Implementation of Real-time control system using SHARK kernel

Hardware Setup

The hardware setup of the real-time control system consists of a PC computer, an
ISA MultiQ-3 data acquisition board, amplifiers, a DC servo-motor and a 3DOF
helicopter. Each of these components will be briefly described below.

1. Computer
As shown in Figurel, A standard PC serves as the controller for the real-time

control system. [t means it is responsible for the computation of control update,
receiving the sampling data from the A/D convertor and send the control output
to the D/A convertor. It has a Pentium III processor, 256M RAM and runs Free-
DOS system.

i — WE

—— =0

e .
558 W I

i e i

Figure 1. Computer

2. MultiQ-3 data acquisition board

The MultiQ-3 is a general purpose data acquisition board with 8 analog inputs, 8
analog output, 16 bits of digital input, 16 bits of digital output and up to 8
encoder inputs decoded in quadature. The system is accessed through the PC ISA
bus and is adressable via a 16 consecutive memory mapped locations which are
selected through a DIP switch located on the board. The MultiQ-3 board consists
an main board which reside inside the PC by inserting it into the ISA slot, and a
terminal board which is an extensive part of the main board to interact with
other components, as shown in Figure 2.1 and 2.2.

i = oot /4

Figure 2.1 MultiQ-3 Main Board

Figure .2 MultiQ-3 terminal Board

3. Amplifiers

Since we are dealing with controlling phsical plant including DC Servo-motor
and Helicopter using standard PC, power amplifiers are needed to supply
enough power to drive the plant. The power mudules PA-0103 and UMP 2405
are used for driving DC motor and helicopter respectively. See Figure 3.1 and 3.2
for a snapshot.

Figure 3.1 PA-0103 Figure 3.2 UMP 2405

4. DC Servo-motor

The DC servo-motor model SRV-02 is shown in Figure 4. The plant consists of a DC
motor in a solid aluminum frame. The motor is equipped with a gearbox. The gearbox
output drives external gears. The basic unit is equipped with a potentiometer to
measure the output/load angular position. It is also equipped with an optical encoder
used to measure the load shaft angular position. It offers high resolution (4096 counts

in quadrature), and measures the relative angle of the shaft.

F

9]

-
r
>
p
pus
2,
2
<
|
O
N

ONILTINSNOD ¥3ISNVN

Figure 4 SRV-02 Motor

5. 3DOF Helicopter

The 3DOF Helicopter consists of a base upon which an arm is mounted. The arm
carries the helicopter body on one end and a counterweight on the other. The
arm can pitch about an “elevation” axis as well as swivel about a vertical (travel)
axis. Encoders mounted on these axes allow for measuring the elevation and
travel of the arm. Two motors with propellers mounted on the helicopter body

can generate a force proportional to the voltage applied to the motor. The
helicopter is shown in Figure 5.

W%
Figure 5. 3DOF Helicopter

Besides the hardware components that are listed above, the system cable

connection scratches for the real-time control system (DC motor and Helicopter) are
shown in Figure 6.1 and Figure 6.2

6 #i
MINI DI
gnd_—.gnd
OO ‘\‘_
s (\U — O]820r 83 0r 94
)
ooy
128724
T15) 25
I] QUANSER CONSULTING
_lauIcK CONNECT MODULE
OO OENE®

/

Power Qperational Arnplifier

g
&

@
8
2
2

() ()
5 # (

FROMSENSORS
S2 G 83

-\S'\/\\\ﬁ i
/

red

from D/A
Dk ’
GND \

1 fdlor

QC-y: General configuration uf GCKM

Figure 6.1 Cable Connection for Motor control system

““Power Supply | . ’ PR e Joystick

| ws oD Ve

ERAGEMS e 87 ToMukiQ
e GCED 3 Analog Inputs
hiohiin . », $3- Joystick X To AID #2
i N Power Amplifier = .
| T L S e $4 -Joystick Y To A/D #3
~ e P = - 7.‘/..
| From D/A Z—tho7 714%2 Toload:.
. UPM2405#1 oo
MultiQ Motors
Analog Output Ch0 ﬁ §
s ToAD | Front Back
g VE & ‘B’{"Eg
' 7 Power Amplifier
Ve R L . | -
e e ata Gain = 3 Cable
FromD/A =~ -‘8=% Toload Encoders
e UPM2405 #2 ORORS
Analog Output Ch1 b
0g Qulp Travel - Pitch Elevation

To Encoder #0 on MultiQ

To Encoder #1 on MuliQ

To Encoder #2 on MultiQ

Figure 4 - Wiring Diagram

Figure 6.2 Cable Connection for Helicopter control system

Implementation of Real-time control system using S.Ha.R.K. kernel

Software part I
Cong Chen cchen6@nd.edu

The S.Ha.R.K(Soft and Hard Real-time Kernel) kernel is basically a set of libraries , that
the developers can statically link together to form an application (bootable image). The
application is executed using the X.EXE DOS memory extender under the DOS
operating system or directly run when the system is booted using GRUB.

The S.Ha.R.K. kernel provides various kernel-level services that application developer
scan call at the development stage, including task management, context switching,
scheduling algorithms, etc. It has also provided drivers for most common computer
hardware, so that the developer can focus more on the application level instead of
worrying about the interaction between the hardware and software. For more details
about the SHARK kernel, please refer to the Document voll and vol4, which you can
download at the homepage of S.Ha.R.K. project: http://shark.sssup.it/.

Typically developing an S.Ha.R.K. application involves two major software components:
an initialization file and a program source file. The initialization file is responsible for
initializing the device drivers, registering the modules needed (both scheduling and
resource modules), including the headfiles, etc. The program sources file is where the
classical main entrance function resides. The main function will be automatically called
after the application starts.

Here we list a simple application to briefly explain these two major components. The
application will simply print “Hello world” in the screen. Comments are included to help
understand the functionality of these subroutines.

