after islanding if there is loss of power from the grid.
- 3. Note different slopes.

UW Microgrid test of storage and microsource

- Storage response when batteries reach lower reserve limit SOC at t=3s
- 2. Islanding at t=9s
- Step increase in load at t=15s
- 4. Response when batteries reach marginal voltage limit

Starting Diesel due to low SOC: Chevron

System Controller interface

- Provides V_{set} , P_{set} and load shedding freq
- Dispatch/control bi-directional real & reactive power to the utility
- Information needed from each DER unit are P,Q, status
- SOC managed locally and/or through the system controller.

UW Microgrid Model

Modeling Data Network

4-wite Cables								
4-w Cables	Length yds	RΩ	XΩ					
Z1		0.0934	0.0255					
ZT1	5	0.0028	0.00068					
Z12	50	0.0274	0.0066					
Z24	30	0.0168	0.0041					
Z34	30	0.0168	0.0041					
Z13	25	0.0137	0.0033					
Zg		0.0656	0.0021					

A-wire Cables

Transformers

xform	voltage	KVA	% impedance	Primary	Primary	Secondary	Secondary
			_	RΩ	XΩ	RΩ	XΩ
T1	480-208	75	4.40	0.0169	0.0676	0.0003	0.0127
T2-T4	480-208	45	4.20	0.0269	0.1075	0.0050	0.0201

Islanding of Mesh with load change

•On-Site load 35kW: Importing 15kW
•Island event at t=1.0sec
•Additional 3kW load at t=2.0sec

Loss of Kohler while Islanded

- •On-Site load 35kW •Islanded system •Kohler lost at t=0 seconds
 - •Load L4 (12.5kW) low frequency trip at t~0.2 seconds

