MONTHLY PROGRESS REPORT	
Contractor Name:	
University of Notre Dame (Michael Lemmon)	
Contractor Address:	
Office of Research, 940 Grace Hall, Notre Dame, IN 46556	
Contract/Purchase Order No.	Task Order No.
W9132T-10-C-0008 (prime contract no.)	
Project Title: Design and Simulation of Intelligent Control Architecture for Military Microgride	
Design and Simulation of Intelligent Control Architecture for Military Microgrids Period Covered:	
February 1 2011 – March 1, 2011	
POC/COR (Reference Paragraph 5 of the SOW):	
FOC/COR (Reference Falagraph 5 of the SOW).	
Achievements (Describe by task. Add additional tasks, if needed.):	
task numbers refer to tasks in Odyssian's original contract	
Task II: Model and Simulate Intelligent Microgrid	
6 6	
Developed and tested single-phase microgrid making use of UWM microsource	
controller and eboard prototype developed last month	
Task III: Distributed Control Algorithm Development	
Generated interface document characterizing the interface between UWM controller and	
ND distributed dispatcher	
Task VI: Develop Wireless Communication	
No optivity	
No activity	
Task VII: Develop Wireless Distributed Control	
Task VII. Develop Wheless Distributed Control	
Generated report on load shedding logic for Odyssian's e-board.	
Senerated report on road shedding rogie for Odyssian 5 e boure	*-
Problems Encountered (Describe by task. Add additional tasks,	if needed):
	,
Task II: None	
Task III: None	
Task VI: None	
Task VII: None	
Open Items (List items that require action by the Contractor or	the Government):s
No open items	

Summary Assessment and Forecast (Provide an overall assessment of the work and a forecast of contract completion):

Tested phase-locked loop estimator with 16 bit fixed point quantization and determined that 16 bit quantization with a 10 msec sampling time is sufficient.

Built a single-phase microgrid to help Odyssian size and predict how their bench demonstration will perform. The proposed microgrid has a single 2kW microsource using the UWM controller with 208 V p-p connected to a 1 kW load. This source was also connected two two e-board modules with loads of 300 watts apiece. The cable impedance between source and loads was set to zero since the demonstration will be done on a benchtop. The microsource power is initially set to .8 pu (1600W). At 3 seconds into the simulation, the source's power set point is decreased to 0.2 pu (400W). At 5 seconds, the source's power set point in increased back to 0.8 pu (1600W). The following figure shows the simPower model for the single-phase microgrid.

The frequency commands and estimates generated by this simulation are shown below.

Initially the e-board loads are disconnected. Once the frequency estimate stabilizes above 60Hz, the eboards connect to the grid. The initial connection occurs at t=1.5seconds. At t=3 seconds, the power is reduced to 0.2 pu, the frequency begins dropping and this causes the non-critical e-board load to disconnect at 3.25 seconds. At t=5 seconds the source power is restored to 0.8 pu. The frequency increases above 60 Hz and a quarter of a second later the non-critical eboard

load reconnects to the grid.

E-mail from Odyssian (Peterson) indicated that the inverters to be delivered by UIUC would deliver 200 W at 240 Volts. We built a small single-phase simulation at this scale to help Odyssian predict how the system

might respond. The preliminary simulation shown in the following figure uses a UWM controller (with the original gains from the UWM testbed) with a peak voltage of 339 (240 RMS) and base power of 200W. Both Preq and Ereq are initially set to 1 pu. A transformer steps this down to 120 Volts and delivers the power to a 200W load that steps up to 220 W at 2.5 seconds into the simulation. The associated plots are shown below.