HelloWorld Application:

1. Initialization file
/*including necessary system head*/
#include "kernel/kern.h"
#include "rr/rr/rr.h"
#include "dummy/dummy/dummy.h"

/*+ sysyem tick in us +%*/
#define TICK 300

/*+ RR tick in us +*/
#define RRTICK 10000

/*The kernel calls this function to register the modules that will be used in this application*/

TIME _ kernel register levels (void *arg)
{

struct multiboot_info *mb = (struct multiboot_info *)arg;

/*The round-robin and dummy scheduling modules are registered */
RR register level(RRTICK, RR_MAIN_ YES, mb);
dummy_register level();

/* a TICK value (in microseconds) is returned, which is the time will be used for
programming the periodic timer interrupt of the PC*/
return TICK;

}

/*This function is called to initialize the device drivers(keyboard, graphic, etc.) and
modules™®/

TASK _init__ (void *arg)

{

struct multiboot_info *mb = (struct multiboot_info *)arg;

/*Initialize the Hartik Port Layer*/
HARTPORT _init();
__call main__(mb);

return (void *)0;

}

2. Program source file

/*Including system head*/
#include "kernel/kern.h"

int main(int argc, char **argv)

{

/*The main function simply display string “Hello, world” on the screen (console print) and
switch to new line*/
cprintf("Hello, world!\n");

return O;

}

Now you might have the idea about what does an S.Ha.R.K application look like. Then
you are on your way to build your own application and we’ll show you how to compile,
build and execute your application step by step. Typically, the development environment
for S.Ha.R.K application could be either Linux or DOS. In Lab A63, we develop the
application in those computers running RedHat Linux Workstation version. There are
several C source code editing tools that are available under Linux system, including

emacs, vim, gedit, etc. You can choose either editing tool based your own preference.
The GCC compiler will be used to compile your C source code under Linux. It has
already been installed and upgraded to the latest version, which is GCC4. Before you
start working on your own application, make sure that the S.Ha.R.K kernel, libraries,
modules and common device drivers have been correctly built in the system (Check out
http://shark.sssup.it/ for more details about how to build SHARK kernel).

After you have done editing your S.Ha.R.K. application, the next step is to compile all
the source files and link them together with the required libraries to form an executable
image. In Linux system, using the GNU makefile utility, you can complete this process
by simply typing “make” in the command line. The makefile is a special script file that
can be invoked by the “make” command (if you don’t know makefile at all, check out the
official GNU site for make utility). A typical makefile example for S.Ha.R.K. application
is shown as followed:

#

makefile

#

ifndef BASE

BASE=../..

endif

include $(BASE)/config/config.mk

PROGS= App_Name

include $(BASE)/config/example.mk

10 App Name:

11 make -f $(SUBMAKE) APP=App_Name OTHEROBJS="source2.0 source3.0 "
12 SHARKOPT="_ LINUXC26 _ PCI___INPUT___FB "

0NN bW

O

The example makefile is trying to build an application called App Name. In this
application, the main function is included in the source file App_Name.c. The other
source files, including source2.c and source3.c in this case, should also be contained to
build the App_Name application. To compile these other source files you should put the
name of the source files with the “.0” extension(not “.c”” extension) in the field after
“OTHEROBIJS=" shown in the example. The compiler will automatically compile all the
.c source file (including App Name.c).

So if you are going to develop an application called my app, you should replace
“App_Name” in the example file at line 8, 10 and 11 with your application name
“my_app”. You should also replace the source2.o and source3.o with the name of the
other source files (appended with “.0” extension). For instance, if you have only one
other source file initfile.c other than my_app.c, you should replace “source2.o source3.0”
with “initfile.o”.

After you modify the makefile in order to build your own application with the name you
identify, you can now type “make” command in the terminal under the application
directory. If the make process is successful, an executable file will be generated within
the current directory. Otherwise, some error messages generated by the compiler will

appear in the terminal and you have to reexamine your source codes to fix the
corresponding problem.

Since the application cannot run in the Linux Desktop, we’ll need a floppy to copy the
executable file to the target machine running the FreeDOS system. In Linux console, type
the following command to mount the floppy,

mount /mnt/floppy
Before doing this, make sure the floppy has already been inserted into the computer.
Then you can type

cp /AppDirectory/my _app /mnt/floppy
AppDirectory represents the directory you build the application. After finishing copying,
type

umount /mnt/floppy
to unmount the floppy. Then you can insert the floppy to the target computer and access
the floppy driver in FreeDOS by typing the command

B:/
and you should be in the Floppy directory. Finally you can run your application by typing

X my_app
That’s basically all you need to do to compile and execute an S.Ha.R.K application.
Really simple, isn’t it? ©

Note that there is an alternative way to execute the application in the target machine. You
can use the A: drive, which is a high speed RAM cache, to run the executable. Basically
you only need to explicitly copy the executable file from the floppy drive (B:) to A drive
by typing

A:/

copy B:\my_app

X my_app
Then you’ll notice that the executing speed of the application is enhanced significantly
(cause you are reading the memory now instead of reading the floppy drive).

Implementation of Real-time Control system using S.Ha.R.K. kernel

Cong Chen cchen6@nd.edu

Software Part Il

The S.Ha.R.K. kernel has made available device drivers of most computer hardware for
application developers, including keyboard input, graphic card, network card, USB
device, etc. The source files of these drivers reside in the “driver” folder under Shark
kernel’s root directory. For more information about the device drivers and programming
libraries, see the S.Ha.R.K. User Manual Volume II for details (which you can download
at http://shark.sssup.it/).

In our implementation, as we mentioned in previous section, we use MultiQ3 data
acquisition board to perform conversion between analog signal and digital signal. We
need to develop the driver for MultiQ3 board that is compatible with S.Ha.R.K. kernel.
The driver should be able to provide services containing analog to digital input, digital to
analog output, encoder input, etc. For servo motor control experiment, we only need the
first two services to control the motor and collect data from the motor’s sensor. In the
helicopter experiment, since the sensor data are measured with encoders, we’ll further
need to write the encoder input routine in the driver to properly control the helicopter. In
the following discussion, we’ll list the MultiQ3 driver source code for S.Ha.R.K. kernel,
as well as the process to integrate the driver into the kernel so the application developer
can access the driver function in a quite easy way.

1. MultiQ driver source code
/*
multiq.c
driver of multiQ3 board for SHaRK
*/

#include "math.h"
#include <kernel/kern.h>

#define base port 0x320

#define digin_port base port + 0x00
#define digout_port base port + 0x00
#define dac_cs base port + 0x02
#define ad cs base port + 0x04
#define status_reg base port + 0x06
#define control_reg base port + 0x06
#define clk reg base port + 0x08
#define enc_regl base port + 0x0c

#define enc_reg2 base port + 0x0e

#define AD_SH 0x200

#define AD_AUTOCAL 0x100

#define AD_AUTOZ 0x80
#define AD_ MUX EN 0x40
#define AD_CLOCK 4M 0x400

#define CONTROL_MUST (AD_SH | AD_CLOCK_4M)

#define BP_ RESET 0X01
#define TRSFRCNTR_OL 0X10
#define CLOCK _DATA 0
#define CLOCK_SETUP 0x18
#define INPUT _SETUP 0x41
#define QUAD X4 0x38
#define CNTR_RESET 0x02
#define EFLAG_RESET 0x06

unsigned short control word = CONTROL MUST;

//nterger(16bit) to voltages (-5 — 5v) conversion
float itov(int iv)
{

return (5*((float) 1iv/4095.));

}

// voltages (-5 — 5v) to Interger(16bit) conversion
int vtoi(float v)

return(ceil(v¥2048/5.4+2047));
}

//Read the analog to digital input
int adin(int ch)
{
unsigned short hb,1b;
short toolong,maxcnt;
maxcnt = 30;
// nosound();
control_ word = CONTROL MUST | AD_MUX EN | (ch<<3);
outpw(control reg, control_word);

toolong = 0;

while(((inpw(status_reg)&0x8) == 0x00) && (toolong < maxcnt)) toolong++;
outpw(control reg, control_word);

toolong = 0;

while(((inpw(status_reg)&0x8) == 0x00) && (toolong < maxcnt)) toolong++;
//if(toolong >= maxcnt) sound(400);

outp(ad_cs,0);

while((inpw(status_reg)&0x10) == 0x00);

hb = inp(ad_cs) & 0xff;

Ib = inp(ad_cs) & 0xff;

outpw(control reg, CONTROL MUST);

return ((hb<<8) | Ib);

}

/Iperform digital to analog output
int daout(int ch, float voltage)

{

int ivalue;
if (voltage > 5)
voltage = 5;
else if (voltage < -5)
voltage = -5;
else
ivalue = vtoi(voltage);

outpw(control_reg, 0x1800 | ch | CONTROL MUST);
outpw(dac_cs, ivalue);

outpw(control_reg, CONTROL MUST);

return 0;

}

/I Read encoder input

int enc_in(int ch)

{
unsigned char low_byte, mid_byte, high_byte;
unsigned short low_word, high word;
unsigned int result;

control_word = CONTROL MUST|AD MUX EN]|(ch<<3); //select channel
outp(control reg, control_word);

outp(enc_reg2, BP_ RESET);

outp(enc_reg2, TRSFRCNTR_OL);

low_byte = inp(enc_regl) & Oxff;

mid_byte = inp(enc_regl) & Oxff;

low_word = (low_byte) | (mid_byte<<8) & Oxffff;

high byte = inp(enc_regl) & 0xff;

high word = high_byte & Oxffff;

if(high word & 0x80) high word = high_word | 0xff00; // convert to signed 32 bit
result = ((unsigned int)high word << 16) | low_word;
return (int) result;

}

//Reset Analog to digital input channels

void reset_ad(void)

{
outpw(control reg, AD_AUTOCAL | CONTROL MUST);
outpw(control reg, CONTROL MUST);
while((inpw(status_reg)&0x08)==0x00);

}

//Reset Digital to Analog output channels

void reset_da(void)

{
float zero_v;
zero_v = 0.0;
daout(0, zero_v);
daout(1, zero_v);
daout(2, zero_v);
daout(3, zero_v);
daout(4, zero_v);
daout(5, zero_v);
daout(6, zero_v);

daout(7, zero_v);

}

// reset encoder channels

void enc_reset(int ch)

{
/loutpw(enc_regl, ch);
/1if((ch == 0) || (ch ==2) || (ch == 4)) outp(enc_regl,((ch&0x07)|0x8));
/if((ch == 1) || (ch ==3) || (ch ==5)) outp(enc_regl,((ch&0x07)|0x10));
control_word = CONTROL MUST | (ch<<3);
outp(control reg, control_word);

outp(enc_reg2, EFLAG_RESET);
outp(enc_reg2, BP_ RESET);
outp(enc_regl, CLOCK DATA);
outp(enc_reg2, CLOCK_SETUP);
outp(enc_reg2, INPUT _SETUP);
outp(enc_reg2, QUAD X4);
outp(enc_reg2, CNTR_RESET);

//Read digital input
int digin(void)
{
return inpw(digin_port);

}

//Perfom digital output
void digout(int dig_value)

{
outpw(digout_port, dig_value);

}

Compiling the driver

Assume the driver source file is named “multiq.c”, we need a head file containing
the function declarations for the source file. Create a head file named “multiq.h”,
and the content should look like this:

#ifndef MY MULTIQ
#define MY MULTIQ
#include "1l/sys/cdefs.h"
_ BEGIN DECLS

float itov(int iv); /* integer to voltage */
int vtoi(float v); /* voltage to integer */
int adin(int ch); /* analog to digital (in) */

int daout (int ch, float voltage); /* digital to analog (out) */
void reset_da(void);

void reset_ad(void);

int digin (void); /* digital input */

void digout (int dig_value); /* digital output */

__END_DECLS

#endif

Then we should put these files in the “drivers” directory within the shark folder.
Go to the “drivers” directory and create a new folder named “multiq”. Copy the
“multiq.c” file into the “multiq” folder and create a new folder called “include”.
Go to the include folder and create a new folder called “drivers”. Then copy the
“multiq.h” file into the “drivers” directory that is just created. We’ll then move on
to compile the source code to produce the object file that can be used by
application developers. Create a makefile in “multiq” directory. In this case, our
makefile has the following content:

The MultiQ library

ifndef BASE
BASE=../..
endif

include $(BASE)/config/config.mk
LIBRARY = multiq

OBJS PATH = $(BASE)/drivers/multiq
OBJS = multiq.o

include $(BASE)/config/lib.mk

After you finish editing the makefile, type “make” command in the terminal
(make sure you are currently in the “multiq” directory). The compiler should
produce two new files called “multiq.0” and “libmultig.a”. The “multiq.0” is an
object file compiled from the original “multiq.c” source file. The “libmultig.a” is
a library file can be added into the shark library and referred by the developer.
Now the driver source file has been successfully compiled, we’ll show how to
integrate the driver into the shark library so that the application developer can call
the driver routine without caring much about the driver itself.

. Integrating the driver into the S.Ha.R.K. library

In the previous section, you probably have noticed that, in the sample makefile for
developing an S.Ha.R.K. application, the device drivers is used by identify
SHARKOPT="_LINUXC26 __ PCI___INPUT___ FB_ ". This means that the
application is going to use the Linux 2.6 compatibility layer, which is always
required when the drivers are used, the PCI driver, the Input driver (to manage the
input devices like keyboard, mouse, etc.) and the Frame Buffer driver for the
graphical display. The list of all the available libraries can be found into the “Lib”
directory within shark folder. In order to use the MultiQ driver in the similar,
meaning by add “ MULTIQ “ into the SHARKPORT string, we have to do
the following two steps. Firstly, copy the “libmultiq.a” file we get after compiling
into the “lib” directory within the “shark” folder to make the MultiQ library

available to application developer. Second, go to the “config” directory within the
“shark” folder and open a file called “libdep.mk”. Add following content into the
file,

MultiQ
#
ifeq ($(findstring MULTIQ_ ,$(USELIB)), MULTIQ)

INCL += -I$(BASE)/drivers/multig/include

ifeq ($(LIB_PATH)/libmultiq.a,$(wildcard $(LIB_PATH)/libmultiq.a))
LINK LIB += -lmultiq

LIB_DEP += $(LIB_PATH)/libmultig.a

endif

Then save the file, it’s done!

Using the driver

After all the previous work, finally it’s time to user the MultiQ driver. Recall that
we have discussed in the precious section, typically an S.Ha.R.K. application has
two major software component: the initialization file and the program source file.
In order to use the driver properly, we need to first explicitly include the driver
head file in the program source file. In this case, for instance we use my_app.c as
the source file, the following content should be contained in the beginning of the
program source code to include the driver head file.

#include <drivers/multiq.h>

In addition, as mentioned previously, we should also explicitly add

“ MULTIQ ” to the SHARKPORT string to tell the compiler to locate the
MultiQ library in the “lib” directory. The result should look like this,

SHARKOPT="_LINUXC26 ___PCI____INPUT __FB___ MULTIQ_ ".

Then you are free to call any driver function in your application. Have fun! ©

Implementation of Real-time control system using S.Ha.R.K. kernel

Cong Chen
Department of Electrical Engineering
University of Norte Dame
cchen6@nd.edu

Software 3

In this section, we are going to explain the helicopter control application, with emphasis
on the software program. The purpose of developing the helicopter real-time control
application is that we can further perform experiment to explicitly evaluate the event-
trigger control approach and the traditional periodic-trigger control approach on a 3DOF
helicopter model based on the experimental platform we built. The platform contains
several hardware components we mentioned earlier in previous section, as well as an
S.Ha.R.K. application that runs on a computer serving as the real-time controller. In the
following discussion, we will briefly introduce the hardware components as well as the
software function.

The hardware setup for the helicopter real-time control application consists of a computer
running DOS operating system, a MultiQ3 data acquisition board, two UMP 2405 power
amplifiers and a 3DOF helicopter model. The system diagram and relationship between
each component is shown in Fig 4.1.

Figure 4.1 Hardware diagram
As figure 4.1 shows, the control signal is produced by control task being executed by the

Computer’s CPU. Through the MultiQ3 board, the output digital signal is converted into
analog signal. In order to drive the motors in the 3DOF helicopter, the outputs of the D/A

convertor are then applied to the helicopter using power amplifiers. Similarly, the sensor
data collected from the helicopter model (the encoders) goes through the MultiQ3 board
so that the computer is able to process and update the control computation.

The software program of the helicopter control application consists of several
concurrently running tasks. Typically, the real-time tasks can be divided into two
categories, hard task and soft task. Hard tasks normally perform critical actions and have
strict timing condition constraints (deadline), which might include control computation
task, event detector task, etc. Comparing to hard tasks, soft tasks have relatively loose
constraint in terms of deadlines, which means that missing deadlines is tolerable to some
extent and will not cause system failure. These tasks usually include screen graphic tasks,
statistic data collection task, keyboard input task, and etc.

In our helicopter control application, we’ll have three hard tasks and three soft tasks. The
hard tasks are helicopter control task, event detector task, and a graphic task that can be
triggered by user input. The reason for having a graphic hard task here is that we can
simulate multiple control-loop environment by simply adding graphic hard task instead of
introduce new control plant, which is not necessary to conduct the experiment. The soft
tasks are task execution statistics collection task, system load estimation task and a
graphic soft task. The graphic soft task is very similar to the graphic hard task. Both of
them will simply move an object on the screen horizontally and the only difference is the
object shape and moving speed. The hard task model is a moving box while the soft one
is a moving circle.

In this uni-processer real-time system, single CPU is shared by various tasks running at
the same time. Scheduling algorithms are used to allocate the CPU resource to different
tasks and guarantee that the timing constraints can be meet. In this application, we use
EDF (Earliest Deadline First) scheduling algorithm to schedule hard tasks and RRSoft
(Round Robin for soft tasks) scheduling algorithm to schedule the soft tasks. General RR
(Round Robin) algorithm is used to schedule the non-realtime tasks. The scheduling
algorithms can be identified in the initialization file and registered at run time when the
program starts.

The main program is listed as followed. The program is self-explanatory since comments
have been added for each block.

S.Ha.

A63

* % ok kX 3k X kX

#include
#include
#include
#include
#include

#include
#include
#include
#include

#include
#include
#include
#include
#include

#define

#define
#define
#define
#define
#define
#define
#define
#define
#define

#define
#define
1 task
#define
#define
#define
#define
#define
#define

#define
#define
#define

R.K. application for real-time 3DOF Helicpter

System & Control Lab

Cong Chen

<kernel/kern.h>
<sem/sem/sem.h>
<stdlib.h>

<math.h>

<fs/syscall.h>

<drivers/shark_linuxc26.h>
<drivers/shark keyb26.h>
<drivers/shark_ fb26.h>

<drivers/multiqg.h>

<kernel/func.h>
<kernel/descr.h>
<edf/edf/edf.h>
<kernel/model.h>
<kernel/var.h>

DEBUG

CHN_IN 4
CHN_OUT 6

CHN_IN_TRV 0
CHN_IN PTH 1
CHN_IN_ELV 2
CHN_OUT_ FRT 0
CHN_OUT BCK 1

CHN_JOYX
CHN_JOYY

2
3

PERIOD CTRLLER 100000
WCET_CTRLLER 2000

PERIOD JETDUMMY 100000
WCET_JETDUMMY 400
WCET_ JETCTRLLER 400

PERIOD JETCTRLLER 100000

PERIOD_ EVENT DET 5000
WCET EVENT DET 2000

HVEL
SVEL
MAX_T

5
3
50

Department of Electrical Engineering
University of Notre Dame
Program Writer:

//
//

//
//
//

control system with both periodic trigger and event-trigger approach

Encoder Input Channel for travel
Encoder Input Channel for pitch
Encoder Input Channel for elevation
Output Channel for Front propeller
Output Channel for Back propeller
Input Channel for Joystick-X

Input Channel for Joystick-Y

Period for control task (In microseconds)
WCET (worst case execution time for contro

Period for event detector task
WCET for event detector task

Velocity for Hard box task
Velocity for Soft circle task
Max number of addable tasks

// Parameters to draw the display senario

#define
#define
#define
#define
#define
#define
#define
#define

// Parameters for jet dummy task
DUMMY_PID
JET_DUMMY_ WIDTH
JET_DUMMY_ HEIGHT
JET_DUMMY X
JET_DUMMY_Y

JET_ SLIDE_WIDTH
JET_SLIDE X

#define
#define
#define
#define
#define
#define
#define

#define
#define

XMIN
XMAX
YMIN
YMAX
YCTL
XMID
D

YMID

PI 3.1415926

100
540
30
450
250
300
3
260

LEN 25

float gain =
double Kep =
double Kpp =
double Ked =
double Kei =
double Kpd =

Ne No N Ne Ne ~o

O O O O O

// useful colors
int white;
int black;

int red;

int gray;

PID controller PID;
PID jet_dummy_ PID;

PID event_ PID;

int hard period

int soft period =

int hard_wcet =

int soft wcet

PID pid;

// desire output

float desire out f =
float desire out_b

2

5000;
10000;

0.0
0.0

~e ~o

210
80
110
160
50
576

// lowpass filter length

// Hard graphic
// Soft graphic
// Hard graphic
// Soft graphic

// Mutex for accessing the print utility
sem_t prt _mutex;

// Count for
int h_count;
int s_count;

graphic task numbers

task period
task period
task WCET
task WCET

// Task model
HARD TASK MODEL mj;
SOFT_TASK_ MODEL nj;

int travel_c, pitch_c, elevation_c;

float travel, pitch, eleva
float curr _vel trv, curr v
float Kf[5] = { -1.7, -0.7
otor

float Kb[5] = { -1.69, -0.
tor

float travel offset= 0;
float pitch offset = 0;
float elevation_offset = 0

// State feedback control

float gain_elevation = 0;
float gain pitch = 0;
float gain travel =0;
float gain_elevation_def =
float gain_pitch_def = 0;
float gain travel def = 0;

// Helicopter state 1:
// value 0: cruise control
int heli_state_1 = 0;

// Helicopter state 2:
// value O0:
ue -1:
int heli state 2 = 0;

// EDF task descriptor
typedef struct {

int flags;

TIME period;

TIME rdeadline;

TIME offset;

tion;
el pth,

9, -0.97,

77, 0.

0;

status Value 1:

cruise control status Value 1:
decrease pitch angle by 0.3 radius

/*
/*
/*
/*

struct timespec release; /*
struct timespec adeadline; /*
int dl_timer; /*
int eop_timer; /*
int off timer; /*
int dl_miss; /*
int wcet_miss; /*
int act_miss; /*
int nact; /*

} EDF_task_des;

// Level descriptor

typedef struct {
level des 1; /*

int flags;

/*

98,

// encoder input (counts)

task flags

// actual value (in radius)
curr_vel elv; // current velocity
-1.09, 0.65 }; // control gain for front m
1.10, -0.78 }; // control gain for back mo
accelerate Value -1: deccelerate

increse pitch angle by 0.3 radius, Val

*/

period (or inter-arrival interval) */

relative deadline
release offset

*/
*/

release time of current instance */

latest assigned deadline */
deadline timer */
end of period timer */
timer offset */
deadline miss counter */
WCET miss counter */
activation miss counter x/
number of pending periodic jobs */
standard level descriptor x/
level flags */

IQUEUE ready; /* the ready queue */

bandwidth t U; /* used bandwidth */

EDF task des tvec[MAX PROC]; /* vector of task descriptors */
} EDF_level des;

// Helicopter control task
TASK servo_ctrl(void *arg)

{
float ctrller £, ctrller b; //front and back propeller controller

char strl1[1007];
char str2[100];
char str3[100];
char str4[1007];
float JoyY;
float JoyX;

while(1)
{

// Read Joystick input
JoyX = itov((short)adin(CHN_JOYX));
JoyY = itov((short)adin(CHN_JOYY));
// Set the status of the helicopter to deccelerate if user pull the joystick
down, at the same time release the traval control loop
if ((heli_state_1 == 0) && (JoyY <= -2.5))
{
heli state 1 = -1;
gain_travel = 0;

}

// Set the status to accelerate if user push joystick up and realease the tra
vel control loop
else if ((heli_state_1 == 0) && (JoyY >= 1))
{
heli state 1 = 1;
gain_travel = 0;

}

// Set the status to cruise control if user stop using the joystick, reset th
e travel gain and offset to maintain current state.
else if ((JoyY < 0.5) && (JoyY > -2.0) && (heli state 1 != 0))
{
heli state 1 = 0;
gain_ travel = gain travel def;
travel offset = curr_vel_ trv;
elevation offset = elevation;

// If the user pulls the joystick to the left, the desired pitch angle decrea

ses by 0.3 radius

if ((JoyX <= 1) && (heli state 2 == 0))
{
pitch_offset += -0.3;
heli state 2 = -1;
}

// If the user pulls the joystick to the right, the desired pitch angle incr
eases by 0.3 radius
else if ((JoyX >= 3) && (heli state 2 == 0))
{
pitch_offset += 0.3;
heli state 2 = 1;
}

// If the user dosen't pull the joystick in the horizental dicrection (X), it
maintains cruise control status

else if ((JoyX > 1.2)&&(JoyX < 2.8) && (heli_state 2 != 0))
{
heli state 2 = 0;
}

// The state feedback control output computation, for front motor and back mo
tor separately

ctrller f = (gain_elevation *(Kf[0] * curr vel elv + Kf[1l] * (elevation - ele
vation offset)) + gain pitch * (Kf[2] * curr vel pth + Kf[3] * (pitch -pitch off
set)) + gain travel * Kf[4] * (curr_vel trv - travel offset)) ;

ctrller b = (gain elevation* (Kb[0] * curr vel elv + Kb[l] * (elevation - el
evation offset)) + gain pitch * (Kb[2] * curr vel pth + Kb[3] *(pitch - pitch of
fset)) + gain_travel * Kb[4] * (curr_vel trv - travel offset));

// If the current status of the helicopter is accelerating, the control gain
depends on the joystick input, otherwise the control gains are updated in the pre
vious computation

if (heli state 1 ==1)

{
JoyY = (JoyY - 1)/3.0;
ctrller f += JoyY*4;
ctrller b += JoyY*4;

}

else if (heli state 1 == -1)

{
JoyY = (JoyY - (-2.5))/3.2;
ctrller f += JoyY*4;
ctrller b += JoyY*4;

}

// Make sure the absolute value of output voltage is not larger than 5
if (ctrller f <= -4.99)
ctrller_f = -4.99;
else if (ctrller f >= 4.99)
ctrller £ = 4.99;
if (ctrller b <= -4.99)
ctrller b = -4.99;
else if (ctrller b >= 4.99)
ctrller_b = 4.99;

// Output the control signal to MultiQ board
daout (CHN_OUT_ FRT, ctrller f);
daout (CHN_OUT_BCK, ctrller_b);

// Print the control information in the screen

sem_wait(&prt_mutex);

sprintf(strl,"travel: %6d, pitch: %6d, elevation: %6d", travel c, pitch c, el
evation c);

sprintf(str2,"the output of the travel rate controller is %8.6f, %8.6f", ctrl
ler f, ctrller_b);

sprintf(str3,"curr vel elv: %6.4f, curr vel pth: %6.4f, curr vel trv: %6.4f",
curr_vel_elv, curr_vel pth, curr_vel trv);

sprintf(str4,"travel: %8.5f, pitch: %8.5f, elevation: %8.5f", travel, pitch,
elevation);

grx_text(strl, XMIN, YMIN+70, gray, black);

grx_text(str2, XMIN, YMIN+80, gray, black);

grx_text(str3, XMIN, YMIN+90, gray, black);

grx_text(str4, XMIN, YMIN+100, gray, black);

sem_post(&prt_mutex);

task_endcycle();

// Event detector task
TASK event _det(void *argq)
{
/*
float Q[2]1[2] = {{1, 0.9},{0.9, 0.81}};
float beta = 0.5;
float M[2][2];
float N[2][2];

M[0][0] = (l-beta*beta)+Q[0][0];

M[O][1] = Q[O][1];

M[1]1[0] = Q[1]1[01];

M[1][1] = (l-beta*beta)+Q[1]1[1];

N[0][0] = 1.0/2*(l-beta*beta)+Q[0][0];

N[O][1] = Q[O][1];

N[1][0] = Q[1][O0];

N[1][1l] = 1.0/2*(1l-beta*beta)+Q[1][1];

*/

int prev_trv_c , prev_pth c, prev_elv c; // Previous encoder input
float prev_vel trv, prev_vel pth, prev_vel elv; // Previous velocity
float vel elv, vel pth, vel trv; // Current velocity

// Array for low pass filter implementation
float filtl[LEN];
float f£ilt2[LEN];
float filt3[LEN];

// Parameters

long k = 0;

int i = 0;

float suml = 0;

float sum2 = 0

float sum3 =0;
#ifdef DEBUG

char str[100], strl[100];
#endif

TIME cmax, csum;
int n;

// Initialization

prev_trv_c = 0;
prev_pth ¢ = 0;
prev_elv_c = 0;
prev_vel trv = 0;
prev_vel pth = 0;
prev_vel_elv = 0;

while(1)
{
// Read the encoders input
travel_c = enc_in(CHN_IN_TRV);
pitch_c = enc_in(CHN_IN_PTH);
elevation ¢ = enc_in(CHN_ IN ELV);

// Transform counter value to radius value

travel = (travel c)/8192.0 * 2*PI;
pitch = (pitch_c/4096.0)* 2* PI;
elevation = (elevation c)/4096.0 *2 *PI;

// Compute the velocity of elevation, pitch and travel

vel elv = (elevation c¢ - prev_elv c)/ ((float)PERIOD EVENT DET/1000000.0) /
4096.0 * 2* PI;

vel pth = (pitch ¢ - prev_pth c)/ ((float)PERIOD EVENT DET/1000000.0) / 409
6.0 * 2 * PI;

vel trv
92.0 * 2 * PI;

(travel ¢ - prev_trv c)/ ((float)PERIOD EVENT DET/1000000.0) / 81

// Low pass filter
if (k < LEN)

{
suml = 0;
sum2 = 0;
sum3 = 0;
filtl[k] = vel elv;
filt3[k] = vel pth;
filt2[k] = vel trv;
for (i=0;i<=k;i++)

{
suml += filtl[i];
sum2 += f£ilt2[i];
sum3 += f£ilt3[i];

curr_vel elv = suml/(k+1);
curr_vel pth = sum2/(k+1);
curr_vel trv = sum3/(k+1l);

}
else
{
curr_vel elv = prev_vel elv+ vel elv/LEN - filtl[0]/LEN;
curr_vel pth = prev_vel pth+ vel pth/LEN - £ilt2[0]/LEN;
curr_vel_trv = prev_vel_trv+ vel trv/LEN - £ilt3[0]/LEN;
for (i=0; i<LEN-1; i++)
{
filtl[i] = £iltl[i+1];
filt2[i] = filt2[i+1];
£filt3[i] = £ilt3[i+1];
}
filtl[LEN-1] = vel elv;
filt2[LEN-1] = vel_pth;
filt3[LEN-1] = vel trv;
}
k++;

// Update the previous state value with current value
prev_elv_c = elevation_c;

prev_pth ¢ = pitch c;

prev_trv_c = travel c;

prev_vel_elv = curr_vel_elv;

prev_vel pth = curr_vel pth;

prev_vel trv = curr_vel trv;

task_endcycle();

// This task is responsible for collecting information of the current system load
and displaying results on the screen
TASK jetdummy task(void *arg)
{
TIME now_dummy, last_dummy, diff dummy, slice;
struct timespec now, last, diff;
float £ now dummy, f last dummy, f diff dummy, £ slice;
int x = 0;
int height;
char s[507];

NULL_TIMESPEC(&last);
last _dummy = 0;
for (;:) {
task_nopreempt();
jet getstat(DUMMY PID, NULL, NULL, NULL, &now_dummy);
sys_gettime(&now);
task_preempt();

SUBTIMESPEC (&now, &last, &diff);
slice = diff.tv_sec * 1000000 + diff.tv _nsec/1000;

diff dummy = now_dummy - last dummy;

height = (int)(JET_DUMMY HEIGHT*((float)diff dummy)/((float)slice));

#ifdef DEBUG
f diff dummy=(float)diff dummy;

f now_dummy = (float)now_dummy;
f last dummy = (float)last dummy;
f slice = (float)slice;

sprintf(s,"the height is %d, diff dummy is %f, last is %f, now is %f, slice i

s $f",

height, £ diff dummy, f last dummy, f now dummy, f slice);

grx_text(s, XMIN, YMAX, gray, black);

#endif

TIMESPEC_ASSIGN(&last, &now);
last_dummy = now_dummy;

grx_line(JET DUMMY X+x,JET_DUMMY Y,

JET DUMMY X+x,JET DUMMY Y+height ,black);

grx_line(JET DUMMY X+x,JET DUMMY Y+height,

JET_DUMMY X+x,JET DUMMY Y+JET DUMMY HEIGHT,white);

grx_line(JET DUMMY X+ (x+1)%JET DUMMY WIDTH,JET DUMMY Y,

X

JET_DUMMY X+ (x+1)$JET DUMMY WIDTH,JET DUMMY Y+JET DUMMY HEIGHT,255);

= (x+1)%JET_DUMMY WIDTH;

task_endcycle();

// A jet task to collect control task and event-detector task execution informati
on and display on the screen
TASK jet_ctller(void *arg)

{

TIME sum, max;
char st[50],st2[50], stl[50];

int

EDF_

n;
level des *lev = (EDF_level des *)level_ table[proc_table[controller_ PID].ta

sk_level];

for (;;

{

// Get the mean execution time, max execution time (In microseconds) and nu

mbers of missing deadlines for control task
if (jet_getstat(controller PID, &sum, &max, &n, NULL)!=-1)
{

if (!n) n=1;

sprintf(st, "%$6d %6d %10s", (int)sum/n, (int)max, proc_table[controller
_PID].name);

grx_text(st, 300, YMIN+120+16, gray, black);

sprintf(st2, " task has missed %d deadlines", (lev->tvec[controller PID
]1).dl miss);

grx_text(st2, 300, YMIN+120+16+16, gray, black);
}

// Get the mean execution time, max execution time (in microseconds) for ev

ent-detector task
if (jet_getstat(event PID, &sum, &max, &n, NULL)!=-1)
{
if (!n) n=1;
sprintf(stl, "%6d %6d %$10s", (int)sum/n, (int)max, proc_table[event PID
] .name) ;
grx_text(stl, 300, YMIN+120+16+8, gray, black);
}

task_endcycle();
}

// Draw circle on the screen

void
draw _cir (int x, int y, int c)
{
grx_disc (x, y, D, c);
}
// Draw box on the screen
void
draw _box (int x, int y, int c)
{
grx_box (x, y, x + 4, y + 4, c);
}
// Graphic circle task (moving horizontally on the screen)
TASK
cir (void *argqg)
{

int x, y;

int ox, oy;

int dx;

int col, red;

int outx;

int 1 = (int) arg;

X = ox = XMIN;
y = oy = YMID + 2 * i;
dx = HVEL;

red = 100 + 10 * i;

if (red > 255)

red = 255;
col = rgblé (red, 0, 50); // color of circle
while (1)
{
x += dx;
outx = (x >= XMAX) || (x <= XMIN);
if (outx)
{
X = x - dx;
dx = -dx;

X += dx;

}

sem_wait (&prt_mutex);
draw_cir (ox, oy, 0);
draw _cir (x, y, col);
oxX = X;

oy = Y;

sem_post (&prt_mutex);

task _endcycle ();

}
}
// Graphic box task (moving horizontally on the screen)
TASK
box (void *arg)
{

int x, y;

int ox, oy;

int dx;

int col, blue;

int outx;

int 1 = (int) arg;

X = ox = XMAX-4;

y = oy = YMID + 1 + 2 * ij;
dx = - SVEL;

blue = 100 + 10 * ij;

if (blue > 255)

blue = 255;
col = rgblé (50, 0, blue); // color of box
while (1)
{
X += dx;
outx = (x >= XMAX) || (x <= XMIN);
if (outx)
{
X = x - dx;
dx = -dx;
X += dx;
}

sem _wait (&prt mutex);
draw_box (ox, oy, 0);

draw_box (x, y, col);

oxX = X;

oy = Yi

sem_post (&prt_mutex);

task endcycle ();

}

// Initialize and create helicopter control task and event-detector task (Hard ta
sks)
void init servo(void)

{
HARD TASK MODEL sv, ed;

// Initialize the Hard task model with parameters for event-detector task
hard_task_default model(ed);

hard task def ctrl jet(ed);

hard task _def wcet(ed, WCET EVENT DET);

hard_task_def mit(ed, PERIOD_EVENT_DET);

hard task def usemath(ed);

hard task def group(ed,l);

// Create a new event-detector task

event PID = task create('"event detector", event det, &ed, NULL);

if (event PID == NIL) {
sys_shutdown message("Could not create task <event detector>");
exit(1l);

}

// Initialize the Hard task model with parameters for helicopter control task
hard_task_default_model(sv);

hard task def ctrl jet(sv);

hard task def wcet(sv, WCET CTRLLER);

hard_task_def mit(sv, PERIOD_CTRLLER);

hard task def usemath(sv);

hard task def group(sv,1l);

// Create a new helicopter control task

controller PID = task create("servo controller", servo ctrl, &sv, NULL);
if (controller PID == NIL) {
sys_shutdown message("Could not create task <servo controller>");
exit(1l);
}

// Draw the frame scenario on the screen
void scenario(void)

{

grx_rect (XMIN - D - 1, YCTL - D - 1, XMAX + D + 1, YMAX + D + 1, rgblé6 (0, 255
0));

grx_rect (XMIN - D - 1, YMIN + 60 - D - 1, XMAX + D + 1, YCTL -10 + D + 1,rgbl
(0, 255, 0));

grx_text ("The controller's in/out state:", XMIN, YMIN+60, rgbl6(0,0,255), 0);

grx_text ("system load",XMIN, YMIN+120, rgbl6(0,0,255),0);

grx_text(" Mean Max Name ", 300, YMIN+120, gray, black);

grx_text ("Servo controller, hard circle and soft box", XMIN, YMIN + 10,rgblé6

(255, 255, 255), 0);

grx text ("press 'h' create a hard circle", XMIN, YMIN + 20, rgbl6é (255, 255,

55),0);

grx_text ("press 's' create a soft box", XMIN, YMIN + 30, rgblé (255, 255, 255)
:0);

grx_text ("press 'ESC' exit to DOS", XMIN, YMIN + 40, rgblé (255, 255, 255),
0);
}

// Initialize and create Soft tasks, including jet-dummy task and jet-controller
task
void init jet(void)

}

SOFT_TASK MODEL j1;
SOFT TASK MODEL jc;

PID pc;

soft task default model(jl);

soft task def level(jl,2);
soft_task_def_period(jl, PERIOD_JETDUMMY) ;
soft task def met(jl, WCET_ JETDUMMY) ;

soft task def group(jl,
soft_task_def usemath(jl);
soft task def ctrl jet(jl);

jet dummy PID = task create("jdmy",

1);

if (jet_dummy PID == -1) {

sys_shutdown message("Could not create task <jetdummy> errno=%d",

exit (1)
}

’

errno) ;

soft_task_default model(jc);

soft task def level(jc,2);

soft task def period(jc, PERIOD JETCTRLLER);

soft_task_def _met(jc, WCET_JETCTRLLER);

soft task def ctrl jet(jc);

soft task def group(jc,

pc = task_create("jet ctrller", jet_ctller,

if (pe == -1) {
sys_shutdown message("Could not create task <jet ctrller> errno=%d",

exit (1)
}

.
’

1);

errno) ;

&jc,

jetdummy task, &jl, NULL);

NULL) ;

// Keyboard Callback function (Terminate control task, reset the AD/DA board and

exit the application)

void endfun(KEY EVT *k)

{

}

task_kill(controller PID);

sleep(1l);
reset_ad(
reset_da(
exit(0);

r
r

// Keyboard Callback function (Clean the task execution statistic data)

void zerofun(KEY EVT

{

}

int i;
for (i=0;

i<MAX_T;

*k)

i++)

jet delstat(i);

// Keyboard Callback function (create and activate new graphic task)
void hook_func(KEY EVT *k)

{

switch (k->ascii)

{
case 'h':
hard task default model (m);
hard task def ctrl jet (m);
hard_task_def arg (m, (void *) h_count);
hard task def wcet (m, hard wcet);
hard task def mit (m, hard period);
hard_task_def usemath (m);
pid = task _create ("hardcircle", cir, &m, NULL);
if (pid == NIL)
{
sys_shutdown message ("Could not create task <hardcircle>");
exit (1);
}
task _activate (pid);
h _count++;
break;
case 's':
soft task default model (n);
soft_task _def ctrl jet (n);
soft task def arg (n, (void *) s _count);
soft task def met (n, soft wcet);
soft_task_def period (n, soft period);
soft task_def usemath (n);
pid = task create ("softbox", box, &n, NULL);
if (pid == NIL)
{
sys_shutdown message ("Could not create task <softbox>");
exit (1);
}
task activate (pid);
s_count++;
break;
case 'p':
desire out f += 0.1;
desire out b += 0.1;
break;
case 'o':
desire_out_f -= 0.1;
desire out b -= 0.1;
break;
}
}
int
main (int argc, char **argv)
{

short test_inp;

float ad_inp;

float test_ outp;

int in_channel, out_channel;
char c;

char str[50];
int i;

// Read the program's command-line arguments and set the default gain respeciti
vely
if (argc == 4)
{
gain elevation def = atof(argv[1l]);
gain pitch _def = atof(argv[2]);
gain_travel def = atof(argv([3]);
}
else
exit(1);

// Initialize parameters

gain_travel = 0;

gain elevation = gain elevation def;
gain pitch = gain_pitch_def;

travel offset = 0;

pitch offset = 0;

elevation_offset = 0;

h _count=0;

s_count=0;

char pids[1007];

// Userful colors

white = rgbl6(255,255,255);
black = rgbl6(0,0,0);

red rgb16(255,0,0);
gray rgbl6(128,128,128);

test_outp = 0;
in_channel = 4;
out_channel = 6;

// Reset the MultiQ D/A output, A/D input and Encoders
reset_da();
reset_ad();
for (i=0;i<8;i++)
{
enc_reset(i);

}

// Initialize print mutex and call initilization function to draw frame graph a
nd create hard and soft tasks

sem_ init(&prt mutex, 0, 1);

init servo();

init_jet();

scenario();

// Hookup keys to different Keyboad Callback functions

KEY EVT k;

k.flag = 0;

k.scan = KEY_H;

k.ascii = 'h';

k.status KEY PRESSED;

keyb hook(k,hook func,FALSE);
k.flag = CNTL_BIT;

k.scan = KEY_C;
k.ascii = '¢c';

k.status = KEY_PRESSED;
keyb hook(k,endfun,FALSE);
k.flag = ALTL BIT;

k.scan = KEY_7;

k.ascii = 'z';

k.status = KEY PRESSED;
keyb_hook(k,zerofun,FALSE) ;
k.flag = 0;

k.scan = KEY_S;

k.ascii = 's';

k.status KEY PRESSED;

keyb hook(k,hook func,FALSE);

(k
k.flag = 0;
k.scan = KE
k.ascii = 'p';
k.status = KEY_PRESSED;
keyb hook(k,hook func,FALSE);
k.flag = 0;
k.scan = KEY_Oj;
k.ascii = 'o';
k.status = KEY PRESSED;
keyb_hook(k,hook_ func,FALSE) ;

Y_P;

// Activate the created tasks
group_activate(1l);

return 0;

